A good winter, relatively speaking

By early January 2022, Arctic sea ice extent, while well below average, was within the lowest decile of recorded extents of the 1981 to 2010 reference period. Sea ice now completely covers Hudson Bay; the only area with substantially below average extent is in southern Baffin Bay and north of Labrador.

Overview of conditions

Figure 1. Arctic sea ice extent for December 2021 was 13.48 million square kilometers (5.20 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for December 2021 was 12.19 million square kilometers (4.71 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Average Arctic sea ice extent for December 2021 was 12.19 million square kilometers (4.71 million square miles), which ranked thirteenth lowest in the satellite record. The 2021 extent was 650,000 square kilometers (251,000 square miles) below the 1981 to 2010 average. As of early January 2022, sea ice completely covers Hudson Bay. The only area with extent remarkably below normal is southern Baffin Bay and off the coast of Labrador, where the December sea ice extent ranked fourth lowest.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of January 4, 2022, along with daily ice extent data for four previous years and the record low year. 2021 to 2022 is shown in blue, 2020 to 2021 in green, 2019 to 2020 in orange, 2018 to 2019 in brown, 2017 to 2018 in magenta, and 2012 to 2013 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of January 4, 2022, along with daily ice extent data for four previous years and the record low year. 2021 to 2022 is shown in blue, 2020 to 2021 in green, 2019 to 2020 in orange, 2018 to 2019 in brown, 2017 to 2018 in magenta, and 2012 to 2013 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for December 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory |High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for December 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic at the 925 hPa level, in degrees Celsius, for December 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory|High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic at the 925 hPa level, in degrees Celsius, for December 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

The air temperature pattern averaged for December 2021 at the 925 millibar level (about 2,500 feet above the surface) was characterized by above average temperatures. Temperatures were up to 6 degrees Celsius (11 degrees Fahrenheit) above average over Greenland, north of the Canadian Arctic Archipelago, and the East Greenland Sea. Three areas of below average temperatures were found over western and eastern Eurasia and northwestern Canada (Figure 2b). The corresponding sea level pressure pattern for December 2021 featured fairly low pressures (less than 1,015 millibars) encompassing essentially all of the Arctic except for the Laptev Sea region (Figure 2c). These pressures were nevertheless not substantially unusual compared to average—at most 6 to 7 millibars below average. The notable exception is south of the Aleutian Islands, where the sea level pressure was up to 24 millibars above average.

December 2021 compared to previous years

Figure 3. Monthly October ice extent for 1979 to 2021 shows a decline of 3.1 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly December ice extent for 1979 to 2021 shows a decline of 3.5 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The downward linear trend in December sea ice extent over the 43-year satellite record is 45,000 square kilometers (17,400 square miles) per year, or 3.5 percent per decade relative to the 1981 to 2010 average. Based on the linear trend, since 1979, December has seen a loss of 1.88 million square kilometers (726,000 square miles). This is equivalent to about three times the size of Texas.

Hudson Bay ices over

Figure 4. This NASA Worldview image shows the last of the Hudson Bay freezing up along the southeast coast as of December 23, 2021. After a late freeze up, Hudson Bay is completely ice covered as of early January 2022. ||Credit: NASA| High-resolution image

Figure 4. This NASA Worldview image shows the last part of  Hudson Bay freezing up along the southeast coast as of December 23, 2021. After a late freeze up, Hudson Bay is completely ice covered as of early January 2022.

Credit: NASA
High-resolution image

In our previous post, we noted that by the end of November, the northern half of Hudson Bay is usually completely iced over. As of the end of November 2021, only the far north was frozen over; the rest of the bay was ice free except for a narrow band of ice along the western coastline. However, as lower temperatures kicked in and the upper ocean lost the heat that it had gained in summer, the entire bay subsequently froze over. The ice cover is now complete.

Antarctic notes

Figure 4. Antarctic sea ice extent for December 2021 was 9.2 million square kilometers (3.55 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 5. Antarctic sea ice extent for December 2021 was 9.2 million square kilometers (3.55 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice extent for December 2021 was low overall, tracking at similar extents seen in 2017. Regionally, extent was particularly low in the Weddell Sea and southern Ross Sea regions. Several large polynyas formed in the eastern Weddell Sea; the Maud Rise Polynya opened in late November and then spread east to northeast. This is unusual; normally, the polynya extends south and west of its initiation point. The Southern Annular Mode (SAM) was in a strong positive phase through the first half of the month, indicating strong westerly winds and a strong low-pressure area in the Amundsen Sea. Sea ice conditions are not yet favorable for two planned cruises near Thwaites Glacier, one by the US Antarctic research program (RV Nathaniel B. Palmer) and the other by the South Korean (RV Araon). Ships are due to arrive in late January.

Killer whales in the Arctic

Bowhead whales have played an integral role in the cultural and subsistence life of Inuit communities for millennia. New research at the University of Washington analyzing acoustic data has found that the loss of sea ice has allowed killer whales, also known as Orcas, to venture into waters that were once inaccessible to them. The expanding range of killer whales, a top predator, has potential ramification for the Arctic food web and especially bowhead whales. Indigenous Arctic communities have noted an increased number of carcasses of bowhead whales in the Chukchi and Beaufort seas that were preyed upon by Orcas. Normally, bowheads can avoid predation by retreating into protective areas of heavy sea ice that the smaller Orcas cannot break through to breathe. If the bowheads must spend more time in thick ice, this can be a problem because feeding opportunities are more limited. Calves that cannot break through the ice may also drown.

Winter is settling in

The sea ice extent has been quickly growing, and by the end of October, ice covered most of the Arctic Ocean. Overall, the ice extent remained below average for this time of year in the Barents and Kara Seas, as well as within northern Baffin Bay and the East Greenland Sea.

Overview of conditions

Figure 1. Arctic sea ice extent for October 2021 was 6.77 million square kilometers (2.61 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for October 2021 was 6.77 million square kilometers (2.61 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

The monthly average extent for October 2021 was 6.77 million square kilometers (2.61 million square miles). This ranked eighth lowest in the long-term satellite data record, tied with 2017. It was 1.44 million square kilometers (556,000 square miles) greater than the record low of 5.33 million square kilometers (2.06 million square miles) recorded in 2020, and 1.58 million square kilometers (610,000 square miles) below the 1981 to 2010 long-term average. Ice growth was robust across the Eurasian side of the Arctic, including the East Greenland Sea, but there was little expansion of ice southwards within the eastern Beaufort Sea.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of November 1, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of November 1, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, from October 1 to 30, 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory |High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for October 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

Figure 2c. This plot shows the departure from average sea level pressure in the Arctic at the 925 hPa level, in degrees Celsius, for October 2021. Yellows and reds indicate higher than average air pressures; blues and purples indicate lower than average air pressures.||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory| High-resolution image

Figure 2c. This plot shows the departure from average sea level pressure in the Arctic at the 925 hPa level, in degrees Celsius, for October 2021. Yellows and reds indicate higher than average air pressures; blues and purples indicate lower than average air pressures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

As of October 31, sea ice extent is tracking higher than any year since 2015, as well as higher than observed in 2007, 2011, and 2012 (Figure 2a).

Average monthly air temperatures were well below freezing across much of the Arctic Ocean in October, the exceptions being along the coastal regions of the Barents Sea and across the North Atlantic region. Nevertheless, air temperatures at the 925 hPa level (about 2,500 feet above the surface) were above the 1981 to 2010 average, up to 8 degrees Celsius (14 degrees Fahrenheit) above average north of Greenland and the Canadian Archipelago (Figure 2b).

Above average temperatures were related in part to unusually low sea level pressure extending from Siberia across to Alaska, coupled with above average sea level pressure northeast of Greenland extending down towards Baffin Bay. In particular, the strong sea level pressure gradient between the low and high sea level pressure near the Canadian Arctic Archipelago helped to funnel winds from the south over Baffin Bay, which is still ice-free, northwards towards the central Arctic Ocean (Figure 2c).

Overall, ice extent increased by 99,700 square kilometers (38,500 square miles) per day during the month of October. This rate of increase was larger than the 1981 to 2010 average of 89,200 square kilometers (34,400 square miles) per day.

October 2021 compared to previous years

Figure 3. Monthly October ice extent for 1979 to 2021 shows a decline of 9.8 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly October ice extent for 1979 to 2021 shows a decline of 9.8 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The downward linear trend in October sea ice extent over the satellite record is 82,100 square kilometers (31,700 square miles) per year, or 9.8 percent per decade relative to the 1981 to 2010 average (Figure 3). While percentagewise, the overall long-term trend is largest in September, the actual amount (based on the linear trend) of ice lost per year is larger in October: 82,100 square kilometers (31,700 square miles) versus 81,200 square kilometers (31,400 square miles) in September.

Overall, since 1979, October has lost 3.45 million square kilometers (1.33 million square miles) of ice, based on the linear trend. This is equivalent to twice the size of the state of Alaska.

Last ice refuge continues to show signs of weakness

Figure 4. This NASA Moderate Resolution Imaging Spectroradiometer (MODIS) image from May 20, 2020, shows a large polynya, or open water region, that formed north of Ellesmere Island in Canada. ||Credit: NASA| High-resolution image

Figure 4. This NASA Moderate Resolution Imaging Spectroradiometer (MODIS) image from May 20, 2020, shows a large polynya, or open water region, that formed north of Ellesmere Island in Canada.

Credit: NASA
High-resolution image

In February 2018, a large polynya (open water region) formed northeast of Greenland. In May 2020, another large polynya formed north of Ellesmere Island (Figure 4). This region contains the oldest and thickest ice in the Arctic Ocean, a result of the Beaufort Gyre circulation, which pushes the ice towards the coasts of Greenland and the Canadian Archipelago, where it compresses along the coasts. However, during the polynya formation events, winds helped to push the ice away from the shores, leaving open water for several days. While such events have occurred before, they are rare. However, as the ice cover continues to thin, the ice will become more vulnerable to disruption by winds that can form such polynyas and seaward ridging and rafting of the ice.

Seeing daylight in the Antarctic

Figure 5. The graph above shows Antarctic sea ice extent as of November 1, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2014 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 5. The graph above shows Antarctic sea ice extent as of November 1, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2014 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Since the Antarctic maximum sea ice extent was reached on September 1, 2021, ice extent has been in a steep decline. Extent went from being above the interdecile (ninetieth percentile) range to being below the tenth percentile for most of October. As a result, sea ice extent in the Antarctic is currently tracking as the third lowest, behind only 2016 and 1986. Sea ice extent is particularly low along the western side of the Antarctic Peninsula, including the northern Weddell Sea and the central Indian Ocean sector. Air temperatures at the 925 hPa level (about 2,500 feet above the surface) were up to 6 degrees Celsius (11 degrees Fahrenheit) above average within the Weddell Sea. A strong low pressure feature in the Amundsen Sea and above average air pressure in the area south of Australia drove winds that led to the pattern of sea ice extent around the continent.

