SMAP L1B Radiometer Half-Orbit Time-Ordered Brightness Temperatures, Version 5
Data set id:
SPL1BTB
DOI: 10.5067/ZHHBN1KQLI20
There is a more recent version of these data.
Version Summary
Version Summary
Changes to this version include:
- An improved calibration methodology was applied to Level-1 brightness temperatures, which uses:
* the internal instrument reference load (instead of the global ocean as in V4)
* deep space measurements during monthly cold sky maneuvers and special cold sky maneuvers with stable open-ocean background to concurrently retrieve all calibration parameters
* a longer temporal baseline of cold sky records.
For the full major and minor version history, go to https://nsidc.org/data/smap/version-history
- An improved calibration methodology was applied to Level-1 brightness temperatures, which uses:
* the internal instrument reference load (instead of the global ocean as in V4)
* deep space measurements during monthly cold sky maneuvers and special cold sky maneuvers with stable open-ocean background to concurrently retrieve all calibration parameters
* a longer temporal baseline of cold sky records.
For the full major and minor version history, go to https://nsidc.org/data/smap/version-history
Overview
This Level-1B (L1B) product provides calibrated estimates of time-ordered geolocated brightness temperatures measured by the Soil Moisture Active Passive (SMAP) passive microwave radiometer. SMAP L-band brightness temperatures are referenced to the Earth's surface with undesired and erroneous radiometric sources removed.
Parameter(s):
ANTENNA TEMPERATUREBRIGHTNESS TEMPERATURE
Platform(s):
SMAP
Sensor(s):
SMAP L-BAND RADIOMETER
Data Format(s):
HDF5
Temporal Coverage:
31 March 2015 to present
Temporal Resolution:
- 49 minute
Spatial Resolution:
- 47 km
- 36 km
Spatial Reference System(s):
WGS 84
EPSG:4326
Spatial Coverage:
N:
86.4
S:
-86.4
E:
180
W:
-180
Blue outlined yellow areas on the map below indicate the spatial coverage for this data set.
Data Access & Tools
A free NASA Earthdata Login account is required to access these data. Learn More
Documentation
User Guide
ATBDs
General Resources
Quality Assessment Reports
Product Specification Documents
Help Articles
General Questions & FAQs
SMAP Ancillary data sets are used to produce SMAP Level-1, -2, -3, and -4 standard data products.
The following table describes both the required and actual latencies for the different SMAP radiometer data sets. Latency is defined as the time (# days, hh:mm:ss) from data acquisition to product generation.
How to Articles
Many NSIDC DAAC data sets can be accessed using the NSIDC DAAC's Data Access Tool. This tool provides the ability to search and filter data with spatial and temporal constraints using a map-based interface.Users have the option to
Harmony API Quickstart Guide: Customizing NASA NSIDC DAAC data in Earthdata Cloud
To convert HDF5 files into binary format you will need to use the h5dump utility, which is part of the HDF5 distribution available from the HDF Group. How you install HDF5 depends on your operating system.
Data subscriptions are available for select NSIDC DAAC data collections. Once signed up, the subscription service automatically sends you new data as they are delivered from active NASA satellite missions.
All data from the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) is directly accessible through our HTTPS file system using Wget or curl. This article provides basic command line instructions for accessing data using this method.
NASA Worldview is a map interface that allows users to interactively browse imagery, create visualizations, and download the underlying data.
NASA's Global Imagery Browse Services (GIBS) provides up to date, full resolution imagery for selected NSIDC DAAC data sets.