Sensor on F-17 experiencing difficulties, sea ice time series temporarily suspended

NSIDC has suspended daily sea ice extent updates until further notice, due to issues with the satellite data used to produce these images. The vertically polarized 37 GHz channel (37V) of the Special Sensor Microwave Imager and Sounder (SSMIS) on the Defense Meteorological Satellite Program (DMSP) F-17 satellite that provides passive microwave brightness temperatures is providing spurious data. The 37V channel is one of the inputs to the sea ice retrieval algorithms, so this is resulting in erroneous estimates of sea ice concentration and extent. The problem was initially seen in data for April 5 and all data since then are unreliable, so we have chosen to remove all of April from NSIDC’s archive.

It is unknown at this time if or when the problem with F-17 can be fixed. In the event that the sensor problem has not been resolved, NSIDC is working to transition to another satellite in the DMSP series. Transitioning to a different satellite will require a careful calibration against the F-17 data to ensure consistency over the long-term time series. While this transition is of high priority, NSIDC has no firm timeline on when it will be able to resume providing the sea ice time series. For background information on the challenges of using data in near-real-time, see the ASINA FAQ, “Do your data undergo quality control?

March ends a most interesting winter

Low Arctic sea ice extent for March caps a highly unusual winter in the Arctic, characterized by persistent warmth in the atmosphere that helped to limit ice growth. Above-average influx of ocean heat from the Atlantic and southerly winds helped to keep ice extent especially low in the Barents and Kara seas. Northern Hemisphere snow cover for both February and March was also unusually low

Overview of conditions

Figure 1. Arctic sea ice extent for March 2016 was 14.43 million square kilometers (5.57 million square miles). The magenta line shows the 1981 to 2010 median extent for that month.

Figure 1. Arctic sea ice extent for March 2016 was 14.43 million square kilometers (5.57 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Sea ice extent reached its seasonal maximum on March 24 of 14.52 million square kilometers (5.607 million square miles), barely beating out February 25, 2015 for the lowest seasonal maximum in the satellite record. Arctic sea ice extent averaged for the entire month of March 2016 was 14.43 million square kilometers (5.57 million square miles), the second lowest in the satellite record. This is 1.09 million square kilometers (421,000 square miles) below the 1981 to 2010 average extent, and 40,000 square kilometers (15,000 square miles) above the record low monthly average for March that occurred in 2015. At the end of the month, extent remained well below average everywhere except in the Labrador Sea, Baffin Bay, and Hudson Bay. Ice extent was especially low in the Barents and Kara seas.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of April 3, 2016, along with daily ice extent data for four previous years. 2015 to 2016 is shown in blue, 2014 to 2015 in green, 2013 to 2014 in orange, 2012 to 2013 in brown, and 2011 to 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data.

Figure 2. The graph above shows Arctic sea ice extent as of April 3, 2016, along with daily ice extent data for four previous years. 2015 to 2016 is shown in blue, 2014 to 2015 in green, 2013 to 2014 in orange, 2012 to 2013 in brown, and 2011 to 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Because ice extent typically climbs through the first part of March until it reaches its seasonal maximum and then declines, the daily average ice growth rate for the month is typically quite small and is not a particularly meaningful number. This year’s seasonal maximum, while quite low, also occurred rather late in the month. Very early in the month, extent declined, raising anticipation that an early maximum had been reached. However, after a period of little change, extent slowly rose again, reaching the seasonal maximum on March 24.

March of 2016 saw unusually warm conditions over nearly all of the Arctic Ocean. Air temperatures at the 925 hPa level (about 3,000 feet above the surface) were typically 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) above average over the Arctic coastal seas, with larger positive departures compared to average nearer the Pole (4 to 8 degrees Celsius or 7 to 14 degrees Fahrenheit). This was associated with a pattern of above-average sea level pressures centered over the northern Beaufort Sea north of Alaska, and below-average pressures over the Atlantic side of the Arctic, especially pronounced over Baffin Bay and Davis Strait. Through March, the Arctic Oscillation Index bounced between moderate positive and negative values.

March 2016 compared to previous years

Figure 3. Monthly March ice extent for 1979 to 2016 shows a decline of 2.7 percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly March ice extent for 1979 to 2016 shows a decline of 2.7 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent averaged for March 2016 was the second lowest in the satellite record. Through 2016, the linear rate of decline for March extent is 2.7 percent per decade, or a decline of 42,100 square kilometers (16,200 square miles) per year.

The winter in review

Figure 4. This graph shows differences in Arctic sea ice from December 28, 2015 to January 4, 2016, estimated from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS).

Figure 4. This graph shows differences in Arctic sea ice thickness from December 28, 2015 to January 4, 2016, estimated from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS).

Credit: National Snow and Ice Data Center, courtesy PIOMAS
High-resolution image

Figure 5. This figure shows observed (blue columns) and predicted (cyan) winter sea ice area in the Barents Sea. The prediction is based on observed Atlantic heat entering the Barents Sea and the sea ice area the previous year. The predicted sea ice area for this winter (2016) is well below average, and less than that observed for 2015. Anomalously strong southerly winds have also contributed to the very small sea ice area this winter (not shown).

Figure 5. This figure shows observed (blue columns) and predicted (cyan) winter sea ice area in the Barents Sea. The prediction is based on observed Atlantic heat entering the Barents Sea and the sea ice area the previous year. The predicted sea ice area for this winter (2016) is well below average, and less than that observed for 2015. Anomalously strong southerly winds have also contributed to the very small sea ice area this winter (not shown).

Credit: Ingrid Onarheim/Bjerknes Centre for Climate Research
High-resolution image

Figure 6. This snow cover anomaly map shows the difference between snow cover for March 2016, compared with average snow cover for March from 1981 to 2010. Areas in orange and red indicate lower than usual snow cover, while regions in blue had more snow than average.||Credit: National Snow and Ice Data Center, courtesy Rutgers University Global Snow Lab| High-resolution image

Figure 6. This snow cover anomaly map shows the percent difference between snow cover for March 2016, compared with average snow cover for March from 1981 to 2010. Areas in orange and red indicate lower than usual snow cover, while regions in blue had more snow than average.

Credit: National Snow and Ice Data Center, courtesy Rutgers University Global Snow Lab
High-resolution image

Figure 7. This graph shows snow cover extent anomalies in the Northern Hemisphere for March from 1967 to 2016. The anomaly is relative to the 1981 to 2010 average.

Figure 7. This graph shows snow cover extent anomalies in the Northern Hemisphere for March from 1967 to 2016. The anomaly is relative to the 1981 to 2010 average.

Credit: National Snow and Ice Data Center, courtesy Rutgers University Global Snow Lab
High-resolution image

The unusual warmth for March of 2016 continues a pattern of above-average temperatures for most of the Arctic and much of the Northern Hemisphere that has characterized the entire winter. As an exclamation point on the unusual warmth, there was a brief weather event at the very end of December 2015 when air temperatures near the Pole nearly reached the melting point. As we noted in our January post, the event was related to a pulse of warm air moving almost due south to north from the sub-tropical Atlantic to the regions north of Svalbard, an atmospheric river set between broad high and low pressure areas in Europe and the north Atlantic.

The December event also led to higher than average air temperatures over the Kara and Barents seas, reducing the sea ice concentration and causing thinning of the ice that was there. While sea ice normally grows and thickens over winter, the difference in thickness estimated from Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) shows that between December 28, 2015 and January 4, 2016, sea ice within the Kara and Barents seas thinned by more than 30 centimeters (Figure 4). Thinning also occurred north of Greenland and off the coast of Siberia, while the ice thickened over most of the Arctic Ocean. Higher than average temperatures remained in the region after the weather event had passed, which may have further prevented the ice from growing back. The reasons for the persistent warmth over the entire Arctic this past winter are currently under investigation; a link with the strong El Niño pattern of this winter may be involved.