References

Moore, G. W. K., S. E. L. Howell, and M. Brady. 2021. First observations of a transient polynya in the Last Ice Area north of Ellesmere Island. Geophysical Research Letters. doi: 10.1029/2021GL095099

 

An odd summer’s end

The Arctic sea ice minimum extent is imminent. After a cool and stormy summer, this year’s minimum extent will be one of the highest of the past decade, despite the amount of multiyear ice standing at a near-record low. A large area of low ice concentration persists in the Beaufort and Chukchi Seas, and some of this may still be compacted by winds or melt away because of the remaining heat in the upper ocean.

Overview of Conditions

Figure 1a. Arctic sea ice extent for September 15, 2021 was 4.73 million square kilometers (1.83 million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1a. Arctic sea ice extent for September 15, 2021 was 4.73 million square kilometers (1.83 million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Figure 1b. This map shows Arctic sea ice concentration based on data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) data as of September 14, 2021. Yellows indicate sea ice concentration of 75 percent, dark purples indicate sea ice concentration of 100 percent. ||Credit: University of Bremen|High-resolution image

Figure 1b. This map shows Arctic sea ice concentration based on data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) data as of September 14, 2021. Yellows indicate sea ice concentration of 75 percent; dark purples indicate sea ice concentration of 100 percent.

Credit: University of Bremen
High-resolution image

As of September 15, Arctic sea ice extent stood at 4.73 million square kilometers (1.83 million square miles), placing it tenth lowest in the satellite record for the date. While extent continues to decline as of this post, the seasonal minimum is likely to occur soon, depending on how much heat remains in the upper ocean and on winds, which can compact the ice cover or spread it out. If the winds push the ice poleward, this may further reduce the total extent. Nevertheless, the seasonal minimum extent promises to be one of the highest of the past decade—only 2013, 2014, and 2018 are currently tracking above the 2021 sea ice extent.

It has been an odd summer. While fairly cool and stormy summer conditions limited summer melt, as discussed in our earlier post, the amount of multiyear ice is at a record low, roughly one-fourth of the amount seen in the early 1980s. Ice loss the first two weeks of September primarily occurred in the Beaufort and Chukchi Seas, and to a lesser extent also surrounding Severnaya Zemlya. As seen in Advanced Microwave Scanning Radiometer 2 (AMSR-2) imagery (Figure 1b), areas of low concentration ice persist in the Beaufort and Chukchi Seas; how much of this ice melts away largely depends on ocean heat. Satellite mapping of sea surface temperatures shows much of the open ocean surrounding the low ice concentration area is already near the freezing point. By contrast, the compact, well-defined ice edge along most of the Russian side of the Arctic Ocean indicates that freezing is already underway in this area.

Conditions in context

Figure 2a. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, between September 1 to 13, 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory|High-resolution image

Figure 2a. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, between September 1 to 13, 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars from September 1 to 13, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory|High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars from September 1 to 13, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

Air temperatures at the 925 hPa level (about 2,500 feet above the surface) as assessed over the first 13 days of September were near average over most of the Arctic Ocean. Temperatures from 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) above average were the rule along the coasts of the Kara and Laptev Seas (Figure 2a). In sharp contrast to the persistent pattern of low pressure over the Arctic Ocean characterizing this summer, the first 13 days of September saw high average air pressure (Figure 2b).

Focus on the Northwest Passage

Figure 3. These graphs show the total sea ice area along each Northwest Passage route (y axis) by day (x axis) dating back to 1981. The top graph shows the northern route and the bottom graph shows the southern route. As of early to mid-September, the northern deep-water route is choked with ice and will not open this year; ice conditions are quite severe compared to the past couple of decades. By contrast, there is much less ice in the southern route (approximately 30,000 square kilometers or 11,600 square miles) and as noted, most of this is located on Somerset and Prince of Wales Islands. On the other side of the Arctic, the Northern Sea Route is essentially open, though some areas of ice remain near Severnaya Zemlya. ||Credit: XX|High-resolution image

Figure 3. These graphs show the total sea ice area along each Northwest Passage route (y axis) by day (x axis) dating back to 1981. The top graph shows the northern route and the bottom graph shows the southern route. 

Credit: Canadian Ice Service
High-resolution image

Data from the Canadian Ice Service compiled by colleague Steve Howell of Environment and Climate Change Canada allows for a closer look at sea ice conditions in the Northwest Passage. While there are multiple Northwest Passage routes, most attention is focused on the southern route, known as Amundsen’s route, entered from the Pacific side through Amundsen Gulf, and the northern route entered from the Pacific side via M’Clure Strait. This wide, deeper-water route is the one that might become a viable waterway for commercial shipping in the future. As of early to mid-September, the northern deep-water route is choked with ice and will not open this year; ice conditions are quite severe compared to the past couple of decades. By contrast, there is much less ice in the southern route, approximately 30,000 square kilometers (11,600 square miles). Most of this is located on Somerset and Prince of Wales Islands. On the other side of the Arctic, the Northern Sea Route is essentially open, though some areas of ice remain near Severnaya Zemlya.

Antarctic oddities

Figure 4. Antarctic sea ice extent for September 15, 2021 was 18.64 million square kilometers (7.20 million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 4. Antarctic sea ice extent for September 15, 2021 was 18.64 million square kilometers (7.20 million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice extent is approaching its seasonal maximum, which typically occurs in late September. A surge in sea ice growth or outward transport in late August in the northeastern Weddell Sea and the area north of Dronning Maud Land brought sea ice extent to the fifth-highest level for the last day of the month. Since then, losses in the areas around the tip of the Antarctic Peninsula and the northeastern Ross Sea have reduced the total ice extent, although at this time of year, ice extent can change rapidly up or down as storms play havoc with thin, low concentration ice in the extended ice edge regions. As of this post, Antarctic ice extent remains well above the long-term average.

Beaufort breakup

Arctic sea ice extent declined more slowly during August 2021 than most years in the past decade, and as a result, this year’s September minimum extent will likely be among the highest since 2007. Part of the reason for this is a persistent low pressure area in the Beaufort Sea, which tends to disperse ice and keep temperatures low. A remaining question is whether a large area of low concentration ice north of Alaska will melt away. Antarctic sea ice is nearing its seasonal maximum, and the monthly mean extent for August was the fifth highest in the satellite record.

Overview of conditions

Figure 1a. The graph above shows Arctic sea ice extent as of September, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1a. The graph above shows Arctic sea ice extent as of September 1, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 1b. This map shows Arctic sea ice concentration based on data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) data as of August 28, 2021. Yellows indicate sea ice concentration of 75 percent, dark purples indicate sea ice concentration of 100 percent. ||Credit: University of Bremen|High-resolution image

Figure 1b. This map shows Arctic sea ice concentration based on data from the Advanced Microwave Scanning Radiometer 2 (AMSR2) data as of August 28, 2021. Yellows indicate sea ice concentration of 75 percent, dark purples indicate sea ice concentration of 100 percent.

Credit: University of Bremen
High-resolution image

Figure 1c. Arctic sea ice extent for August 2021 was 5.75 million square kilometers (2.22 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1c. Arctic sea ice extent for August 2021 was 5.75 million square kilometers (2.22 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

The decline in sea ice extent during August was relatively slow but steady after a pause in ice loss around August 9. The average daily loss was 33,000 square kilometers (12,700 square miles) per day, although by the end of the month the pace of ice loss increased to 51,000 square kilometers (19,700 square miles) per day as areas within the Beaufort and Chukchi Sea started to lose more ice. The monthly average extent for August 2021 is 5.75 million square kilometers (2.22 million square miles) (Figure 1a). This is 1.03 million square kilometers (398,000 square miles) above the record low for the month set in 2012 and 1.45 million square kilometers (560,000 square miles) below the 1981 to 2010 average. The average extent for the month ranks tenth lowest in the passive microwave satellite record.

By the end of the month, large areas of the Beaufort and Chukchi Seas were covered by low concentration ice (25 to 75 percent; Figure 1b); some of this ice may yet melt away or fall below the 15 percent concentration threshold adopted for calculating ice extent. Many other areas have unusually low extent, such as Fram Strait and north of Svalbard and Franz Josef Land. As noted in our July post, open water persists north of Greenland in the Wandel Sea, an area that has rarely been open in past years. A small area of ice persists in the eastern Kara Sea (Figure 1c). At this time of year, any remaining sea ice loss is primarily driven by melt from heat absorbed in the ocean mixed layer. Compaction from northward winds may also reduce ice extent.

Conditions in context

Figure 2. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, between August 1 to 30, 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory|High-resolution image

Figure 2. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, between August 1 to 30, 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

A pair of monthly-averaged high and low air pressure regions governed the weather in the high Arctic in August, centered in the northernmost Laptev and the central Beaufort Seas, respectively. These patterns created strong winds from the north over the Alaska and Bering Sea region, leading to temperatures at the 925 hPa level (approximately 2,500 feet above the surface) that were 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) below the 1981 to 2010 average. Warm conditions prevailed over northern Siberia; temperatures there were as much as 4 to 5 degrees Celsius (7 to 9 degrees Fahrenheit) above average. A persistent area of low pressure between Hudson Bay and Baffin Island drove winds from the south over Greenland, which were responsible for several above-average temperature events in Greenland during the month.

August 2021 compared to previous years

Figure 3. Monthly August ice extent for 1979 to 2021 shows a decline of 10.4 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly August ice extent for 1979 to 2021 shows a decline of 10.4 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The pace of ice loss for the month was much slower than in recent years but still near the average pace for the reference period of 1981 to 2010, leading to the tenth lowest August of the satellite data record. Through 2021, the linear rate of decline for monthly mean August sea ice extent is 10.4 percent per decade (Figure 3). This corresponds to 75,000 square kilometers (29,000 square miles) per year. The cumulative August ice loss over the 43-year satellite record is 3.15 million square kilometers (1.22 million square miles), based on the difference in linear trend values in 2021 and 1979. The loss of ice since 1979 in August is equivalent to about twice the size of the state of Alaska.

