• On Wednesday, May 29 from 9:00 a.m. to 11:00 a.m. (US Mountain Time), the following data collections may not be available due to a planned system maintenance: ASO, AMSR Unified, AMSR-E, Aquarius, High Mountain Asia, IceBridge, ICESat/GLAS, ICESat-2, LVIS, MEaSUREs, MODIS, Nimbus, SMAP, SnowEx, SSM/I-SSMIS and VIIRS. Users of the SMAP near real-time products should use the Persistent HTTPS File System for data access. 

  • For a list of known issues with this product, see the Known Issues document under the Documentation section of the page.

ATLAS/ICESat-2 L3A Land and Vegetation Height, Version 6
Data set id:
ATL08
DOI: 10.5067/ATLAS/ATL08.006
This is the most recent version of these data.
Version Summary
Changes for Version 6 are as follows:

  • Added a quality check to reject segments for which the canopy photons fall more than 150 m below the reference DEM

  • Calculated the background noise rate and number of noise photons within a canopy segment and adjusted the canopy radiometric rate accordingly

  • For segments with a solar elevation angle > 20°, if the background noise rate is < 0.98 of the canopy rate, then reassign the canopy photons as noise photons

  • Incorporated the YAPC photon weights from the ATL03 data product into the ground-finding approach

  • Reduced the number of labeled photons required to report the canopy or terrain heights within each segment for the strong and weak beams, resulting in more ATL08 reported values

Overview

This data set (ATL08) contains along-track heights above the WGS84 ellipsoid (ITRF2014 reference frame) for the ground and canopy surfaces. The canopy and ground surfaces are processed in fixed 100 m data segments, which typically contain more than 100 signal photons. The data were acquired by the Advanced Topographic Laser Altimeter System (ATLAS) instrument on board the Ice, Cloud and land Elevation Satellite-2 (ICESat-2) observatory.
Parameter(s):
TERRAIN ELEVATION
Platform(s):
ICESat-2
Sensor(s):
ATLAS
Data Format(s):
HDF5
Temporal Coverage:
14 October 2018 to present
Temporal Resolution:
  • 91 day
Spatial Resolution:
  • Not Specified
Spatial Reference System(s):
WGS 84
EPSG:4326
Spatial Coverage:
N:
90
S:
-90
E:
180
W:
-180
Blue outlined yellow areas on the map below indicate the spatial coverage for this data set.

Data Access & Tools

A free NASA Earthdata Login account is required to access these data. Learn More

Help Articles

General Questions & FAQs

This article covers frequently asked questions about the NASA NSIDC DAAC's Earthdata cloud migration project and what it means to data users.
This short article describes the customization services available for ICESat-2 data using Earthdata Search.

How to Articles

Many NSIDC DAAC data sets can be accessed using the NSIDC DAAC's Data Access Tool. This tool provides the ability to search and filter data with spatial and temporal constraints using a map-based interface.Users have the option to
To convert HDF5 files into binary format you will need to use the h5dump utility, which is part of the HDF5 distribution available from the HDF Group. How you install HDF5 depends on your operating system.
Learn the basic steps for using OpenAltimetry to browse and download ICESat-2 data products.
This guide will provide an overview of the altimetry measurements and data sets across the missions, as well as a guide for accessing the data through NASA Earthdata Search and programmatically using an Application Programming Interface (API).
The NASA Earthdata Cloud is the NASA cloud-based archive of Earth observations. It is hosted by Amazon Web Services (AWS). Learn how to find and access NSIDC DAAC data directly in the cloud.
All data from the NASA National Snow and Ice Data Center Distributed Active Archive Center (NSIDC DAAC) can be accessed directly from our HTTPS file system, using wget or curl. Basic command line instructions are provided in the article below. 
NASA Earthdata Search is a map-based interface where a user can search for Earth science data, filter results based on spatial and temporal constraints, and order data with customizations including re-formatting, re-projecting, and spatial and parameter subsetting.
This webinar introduces the ICESat-2 mission and shows you how to explore, access and customize ICESat-2 data with the OpenAltimetry application, using NSIDC DAAC tools, and shows you how to subset, reformat and analyze the data using Python.