While the warm atmospheric conditions played a role in the low ice extent for March 2016, the especially low extent that has persisted in the Barents and Kara seas appears to be linked with another heat source—an influx of warm Atlantic waters, entering between Bear Island and Norway (the Barents Sea opening). Ingrid Onarheim from the Bjerknes Centre for Climate Research in Bergen, Norway has been studying this issue and predicted a small sea ice cover in the Barents Sea this winter based on observed Atlantic heat transport to the Barents Sea through April 2015 (Figure 5). In addition to the above-average ocean heat transport, prevailing southerly winds have pushed the sea ice northward since November 2015, bringing in warm air that damps the normally high ocean-air heat loss and favoring ice formation. This likely contributed to the below-average ice conditions in the Arctic this winter. Atlantic heat transport due to near-surface ocean currents reached a long-term maximum in the mid-2000s. Several studies have suggested a more moderate inflow of Atlantic waters may characterize the years ahead, leading to increases in the Barents Sea ice cover in the coming years.

Along with low sea ice extent and above-average temperatures, March of 2016 also saw a very low monthly snow cover extent for the Northern Hemisphere (Figures 6 and 7). Snow cover was low across northern Eurasia, with only minor areas of above-average snow cover in western Turkey, northern Kazakhstan and Mongolia, and easternmost High-Mountain Asia. In North America, snow cover was low across nearly all of the coterminous 48 states in the U.S., despite a series of storms late in the month in the central Rockies and Great Plains. Overall, March 2016 had 37.16 million square kilometers (14.35 million square miles) of snow cover extent, 2.97 million square kilometers (1.15 million square miles) below the 1981 to 2010 average of 40.13 million square kilometers (15.50 million square miles). This makes March 2016 the 49th lowest out of 50 years on record in snow cover extent for the Northern Hemisphere. While April and May could still bring snow to the higher latitudes, we note that low snow cover, similar to low sea ice cover, leads to greater heat absorption by the surface in the Arctic and further warming as we move toward summer.

A younger ice cover

Figure 8. These graphs show Arctic sea ice age from March 4 to 10, 2016. The top graph shows ice age distribution for that week alone and the bottom graph shows ice age distribution for that week from 1985 to 2016.||Credit: NSIDC courtesy University of Colorado Boulder, M. Tschudi, C. Fowler, J. Maslanik, R. Stewart, W. Meier.

Figure 8. These graphs show Arctic sea ice age from March 4 to 10, 2016. The top graph shows ice age distribution for that week alone and the bottom graph shows ice age distribution for that week from 1985 to 2016.

Credit: NSIDC courtesy University of Colorado Boulder, M. Tschudi, C. Fowler, J. Maslanik, R. Stewart, W. Meier.
High-resolution image

Ice age data for mid-March shows that 70 percent of the sea ice within the Arctic basin consists of first-year ice and only 30 percent is multiyear ice. First-year ice is generally only 1.5 to 2 meters (5 to 6.5 feet) thick. This implies a thinner ice pack as the melt season gets underway. In addition, the oldest ice, or ice at least 5 years or older, is at its smallest level in the satellite record, representing only 3 percent of the total ice cover. Some of this very old ice is found in the western Beaufort Sea and extending towards the Chukchi Sea regions where we have seen large summer ice losses in recent years. Typically this old ice is concentrated north of Greenland and within the Canadian Arctic Archipelago.

Not only is the oldest ice at record low levels, but it it is not recovering. Beginning 2007, we see a strong decline that lasts until 2012 and has not changed much since. If anything it has gone down. In that time we have seen some recovery in younger multiyear ice types: e.g., 2-year ice jumped back up after a one-year minimum, 3-year ice recovered to a lesser degree, and 4-year ice to an even lesser degree. It is not surprising to see some recovery and that first-year ice recovery propagates through time. However, that recovery happens less as the ice gets older, and for 5-year ice and older there is essentially no recovery. The bottom line is that ice no longer survives in the Arctic for very long. It is lasting three to four years tops before melting or advecting out through Fram Strait. This is a big change from the past when much of the ice cover would survive upwards of a decade.

Southern view

Antarctic sea ice grew rapidly in March, rising from below-average daily extents to above-average extents during the month, and increasing by nearly 90,000 square kilometers (35,000 square miles) per day. Sea ice growth was particularly fast in the eastern Ross Sea. Winter temperatures on the continent through the month were near-average overall, but 4 to 6 degrees Celsius (7 to 11 degrees Fahrenheit) below average over the eastern Ross Sea and West Antarctic Ice Sheet.

 

Another record low for Arctic sea ice maximum winter extent

Arctic sea ice appears to have reached its annual maximum extent on March 24, and is now the lowest maximum in the satellite record, replacing last year’s record low. This year’s maximum extent occurred later than average. A late season surge in ice growth is still possible. NSIDC will post a detailed analysis of the 2015 to 2016 winter sea ice conditions in early April.

Overview of conditions

Figure 1. Arctic sea ice extent for March 24, 2016 was 14.52 million square kilometers (5.607 million square miles). The orange line shows the 1981 to 2010 median extent for that day. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

On March 24, 2016, Arctic sea ice likely reached its maximum extent for the year, at 14.52 million square kilometers (5.607 million square miles). This year’s maximum ice extent was the lowest in the satellite record, with below-average ice conditions everywhere except in the Labrador Sea, Baffin Bay, and Hudson Bay. The maximum extent is 1.12 million square kilometers (431,000 square miles) below the 1981 to 2010 average of 15.64 million square kilometers (6.04 million square miles) and 13,000 square kilometers (5,000 square miles) below the previous lowest maximum that occurred last year. This year’s maximum occurred twelve days later than the 1981 to 2010 average date of March 12. The date of the maximum has varied considerably over the years, occurring as early as February 24 in 1996 and as late as April 2 in 2010.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of March 27, 2016, along with daily ice extent data for four previous years. 2015 to 2016 is shown in blue, 2014 to 2015 in green, 2013 to 2014 in orange, 2012 to 2013 in brown, and 2011 to 2012 in purple. The 1981 to 2010 average is in dark gray.

Figure 2. The graph above shows Arctic sea ice extent as of March 27, 2016, along with daily ice extent data for four previous years. 2015 to 2016 is shown in blue, 2014 to 2015 in green, 2013 to 2014 in orange, 2012 to 2013 in brown, and 2011 to 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Sea ice extent was below average throughout the Arctic, except in the Labrador Sea, Baffin Bay, and Hudson Bay. However, it was especially low in the Barents Sea. Below average winter ice conditions in the Kara and Barents seas have been a persistent feature in the last several years, while the Bering Sea has overall seen slightly positive trends towards more sea ice during winter.

Below average sea ice extent is in part a result of higher than average temperatures that have plagued the Arctic all winter. Air temperatures at the 925 hPa level from December 2015 through February 2016 were above average everywhere in the Arctic, with hotspots near the Pole and from the Kara Sea towards Svalbard exceeding 6 Celsius degrees (11 degrees Fahrenheit) above average. These higher than average temperatures continued into March, with air temperatures during the first two weeks reaching 6 degrees Celsius (11 degrees Fahrenheit) above average in a region stretching across the North Pole toward northern Greenland, and up to 12 degrees Celsius (22 degrees Fahrenheit) above average north of Svalbard.

These unusually warm conditions have no doubt played a role in the record low ice extent this winter. Another contributing factor has been a predominance of southerly winds in the Kara and Barents seas that have helped to keep the ice edge northward of its typical position. This area has also seen an influx of warm Atlantic waters from the Norwegian Sea.

There is little correlation between the maximum winter extent and the minimum summer extent—this low maximum does not ensure that this summer will see record low ice conditions. A key factor is the timing of widespread surface melting in the high Arctic. An earlier melt onset is important to the amount of energy absorbed by the ice cover during the summer. If surface melting starts earlier than average, the snow darkens and exposes the ice below earlier, which in turn increases the solar heat input, allowing more ice to melt. With the likelihood that much of the Arctic cover is somewhat thinner due to the warm winter, early surface melting would favor reduced summer ice cover.

Final analysis pending

At the beginning of April, NSIDC scientists will release a full analysis of winter conditions, along with monthly data for March. For more information about the maximum extent and what it means, see the NSIDC Icelights post, the Arctic sea ice maximum.

 

February continues streak of record low Arctic sea ice extent

Arctic sea ice was at a satellite-record low for the second month in a row. The first three weeks of February saw little ice growth, but extent rose during the last week of the month. Arctic sea ice typically reaches its maximum extent for the year in mid to late March.