Buoy oh buoy

Figure 4. This graph shows data from one ice mass balance (IMB) monitoring buoy in the Chukchi Sea off the northwest coast of Alaska from April through August. The data demonstrate that bottom ice growth continued into May. Surface snow melt started in June, and by July, bottom melt began. Surface freeze-up occurred in early August while bottom melt continued through mid-August. ||Credit: The Cold Regions Research and Engineering Laboratory-Dartmouth Mass Balance Buoy Program| High-resolution image >

Figure 4. This graph shows data from one ice mass balance (IMB) monitoring buoy in the Chukchi Sea off the northwest coast of Alaska from April through August. The data demonstrate that bottom ice growth continued into May. Surface snow melt started in June, and by July, bottom melt began. Surface freeze-up occurred in early August while bottom melt continued through mid-August.

Credit: The Cold Regions Research and Engineering Laboratory-Dartmouth Mass Balance Buoy Program
High-resolution image >

Ice mass balance (IMB) monitoring buoys drifting in the Arctic Ocean provide data on both surface melting and sub-surface thinning of the ice by warm ocean water. The IMB buoys include a downward-looking acoustic sounder above the ice to obtain snow depth on sea ice, temperature sensors (thermistor string) through the ice, and an upward-looking underwater acoustic sensor to measure the depth of the bottom of the ice. Putting these measurements together provides a profile of ice thickness and snow depth. Real-time data are provided, but are subject to errors. Data are later corrected to provide a high-quality climate record.

New buoys are regularly deployed to replace those that have ceased operation or have drifted out of the Arctic Ocean into the Atlantic. Data from one buoy in the Chukchi Sea off the northwest coast of Alaska is shown in Figure 4 for April through August. The data demonstrate that bottom ice growth continued into May. Surface snow melt started in June, and by July, bottom melt began in earnest. Surface freeze-up occurred in early August while bottom melt continued through mid-August. This is typical for sea ice—ocean heat continues to melt ice from the bottom (and sides) even as the surface air temperatures drop below 0 degrees Celsius (32 degrees Fahrenheit) and the top of the ice cover begins to refreeze. Overall, the ice thickness dropped from about 1.5 meters (4.9 feet) in late June to about 0.5 meters (1.6 feet). As of the end of August, thickening of the ice through bottom freezing has begun.

Northern passages

Figure 5. In this image, a Coast Guard Cutter HEALY crewmember prepares to retrieve an oceanographic research mooring in the Chukchi Sea on August 2, 2021. ||Credit: Janessa Warschkow, U.S. Coast Guard| High-resolution image

Figure 5. In this image, a Coast Guard Cutter HEALY crewmember prepares to retrieve an oceanographic research mooring in the Chukchi Sea on August 2, 2021.

Credit: Janessa Warschkow, U.S. Coast Guard
High-resolution image

A persistent tongue of ice has remained along the coast of the Severnya Zemlya islands. However, ice has pulled away from the Siberian coast, opening a narrow channel with little or no ice. Regardless of the ice, there have been icebreaker-supported transits through the passage through the summer. And in fact, there was even a winter transit in January through February.

The Northwest Passage (NWP) through the channels of the Canadian Archipelago still has ice blocking all routes, although concentration and extent are low in some areas. Nevertheless, this past week, the U.S. Coast Guard icebreaker, the Healy, left port in Seward, Alaska, to begin a transit through the NWP. The mission is focused on conducting scientific research, including mapping of the seafloor and providing experience in navigating through the passage.

Icebergs in the Arctic Ocean

Figure 6. These images from Planet image data, show the break-up of the Milne Ice Shelf located in northern Ellesmere Island; the large pieces seen in the 31 July image are now adrift in the Beaufort, and are much thicker that multi-year sea ice. The Canadian Ice Service is tracking the larger pieces. ||Credit: Planet, and Chris Shuman| High-resolution image

Figure 6. These images from Planet image data show the break-up of the Milne Ice Shelf located in northern Ellesmere Island; the large pieces seen in the 31 July image are now drifting in the Beaufort, and are much thicker than multi-year sea ice. The large iceberg labeled “Arctic ‘ice Island'” is about 10 kilometers by 8 kilometers in size. The Canadian Ice Service is tracking the larger pieces.

Credit: Planet, and Chris Shuman
High-resolution image

The break up of the Milne Ice Shelf in June 2020 spawned several tabular icebergs that are now drifting in the Arctic Ocean (Figure 6). While not unprecedented, these ‘ice islands,’ as they were called in the 1950s, are now quite rare. The icebergs are a result of the calving retreat and demise of several small Arctic-style ice shelves (much smaller than Antarctic ice shelves) that formerly occupied several of the fjords along the northern coast of Ellesmere Island. Calving and loss of most of the Milne Ice Shelf (the setting for a work of fiction, “Deception Point” by Dan Brown) in late July 2020 marked the break-up of the last relatively intact ice shelf of a fringe of shelves that once spanned several thousand square kilometers along the Ellesmere coast. The Canadian Ice Service is tracking the bergs.

Antarctic Notes

Figure 7. The graph above shows Antarctic sea ice extent as of September 1, 2021, along with daily ice extent data for four previous years and the record high year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2014 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 7. The graph above shows Antarctic sea ice extent as of September 1, 2021, along with daily ice extent data for four previous years and the record high year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2014 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Sea ice in the Southern Ocean surrounding Antarctica was well above the 1981 to 2010 average extent in August, rising above the ninetieth percentile of the satellite record period near the end of the month (Figure 7). As of this post, Antarctic sea ice extent is fifth highest for the day in the satellite record, a sharp contrast from the several years of persistent below-average ice extent following an abrupt change in September 2016. Antarctica’s sea ice is highly variable. Sea ice extent is slightly above average in nearly all sectors, in particular in the Weddell and Cosmonaut Seas and the region north of eastern Wilkes Land.

Further Reading

Crary, A. P., R. D. Cotell, and T. F. Sexton. 1952. Preliminary Report on Scientific Work on “Fletcher’s Ice Island.” Arctic5(4), pp.211-223.

Koenig, L. S., K. R. Greenaway, M. Dunbar, and G. Hattersley-Smith. 1952. Arctic ice islands. Arctic5(2), pp.66-103.

Brown, D. 2001. Deception Point, Simon and Schuster, 372 pp.

A change of pace

The rate of Arctic sea ice loss was somewhat slow through much of July, lowering prospects for a new record low minimum extent in September. The month as a whole was marked by widespread low pressure over most of the Arctic Ocean, which was much more extensive than recorded for June.

Overview of conditions

Figure 1. Arctic sea ice extent for July 2021 was 7.69 million square kilometers (2.97 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for July 2021 was 7.69 million square kilometers (2.97 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

The seasonal decline in Arctic sea ice extent was fairly rapid during the first week of July, but slowed later in the month. The monthly average extent for July 2021 was 7.69 million square kilometers (2.97 million square miles). This was 400,000 square kilometers (154,000 square miles) above the record low for the month set in 2020 and 1.78 million square kilometers (687,000 square miles) below the 1981 to 2010 average. The average extent for the month ranks fourth lowest in the passive microwave satellite record. The rapid ice loss in the Laptev Sea early in the melt season has slowed, but extent in the Laptev remains well below average. Ice extent in the Beaufort and Chukchi Seas continues to be near the long-term average.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of August 2, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2015 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of August 2, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars from July 1 to 31, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division|High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars from July 1 to 31, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Figure 2c. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for July 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division|High-resolution image

Figure 2c. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for July 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

At the start of July, sea ice extent was above the levels recorded in 2012, the year that ended up with the lowest September ice extent in the satellite record. However, fairly rapid ice loss during the first week of July brought extent below 2012 levels. From July 4 to July 9, the 2021 extent was the lowest in the satellite record for that time of the year. However, the loss rate then slowed, and by late July, 2021 extent was tracking above 2020, 2019, 2011, and 2007 (Figure 2a). Overall, sea ice extent decreased by 2.96 million square kilometers (1.14 million square miles) during July 2021. This corresponds to an average loss of 95,300 square kilometers (36,800 square miles) per day, slightly faster than the 1981 to 2010 July average daily loss.

Low pressure continued to dominate the Arctic Ocean region in July, becoming more widespread than in June, with some indications that the pattern was breaking down late in the month. Monthly mean sea level pressures were below 1,004 millibars over most of the Arctic Ocean (Figure 2b). The low pressure brought generally cloudy conditions. Air temperatures at the 925-millibar level (about 2,500 feet above the surface) were within about two degrees Celsius (4 degrees Fahrenheit) of average over nearly all of the Arctic Ocean (Figure 2c).

July 2021 compared to previous years

Figure 3. Monthly July ice extent for 1979 to 2021 shows a decline of 7.5 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly July ice extent for 1979 to 2021 shows a decline of 7.5 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2021, the linear rate of decline for July sea ice extent is 7.5 percent per decade. This corresponds to 70,500 square kilometers (27,200 square miles) per year. The cumulative July ice loss over the 43-year satellite record is 2.96 million square kilometers (1.14 million square miles) based on the difference in linear trend values in 2021 and 1979. The loss of ice in July since 1979 is equivalent to about ten times the size of Arizona.

Northern routes across the Arctic

Figure 4. This image shows potential navigational routes through the Arctic from Mudryk et al., 2021. ||Credit: Mudryk et al., 2021. | High-resolution image

Figure 4. This image shows potential navigational routes through the Arctic from Mudryk et al., 2021.

Credit: Mudryk et al., 2021.
High-resolution image

In recent years, the trans-Arctic Northern Sea Route corridor along the Russian coast has become ice free, or nearly so, in summer, with significant commercial shipping transport (in general, with icebreaker escort). Things are looking different this year. While sea ice receded from the coast in the Laptev Sea several weeks ago, the Kara Sea coastline still remains locked in ice. In the Eastern Siberian Sea, ice remains near the coast. Whether these areas will clear of ice by the end of summer remains to be seen.

The southern route of the Northwest Passage through the channels of the Canadian Archipelago (Figure 4) is still locked in ice and seems unlikely to open in any significant way this year. However, more open summer conditions are likely in the future as temperatures continue to increase, according to a recent study in Nature Climate Change. Led by Lawrence Mudryk at Environment and Climate Change Canada, the study examines ice conditions under future warming scenarios. Based on climate model projections, the authors found that under 2 degrees Celsius (4 degrees Fahrenheit) of global warming, the target of the Paris Agreement, there is a 100 percent probability that the Northwest Passage will be navigable for at least some period by the end of summer. A caveat is that the current climate models do not necessarily capture processes that result in thick ice piling up due to winds and currents pushing ice from the Arctic Ocean into the archipelago’s channels.

