SMAP Enhanced L3 Radiometer Global Daily 9 km EASE-Grid Soil Moisture, Version 2
Data set id:
SPL3SMP_E
DOI: 10.5067/RFKIZ5QY5ABN
There is a more recent version of these data.
Version Summary
Version Summary
Changes to this version include:
- Level-1B water-corrected brightness temperatures are used in passive soil moisture retrieval.
This procedure corrects for anomalous soil moisture values seen near coastlines in the previous
version and should result in less rejected data due to waterbody contamination. Five new data fields
accommodate this correction: grid_surface_status, surface_water_fraction_mb_h,
surface_water_fraction_mb_v, tb_h_uncorrected, and tb_v_uncorrected. - Improved depth correction for effective soil temperature used in passive soil moisture
retrieval; new results are captured in the surface_temperature data field. This correction reduces
the dry bias seen when comparing SMAP data to in situ data from the core validation sites.
Frozen ground flag updated to reflect improved freeze/thaw detection algorithm, providing better
accuracy; new results are captured in bit 7 of surface_flag.
Overview
This enhanced Level-3 (L3) soil moisture product provides a composite of daily estimates of global land surface conditions retrieved by the Soil Moisture Active Passive (SMAP) radiometer. This product is a daily composite of SMAP Level-2 (L2) soil moisture which is derived from SMAP Level-1C (L1C) interpolated brightness temperatures. Backus-Gilbert optimal interpolation techniques are used to extract information from SMAP antenna temperatures and convert them to brightness temperatures, which are posted to the 9 km Equal-Area Scalable Earth Grid, Version 2.0 (EASE-Grid 2.0) in a global cylindrical projection.
Parameter(s):
BRIGHTNESS TEMPERATURESOIL MOISTURE
Platform(s):
SMAP
Sensor(s):
SMAP L-BAND RADIOMETER
Data Format(s):
HDF5
Temporal Coverage:
31 March 2015 to 12 August 2019
Temporal Resolution:
- 1 day
Spatial Resolution:
- 9 km
- 9 km
Spatial Reference System(s):
WGS 84 / NSIDC EASE-Grid 2.0 Global
EPSG:6933
Spatial Coverage:
N:
85.044
S:
-85.044
E:
180
W:
-180
Blue outlined yellow areas on the map below indicate the spatial coverage for this data set.
Data Access & Tools
Documentation
User Guide
ATBDs
General Resources
Quality Assessment Reports
Product Specification Documents
Help Articles
General Questions & FAQs
There is considerable overlap of the SMAP radiometer footprints, or Instantaneous Fields of View (IFOVs), which are defined by the contours where the sensitivity of the antenna has fallen by 3db from its maximum.
OPeNDAP, the Open-source Project for a Network Data Access Protocol, is a NASA community standard DAP that provides a simple way for researchers to access and work with data over the internet.
SMAP data files contain rich quality information that can be useful for many data users. The retrieval quality flag and surface flag bit values and interpretations are documented in the respective product Data Fields pages of the user guides for these data products
The following table describes both the required and actual latencies for the different SMAP radiometer data sets. Latency is defined as the time (# days, hh:mm:ss) from data acquisition to product generation.
This short article describes the customization services available for SMAP data using Earthdata Search.
While the standard SMAP Level-2 and -3 radiometer soil moisture products contain landcover_class and landcover_class_fraction in the data files, the enhanced soil moisture products do not.
How to Articles
Many NSIDC DAAC data sets can be accessed using the NSIDC DAAC's Data Access Tool. This tool provides the ability to search and filter data with spatial and temporal constraints using a map-based interface.Users have the option to
To convert HDF5 files into binary format you will need to use the h5dump utility, which is part of the HDF5 distribution available from the HDF Group. How you install HDF5 depends on your operating system.
This step-by-step tutorial demonstrates how to access MODIS and SMAP data using the Application for Extracting and Exploring Analysis Ready Samples (AppEEARS). AppEEARS allows users to access, explore, and download point and area data with spatial, temporal, and parameter subsets.
The following are instructions on how to import and geolocate SMAP Level-3 Radiometer Soil Moisture HDF5 data in ENVI.
Testing notes
Software: ENVI
Software version: 5.3
Platform: Windows 7
Data subscriptions are available for select NSIDC DAAC data collections. Once signed up, the subscription service automatically sends you new data as they are delivered from active NASA satellite missions.
All data from the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) is directly accessible through our HTTPS file system using Wget or curl. This article provides basic command line instructions for accessing data using this method.
This article highlights the NSIDC DAAC data sets available with customization options and outlines a workflow for searching, ordering, and customizing data in NASA Earthdata Search. This approach is ideal for users who want to download data to their local machine.
NASA Worldview is a map interface that allows users to interactively browse imagery, create visualizations, and download the underlying data.
NASA's Global Imagery Browse Services (GIBS) provides up to date, full resolution imagery for selected NSIDC DAAC data sets.