Overview of conditions

Figure 1. Arctic sea ice extent for February 2016 was 14.2 million square kilometers (5.48 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for February 2016 was 14.22 million square kilometers (5.48 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for February averaged 14.22 million square kilometers (5.48 million square miles), the lowest February extent in the satellite record. It is 1.16 million square kilometers (448,000 square miles) below the 1981 to 2010 long-term average of 15.4 million square kilometers (5.94 million square miles) and is 200,000 square kilometers (77,000 square miles) below the previous record low for the month recorded in 2005.

The first three weeks of February saw little ice growth, but extent rose during the last week of the month primarily due to growth in the Sea of Okhotsk (180,000 square kilometers or 70,000 square miles) and to a lesser extent in Baffin Bay (35,000 square kilometers or 13,500 square miles). Extent is presently below average in the Barents and Kara seas, as well as the Bering Sea and the East Greenland Sea. Extent decreased in the Barents and East Greenland seas during the month of February. In other regions, such as the Sea of Okhotsk, Baffin Bay, and the Labrador Sea, ice conditions are near average to slightly above average for this time of year. An exception is the Gulf of St. Lawrence, which remains largely ice free.

In the Antarctic, sea ice reached its minimum extent for the year on February 19, averaging 2.6 million square kilometers (1 million square miles). It is the ninth lowest Antarctic sea ice minimum extent in the satellite record.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of March 1, 2016, along with daily ice extent data for four previous years. 2015 to 2016 is shown in blue, 2014 to 2015 in green, 2013 to 2014 in orange, 2012 to 2013 in brown, and 2011 to 2012 in purple.

Figure 2a. The graph above shows Arctic sea ice extent as of March 1, 2016, along with daily ice extent data for four previous years. 2015 to 2016 is shown in blue, 2014 to 2015 in green, 2013 to 2014 in orange, 2012 to 2013 in brown, and 2011 to 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. These three images show two-week average Arctic sea ice drift data from January through mid-February derived from the Advanced Microwave Scanning Radiometer 2 (AMSR-2). The image on the left shows the period January 1 to 15, the middle image shows January 14 to 31, and the image on the right shows February 1 to 16. ||Images courtesy Alek Petty/NASA Goddard Space Flight Center/University of Maryland, data from Centre ERS d'Archivage et de Traitement (CERSAT)/French Institute for Exploration (Ifremer)| High-resolution image

Figure 2b. These three images show two-week average Arctic sea ice drift data from January through mid-February derived from the Advanced Microwave Scanning Radiometer 2 (AMSR-2). The image on the left shows the period January 1 to 15, the middle image shows January 14 to 31, and the image on the right shows February 1 to 16.

Credit: Alek Petty/NASA Goddard Space Flight Center/University of Maryland, data from Centre ERS d’Archivage et de Traitement (CERSAT)/French Institute for Exploration (Ifremer)
High-resolution image

NASA and NOAA announced that January 2016 was the ninth straight month of record-breaking high surface temperatures for the globe. In terms of regional patterns, the Arctic stands out, with surface temperatures more than 4 degrees Celsius (7.2 degrees Fahrenheit) above the 1951 to 1980 average. These high temperatures were in part responsible for the record low sea ice extent observed for January. Persistent warmth has continued into February; air temperatures at the 925 hPa level were 6 to 8 degrees Celsius (11 to 14 degrees Fahrenheit) above the 1981 to 2010 average over the central Arctic Ocean near the pole. The rate of ice growth for February was near average at 19,700 square kilometers (7,600 square miles) per day, compared to 20,200 square kilometers (7,800 square miles) per day for the 1981 to 2010 average.

Atmospheric circulation patterns have also favored low sea ice extent, particularly in the Barents and Kara seas. Ice motion drift data derived from the Advanced Microwave Scanning Radiometer 2 (AMSR2) satellite and provided by the Centre ERS d’Archivage et de Traitement (CERSAT) show that since January 1, there has been cyclonic, or counterclockwise, sea ice motion in the Barents Sea helping to keep sea ice from advancing south. During the second half of January, an anti-cyclonic, or clockwise, circulation pattern developed in the Beaufort Sea, which subsequently strengthened and expanded to include most of the Arctic Ocean. This, combined with high pressure over Greenland and low pressure over Spitsbergen, has favored enhanced ice export out of Fram Strait, helping to flush old, thick ice out of the Arctic Ocean, leaving behind thinner ice that is more apt to melt away in summer. Whether this circulation pattern will continue and set the stage for very low September sea ice extent remains to be seen.

February 2016 compared to previous years

Figure 3. Monthly February sea ice extent for 1979 to 2016 shows a decline of 3.04% per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly February sea ice extent for 1979 to 2016 shows a decline of 3.0 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

February 2016 sea ice extent was the lowest in the satellite record at 14.22 million square kilometers (5.48 million square miles). The linear rate of decline for February is now 3.0 percent per decade.

Record warmth revealed by the AIRS instrument

Figure 4. These two images show February 2016 departures from the 2003 to 2015 average for 925 hPa air temperature (left) and precipitable water (right) as derived from the NASA AIRS instrument.||Images courtesy Linette Boisvert/NASA Goddard Space Flight Center.| High-resolution image

Figure 4. These two images show February 2016 departures from the 2003 to 2015 average for 925 hPa air temperature (left) and precipitable water (right) as derived from the NASA AIRS instrument.

Credit: Linette Boisvert/NASA Goddard Space Flight Center
High-resolution image

Since 2003, the Atmospheric Infrared Sounder (AIRS) onboard the NASA Aqua satellite has collected daily temperature and humidity profiles globally. Although the record is fairly short, AIRS data can provide insight into recent changes in Arctic climate. February average air temperatures, measured by AIRS at 925 hPa, are around 5 degrees Celsius (9 degrees Fahrenheit) above the 2003 to 2015 average over the Beaufort and Chukchi seas and the central Arctic Ocean. Above-average temperatures are also the rule over the Kara Sea and Northern Siberia (6 degrees Celsius or 11 degrees Fahrenheit above average). Regions with especially higher than average temperatures correspond to regions of low sea ice, demonstrating the role played by heat fluxes from open water areas. For example, the Sea of Okhotsk experienced below-average air temperatures, and also had above-average sea ice extents, whereas the Kara, Barents, and Bering seas and the Gulf of St. Lawrence had higher air temperatures compared to average, which coincides with lower than average sea ice extent.

A similar relationship is seen in the total precipitable water for February 2016. Precipitable water is the amount of water vapor in the atmospheric column totaled from the surface to the top of the troposphere, expressed as kilograms of water per square meter (one kilogram per square meter equals 1 millimeter of water depth). In February, areas with precipitable water between 12 percent (Bering Sea) to 70 percent (Kara Sea) above the 2003 to 2015 February average corresponded to regions with below-average sea ice extent. Water vapor is a greenhouse gas, and with more water vapor in the air, there is a stronger emission of longwave radiation to the surface. Conversely, the observation that above-average amounts of water vapor are found over areas of reduced sea ice extent points to a role of local evaporation, and evaporation is a cooling process that by itself will favor ice growth.

A late freeze-up

Figure 5. This images shows freeze-up anomalies in the Arctic for 2015. Reds indicate areas where freeze-up began later than average and blues indicate freeze-up beginning earlier than average.||Credit: National Snow and Ice Data Center, data provided by J. Miller/T. Markus, NASA Goddard Space Flight Center I High-resolution image

Figure 5. This images shows freeze-up anomalies in the Arctic for 2015. Reds indicate areas where freeze-up began later than average and blues indicate freeze-up beginning earlier than average.

Credit: National Snow and Ice Data Center, data provided by J. Miller/T. Markus, NASA Goddard Space Flight Center
High-resolution image

Sea ice reformed or refroze later than average throughout most of the Arctic, especially in the Kara and Barents seas where the freeze-up happened about two months later than average. Ice was also late to form in the Beaufort, Chukchi, East Siberian, and Laptev seas, between ten and forty days later than average. In contrast, the timing of freeze-up over the central Arctic Ocean near the pole was near average, as was also the case in Baffin Bay and parts of Hudson Bay. When freeze-up happens late, the ice has less time to thicken before the melt season starts, leading to a thinner ice cover that is more prone to melting out in summer.