Rising in the south

Figure 5. Antarctic sea ice extent for July 2021 was 16.38 million square kilometers (6.32 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 5. Antarctic sea ice extent for July 2021 was 16.38 million square kilometers (6.32 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

In the Antarctic, sea ice extent increased faster than average during July, particularly in the latter half of the month. By the end of the month, extent was above the ninetieth percentile and was eighth highest in the satellite record. Extent was higher than average in the northeastern Ross Sea and in the Southern Ocean south of Africa, extending north from the coast of Dronning Maud Land and Enderby Land. Sea ice was below average in the area west of the Peninsula (the Bellingshausen Sea). Through 2021, the linear rate of increase for July sea ice extent is 0.6 percent per decade, but the uncertainty on this trend is ±0.7 percent. While this corresponds to 9,000 square kilometers (3,500 square miles) per year, the low level of certainty on the trend means that no clear pattern has yet emerged for Southern Ocean sea ice.

Further reading

Mudryk, L. R., J. Dawson, S. E. L. Howell, C. Derksen, T. A. Zagon, and M. Brady. 2021. Impact of 1, 2 and 4 °C of global warming on ship navigation in the Canadian Arctic. Nature Climate Change. doi:10.1038/s41558-021-01087-6.

Storms were the norm

A stormy May over the eastern Arctic helped to spread the sea ice pack out and keep temperatures relatively mild for this time of year. As a result, the decline in ice extent was slow. By the end of the month, several prominent polynyas formed, notably north of the New Siberian Islands and east of Severnaya Zemlya.

Overview of conditions

Figure 1. Arctic sea ice extent for May 2021 was 12.66 million square kilometers (4.89 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for May 2021 was 12.66 million square kilometers (4.89 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent continued the slow pace of seasonal decline observed in April, leading to an average extent for May 2021 of 12.66 million square kilometers (4.89 million square miles). This was 740,000 square kilometers (286,000 square miles) above the record low for the month set in 2016 and 630,000 square kilometers (243,000 square miles) below the 1981 to 2010 average. The average extent for the month ranks ninth lowest in the passive microwave satellite record. The ice edge is near its average location most everywhere in the Arctic Ocean except in the Labrador Sea and east of Novaya Zemlya. Nevertheless, large polynyas have formed, notably north of the New Siberian Islands and east of Severnaya Zemlya. Open water areas have also developed near the coast in the southern Beaufort Sea and west of Utqiaġvik, Alaska (formerly Barrow). Overall, ice retreat during May occurred primarily in the Bering and Barents Seas, the Sea of Okhotsk and within the Laptev Sea.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of June 1, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2015 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of June 7, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars on May 12, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory|High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars on May 12, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars on May 24, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory|High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars on May 24, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

Figure 2d. This plot shows average sea level pressure in the Arctic in millibars for May 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory|High-resolution image

Figure 2d. This plot shows average sea level pressure in the Arctic in millibars for May 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

Figure 2e. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for May 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory|High-resolution image

Figure 2e. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for May 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

The slow pace of sea ice loss this month (Figure 2a) can be explained in large part by a series of storms that migrated over the pole during May. The first storm split from a system over the Barents Sea and then slowly intensified over the central Arctic Ocean before reaching peak intensity (1007 hPa) north of Severnaya Zemlya on May 4. This was followed by another storm tracking northward from Europe, reaching peak intensity (sea level pressure of 987 hPa) over Severnaya Zemlya on May 12 and then joining with another storm that formed over Siberia on May 16 (Figure 2b). The strongest of the storms in terms of minimum central pressure (984 hPa) pressure, achieved on May 24, once again was located over Severnaya Zemlya and resulted from the merging of two systems moving in from the Barents Sea (Figure 2c).

As a result of the May storms, sea level pressure was lower than average by 6hPa centered just south of the pole at about 90 degrees E longitude. This was coupled with sea level pressure of 6 to 8 hPa above average over Greenland and the Canadian Arctic Archipelago extending into the northern Beaufort and Chukchi Seas (Figure 2d). Combined, this sea level pressure pattern fostered cold air spilling out of the Arctic Ocean into the North Atlantic and warm air flowing from the south over eastern Russia, leading to monthly averaged air temperatures at the 925 hPa level 1 to 4 degrees Celsius (2 to 7 degrees Fahrenheit) above average for this time of year over much of the Arctic Ocean, but up to 6 degrees Celsius (11 degrees Fahrenheit) above average along the coast of the Laptev and East Siberian Seas (Figure 2e). By contrast, temperatures were below average east of Greenland and around Svalbard. Wind patterns also explain the opening of the ice cover around Franz Joseph Land, the New Siberian Islands, and in the southern Beaufort Sea.

May 2021 compared to previous years

Figure 3. Monthly May ice extent for 1979 to 2021 shows a decline of 2.7 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly May ice extent for 1979 to 2021 shows a decline of 2.7 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Overall, the pace of ice loss was slower than average, leading to only the ninth lowest May extent during the satellite data record. Through 2021, the linear rate of decline for May sea ice extent, relative to the 1981 to 2020 average extent, is 2.7 percent per decade. This corresponds to 35,400 square kilometers (13,700 square miles) per year, about the size of the state of Maine. The cumulative May ice loss over the 43-year satellite record is 1.49 million square kilometers (575,000 square miles), based on the difference in linear trend values in 2021 and 1979. This is roughly twice the size of the state of Texas.

Capturing the break up in the Beaufort Sea

Visible wavelength imagery from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) provides the opportunity to track the ice breaking up in the southern Beaufort Sea this May; cloud cover was limited, offering decent views of the surface. Between April 25 and May 17, the pack ice started to move away from the landfast ice still attached to the coast, leading to open water and subsequent break up of the ice floes and partial break up of the landfast ice by mid-May. During the past winter, unusually high sea level pressure over the central Arctic Ocean resulted in unusually strong anticyclonic (clockwise) ice motion that drove a lot of fairly old ice from the central Arctic Ocean into the Beaufort Sea. Early break up of ice can enhance lateral and basal melt (at the underside of the ice) of the ice floes. This process can weaken the multiyear ice in the region and help to further deplete the Arctic of its multiyear ice. Large losses of multiyear ice in the region followed the unusually strong negative Arctic Oscillation winter of 2009 to 2010, which also featured a strong clockwise flow of the ice cover. More recently, analysis of Canadian ice charts by David Babb at the University of Manitoba suggests that between 2016 and 2020 on average 210,000 square kilometers (81,000 square miles) of multiyear ice now melts out each summer in the Beaufort Sea.

Are wavy jet stream winds wavier? Or not?

A new study takes a close look at an idea discussed several times in the Arctic Sea Ice News and Analysis (ASINA) reports—that Arctic Amplification, the observed strong warming in the Arctic region, driven in part by loss of Arctic sea ice, is affecting the shape and persistence of the jet stream. The polar front jet stream marks the boundary in the atmosphere between cold Arctic air and warmer mid-latitude air. Numerous studies have proposed that Arctic Amplification weakens the latitudinal temperature and atmospheric pressure gradient, manifested as a weaker and more sinuous jet stream. Since storms (low pressure systems) tend to form along the jet stream, weather in middle latitudes ought to become more variable, with large swings and more persistent patterns.

While the issue has long been controversial, the new study by James Screen, which was presented at the European Geophysical Union annual meeting in April, but has not yet been published, finds little evidence for this effect in climate model simulations and observations. In examining the past decade of observations, relationships that initially gave support to the idea have weakened. Even with far more open water conditions expected by 2050, the modeled effects of Arctic warming on the weather patterns at lower latitudes appear to be minor. The response is further obscured by the possibility of increased snowfall on Arctic land areas, creating cold regions that are not centered on the Pole. A separate new study by Jonathan Martin shows the polar jet has become slightly wavier and moved northward a bit, but maximum speeds in the jet are unchanged. The scientific debate on this issue is certain to continue.

Arctic sea ice thinning faster than expected

Figure 4. This plot shows mean sea ice thickness in the Beaufort, Chukchi, East Siberian, Laptev, Kara, and Barents seas in April 2021 from the Envisat and CryoSat-2 radar altimeters, processed with the conventional snow product (modified Warren (1999) or mW99) and a new, dynamic snow product (from SnowModel-LG). The rate of decline is more than doubled when processed with SnowModel-LG, as the sea ice thickness inferred from snow cover diminishes. ||Credit: R. Mallett. | High-resolution image

Figure 4. This plot shows average sea ice thickness in the Beaufort, Chukchi, East Siberian, Laptev, Kara, and Barents Seas in April 2004 to 2018 from the Environmental Satellite (Envisat) and CryoSat-2 radar altimeters, processed with the conventional snow product (modified Warren (1999) or mW99) and a new, dynamic snow product (from SnowModel-LG). The rate of decline is more than doubled when processed with SnowModel-LG, as the sea ice thickness inferred from snow cover diminishes.

Credit: R. Mallett, University College London.
High-resolution image

Satellites do not directly measure the thickness of sea ice. They measure the height of the ice surface above the ocean, termed the ice freeboard in the case of radar altimetry, or they measure the height of the ice plus the snow cover, in the case of laser altimetry. To convert these freeboards into total ice thickness requires knowledge of the depth and density of the snow cover atop the ice. Typically, a snow climatology based on snow depth observations collected several decades ago over multiyear ice is used. However, today’s Arctic mostly consists of smoother first-year ice, which tends to have a shallower snow pack than multiyear ice, allowing for deep snow accumulation around ridges. Further, delays in freeze-up and earlier melt onset in today’s warmer climate have reduced the time over which snow can accumulate on the ice. Both factors have resulted in a thinner snowpack than measured 20 years ago.

A new study published in The Cryosphere reveals that when using temporally varying snow depth and density estimates to convert ice freeboard to ice thickness, the ice is thinning at a faster rate in the Arctic marginal seas than previously believed (Figure 4). The time-varying snow depth is from a new data product, the SnowModel-LG, which is soon to be published at the NSIDC Distributed Active Archive Center (DAAC). It is based on coupling a sophisticated snow model with meteorological forcing data from atmospheric reanalysis systems and satellite-derived ice motion vectors. The study found that the rate of decline in ice thickness in the Laptev, Kara, and Chukchi seas was 70, 98 and, 110 percent faster, respectively, compared to previous estimates. As expected, the sea ice thickness variability also increased in response to interannually varying snow depth.

