
SMAP L4 Global Daily 9 km Carbon Net Ecosystem Exchange, Version 2 (SPL4CMDL)
Data set:
SPL4CMDL
There is a more recent version of these data.
Version Summary
Version Summary
Changes to this version include:
- Transitioned to Validated-Stage 2
- Using SPL4SMAU V2 Validated and SPL4SMGP V2 Validated data as input
- Update to process radiometer data from 2015-03-31 to 2015-04-12
- Some data fields renamed from *_av to *_mean
- Updated to have have continuous RMSE-based "quality" fields instead of the categorical quality flag in V1
Overview
The Level-4 (L4) carbon product (SPL4CMDL) provides global gridded daily estimates of net ecosystem carbon (CO2) exchange derived using a satellite data based terrestrial carbon flux model informed by the following: Soil Moisture Active Passive (SMAP) L-band microwave observations, land cover and vegetation inputs from the Moderate Resolution Imaging Spectroradiometer (MODIS), Visible Infrared Imaging Radiometer Suite (VIIRS), and the Goddard Earth Observing System Model, Version 5 (GEOS-5) land model assimilation system. Parameters are computed using an Earth-fixed, global, cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection.
Data Contributor(s):
Kimball, J. S., L. A. Jones, J. Glassy, and R. Reichle.
Parameter(s):
GROSS PRIMARY PRODUCTIVITY (GPP)
HETEROTROPHIC RESPIRATION (RH)
NET ECOSYSTEM CO2 EXCHANGE (NEE)
SOIL ORGANIC CARBON (SOC)
Platform(s):
AQUA, SMAP Observatory, SUOMI-NPP, TERRA
Sensor(s):
MODIS, SMAP L-BAND RADIOMETER, VIIRS
Data Format(s):
HDF5, HDF5
Temporal Coverage:
31 March 2015 to 11 July 2017
Temporal Resolution:
1 day
Spatial Resolution:
9 km
9 km
Spatial Coverage:
N:
85.044
S:
-85.044
E:
180
W:
-180
Data Access & Tools
Documentation
ATBDs
General Resources
Quality Assessment Reports
Product Specification Documents
Help Articles
How To
Many NSIDC data set web pages provide the ability to search and filter data with spatial and temporal contstraints using a map-based interface. This article outlines how to order NSIDC DAAC data using advanced searching and filtering.
To convert HDF5 files into binary format you will need to use the h5dump utility, which is part of the HDF5 distribution available from the HDF Group. How you install HDF5 depends on your operating system.
This step-by-step tutorial demonstrates how to access MODIS and SMAP data using the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). AppEEARS allows users to access, explore, and download point and area data with spatial, temporal, and parameter subsets.
The following are instructions on how to import and geolocate SMAP Level-3 Radiometer Soil Moisture HDF5 data in ENVI.
Testing notes
Software: ENVI
Software version: 5.3
Platform: Windows 7
This How to guide outlines the steps for properly importing, projecting and visualizing HDF and NetCDF files in ArcMap. A couple of things to note before you start:
Data subscriptions are available for select NSIDC DAAC data collections (found below). Our subscription service automatically sends you new data as they are delivered from active NASA satellite missions.
Data from the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) can be accessed directly from our HTTPS file system or through our Application Programming Interface (API).
NASA Earthdata Search is a map-based interface where a user can search for Earth science data, filter results based on spatial and temporal constraints, and order data with customizations including re-formatting, re-projecting, and spatial and parameter subsetting.
NASA Worldview uses the Global Imagery Browse Service (GIBS) to provide up to date, full resolution imagery for select NSIDC DAAC data sets (see attachments below).
NASA's Global Imagery Browse Services (GIBS) provides up to date, full resolution imagery for selected NSIDC DAAC data sets.
Getting started
OPeNDAP, the Open-source Project for a Network Data Access Protocol, is a NASA community standard DAP that provides a simple way for researchers to access and work with data over the internet.
SMAP Ancillary data sets are used to produce SMAP Level-1, -2, -3, and -4 standard data products.
The following table describes both the required and actual latencies for the different SMAP radiometer data sets. Latency is defined as the time (# days, hh:mm:ss) from data acquisition to product generation.
The following table describes the data subsetting, reformatting, and reprojection services that are currently available for SMAP data via the NASA Earthdata Search, a Data Subscription, and Programmatic Access.