References

NASA Goddard Institute for Space Studies. Global Land-Ocean Temperature Index in 0.01 degrees Celsius. http://data.giss.nasa.gov/gistemp/tabledata_v3/GLB.Ts+dSST.txt.

NASA Goddard Institute for Space Studies. NASA, NOAA Analyses Reveal Record-Shattering Global Warm Temperatures in 2015. http://www.giss.nasa.gov/research/news/20160120.

National Oceanic and Atmospheric Administration. Global Analysis – January 2016. https://www.ncdc.noaa.gov/sotc/global/201601.

 

January hits new record low in the Arctic

January Arctic sea ice extent was the lowest in the satellite record, attended by unusually high air temperatures over the Arctic Ocean and a strong negative phase of the Arctic Oscillation (AO) for the first three weeks of the month. Meanwhile in the Antarctic, this year’s extent was lower than average for January, in contrast to the record high extents in January 2015.

Overview of conditions

sea ice extent map

Figure 1. Arctic sea ice extent for January 2016 was 13.53 million square kilometers (5.2 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent during January averaged 13.53 million square kilometers (5.2 million square miles), which is 1.04 million square kilometers (402,000 square miles) below the 1981 to 2010 average. This was the lowest January extent in the satellite record, 90,000 square kilometers (35,000 square miles) below the previous record January low that occurred in 2011. This was largely driven by unusually low ice coverage in the Barents Sea, Kara Sea, and the East Greenland Sea on the Atlantic side, and below average conditions in the Bering Sea and Sea of Okhotsk. Ice conditions were near average in Baffin Bay, the Labrador Sea and Hudson Bay. There was also less ice than usual in the Gulf of St. Lawrence, an important habitat for harp seals.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of February 3, 2016

Figure 2a. The graph above shows Arctic sea ice extent as of February 3, 2016, along with daily ice extent data for four previous years. 2015 to 2016 is shown in blue, 2014 to 2015 in green, 2013 to 2014 in orange, 2012 to 2011 in brown, and 2011 to 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. These graphs show average sea level pressure and air temperature anomalies at 925 millibars (about 3,000 feet above sea level) for January 2016. normal.||Credit: National Snow and Ice Data Center, courtesy NOAA Earth System Research Laboratory Physical Sciences Division| High-resolution image

Figure 2b. These graphs show average sea level pressure and air temperature anomalies at 925 millibars (about 3,000 feet above sea level) for January 2016.

Credit: National Snow and Ice Data Center, courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

January 2016 was a remarkably warm month. Air temperatures at the 925 hPa level were more than 6 degrees Celsius (13 degrees Fahrenheit) above average across most of the Arctic Ocean. These unusually high air temperatures are likely related to the behavior of the AO. While the AO was in a positive phase for most of the autumn and early winter, it turned strongly negative beginning in January. By mid-January, the index reached nearly -5 sigma or five standard deviations below average. The AO then shifted back to positive during the last week of January. (See the graph at the NOAA Climate Prediction Web site.)

The sea level pressure pattern during January, which featured higher than average pressure over northern central Siberia into the Barents and Kara sea regions, and lower than average pressure in the northern North Pacific and northern North Atlantic regions, is fairly typical of the negative phase of the AO. Much of the focus by climate scientists this winter has been on the strong El Niño. However, in the Arctic, the AO is a bigger player and its influence often spills out into the mid-latitudes during winter by allowing cold air outbreaks. How the AO and El Niño may be linked remains an active area of research.

January 2016 compared to previous years

extent trend graph

Figure 3. Monthly January ice extent for 1979 to 2016 shows a decline of 3.2% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The monthly average January 2016 sea ice extent was the lowest in the satellite record, 90,000 square kilometers (35,000 square miles) below the previous record low in 2011. The next lowest extent was in 2006. Interestingly, while 2006 and 2011 did not reach record summer lows, they both preceded years that did, though this may well be simply coincidence.

The trend for January is now -3.2% per decade. January 2016 continues a streak that began in 2005 where every January monthly extent has been less than 14.25 million square kilometers (5.50 million square miles). In contrast, before 2005 (1979 through 2004), every January extent was above 14.25 million square kilometers.

Predicting decadal trends in Arctic winter sea ice cover

sea ice change graphic

Figure 4. The map shows areas of the Arctic where sea ice models predicted ice gain and loss for 2007 to 2017

Credit: S. Yeager et al.
High-resolution image

Observations show an increase in the rate of winter sea ice loss in the North Atlantic sector of the Arctic up until the late 1990s followed by a slowdown in more recent years. The observed trend over the period 2005 to 2015 is actually positive (a tendency for more ice). In a paper recently published in Geophysical Research Letters, scientists at the National Center for Atmospheric Research (NCAR) show that the Community Earth System Model (CESM) was able to predict this period of winter ice growth in the North Atlantic. The study further suggests that in the near future, sea ice extent in this part of the Arctic is likely to remain steady or even increase (Figure 4). The ability to predict the winter sea ice extent in this region is related to the ability of the model to capture the observed variability in the Atlantic Meridional Overturning Circulation (MOC), an ocean circulation pattern that brings warm surface waters from the tropics towards the Arctic. When the MOC is strong, more warm water is brought towards the North Atlantic sector of the Arctic, helping to reduce the winter ice cover. When it is weak, less warm water enters the region and the ice extends further south. However, while there is an indication that the MOC may be weakening, this winter so far has seen considerably less ice than average in the North Atlantic sector.

References

Yeager, S. G., A. R. Karspeck, and G. Danabasoglu. 2015. Predicted slowdown in the rate of Atlantic sea ice loss. Geophysical Research Letters, 42, 10,704–10,713, doi:10.1002/2015GL065364.

Correction

On February 8, 2016, a reader called our attention to contradictory sentences in our post. We have corrected the erroneous sentence in the section January 2016 compared to previous years. The sentence used to read “The monthly average January 2016 sea ice extent was the lowest in the satellite record, 110,000 square kilometers (42,500 square miles) less than the previous record low in 2011.” We’ve corrected it to “The monthly average January 2016 sea ice extent was the lowest in the satellite record, 90,000 square kilometers (35,000 square miles) below the previous record low in 2011.” as stated in the section Overview of conditions.

2015 in review

December ended with Arctic sea ice extent tracking between one and two standard deviations below average, as it did throughout the fall. This caps a year that saw the lowest sea ice maximum in February and the fourth lowest minimum in September. In Antarctica, December sea ice extent was slightly above average but far below the exceptionally large ice extents recorded for December 2013 and 2014. A slow-down in the rate of Antarctic sea ice growth in July was followed by near-average extents in the subsequent months. The first week of 2016 has seen very slow ice growth in the Arctic.

Overview of conditions

Figure 1. Arctic sea ice extent for December 2015 was 12.3 million square kilometers (4.74 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for December 2015 was 12.3 million square kilometers (4.74 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Sea ice extent for December 2015 averaged 12.3 million square kilometers (4.74 million square miles), the fourth lowest December extent in the satellite record. This is 780,000 square kilometers (301,000 square miles) below the 1981 to 2010 average for the month, and 260,000 square kilometers (100,000 square miles) above the record low for December recorded in the year 2010. The rate of sea ice growth slowed slightly through the month and nearly ceased advancing in the first days of the new year, perhaps related to a period of unusual warmth (see below). The ice is currently tracking near two standard deviations below the 1981 to 2010 long-term average. Sea ice extent is well below average in the Bering, Okhotsk, and Barents seas, partly balanced by slightly above average extent in Baffin Bay.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of January 5, 2016, along with daily ice extent data for four previous years. 2015 to 2016 is shown in blue, 2014 to 2015 in green, 2013 to 2014 in orange, 2012 to 2013 in brown, and 2011 to 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2. The graph above shows Arctic sea ice extent as of January 5, 2016, along with daily ice extent data for four previous years. 2015 to 2016 is shown in blue, 2014 to 2015 in green, 2013 to 2014 in orange, 2012 to 2013 in brown, and 2011 to 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. These graphs show average sea level pressure and air temperature anomalies at 925 mb (about 3,000 feet above sea level) for December 2015.||Credit: NSIDC courtesy NOAA Earth