Antarctic notes

Figure 5a. The graph above shows Antarctic sea ice extent as of June 1, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2015 in magenta, and 2014 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 5a. The graph above shows Antarctic sea ice extent as of June 7, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2014 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 5b. air temp as difference from average in Antarctic for May 2021||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory|High-resolution image

Figure 5b. This plot shows the departure from average air temperature in the Antarctic at the 925 hPa level, in degrees Celsius, for May 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Laboratory
High-resolution image

Antarctic sea ice extent grew at a slightly below-average pace in May, moving the overall extent from slightly above average to tracking the 43-year satellite record daily-extent average line (technically, the ‘median’ line) quite closely (Figure 5a). Sea ice extent was below average in the Weddell and Ross Seas, and slightly above average in the Bellingshausen and Amundsen Seas. In keeping with the sea ice trends, air temperatures for the month were well above average over the west-central Weddell Sea, about 7 degrees Celsius (13 degrees Fahrenheit) above average for the month (Figure 5b).

An embayment, or notch, in the ice edge in the eastern Weddell suggests that the processes that create the Maud Rise polynya were active, but at month’s end, the sea ice edge in that area (near 0 degree longitude and 68 degrees S latitude) had not enclosed the potential polynya region.

Further reading

Liston, G. E., P. Itkin, J. Stroeve, M. Tschudi and J. S. Stewart. 2020. A Lagrangian snow-evolution system for sea-ice applications (SnowModel-LG): part I–model description. Journal of Geophysical Research.-Oceans. doi:10.1029/2019JC015913.

Mallett, R. D. C., J. C. Stroeve, M. Tsamados, J. C. Landy, R. Willatt, V. Nandan and G. E. Liston. 2021. Faster decline and higher variability in the sea ice thickness of the marginal Arctic seas. The Cryosphere. doi:10.5194/tc-15-2429-2021.

Martin, J. E. 2021. Recent trends in the waviness of the Northern Hemisphere wintertime polar and subtropical jets. Journal of Geophysical Research-Atmospheres. doi:10.1029/2020JD033668.

Stroeve, J. C., J. Maslanik, M. C. Serreze, I. Rigor and W. Meier. 2011. Sea ice response to an extreme negative phase of the Arctic Oscillation during winter 2009/2010. Geophysical Research Letters. doi: 10.1029/2010GL045662.

Stroeve, J., G. Liston, S. Buzzard, L. Zhou, R. Mallett, A. Barrett, M. Tsamados, M. Tschudi, P. Itkin and J. S. Stewart. 2020. A Lagrangian snow-evolution system for sea ice applications (SnowModel-LG): part II–analyses. Journal of Geophysical Research-Oceans. doi:10.1029/2019JC015900.

Warren, S. G., I. Rigor, N. Untersteiner, V. Radionov, N. Bryazgin, Y. Aleksandrov and R. Colony. 1999. Snow depth on Arctic sea ice. AMS Journey of Climate. doi:10.1175/1520-0442.

A step in our spring

The spring decline in Arctic sea ice extent continued at varying rates through the month of April, highlighted by a mid-month pause. Above average air temperatures and low sea level pressure dominated on the Atlantic side of the Arctic, while near average conditions ruled elsewhere.

Overview of conditions

Figure 1. Arctic sea ice extent for April 2021 was 13.84 million square kilometers (5.34 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for April 2021 was 13.84 million square kilometers (5.34 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent averaged for April 2021 was 13.84 million square kilometers (5.34 million square miles). This was 410,000 square kilometers (158,000 square miles) above the record low for the month set in 2019 and 850,000 square kilometers (328,000 square miles) below the 1981 to 2010 average. The average extent for the month ranks sixth lowest in the passive microwave satellite record. Extent was notably low in the Barents and Bering Seas as well as the Labrador Sea. Elsewhere, extent was close to or somewhat below average (Figure 1). The largest ice loss during April was in the Sea of Okhotsk and the Labrador Sea, with smaller losses along the southern edge of the Bering Sea, and in the eastern Barents Sea near the coast of Novaya Zemlya.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of May 4, 2021, along with daily ice extent data for four previous years and 2012, the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of May 4, 2021, along with daily ice extent data for four previous years and 2012, the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2017 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars from April 14 to 19, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division|High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars from April 14 to 19, 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars for April 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. || Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division|High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars for April 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.


Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Figure 2d. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for April 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division|High-resolution image

Figure 2d. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for April 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Sea ice extent remained below the tenth percentile range throughout the month of April. However, rate of decline was variable. Notably, the decline paused, and extent even slightly increased between April 14 and April 19 (Figure 2a). This was largely because of an increase in sea ice in the northern Barents Sea, particularly off the northwest coast of Novaya Zemlya.

This temporary ice expansion appears to have been primarily driven by low sea level pressure centered over the Laptev Sea (Figure 2b). This led to winds from the north in the northern Barents Sea, pushing ice southward. The sea level pressure pattern for the full month featured low pressure centered in the Barents Sea, north of the Scandinavian coast (Figure 2c); bringing warm winds from the south and above average monthly temperatures in the region. Elsewhere in the Arctic, conditions were more moderate with 925 mb temperatures 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) above average and weak high pressure (Figure 2d).

April 2021 compared to previous years

Figure 3. Monthly April ice extent for 1979 to 2021 shows a decline of 2.6 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly April ice extent for 1979 to 2021 shows a decline of 2.6 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2021, the linear rate of decline for April sea ice extent, relative to the 1981 to 2010 average extent, is 2.6 percent per decade (Figure 3). This corresponds to 38,600 square kilometers (14,900 square miles) per year, about the size of the US states of New Hampshire and Connecticut combined. The cumulative April ice loss over the 43-year satellite record is 1.62 million square kilometers (625,000 square miles), based on the difference in linear trend values in 2021 and 1979, which is equivalent in size to 2.3 times the size of the state of Texas.

Sea ice age update

Figure 4. Sea ice age map for March 12 to 18 (a) 1985 and (b) 2021; (c) the 1985 to 2021 time series of percent coverage of the Arctic Ocean domain (inset map, purple shaded region). ||Credit: W. Meier, National Snow and Ice Data Center| High-resolution image

Figure 4. This figure compares sea ice age between March 12 to 18 for the years 1985 (a) and 2021 (b). The bottom graph (c) shows a time series from 1985 to 2021 of percent ice coverage of the Arctic Ocean domain. The Arctic Ocean domain is depicted in the inset map with purple shading. 

Credit: M. Tschudi, University of Colorado, and W. Meier and J.S. Stewart, National Snow and Ice Data Center/Image by W. Meier
High-resolution image

The sea ice continues to be far younger, and thus thinner, than in the 1980s. There is little change in the age distribution from last year. At the end of the ice growth season in mid-March, 73.3 percent of the Arctic Ocean domain was covered by first-year ice, while 3.5 percent was covered by ice 4+ years old. This compares to 70.6 percent and 4.4 percent respectively in March 2020. In March 1985, near the beginning of the ice age record, the Arctic Ocean region was comprised of nearly equal amounts of first-year ice (39.3 percent) and 4+ year-old ice (30.6 percent).

In 2021, the extremely high sea level pressure in February over the central Arctic Ocean produced a strong Beaufort Gyre sea ice circulation, as noted in our March post. This pushed a substantial amount of ice, including older ice, onto the northern Alaskan and Canadian coast in the Beaufort Sea. Some of this ice has now moved north and west into the Chukchi Sea–an isolated patch of older ice amidst first-year ice. This will bear watching through the summer to see the fate of that older ice.

Antarctica

Figure 5: Antarctic sea ice extent for April 2021 was 7.08 million square kilometers (2.73million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 5: Antarctic sea ice extent for April 2021 was 7.08 million square kilometers (2.73million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

In the Antarctic, autumn is now in full swing, but ice growth has been somewhat sluggish through the month. At the beginning of the month, extent was between the seventy-fifth and ninetieth percentile range of the 1981 to 2010 climatology. By the end of the month, extent was within the inner quartile range and just above the median.

Antarctic extent for April 2021 was 7.08 million square kilometers (2.73 million square miles), 230,000 square kilometers (88,800 square miles) above the 1981 to 2010 average (Figure 5). Extent was low in the northwestern Weddell Sea region and northern Ross Sea, and both areas had temperatures 3 to 8 degrees Celsius (5 to 14 degrees Fahrenheit) above the reference period. Sea ice extent was generally above average elsewhere, particularly in the Amundsen Sea, where rather cool conditions prevailed for April, at 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) below average.

Seasonal predictability of Arctic sea ice from ocean heat transport

Figure 6. This figure shows correlations between ocean heat transport through the Bering strait and sea ice concentration in the Arctic Ocean. Heat transport anomalies in May are compared to June (left) and July (right) sea ice concentration anomalies. Red areas show regions of the Arctic Ocean where Pacific Ocean heat has the strongest influence on sea ice conditions. Significant correlations at the 95 percent significance level are outlined in black. Regions where the interannual variability in monthly sea ice concentration is larger than 10 percent are outlined in green. An anomaly refers to the deviation of ocean heat transports and sea ice concentrations from their linear trends. ||Credit: image adapted from Lenetsky et al. (2021). | High-resolution image

Figure 6. This figure shows correlations between ocean heat transport through the Bering strait and sea ice concentration in the Arctic Ocean. Heat transport anomalies in May are compared to June (left) and July (right) sea ice concentration anomalies. Red areas show regions of the Arctic Ocean where Pacific Ocean heat has the strongest influence on sea ice conditions. Significant correlations at the 95 percent significance level are outlined in black. Regions where the interannual variability in monthly sea ice concentration is larger than 10 percent are outlined in green. An anomaly refers to the deviation of ocean heat transports and sea ice concentrations from their linear trends.


Credit: image adapted from Lenetsky et al. (2021).
High-resolution image

As the Arctic summer nears, the Sea Ice Prediction Network team, which includes NSIDC scientists, is gearing up for another year of the Sea Ice Outlook. Participants in the Outlook and other researchers are investigating ways to better understand and improve seasonal predictability of Arctic September sea ice extent. One factor in sea ice predictability is ocean heat.

