• On Wednesday, August 17, from 9:00 a.m. to 2:00 p.m. (USA Mountain Time), the following data collections may not be available due to planned system maintenance: AMSR-E, Aquarius, High Mountain Asia, IceBridge, ICESat/GLAS, ICESat-2, MEaSUREs, MODIS, NISE, SMAP, SnowEx, and VIIRS.
     

  • Welcome to the new nsidc.org! Please note that we are in a beta launch of this website. During the beta phase, our website search may act unpredictably until the website stabilizes.

SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data, Version 4 (SPL4SMGP)
Data set:
SPL4SMGP
Citation
There is a more recent version of these data.
Version Summary

Changes to this version include:




  • The land surface modeling system was revised in the following ways:

    • Improved input parameter data sets for land cover, topography, and vegetation height are based on more recent data sets. Land cover inputs were updated to the GlobCover2009 product, resulting in a slightly different land mask between Version 3 and Version 4. Topographic statistics now rely on observations from the Shuttle Radar Topography Mission. Finally, vegetation height inputs are derived from space-borne lidar measurements.

    • The model background precipitation forcing is rescaled to match the climatology of the Global Precipitation Climatology Project (v2.2), which results in substantial changes in the precipitation and soil moisture climatology in Africa and the high latitudes, where the gauge-based Climate Prediction Center Unified precipitation is not used.

    • SMAP Level-2 soil moisture retrievals and in situ soil moisture measurements from the Soil Climate Analysis Network and U.S. Climate Reference Network were used to calibrate a particular Catchment model parameter that governs the recharge of soil moisture from the model’s root-zone excess reservoir into the surface excess reservoir. Specifically, the replenishment of soil moisture near the surface from below under non-equilibrium conditions was substantially reduced, which brings the model’s surface soil moisture more in line with the SMAP Level-2 and in situ soil moisture.

    • Additional model changes include revisions to the parameters and parameterizations of the surface energy balance and the snow depletion curve.



  • The Version 4 brightness temperature scaling parameters are based on eight years of SMOS observations and three years of SMAP observations where the SMOS climatology is unavailable due to radio frequency interference. Note that the calibration of the assimilated SMAP brightness temperatures changed substantially from Version 3 to Version 4.

  • Analysis increments are no longer computed for the “catchment deficit” model prognostic variable in the Ensemble Kalman filter update step.

  • Minor bug fixes.

  • Added x and y coordinate variables [including arrays of EASE-Grid 2.0 coordinate values, Climate and Forecast (CF)-compliant metadata, and HDF-5 dimension scales] as well as an EASE-Grid 2.0 projection grid mapping variable. This augmentation of L4 soil moisture data files improves interoperability and user workflow via ArcGIS/QGIS, OPeNDAP, and programmatic access. Three new data fields accommodate this change: EASE2_global_projection, x, and y.



For the full major and minor version history, go to https://nsidc.org/data/smap/data_versions.

Overview

SMAP Level-4 (L4) surface and root zone soil moisture data are provided in three products: * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Geophysical Data (SPL4SMGP, DOI: 10.5067/KPJNN2GI1DQR) * SMAP L4 Global 3-hourly 9 km EASE-Grid Surface and Root Zone Soil Moisture Analysis Update (SPL4SMAU, DOI: 10.5067/60HB8VIP2T8W) * SMAP L4 Global 9 km EASE-Grid Surface and Root Zone Soil Moisture Land Model Constants (SPL4SMLM, DOI: 10.5067/KGLC3UH4TMAQ). For each product, SMAP L-band brightness temperature data from descending and ascending half-orbit satellite passes (approximately 6:00 a.m. and 6:00 p.m. local solar time, respectively) are assimilated into a land surface model that is gridded using an Earth-fixed, global cylindrical 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) projection.
Data Contributor(s):
Reichle, R., G. De Lannoy, R. D. Koster, W. T. Crow, J. S. Kimball, and Q. Liu.
Parameter(s):
ROOT ZONE SOIL MOISTURE SURFACE SOIL MOISTURE
Platform(s):
SMAP
Sensor(s):
SMAP L-BAND RADIOMETER
Data Format(s):
HDF5
Temporal Coverage:
31 March 2015 to 27 August 2020
Temporal Resolution:
3 hour
Spatial Resolution:
9 km
9 km
Spatial Coverage:
N:
85.044
S:
-85.044
E:
180
W:
-180

Data Access & Tools

This data set has been retired. There is a more recent version of these data.

Help Articles

How To

Many NSIDC data set web pages provide the ability to search and filter data with spatial and temporal contstraints using a map-based interface. This article outlines how to order NSIDC DAAC data using advanced searching and filtering. 
To convert HDF5 files into binary format you will need to use the h5dump utility, which is part of the HDF5 distribution available from the HDF Group. How you install HDF5 depends on your operating system.
This step-by-step tutorial demonstrates how to access MODIS and SMAP data using the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). AppEEARS allows users to access, explore, and download point and area data with spatial, temporal, and parameter subsets.
The following are instructions on how to import and geolocate SMAP Level-3 Radiometer Soil Moisture HDF5 data in ENVI. Testing notes Software: ENVI Software version: 5.3 Platform: Windows 7
This How to guide outlines the steps for properly importing, projecting and visualizing HDF and NetCDF files in ArcMap. A couple of things to note before you start:
Data subscriptions are available for select NSIDC DAAC data collections (found below). Our subscription service automatically sends you new data as they are delivered from active NASA satellite missions.
  Data from the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) can be accessed directly from our HTTPS file system or through our Application Programming Interface (API).
NASA Earthdata Search is a map-based interface where a user can search for Earth science data, filter results based on spatial and temporal constraints, and order data with customizations including re-formatting, re-projecting, and spatial and parameter subsetting.
NASA Worldview uses the Global Imagery Browse Service (GIBS) to provide up to date, full resolution imagery for select NSIDC DAAC data sets (see attachments below).
NASA's Global Imagery Browse Services (GIBS) provides up to date, full resolution imagery for selected NSIDC DAAC data sets. 

Getting started

OPeNDAP, the Open-source Project for a Network Data Access Protocol, is a NASA community standard DAP that provides a simple way for researchers to access and work with data over the internet.
SMAP Ancillary data sets are used to produce SMAP Level-1, -2, -3, and -4 standard data products.
The following table describes both the required and actual latencies for the different SMAP radiometer data sets. Latency is defined as the time (# days, hh:mm:ss) from data acquisition to product generation.
The following table describes the data subsetting, reformatting, and reprojection services that are currently available for SMAP data via the NASA Earthdata Search, a Data Subscription, and Programmatic Access.  
There are a few reasons that the soil moisture data values in SMAP Level-4 data products may vary from what you expect in a particular region. The first step a data user should take in investigating apparently anomalous values is to look at the rich quality information and other data flags contai
The surface and root zone soil moisture estimates in the SMAP Level-4 soil moisture products are the outputs of a land surface model into which SMAP observations of brightness temperature have been assimilated.