Figure 2b. These graphs show average sea level pressure and air temperature anomalies at 925 millibars (about 3,000 feet above sea level) for December 2015.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Arctic sea ice growth for December averaged 65,000 square kilometers (25,000 square miles) per day compared to the long-term average of 64,000 square kilometers (24,700 square miles) per day. Cool conditions at the 925 hPa level (2 to 4 degrees Celsius or 4 to 7 degrees Fahrenheit below average) existed in Baffin Bay, the Alaskan North Slope, and parts of eastern Siberia. A broad area of Europe and western Russia, including the northern Barents Sea, saw temperatures as much as 4 to 8 degrees Celsius (7 degrees to 14 degrees Fahrenheit) above average at the 925 hPa level. Conditions were also fairly warm over the central Arctic Ocean, north of the Canadian Arctic Archipelago. Sea level pressure was below average over much of the Arctic, especially from the northern North Atlantic to the Barents Sea and central Russia, and from the Bering Sea and south along the Canadian Pacific coast (7.5 to 12 millibars below average). This is consistent with the positive phase of the Arctic Oscillation through most of the month, a pattern that has persisted since the end of October.

December 2015 compared to previous Decembers

Figure 3. Monthly December ice extent for 1979 to 2015 shows a decline of 3.4% per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly December ice extent for 1979 to 2015 shows a decline of 3.4% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent averaged for December 2015 was the fourth lowest in the satellite record. Through 2015, the linear rate of decline for December extent is 3.4% per decade, or -44,200 square kilometers (-17,000 miles) per year.

 

2015 in review

The year will be remembered for three major events in sea ice extent: the lowest Arctic maximum in the satellite record, the fourth lowest Arctic minimum in the satellite record, and a return to average levels for Antarctic sea ice extent after more than two years of record and near-record highs.

The record-low Arctic maximum occurred on February 25, 2015 and was among the earliest seasonal maxima in the 37-year satellite record. It was likely a result of very warm conditions in the Sea of Okhotsk and the Barents Sea (4 degrees Celsius or 7 degrees Fahrenheit above average), and low ice extent in the Bering Sea in March (when the maximum would more typically occur). These climate conditions were related to an unusual jet stream pattern as discussed in our April 7, 2015 post.

The fourth lowest Arctic minimum occurred on September 11, 2015 and was likely a consequence of very warm conditions in July and an increasingly young and thin ice cover. The thinner ice is consistent with a tendency in recent years for large polynyas that appear in the Beaufort and Chukchi seas in late summer. Although measurements by the CryoSat-2 satellite indicated that Arctic sea ice was thicker in 2015 compared to pre-2012 thicknesses, the ice behaved as though it was still quite thin.

From February 2013 through June 2015, Antarctic sea ice was at record or near-record daily extents. Antarctic sea ice set consecutive record winter maxima in 2012, 2013 and 2014. (Contrary to 2013 and 2014, autumn and spring conditions in 2012 were near-average.) But during this year’s austral mid-winter period, Antarctic sea ice growth slowed. Since then, extent in the Southern Hemisphere has generally been slightly above average. Climate effects from the building El Niño likely caused the shift during austral mid-winter. A strong El Niño is associated with a change in the position and strength of a major low pressure pattern near West Antarctica, called the Amundsen Sea Low. Weakening of the Amundsen Sea Low, and related impacts elsewhere around the ice edge in Antarctica, tend to reduce ice extent in the Ross Sea, eastern Weddell Sea, and elsewhere around Antarctica except near the Antarctic Peninsula.

The longer view

This graph shows sea ice concentration trends in the Arctic and the Antarctic for March to September for the years 1979 to 2015. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 4. This graph shows sea ice concentration trends in the Arctic and the Antarctic for March to September for the years 1979 to 2015. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

The satellite passive microwave record for sea ice now spans more than 37 years. As we have documented, clear downward trends characterize Arctic sea ice extent and concentration in all months, while somewhat less emphatic upward trends characterize Antarctic sea ice extent and concentration. A look at the geographic distribution of trends for the seasonal maximum and minimum periods provides insight into how the polar regions are changing. During the Arctic maximum, declines in extent and concentration are pronounced in the Barents Sea and Sea of Okhotsk, but ice cover has increased slightly in the Bering Sea. During the Arctic summer minimum, all areas show negative trends.

Antarctica presents a more mixed picture. During the Antarctic summer minimum, ice cover is increasing around much of the coastline from the Weddell Sea eastward to the western Ross Sea, but is declining sharply in the eastern Ross, Amundsen, and southern Bellingshausen seas. Winter ice cover in Antarctica is characterized by increases in the northern Ross Sea and the Indian Ocean sectors, and decreases in the northwestern Weddell Sea and the region south of Australia.

Ringing in the New Year with a brief polar heat wave

Figure 5. These graphs show average sea level pressure and air temperature anomaly at 925 mb (an altitude of about 3,000 feet) for 30 and 31 December, 2015.

Figure 5. These graphs show average sea level pressure and air temperature anomalies at 925 millibars (about 3,000 feet above sea level) for 30 and 31 December, 2015. The graphs are the average of two days, so the extremes in air pressure and temperature during this period are not shown.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

An exceptional weather event during the last days of the year brought a heat wave with surface air temperatures up to 23 degrees Celsius (50 degrees Fahrenheit) above average in the far north, and a brief period when surface temperatures at the North Pole approached or perhaps even exceeded the freezing mark. A temperature of +0.7 degrees Celsius was briefly recorded by a buoy weather station near the North Pole on December 30, 2015. The event was linked to the combination of a very strong low pressure system near Iceland and a somewhat less intense low pressure system located near the North Pole. This was associated with an amplified trough at 500 hPa over the northern North Atlantic and a pronounced ridge of high pressure at 500 hPa to the east over central Europe, extending into the Kara Sea. This created a strong, deep inflow of warm, moist air into the Arctic Ocean’s high latitudes. The low near Iceland strengthened rapidly in the last days of December, reaching a minimum pressure of 935 millibars, equivalent to a hurricane. While the event was remarkable and may account for the slow ice growth during the first few days of January 2016, it was short lived and is unlikely to have any long-term effects on the sea ice cover.

Further reading

Tilling, R. L., A. Ridout, A. Shepherd, D. J. Wingham. 2015. Increased Arctic sea ice volume after anomalously low melting in 2013. Nature Geoscience 8, 643–646, doi:10.1038/ngeo2489.

Thompson, A. “What happened to the Polar Vortex?” ClimateCentral.com. http://www.climatecentral.org/news/what-happened-to-the-polar-vortex-19866?

A variable rate of ice growth

The rate of ice growth for the first half of November 2015 was quite rapid, but the pace of ice growth slowed during the second half of the month, only to increase again at the end of the month. Throughout the month, sea ice extent remained within two standard deviations of the 1981 to 2010 average.

Overview of conditions

sea ice extent map

Figure 1. Arctic sea ice extent for November 2015 was 10.06 million square kilometers (3.88 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for November 2015 averaged 10.06 million square kilometers (3.88 million square miles), the sixth lowest November in the satellite record. This is 910,000 square kilometers (351,000 square miles) below the 1981 to 2010 average extent, and 230,000 square kilometers (89,000 square miles) above the record low monthly average for November that occurred in 2006. At the end of the month, extent was well below average in both the Barents Sea and the Bering Strait regions. Extent was above average in eastern Hudson Bay, but below average in the western part of the bay.