A recent study led by University of Colorado master’s student Jed Lenetsky, in collaboration with researchers at McGill University and the Massachusetts Institute of Technology, examined the influence of Pacific Ocean heat on sea ice conditions. Results show that Pacific Ocean heat entering the Arctic Ocean through the Bering Strait has the largest influence on sea ice conditions in the spring and early summer in the Chukchi Sea, fostering early opening of the pack ice and triggering the ice-albedo feedback (Figure 6). From August through October, the summer stratification of the Chukchi Sea reduces the influence of Pacific Ocean heat on sea ice conditions. At the same time, other processes, such as ocean heat uptake and wind-induced sea ice drift, become the dominant drivers of sea ice variability in the region. The influence of the Bering Strait heat transport re-emerges in November as a factor in the timing of freeze onset. These results have important implications for seasonal sea ice prediction in the Chukchi Sea, as predictions using Pacific Ocean heat are more skillful than predictions using more commonly used parameters such as sea ice concentration and sea ice thickness.

Further reading

Lenetsky, J. E., B. Tremblay, C. Brunette, and G. Meneghello. 2021. Subseasonal predictability of Arctic Ocean sea ice conditions: Bering Strait and Ekman-driven ocean heat transport.  J. Climate. doi:10.1175/JCLI-D-20-0544.1.

Fluctuating pressures

Sea ice extent for February 2021 tracked well below average, but at month’s end was still higher than levels recorded in several recent years. Extent grew at an average pace. For the first two weeks of the month, sea level pressure was extremely high over the central Arctic Ocean, driving a pronounced and enlarged Beaufort Gyre sea ice circulation. A strong negative phase of the Arctic Oscillation was a part of the overall Arctic pattern.

Overview of conditions

Figure 1. Arctic sea ice extent for February 2021 was 14.24 million square kilometers (5.50 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for February 2021 was 14.39 million square kilometers (5.56 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent averaged for the month of February 2021 was 14.39 million square kilometers (5.56 million square miles), placing it seventh lowest in the satellite record for the month. This was 910,000 square kilometers (351,000 square miles) below the 1981 to 2010 February average and 420,000 square kilometers (162,000 square miles) above the record low mark for February set in 2018. For the month of February, ice extent was near average in most regions of the Arctic except most notably in the Gulf of St. Lawrence, and to a lesser extent in the Bering Sea and the Sea of Okhotsk. The ice edge was also further north than average on the northern and western side of Svalbard.

Conditions in context

Figure2a. The graph above shows Arctic sea ice extent as of March 8, 2021, along with daily ice extent data for four previous years and the record low year. 2021 is shown in blue, 2020 in green, 2019 in orange, 2018 in brown, 2015 in magenta, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of March 8, 2021, along with daily ice extent data for four previous winter seasons and the record low year. 2020 to 2021 is shown in blue, 2019 to 2020 in green, 2018 to 2019 in orange, 2017 to 2018 in brown, 2016 to 2015 in magenta, and 2011 to 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for February 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division |High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for February 2021. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division

High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars for February 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division |High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars for February 2021. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division

High-resolution image

Throughout the month, sea ice grew by an average of 9,900 square kilometers (3,800 square miles) per day, roughly half the average rate over the period 1981 to 2010 of 20,300 square kilometers (7,800 square miles per day).

Air temperatures at the 925 hPa level (about 2,500 feet above the surface) were from 1 to 6 degrees Celsius (2 to 11 degrees Fahrenheit) above average across much of the central Arctic Ocean, East Siberian Sea, Atlantic Sector, and Canadian Arctic Archipelago. By contrast, northern Alaska, Siberia, and the Beaufort Seas saw temperatures up to 8 degrees Celsius (14 degrees Fahrenheit)  below average (Figure 2b).

The first part of the month was characterized by extremely high sea level pressure over the central Arctic Ocean, driving an exceptionally strong clockwise Beaufort Gyre sea ice circulation. This is consistent with the strongly negative phase of the Arctic Oscillation observed over this time period, which is sometimes associated with a wavy jet stream pattern and cold air outbreaks in lower latitudes, such as was experienced in Texas during the middle of the month. While this pattern broke down later in the month, the average sea level pressure pattern for February still featured a strong Beaufort High, with peak surface pressures exceeding 1,030 (Figure 2c). This atmospheric circulation pattern, driving a pronounced clockwise Beaufort Gyre circulation, led to the transport of thick multiyear ice along the Canadian Arctic Archipelago towards the Alaskan coastline.

February 2021 compared to previous years

Figure 3. Monthly February ice extent for 1979 to 2021 shows a decline of 2.9 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly February ice extent for 1979 to 2021 shows a decline of 2.9 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Including 2021, the linear rate of decline for February ice extent is 2.9 percent per decade. This corresponds to a trend of 43,800 square kilometers (16,900 square miles) per year, which is roughly twice the size of the state of New Hampshire. Over the 43-year satellite record, the Arctic has lost about 1.84 million square kilometers (710,000 square miles) of sea ice in February, based on the difference in linear trend values in 2020 and 1979. This is an area about two and a half times the size of Texas.

The minimum in the south

Figure 4. Antarctic sea ice extent for February 2021 was 2.83 million square kilometers (1.09 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 4. Antarctic sea ice extent for February 2021 was 2.83 million square kilometers (1.09 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice extent reached its minimum around February 21, during the period of missing data of which we had notified data users. After February 21, sea ice began a rapid increase in extent caused by the early rapid sea ice growth in the Amundsen and eastern Ross Seas. Advanced Microwave Scanning Radiometer 2 (AMSR-2) data, which was not impacted by the outage, confirms that the minimum was reached on or near February 21.

Sea ice extent has trended below average again after several months in mid- to late 2020 above the 1981 to 2010 average. However, the 2021 minimum extent is twelfth lowest in the satellite record and far from the record low extent, which occurred in 2017. Below-average extents were present in the northern Weddell and eastern Ross Seas, while the Bellingshausen Sea and the Wilkes Land Coast were near average (Figure 4).

Sticking with our 30-year reference climatology

Figure 5. This graph shows the daily median Arctic sea ice extent for the calendar year from the 1981 to 2010 period and the 1991 to 2020 for comparison. NSIDC plans to maintain the 1981 to 2010 period as our standard climatology. ||Credit: National Snow and Ice Data Center| High-resolution image

Figure 5. This graph shows the daily median Arctic sea ice extent for the calendar year from the 1981 to 2010 period and the 1991 to 2020 for comparison. NSIDC plans to maintain the 1981 to 2010 period as our standard climatology.

Credit: National Snow and Ice Data Center
High-resolution image

A 30-year climatology is commonly used as a reference period in weather and climate to define “normal” conditions. Thirty years is long enough to average out most natural variations in climate, like El Niño, that can affect the average in the short term. At the same time, 30 years is short enough that it provides a window into recent experience for planning purposes, such as crop rotation. Weather forecast services update their climatology with each new decade. So, the US National Weather Service will soon update the period from 1981 to 2010 to 1991 to 2020.

However, a shifting baseline makes tracking long-term climate change more complicated. As the baseline shifts, anomalies (amount above or below “normal”) and relative (percent per decade) trends will change. For climate, it is better to use a fixed period with a good data record so that as new data is collected, there is a consistent baseline for decadal or longer evaluation of change. Ideally, this baseline period would be relatively stable and without much of a trend. This is particularly a problem for Arctic sea ice where the last 10 years have had several extremely low extents. Including these recent years hardly represents “normal” in terms of the long-term climate. For this reason, we plan to maintain the 1981 to 2010 period as our standard climatology. The period comprises the earliest three full decades in the continuous satellite record. The data for this period have been well validated and consistency has been maintained through careful calibrations between different sensors used in the time series. Figure 5 shows the daily median extent for the calendar year from the 1981 to 2010 period and the 1991 to 2020 for comparison. As expected, the 1991 to 2020 median extents are lower than the 1981 to 2010 values, particularly during summer. The annual minimum of the 1991 to 2020 median extent is about 800,000 square kilometers (309,000 square miles) lower than the 1981 to 2010 median. Additionally, 1991 to 2020 sea ice extents exhibit much greater variability compared to sea ice conditions between 1981 and 2010.

We will consider adding a 1991 to 2020 median line to our Charctic interactive sea ice graph. Our Sea Ice Analysis Tool allows users to customize the baseline period for anomaly calculations. A more thorough discussion of the issue of climate “normal” can be found in a recent Yale Climate Connections article.

Addressing the mid-February data gap

As previously posted, a gap occurred in our sea ice extent estimates from February 20 to 21 due to a data loss by our source of passive microwave sensor data used to derive our concentration and extent estimates. These data unfortunately do not appear to be recoverable. However, the sensor is still healthy and another outage is not expected. The data gap resulted in temporary outages of Sea Ice Index data and various tools, such as Charctic. Values for February 20 and 21 were derived by interpolating from surrounding days.

Ho, ho, ho-hum December

The Arctic climate was extraordinary in 2020, but the year ended with a less spectacular December. Ice growth was faster than average throughout the month, but extent at month’s end remained among the lowest in the satellite record. Air temperatures for the month were higher than average in most areas, but less so than in many previous months. Overall, it was an extremely warm 2020, especially over Siberia.

Overview of conditions

Figure 1. Arctic sea ice extent for December 2020 was 11.77 million square kilometers (4.54 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for December 2020 was 11.77 million square kilometers (4.54 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent averaged for December 2020 was the third lowest in the satellite record. The monthly average extent of 11.77 million square kilometers (4.54 million square miles) was 1.07 million square kilometers (413,000 square miles) below the 1981 to 2010 December average. Sea ice cover was below average in the Bering Sea on the Pacific side and the Barents Sea on the Atlantic side. Compared to 2016, which had the lowest December sea ice extent on record, the ice edge in 2020 is further south in the Barents and East Greenland Seas, but further north in Davis Strait and the Labrador Sea.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of January 4, 2020, along with daily ice extent data for five previous years and the record low year. 2019 to 2020 is shown in blue, 2018 to 2017 in green, 2017 to 2018 in orange, 2016 to 2017 in brown, 2015 to 2016 in magenta, and 2011 to 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of January 4, 2021, along with daily ice extent data for five previous years and the record low year. 2020 to 2021 is shown in blue, 2019 to 2020 in green, 2018 to 2019 in orange, 2017 to 2018 in brown, 2016 to 2017 in magenta, and 2012 to 2013 in dashed brown, the record low year. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for December 2020. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division|High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for December 2020. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Sea ice extent increased by 2.71 million square kilometers (1.05 million square miles) during the month of December. This was greater than the 1981 to 2010 average gain in December of 1.99 square kilometers (780,000 square miles). However, after a rapid early and mid-month gain, the rate of extent increase slowed considerably (Figure 2a).

