Near Real-time SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture, Version 107
Data set id:
SPL2SMP_NRT
DOI: 10.5067/NCTT8THPWRTL
This is the most recent version of these data.
Version Summary
Initial release.

Overview

This Near Real-Time (NRT) data set corresponds to the standard SMAP L2 Radiometer Half-Orbit 36 km EASE-Grid Soil Moisture (SPL2SMP) product. The data provide estimates of global land surface conditions measured by the Soil Moisture Active Passive (SMAP) passive microwave radiometer, the SMAP L-band radiometer. These Near Real-Time data are available within three hours of satellite observation. The data are created using the latest available ancillary data and spacecraft and antenna attitude data to reduce latency. The SMAP satellite orbits Earth every two to three days, providing half-orbit, ascending and descending, coverage from 86.4°S to 86.4°N in swaths 1000 km across. Data are stored for approximately two to three weeks. Thus, at any given time, users have access to at least fourteen consecutive days of Near Real-Time data through the NSIDC DAAC. Users deciding between the NRT and standard SMAP products should consider the immediacy of their needs versus the quality of the data required. Near real-time data are provided for operational needs whereas standard products meet the quality needs of scientific research. If latency is not a primary concern, users are encouraged to use the standard science product SPL2SMP (https://doi.org/10.5067/LPJ8F0TAK6E0).
Parameter(s):
BRIGHTNESS TEMPERATURESURFACE SOIL MOISTURE
Platform(s):
SMAP
Sensor(s):
SMAP L-BAND RADIOMETER
Data Format(s):
HDF5
Temporal Coverage:
28 March 2024 to present
Temporal Resolution:
  • 49 minute
Spatial Resolution:
  • 36 km
  • 36 km
Spatial Reference System(s):
WGS 84 / NSIDC EASE-Grid 2.0 Global
EPSG:6933
Spatial Coverage:
N:
85.044
S:
-85.044
E:
180
W:
-180
Blue outlined yellow areas on the map below indicate the spatial coverage for this data set.

Data Access & Tools

A free NASA Earthdata Login account is required to access these data. Learn More