Conditions in context

sea ice extent graph

Figure 2a. The graph above shows Arctic sea ice extent as of November 30, 2015, along with daily ice extent data for four previous years. 2015 is shown in blue, 2014 in green, 2013 in orange, 2012 in brown, and 2011 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Air temperatures at the 925 millibar level were above average over nearly all of the Arctic Ocean; the area north of the Barents Sea, between Svalbard and the Taymyr Peninsula, was unusually warm (6 to 8 degrees Celsius, or 11 to 14 degrees Fahrenheit above average). Elsewhere, temperatures at the 925 millibar level were 1 to 4 degrees Celsius (2 to 7 degrees Fahrenheit) above average. NSIDC uses the 925 millibar temperature (about 3,000 feet above the surface) instead of the surface temperature because the 925 millibar temperature provides a better measure of overall warmth of the lower part of the atmosphere. From autumn through spring, the temperature at the surface can be greatly affected by the presence or absence of ice, while during summer, the surface temperature over ice will stay very close to the melting point.

air temperature and pressure anomaly plots

Figure 2b. The plot at left shows Arctic air temperature anomaly (difference from the 1981 to 2010 average) for November 2015 in degrees Celsius, at the 925 millibar level. Reds and yellows indicate higher than average temperatures for this month. The plot at right shows Arctic sea level pressure anomaly (difference from the 1981 to 2010 average) in millibars for November 2015. Sea level pressures were higher than average (red colors) over northern Eurasia, and lower than average (purples) over the Arctic Ocean and northern North Atlantic. This led to strong winds from the south and east over the region north of the Barents Seas, contributing to high temperatures in the area (observed at the 925 millibar level).

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

The unusual warmth at the 925 millibar level north of the Barents Sea is related to an atmospheric circulation pattern featuring unusually high sea level pressure centered over northern Eurasia and unusually low pressure centered over the Arctic Ocean and northern North Atlantic. The strong pressure gradient (difference in pressure) between the areas of high and low pressure led to strong (and apparently warm) winds from the south. Open water in this area also extends unusually far to the north; while this likely contributed to above average temperatures even as high as the 925 millibar level, the wind pattern itself likely also helped to keep the ice from advancing south.

November 2015 compared to previous years

sea ice trend graph

Figure 3. Monthly November ice extent for 1979 to 2015 shows a decline of 4.7% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent averaged for November 2015 was the sixth lowest in the satellite data record. Through 2015, the linear rate of decline for November extent is 4.7% per decade.

The average rate of ice growth for November 2015 was 29,800 square kilometers per day (11,500 square miles per day). However, this value averages out the rather rapid growth rate during the first half of the month with a much slower rate during the second part of the month and rapid growth near its end.

Loitering of the retreating sea ice edge in the Arctic seas

ice edge map

Figure 4. This image shows the daily average ice edge (thin black contours) for every day from March 13 to September 23, 2012. Constant ice edge retreat would produce equidistant contours through the retreat season. Instead, the contours point to areas of rapid retreat (where the contours are far apart, e.g., the central Amerasian Basin) and other areas where the ice edge retreat has stalled, or “loitered” (where the contours are over-plotting on top of themselves, producing darker areas, e.g., the Beaufort Sea). Some areas are prone to loitering in most years (north Baffin Bay; the east Beaufort, north Chukchi, Laptev, and Barents seas) and others are unlikely to see loitering behavior (west Beaufort, east Siberian seas).

Credit: M. Steele and W. Ermold, University of Washington
High-resolution image

A recent paper by colleagues M. Steele and W. Ermold of the University of Washington, in press with Journal of Geophysical Research Oceans, provides insight into pauses that are often observed in summer sea ice retreat. On some days, the ice in a region is observed to retreat at a rapid pace, while on others it hardly moves at all. Steele and Ermold term this stationary behavior “ice edge loitering.” They find that loitering occurs through interaction between surface winds and warm sea surface temperatures in areas from which the ice has already retreated. When ice retreat in a particular region happens early enough in the melt season, the water warms above the freezing point from being in contact with warmer and and from sunshine. If winds later in the season push the ice floes into the warmed ocean area, the ice floes will melt until that surface layer reaches the freezing point. Thus while individual ice floes are moving, the ice edge as a whole appears to remain fairly stationary. The time scale of loitering (typically, 4 to 7 days) is naturally tied to the typical time scale of passing weather systems.

Steele and Ermold argue that loitering likely has important effects on both physical and biological conditions at the ice edge during the summer. Consider an ice edge that retreats at a constant rate through the spring and summer. In this case, air/ice/ocean conditions remain fairly constant along the ice edge, simply translating northward with the ice edge through the summer. By comparison, loitering induces persistent melting and thus changes in sea ice morphology, enhances ocean stratification, reduces upwelling of nutrients, and leads to changes in the atmospheric boundary layer. If the wind then shifts and allows rapid northward ice retreat, what happens to the area of loitering that has been left behind? And what are the conditions within the rapidly retreating ice edge? These are questions for future studies.

Comparisons between observed and modeled September sea ice extent

model comparison graph

Figure 4. This figure shows projected and hindcasted September sea ice extent (colors and shading) for climate models participating in the Intergovernmental Panel on Climate Change 5th Assessment, along with observations (black line). The projections are for four scenarios of greenhouse gas concentrations for the future (starting in 2006), termed Representative Concentration Pathways (RCPs) that relate to the radiative forcing at the top of the atmosphere that could occur at the year 2100. The shading indicates the one standard deviation range in the hindcasts and projections.

Credit: J. Stroeve and A. Barrett, National Snow and Ice Data Center
High-resolution image

A paper accepted for publication by NSIDC scientist Stroeve and colleagues includes model hindcasts and projections of September sea ice extent and comparisons with observed extent. The hindcasts and projections are from the global climate models that participated in the Intergovernmental Panel on Climate Change 5th Assessment, and the observations include data that extend the record back to 1953.

The extent projections are shown for four different scenarios of future greenhouse gas growth (starting in 2005), termed Representative Concentration Pathways (RCPs). The RCPS relate to the radiative forcing at the top of the atmosphere that could occur at the year 2100. RCP 8.5 assumes a vigorous increase in greenhouse gas concentrations, while RCP 2.6 assumes a modest initial growth, followed by a reduction in concentrations. The shaded areas indicate the one standard deviation range of the sea ice extents projected by each model and the hindcasts.

The figure indicates that at least for the next few decades, which greenhouse gas scenario that becomes our reality is not especially important (there is much overlap between the projections). Instead, the simulated sea ice evolution is more strongly determined by both the natural variability in Arctic climate and by ongoing forcing from the current greenhouse gas content of the atmosphere. Only in the middle and later part of the 21st century do the differences in the greenhouse gas concentration from the different scenarios become important, and even then, there is a large range in projections from the different models for the same RCP. If our future climate and greenhouse forcing follows RCP 2.6, September ice extent may begin to stabilize by around the middle of the century. Figures like this are useful to policy makers negotiating climate treaties at the Paris 2015 U.N. Climate Change Conference.

References

Steele, M. and W. Ermold. 2015. Loitering of the retreating sea ice edge in the Arctic Seas. J. Geophys. Res. Oceans, in press. doi:10.1002/2015JC011182.

Stroeve, J. and D. Notz. 2015. Insights on past and future sea-ice evolution from combining observations and models. Global and Planetary Change, in press. doi:10.1016/j.gloplacha.2015.10.011.

Winter is coming to the Arctic

While Arctic sea ice extent is increasing, total ice extent remains below average, tracking almost two standard deviations below the long-term average.

Overview of conditions

Figure 1. Arctic sea ice extent for October 2015 was 7.72 million square kilometers (2.98 million square miles).

Figure 1. Arctic sea ice extent for October 2015 was 7.72 million square kilometers (2.98 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for October 2015 averaged 7.72 million square kilometers (2.98 million square miles), the sixth lowest October in the satellite record. This is 1.19 million square kilometers (460,000 square miles) below the 1981 to 2010 average extent, and 950,000 square kilometers (367,000 square miles) above the record low monthly average for October that occurred in 2007.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of November 2, 2015, along with daily ice extent data for four previous years.

Figure 2. The graph above shows Arctic sea ice extent as of November 2, 2015, along with daily ice extent data for four previous years. 2015 is shown in blue, 2014 in green, 2013 in orange, 2012 in brown, and 2011 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Air temperatures at the 925 millibar level were 4 to 5 degrees Celsius (7 to 9 degrees Fahrenheit) above average over the central Arctic, extending towards Fram Strait. This appears to be due to unusually low pressure over northwest Greenland and higher pressures over the Tamyr Peninsula and Scandinavia, which funneled warm air from the south into the central Arctic Ocean. Coastal regions were generally 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) higher than average.