December air temperatures at the 925 mb level (about 2,500 feet about sea level) continued to be relatively high for this time of year over much of the Arctic Ocean, particularly north of the Laptev and East Siberian Seas, which saw temperatures of 5 degrees Celsius (9 degrees Fahrenheit) above the 1981 to 2010 average (Figure 2b). Average and below average temperatures prevailed in the Beaufort and eastern Chukchi Seas.

The Arctic Oscillation (AO), after being in a strong positive mode for most of November, flipped to a negative mode for most of December. As a result of the AO flipping to negative, a sea level pressure pattern formed in December with high pressure over the Arctic Ocean, a fairly strong  Beaufort Sea High pressure pattern, and low pressure over the Atlantic and Pacific subarctic. Earlier research (Rigor et al., 2002) argued that during winter, a negative mode tends to retain older and thicker ice within the Arctic Ocean, which potentially portends a more moderate ice loss the following summer. Conversely, when the AO is positive, the wind pattern helps to transport ice from the Siberian coast, across the pole and out of the Arctic Ocean via the Fram Strait, leaving more thin ice along the Siberian shore that melts out readily in summer. The strong positive AO during the winter of 2019 to 2020 may have played a role in this past summer’s low sea ice extent. However, this relationship between the AO and summer ice extent has not been strong in recent years.

December 2020 compared to previous Decembers

Figure 3. Monthly December ice extent for 1979 to 2020 shows a decline of 3.62 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly December ice extent for 1979 to 2020 shows a decline of 3.6 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2020, the linear rate of decline for December sea ice extent is 3.6 percent per decade, which corresponds to 46,500 square kilometers (18,000 square miles) per year, about twice the size of New Hampshire. The cumulative December ice loss over the 43-year satellite record is 1.97 million square kilometers (761,000 square miles), based on the difference in linear trend values in 2020 and 1978. This is equivalent to about three times the size of Texas.

Check in down south

Figure 4a. Antarctic sea ice extent (left) for December 2020 was 10.4 million square kilometers (4.02 million square miles). Antarctic sea ice concentration (right) for December 2020 was 6.5 million square kilometers (2.51 million square miles). The magenta line shows the 1981 to 2010 average extent (left) and concentration (right) for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 4a. Antarctic sea ice extent (left) for December 2020 was 10.4 million square kilometers (4.02 million square miles). Antarctic sea ice concentration (right) for December 2020 was 6.5 million square kilometers (2.51 million square miles). The magenta line shows the 1981 to 2010 average extent (left) and concentration (right) for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Figure 4b. This figure shows the impact of the sudden decline of Antarctic sea ice extent in August 2016 on the ice extent for the rest of the year. This was due to a phase shift of the decline pattern. ||Credit: Handcock and Raphael, 2020 | High-resolution image

Figure 4b. This figure shows the impact of the sudden decline of Antarctic sea ice extent in August 2016 on the ice extent for the rest of the year. This was due to a phase shift of the decline pattern.

Credit: Handcock and Raphael, 2020
High-resolution image

After being above average for much of the austral winter and spring, Antarctic sea ice extent dropped below average in the last week of December. Ice extent tends to see a steep decline in December as the ice begins to disintegrate all around the continent. However, the decline in sea ice extent in the Weddell and Ross Seas has been unusually rapid this year and large regions of low-concentration ice are present at year’s end (Figure 4a).

In a recent study, Handcock and Raphael (2020) note that in the Antarctic, much of the departure from average extent depends on the timing of the ice loss. For example, when extent is dropping substantially each day, a few days difference in the timing of the beginning and end of ice loss and gain can result in relatively large departure in ice extent from average. The causes of earlier or later onsets of ice loss—weather or ocean forcings on the cyclical annual trend—have long-running effects if they adjust the phase of the cycle.

After an extended period of below-average ice extent since the second half of 2016, Antarctic sea ice expanded to above-average levels in August of 2020 and remained high until the last week of this month. Once again, the Maud Rise polynya was open, but only briefly in late November and early December, as sea ice retreat in the Weddell proceeded and the ice edge swept past the polynya.

The Arctic sea ice year in review

Figure 5a. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for the full calendar year 2020. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division|High-resolution image

Figure 5a. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for the full calendar year 2020. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Figure 5b. This figure shows the average January, February, March Arctic Oscillation (AO) Index for 1950 to 2020. ||Credit: NSIDC courtesy, with data from the NOAA NCEP Climate Prediction Center. |High-resolution image

Figure 5b. This figure shows the average January, February, March Arctic Oscillation (AO) Index for 1950 to 2020.

Credit: NSIDC courtesy, with data from the NOAA NCEP Climate Prediction Center.
High-resolution image

The year 2020 was extreme for the Arctic, even compared to the past 20 years. Notable was the extreme heat over Siberia. The annual average temperature at the 925 mb level (about 2,500 feet above sea level) was over 3.5 degrees Celsius (6 degrees Fahrenheit) above the 1981 to 2010 annual average over a broad area of North Central Siberia extending over the Kara and Laptev Seas (Figure 5a). Temperatures were particularly high in the region through the first six months of the year, culminating in a 100-degree Fahrenheit (38-degrees Celsius) temperature reading in June in Verkhojansk, Russia. This was the first recorded temperature of over 100 degrees Fahrenheit north of the Arctic Circle.

These very warm conditions, coupled with winds from the south, led to early melt onset and ice retreat in the Laptev Sea. By mid-June, ice in the Laptev Sea had reached record low extent for that time of year. The strong positive mode of the Arctic Oscillation (AO) during the 2020 winter from January through March may have contributed to thin ice in the region that melted out easily once melt started. The average 2020 winter AO index was the most positive in the National Centers for Environmental Prediction (NCEP) record, dating back to 1950. Only 1989 and 1990 rivaled 2020 (Figure 5b).

The winter and spring conditions and early sea ice melt onset and retreat led to the second lowest September minimum extent in the satellite record, above only 2012. While Arctic air temperatures ranked as the highest recorded during both July and August, changes in the winds likely prevented extent from falling below the 2012 record low. There was a remarkably long open water shipping season along the Northern Sea Route (NSR) along the Russian coast. The relatively thin winter ice along the Russian coast (relative to the Central Arctic Ocean) allows for Russian icebreakers to maintain a channel for ships to navigate the passage throughout the year. However, as the summer ice extent has decreased, the NSR has become ice free for a longer period of time. In many recent years, the NSR was ice free for several weeks. A recent report indicates that this year’s ice-free season was the longest on record.

While the Arctic sea ice story largely centered on the Russian side of the Arctic Ocean, eyes also shifted toward the Atlantic in late summer with the retreat of the ice edge towards the pole. During late summer, the ice edge retreated to within about 500 kilometers (300 miles) of the North Pole north of the Barents and Kara Seas. Along that ice edge, the ice was not very compact. This allowed the German icebreaker, R.V. Polarstern, to easily cruise to the pole in early August as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition.

Initial results from MOSAiC

Figure 6. The left side of this figure shows the agreement between snow depth derived from the Ku-Ka radar sensor (x-axis) and in situ measurements (y-axis) by a magnaprobe snow depth instrument across two transects (red and blue dots). The radar measurements have a correlation with the in situ measurements of 0.66, demonstrating the utility of the radar for estimating snow depth. The right side shows the data along a transect across the snow and ice with the radar and the magnaprobe. The colors in the plot correspond to the strength of radar signal and the lines demarcate snow/air and snow/ice boundaries. For further details on the analysis and the figures, see Stroeve et al. (2020). ||Credit: Julienne Stroeve, National Snow and Ice Data Center|High-resolution image

Figure 6. The left side of this figure shows the agreement between snow depth derived from the Ku-Ka radar sensor (x-axis) and in situ measurements (y-axis) by a magnaprobe snow depth instrument across two transects (red and blue dots). The radar measurements have a correlation with the in situ measurements of 0.66, demonstrating the utility of the radar for estimating snow depth. The right side shows the data along a transect across the snow and ice with the radar and the magnaprobe. The colors in the plot correspond to the strength of radar signal and the lines demarcate snow/air and snow/ice boundaries. For further details on the analysis and the figures, see Stroeve et al. (2020).

Credit: R. Willatt, University of College London
High-resolution image

As discussed in earlier posts, the MOSAiC expedition was the most notable scientific Arctic event of 2020. The expedition involved freezing an icebreaker into Arctic sea ice for one year beginning in September 2019. Scientists collected data on all aspects of the Arctic environment, including sea ice, atmosphere, ocean, biology, chemistry, and more. It will take years to fully assess the data, but initial analyses are already being published. This includes a new paper (Stroeve et al., 2020) analyzing data from a ground-mounted radar, an effort led by NSIDC senior research scientist and MOSAiC participant, Julienne Stroeve. This radar has the same frequencies as used on current satellite systems to monitor ice thickness and snow depth. However, satellites do not directly retrieve sea ice thickness; it is inferred based on assumptions as to where the radar return is coming from as well as assumptions on depth of the snowpack, and densities of the ice, snow and water. To better understand how snowpack properties influence radar backscatter at these frequencies, Stroeve and colleagues deployed a fully polarimetric, dual frequency radar with both Ku radar (12 to 18 gigahertz) and Ka radar (27 to 40 gigahertz). The instrument operated in a scanning mode, sweeping above the surface at different azimuth and incidence angles, as well as an altimeter mode, looking straight down while being towed with a skidoo. Observations were supported by detailed snow pit observations, snow depth and ice thickness, as well as laser scans of the surface to provide estimates of surface roughness.

Initial results based on data collected between October 2019 and January 2020 show that a combination of frequencies can provide estimates of snow depth. Further, the data illustrate the radar backscatter sensitivity to snow pack temperature and surface roughness, affecting the retrieved height of the sea ice freeboard, or sea ice thickness calculations.

Further reading

Handcock, M. S. and M. N. Raphael. 2020. Modeling the annual cycle of daily Antarctic sea ice extent. The Cryosphere. doi:10.5194/tc-14-2159-2020.

Rigor, I. G., Wallace, J. M., and R. L. Colony. 2002. Response of Sea Ice to the Arctic Oscillation. Journal of Climate. doi:10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

Stroeve, J., Nandan, V., Willatt, R., Tonboe, R., Hendricks, S., Ricker, R., Mead, J., Mallett, R., Huntemann, M., Itkin, P., Schneebeli, M., Krampe, D., Spreen, G., Wilkinson, J., Matero, I., Hoppmann, M., and M. Tsamados. 2020. Surface-based Ku- and Ka-band polarimetric radar for sea ice studies. The Cryosphere. doi:10.5194/tc-14-4405-2020.