October 2015 compared to previous years

Figure 3. Monthly October ice extent for 1979 to 2015 shows a decline of 6.9%

Figure 3. Monthly October ice extent for 1979 to 2015 shows a decline of 6.9% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2015, the October sea ice extent has declined 6.9% per decade over the satellite record.

New sea ice thickness information back for the winter

Figure 4a. This image from CryoSat-2 shows thin ice (less than 1 meter (3.28 feet) over a wide area north of Greenland.||Credit: Center for Polar Observation and Modeling (CPOM) at University College London| High-resolution image

Figure 4a. This image from CryoSat-2 shows thin ice (less than 1 meter, or 3 feet, thick) over a wide area north of Greenland.

Credit: Center for Polar Observation and Modeling (CPOM) at University College London
High-resolution image

Figure 4b. This image from the European Space Agency's Soil Moisture and Ocean Salinity (SMOS) satellite shows sea ice thickness in the Arctic Ocean, including north and east of Greenland.||Credit: University of Hamburg Integrated Climate Data Center| High-resolution image

Figure 4b. This image from the European Space Agency’s Soil Moisture and Ocean Salinity (SMOS) satellite shows sea ice thickness over the Arctic Ocean.

Credit: University of Hamburg Integrated Climate Data Center
High-resolution image

In recent years, two European Space Agency (ESA) satellites, CryoSat-2 and SMOS (Soil Moisture and Ocean Salinity), have been providing information on sea ice thickness. Thickness information is valuable for assessing the overall condition of the sea ice cover. The sensors on these satellites cannot determine thickness during the summer melt season, but now that freeze-up has begun, information is again available.

CryoSat-2, launched in 2010, is a radar altimeter, which measures the height of the ice cover above the sea surface. Used with additional information on snow cover and its density, the height information can be converted into estimates of ice thickness. The Center for Polar Observation and Modeling (CPOM) at University College London has again started providing near-real-time maps of sea ice thickness from CryoSat-2.

While these maps are valuable in providing near-real-time thickness estimates, converting the satellite measurements into thickness involves complex processing and there are many uncertainties. For example, Figure 4a depicts thin ice (less than 1 meter [3 feet]) over a wide area north of Greenland, an area where wind and ocean current patterns push the ice against the coast forming thick ridges and an extremely rough surface. This area has been shown by other studies to have some of the thickest sea ice in the Arctic, often exceeding 4 meters (13 feet). This ridging may have cause the difficulty in the current mapping.

CryoSat-2 also has difficulty retrieving thickness in very thin sea ice regions, resulting in no thickness values reported at the outer edge of the ice cover. SMOS is a microwave imaging radiometer that measures microwave brightness temperature at a range that is sensitive to thin ice (1.4 gigahertz). These data are also now available in near-real-time at the University of Hamburg Integrated Climate Data Center. SMOS cannot estimate thickness beyond 1 meter (3.28 feet) at most and often not beyond 0.5 meters (1.64 feet). While the map shows a wide region of 1 meter-thick ice, it is important to realize that this is just the maximum allowable value and in reality there is thicker ice over much of the region. However, SMOS provides valuable information on the coverage of thin ice during the winter ice growth season. Ideally, a blended CryoSat-2/SMOS product will provide more comprehensive information on thickness.

A large ozone hole over the Antarctic

Figure 5. The image above shows the ozone hole over Antarctica on October 2, 2015 when it had reached its largest single-day area for the year.

Figure 5. The image above shows the ozone hole over Antarctica on October 2, 2015 when it had reached its largest single-day area for the year, spanning 28.2 million square kilometers (10.9 million square miles). Data are from the Ozone Monitoring Instrument (OMI) on the NASA Aura satellite and the Ozone Monitoring and Profiler Suite (OMPS) on the NASA-NOAA Suomi NPP satellite.

Credit: NASA Earth Observatory, Ozone Hole Watch
High-resolution image

While sea ice in Antarctica is near average, the ozone hole over the continent grew relatively large during the austral winter. This goes against the expected trend towards a smaller ozone hole since the use of chlorofluorocarbons (CFCs) was banned in 1996. The size of the hole in a given year depends on several factors, including temperatures in the high altitude stratosphere. Temperatures in the Antarctic stratosphere were low this year, aiding chemical processes that destroy ozone. For more information on this year’s ozone hole see this NASA Earth Observatory feature.

 

Antarctic sea ice at its 2015 maximum

Antarctic sea ice appears to have reached its annual maximum extent on October 6. The maximum occurred relatively late compared to past years. In contrast to the past three years, the 2015 maximum did not set a new record high for the period of satellite observations, but was nevertheless slightly above the 1981 to 2010 average.

Overview of conditions

sea ice extent image

Figure 1. Antarctic sea ice extent for October 6, 2015 was 18.83 million square kilometers (7.24 million square miles). The orange line shows the 1981 to 2010 median extent for that day. The black cross indicates the geographic South Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice extent reached its likely maximum for the year, at 18.83 million square kilometers (7.24 million square miles) on October 6, 2015. This year’s maximum was the sixteenth highest in the 35-year record. It was 120,000 square kilometers (46,000 square miles) above the average maximum daily extent computed over the 1981 to 2010 period of 18.71 million square kilometers (7.19 million square miles), and 1.33 million square kilometers (514,000 square miles) below the record maximum set in 2014. The date of the maximum was quite late in comparison to the 35-year satellite record. Only one year, 2002, has had a later maximum (October 12).

At the date of the 2015 maximum, Antarctic sea ice extent was greater than average in the Antarctic Peninsula region, the Weddell Sea, and the Wilkes Land coast area; and below average in the Ross Sea and Indian Ocean sectors.

Conditions in context

extent time series

Figure 2. The graph above shows Antarctic sea ice extent as of October 13, 2015, along with daily ice extent data for four previous years. 2015 is shown in blue, 2014 in green, 2014 in orange, 2012 in brown, and 2011 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

temperature and pressure plots

Figure 3. Panel (a) shows sea level air pressure anomaly for the Southern Ocean region, August 1 to September 30, 2015. Panel (b) shows air temperature anomaly for the Southern Ocean region, August 1 to September 30, at the 925 millibar level (approximately 1,600 feet altitude).

Credit: NOAA ESRL Physical Sciences Division
High-resolution image

concentration anomaly images

Figure 4. The images compare Antarctic sea ice concentration for Septembers during two strong El Niño events (2015, left; 1997, right) to 1981 to 2010 averages. Colors show percent difference from average sea ice concentration surrounding Antarctica. Oranges and reds indicate concentrations higher than average; greens and blues indicate concentrations lower than average.

Credit: National Snow and Ice Data Center
High-resolution image

As recently as July 12, Antarctic sea ice extent was at a record daily high extent for the satellite period of observations. For much of early 2015, Antarctic sea ice extent was either slightly above or slightly below the levels seen on the same date in 2014, the record high year. However, beginning in mid-July, the growth rate for Antarctic sea ice slowed significantly, causing the 2015 maximum extent to be only the sixteenth highest in the record.

It is likely that this slowing of late-winter ice growth is related in part to the build-up of the El Niño conditions. El Niño occurs when a large area of the surface waters in the tropical eastern Pacific Ocean warms, and it has widespread effects on weather patterns. In the Southern Ocean, El Niño conditions are typically associated with a weakening of the Amundsen Sea Low, a persistent region of low air pressure in the southernmost Pacific sector of the Antarctic coast (Raphael et al., 2015). Air pressure in the Amundsen Sea region for the months of August and September was higher than average, indicating a weakening of the low-pressure tendency in the region. Higher-than-average air pressure was also observed in the Indian Ocean sector. These regions saw reduced sea ice growth and even local sea ice retreat as the austral winter progressed, and areas of higher-than-average temperatures near the ice edge.

Patterns of sea ice concentration around Antarctica (the deviation from average ice concentration) for El Niño years show a similar pattern, with more ice near the Peninsula.

References

Raphael, M. N., G. J. Marshall, J. Turner, R. Fogt, D. Schneider, D. A. Dixon, J. S. Hosking, J. M. Jones, and W. R. Hobbs. 2015. The Amundsen Sea Low: Variability, change and impact on Antarctic climate. Bulletin of the American Meteorological Society 2015, doi:10.1175/BAMS-D-14-00018.1.

2015 melt season in review

The Arctic melt season has ended and sea ice extent is now increasing after reaching the fourth lowest minimum on record, on September 11. Sea ice extent in Antarctica has not yet reached its seasonal maximum.

Overview of conditions

sea ice extent image

Figure 1. Arctic sea ice extent for September 2015 was 4.63 million square kilometers (1.79 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Following the seasonal daily minimum of 4.41 million square kilometers (1.70 million square miles) that was set on September 11, which was the fourth lowest in the satellite record, Arctic sea ice has started its cycle of growth. Arctic sea ice extent averaged for the month of September 2015 was 4.63 million square kilometers (1.79 million square miles), also the fourth lowest in the satellite record. This is 1.87 million square kilometers (722,000 square miles) below the 1981 to 2010 average extent, and 1.01 million square kilometers (390,000 square miles) above the record low monthly average for September that occurred in 2012. As of this writing, Antarctica’s winter maximum has not yet occurred, but is anticipated within several days.

Conditions in context

sea ice extent graph

Figure 2. The graph above shows Arctic sea ice extent as of October 5, 2015, along with daily ice extent data for four previous years. 2015 is shown in blue, 2014 in green, 2013 in orange, 2012 in brown, and 2011 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Note: This graph was updated to show the most recent years, in order to be consistent with our monthly posts. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

For two weeks following the minimum extent on September 11, air temperatures at the 925 hPa level (about 3,000 feet above the surface) were 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) lower than average in the Chukchi and Beaufort seas, helping foster ice growth in those regions. Elsewhere over the Arctic Ocean, there has been fairly little ice growth, in part due to near average to slightly above average air temperatures. Both the Northern Sea Route and Roald Amundsen’s route through the Northwest Passage appeared to remain free of ice at the end of the month. The deeper northern route through Parry Channel, which consists of M’Clure Strait, Barrow Strait, and Lancaster Sound, never completely cleared of ice.

September 2015 compared to previous years

extent trend graph

Figure 3. Monthly September ice extent for 1979 to 2015 shows a decline of 13.4% per decade relative to the 1981 to 2010 average.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2015, the linear rate of decline for September Arctic ice extent over the satellite record is 13.4% per decade. The nine lowest September ice extents over the satellite record have all occurred in the last nine years.

Conditions leading to this year’s minimum

ice fraction and age maps

Figure 4a. The map at left shows multiyear ice fraction in mid-April derived from ASCAT, and the corresponding map at right shows ice age. ASCAT image courtesy of R. Kwok, NASA Jet Propulsion Laboratory. Ice age image derived from data provided by M. Tschudi, University of Colorado Boulder.

Credit: National Snow and Ice Data Center
High-resolution image

air temperature graphs

Figure 4b. The graphs show Arctic ocean air temperatures for May, June, July, and August at the 925 hPa level, ranked according to year from lowest (in blue colors) to highest (in red colors). Ranking of 2015 is given in yellow.

Credit: D. Slater, National Snow and Ice Data Center
High-resolution image

sst maps

Figure 4c. The maps show Arctic sea surface temperature (SST) and anomaly in degrees Celsius, for September 2015. The image at left shows average temperature, with reds indicating higher temperatures and blues indicating lower temperatures. The map at right shows temperature anomaly, compared to the 1982 to 2006 average. Reds and oranges indicate higher than average temperatures, and blues lower than average. The grey line indicates the sea ice edge. SSTs are from from the NCDC OIv2 “Reynolds” data set, a blend of satellite (AVHRR) and in situ data designed to provide a “bulk” or “mixed layer” temperature. Ice edge is from NSIDC near real time passive microwave data.

Credit: M. Steele, Polar Science Center/University of Washington
High-resolution image

The summer melt season began earlier than average. The maximum winter extent, reached on February 25, 2015, was also the lowest recorded over the period of satellite observations. However, a relatively large amount of multiyear ice was transported into the southern Beaufort and Chukchi seas during the winter, as documented by images of multiyear ice fraction derived from the Advanced Scatterometer (ASCAT) instrument on the METOP-A satellite (Figure 4a). The corresponding ice age image shows that the multiyear ice largely consisted of floes that had survived several melt seasons, indicating that it was fairly thick. Thick ice is more difficult to melt out during summer than thinner ice; if not for this thicker ice, the September minimum extent would likely have been lower.

Melt onset began earlier than average in the Beaufort Sea, especially along the coast of Canada, leading to early development of open water in this area. Melt also began earlier than is usual in the Kara Sea, fostering early retreat of sea ice in the region. However, air temperatures at the 925 hPa level during May and June for the Arctic ocean region were not particularly high, ranking as the 26th and 13th warmest since 1979 (Figure 4b). As a result, although the winter maximum extent was the lowest in the satellite record, ice extent at the end of June was only the third lowest.

The pace of seasonal ice loss picked up rapidly in July, with Arctic ocean region temperatures at the 925 hPa level reaching the second highest during the satellite record (with 2007 ranked as the highest). Daily ice loss rates averaged 101,800 square kilometers (39,300 square miles) per day, the fourth largest rate of ice loss recorded for the month. Nevertheless, sea ice was slow to melt out of Baffin Bay and Hudson Bay, resulting in a July average extent for 2015 that was the eighth lowest on record. By the end of July however, the fast pace of ice loss during the month resulted in 2015 extent falling within 550,000 square kilometers (212,000 square miles) of the level recorded in 2012, and tracking below the levels recorded for 2013 and 2014. By the middle of August, the difference in extent between 2012 and 2015 had dropped to less than 500,000 square kilometers (193,000 square miles), hinting at the possibility that this year would rank among the lowest minimum extents recorded. However, temperatures for August were not particularly warm, and extent ended up fourth lowest.

Higher than average Arctic sea surface temperatures dominated the Arctic Ocean in September 2015 (Figure 4c), though not as high as seen in 2007 or 2012. Early melt onset as well as strong spring winds in the eastern Beaufort Sea led to early ice retreat in this area (Steele et al., 2015). These winds were particularly strong in April 2015, but then they abated, so that while the resulting summer sea surface temperatures were higher than surrounding waters, they were only around 2 to 3 degrees Celsius (4 to 5 degrees Fahrenheit) higher than average near the coast. The Kara Sea was also unusually warm this year, while sea surface temperatures were generally lower than average in the Nordic seas.

What happened to the old ice in the Beaufort and Chukchi Seas?

Figure 5a. The map shows Arctic sea ice age, in years, for the week of September 7 to 13, 2015. ||Credit: M. Tschudi, University of Colorado Boulder| High-resolution image

Figure 5a. The map shows Arctic sea ice age, in years, for the week of September 7 to 13, 2015.

Credit: M. Tschudi, University of Colorado Boulder
High-resolution image

ice survival graph

Figure 5b. The plot shows survival rates of first-year, second-year, and older ice, in percentage of area that survived.

Credit: National Snow and Ice Data Center
High-resolution image

Maps of ice age at the beginning of the melt season and at the time of the September minimum extent (Figure 5a) reveal that most of the old ice transported into the southern Beaufort and Chukchi seas melted out this summer. This resulted in a 31% depletion of the multiyear ice cover this summer for the Arctic as a whole, compared to only 12% in 2013 and 38% in 2012. There was also more first-year ice lost this summer than during the last two summers. Sixty-two percent of the winter first-year ice was lost. Overall, this was the third largest amount of first-year ice lost in a melt season, behind 2012 (73%) and 2007 (67%).

References

Steele, M., S. Dickinson, J. Zhang, and R. Lindsay. 2015. Seasonal ice loss in the Beaufort Sea: Toward synchrony and prediction, J. Geophys. Res., 120, doi:10.1002/2014JC010247.

Erratum

A reader alerted us that Figure 5a was mislabeled. Instead of Mid-March 2015, it should have been labeled September 2015. On October 8, 2015, we corrected the label and its caption.