Ocean waves in November—in the Arctic

A vast area of the Arctic Ocean remains ice free as November begins, far later in the season than is typical. The monthly average ice extent for October is the lowest in the satellite record. On October 24, a record difference was set in daily ice extent relative to the 1981 to 2010 average. Large heat transfers from the open water to the atmosphere have manifested as above-average air temperatures near the surface of the ocean.

Overview of conditions

Figure 1. Arctic sea ice extent for October 2020 was 5.28 million square kilometers (2.04 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for October 2020 was 5.28 million square kilometers (2.04 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Sea ice extent for October 2020 was 5.28 million square kilometers (2.04 million square miles), placing it lowest in the satellite record for the month. This was 3.07 million square kilometers (1.19 million square miles) below the 1981 to 2010 October average and 450,000 square kilometers (173,700 square miles) below the record low mark for October set in 2019. October 2020 is the largest departure from average conditions seen in any month thus far in the satellite record, falling 3.69 standard deviations below the 1981 to 2010 mean. Ice extent is far below average in all of sectors of the Eurasian side of the Arctic Ocean and in Baffin Bay.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of November 3, 2020, along with daily ice extent data for four previous years and the record low year. 2020 is shown in blue, 2019 in green, 2018 in orange, 2017 in brown, 2016 in purple, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of November 3, 2020, along with daily ice extent data for four previous years and the 2012 record low year. 2020 is shown in blue, 2019 in green, 2018 in orange, 2017 in brown, 2016 in purple, and 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for October 2020. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division| High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for October 2020. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars (hPa) for October 2020. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division| High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars (hPa) for October 2020. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Throughout the month, sea ice grew by an average of 71,200 square kilometers (27,500 square miles) per day, which is close to the average rate for 1981 to 2010. For the first three weeks of October, however, growth rates were well below average, around 51,600 square kilometers (19,900 square miles) per day. Following the pattern of recent years, growth became very rapid late in the month, averaging around 134,000 square kilometers (51,700 square miles) per day. From October 13 into early November, the daily sea ice extent was the lowest for that day in the satellite record. Sea ice growth in the last 10 days of the month was mostly along the Siberian coast, extending northward, and along the Eurasian side of the sea ice pack, extending southward. Based on passive microwave data, the Northern Sea Route remained open through nearly all of October.

Air temperatures at the 925 hPa level (about 2,500 feet above the surface) were 4 to 5 degrees Celsius (7 to 9 degrees Fahrenheit) above average for the month across much of the Central and Western Arctic Ocean and the Siberian Arctic coast, as well as over Northern Greenland. Elsewhere in the Arctic and the northernmost Atlantic regions, temperatures were near average to slightly below average. Temperatures in Central Canada were 1 to 4 degrees Celsius (2 to 7 degrees Fahrenheit) below average (Figure 2b).

The average sea level pressure pattern for October was characterized by below-average pressure over the Northern Atlantic Ocean and Laptev and Bering Seas, driving winds northward toward the Lena River region, Barents Sea, and Novaya Zemlya. Below-average pressure also occurred over the Hudson Bay (Figure 2c).

October 2020 compared to previous years

Figure 3. Monthly October ice extent for 1979 to 2020 shows a decline of 10.11 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly October ice extent for 1979 to 2020 shows a decline of 10.1 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Including 2020, the linear rate of decline for October sea ice extent is 10.1 percent per decade. This corresponds to a downward trend of -84,400 square kilometers (32,600 square miles) per year, or losing an area about the size of South Carolina each year. Over the 42-year satellite record, the Arctic has lost about 3.45 million square kilometers (1.33 million square miles) of ice in October, based on the difference in linear trend values in 2019 and 1979. This is comparable to twice the size of the state of Alaska.

Increasing departures from average in autumn

Figure 4a. With longer periods of open water during spring and summer, more solar energy is absorbed within the upper part of the ocean. This delays sea ice formation because before ice can form, the ocean must lose this heat to the atmosphere and then to space. This excess heat transferred to the atmosphere can be seen in a vertical profile of temperature by latitude along longitude 140 to 170 degrees E, which is shown in this plot.||Credit: NCEP/NCAR Reanalysis| High-resolution image

Figure 4a. This figure shows a profile of temperature (in color) for the lower half of the atmosphere (500 to 1,000 millibars, or about 18,000 feet to the surface) versus latitude, averaged along a swath of longitudes from 140 to 170 degrees E. With longer periods of open water during spring and summer, more solar energy is absorbed within the upper part of the ocean. This delays sea ice formation because before ice can form, the ocean must lose this heat to the atmosphere and then to space. This excess heat transferred to the atmosphere can be seen as the warm (red) layer over the open water region.

Credit: NCEP/NCAR Reanalysis
High-resolution image

Figure 4b. A delay in Arctic sea ice growth in autumn tends to lead to large departures from average in sea ice extent after the summer minimum and particularly in the month of October. The five lowest September extent minima (2007, 2012, 2016, 2019, and 2020) all show large departures in October extent compared to the reference period. This plot shows Arctic sea ice extent anomalies for those five years from June to December compared with the 1981 to 1990 average, 1991 to 2000 average, and the 2001 to 2010 average.||Credit: NSIDC| High-resolution image

Figure 4b. A delay in Arctic sea ice growth in autumn tends to lead to large departures from average in sea ice extent after the summer minimum and particularly in the month of October. The five lowest September extent minima (2007, 2012, 2016, 2019, and 2020) all show large departures in October extent compared to the reference period. This plot shows Arctic sea ice extent anomalies for those five years from June to December compared with the 1981 to 1990 average, 1991 to 2000 average, and the 2001 to 2010 average.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 4c. This chart shows monthly sea ice extent anomaly (difference from the 1981 to 2010 average) for 1979 to October 2020. Low sea ice extent in autumn is shown as deep blue periods in several years beginning in 2007.||Credit: NSIDC| High-resolution image

Figure 4c. This chart shows monthly sea ice extent anomaly (difference from the 1981 to 2010 average) for 1979 to October 2020. Deep blue colors depict low autumn sea ice extent over the past 15 years.

Credit: National Snow and Ice Data Center
High-resolution image

On October 24, Arctic sea ice extent had its largest departure from the 1981 to 2010 average of daily sea ice extent in the 42-year continuous satellite record, at 3.4 million square kilometers (1.31 million square miles). With longer periods of open water during spring and summer, more solar energy is absorbed within the upper few tens of meters of the ocean. This has the effect of delaying sea ice formation—before ice can form, the ocean must lose this heat to the atmosphere and then to space (Figure 4a).

The delay in ice regrowth leads to large departures from average in sea ice extent in the time after the summer minimum and particularly in the month of October. The five lowest September extent minima (2007, 2012, 2016, 2019, and 2020) all show large departures in October extent compared to the reference period (Figure 4b).

This excess heat transferred to the atmosphere can be seen in a vertical profile of temperature by latitude along longitude 140 to 170 degrees E, which cuts though the open water area along the Eurasian coast (Figure 4a). In the past two decades, high autumn temperatures over the open water here have strongly contributed to Arctic Amplification—the larger rise in air temperatures over the Arctic compared to the rest of the globe. However, the anomalous warmth is largely limited to near the surface of the ocean.

Northern Sea Route shipping rises as sea ice falls

Figure 5. This chart shows Northern Sea Route (NSR) shipping traffic for August 2020 and other shipping information for that region. Track color legend is shown in the lower right. Transits through the NSR are shown in red, departing or arriving at the Arctic coastal ports in blue and green, and port-to-port within the Arctic is shown in yellow. The increase in August activity between 2018, 2019, and 2020 is shown in the bar chart at upper left. ||Credit: CHNL Information Office at Nord University| High-resolution image

Figure 5. This chart shows Northern Sea Route (NSR) shipping traffic for August 2020 and other shipping information for that region. Track color legend is shown in the lower right. Transits through the NSR are shown in red, departing or arriving at the Arctic coastal ports in blue and green, and port-to-port within the Arctic is shown in yellow. The increase in August activity between 2018, 2019, and 2020 is shown in the bar chart at upper left.

Credit: Center for High North Logistics Information Office at Nord University
High-resolution image

Commercial shipping along the Northern Sea Route of the Russian north coast is increasing. This includes complete transits from Europe to East Asia, local shipping within the Arctic Ocean, and deliveries of liquefied natural gas from gas fields in the Yamal Peninsula to ports in both Europe and East Asia. The years 2019 and 2020 saw significantly increased shipping activity compared with 2018. 2020 had slightly more shipping than 2019 when comparing August shipping from both years. The shipping traffic map shows the importance of passages just north of the Taymyr Peninsula and near the New Siberian Islands on either side of the Laptev Sea; these are generally the last areas to clear of ice, and only in the warmest years. However, in 2020, the Northern Sea Route was essentially ice free from mid-July through about October 25. Icebreaker and ice-hardened tankers made several voyages within the route as early as June.

Looking to the south

Figure 6. This figure shows the Japanese Aerospace Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer 2 (AMSR2) sea ice concentration for Antarctic sea ice on October 31, 2020. Antarctic sea ice extent reached its seasonal sea ice extent maximum of 18.95 million square kilometers (7.32 million square miles) on September 28, 2020. Sea Ice Index data. About the data||Credit: University of Bremen|High-resolution image

Figure 6. This figure shows the Japanese Aerospace Exploration Agency (JAXA) Advanced Microwave Scanning Radiometer 2 (AMSR2) sea ice concentration for Antarctic sea ice on October 31, 2020. Antarctic sea ice extent reached its seasonal sea ice extent maximum of 18.95 million square kilometers (7.32 million square miles) on September 28, 2020. Sea Ice Index data. About the data

Credit: University of Bremen
High-resolution image

Antarctic sea ice extent reached its seasonal maximum of 18.95 million square kilometers (7.32 million square miles) on September 28, as was tentatively reported in the October post. The maximum extent was the eleventh highest in the satellite record. Since then, Antarctic sea ice has declined by 1.30 million square kilometers (502,000 million square miles), but at a rate slightly slower than the average, resulting in a slight increase in the difference between the daily sea ice extent and the 1981 to 2010 average. Sea ice extent is above average along a wide area of the Ross Sea and Wilkes Land coast, and in the Eastern Weddell Sea. It is slightly below average in the Bellingshausen and Amundsen Seas. Notably, in the last few days of the month, sea ice concentration dropped in the area of the Maud Rise and in an area near the front of the Amery Ice Shelf.