Wild ride in October

October daily sea ice extent went from third lowest in the satellite record at the beginning of the month to lowest on record starting on October 13 through October 30. Daily extent finished second lowest, just above 2016, at month’s end. Average sea ice extent for the month was the lowest on record. While freeze-up has been rapid along the coastal seas of Siberia, extensive open water remains in the Chukchi and Beaufort Seas, resulting in unusually high air temperatures in the region. Extent also remains low in Baffin Bay.

Overview of conditions

Figure 1. Arctic sea ice extent for XXXX 20XX was X.XX million square kilometers (X.XX million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for October 2019 was 5.67 million square kilometers (2.19 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent averaged for October 2019 was 5.66 million square kilometers (2.19 million square miles), the lowest in the 41-year continuous satellite record. This was 230,000 square kilometers (88,800 square miles) below that observed in 2012—the previous record low for the month—and 2.69 million square kilometers (1.04 million square miles) below the 1981 to 2010 average. Daily ice extent began tracking below 2012 levels on October 13 and continued to do so through the end of the month, which was enough to reach a new record monthly low at 5.66 million square kilometers (2.19 million square miles). The Arctic gained only 2.79 million square kilometers (1.08 million square miles) of ice in October 2019, compared to 3.81 million square kilometers (1.47 million square miles) in October 2012.

Autumn freeze-up was slow during the first half of October, with most of the increases in the eastern Beaufort Sea and Laptev Sea. During the second half of the month, ice began to grow quickly along the coastal regions of the East Siberian and Laptev Seas. Sea ice also began forming around northern to north-eastern Svalbard. Overall, the ice edge remained considerably north of its average location throughout the Beaufort, Chukchi, Kara, and Barents Seas, as well as within Baffin Bay. However, around Svalbard, the sea ice has returned to near average conditions for this time of year. As of October 15, the ice extent in the Chukchi Sea is the lowest on record for this time of year.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of XXXXX XX, 20XX, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 20XX in purple, and 20XX in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of October 31, 2019, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 2015 in purple, and 2012 in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. October sea ice gain (millions of square kilometers), 1979 to 2019, with 2019 shown in red and the climatological average ice growth in gray. October 2019 ice gain was close to average.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2b. October sea ice gain (millions of square kilometers), 1979 to 2019, with 2019 shown in red and the climatological average ice growth in gray. October 2019 ice gain was close to average.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2c: Satellite-derived sea surface temperature (SST) and temperatures at the UpTempO buoys, along with sea ice concentration. UpTempO buoys measure ocean temperature in the euphotic surface layer of the Polar Oceans. ||Credit: Figure from UpTempO at the University of Washington. |High-resolution image

Figure 2c: Satellite-derived sea surface temperature (SST) and temperatures at the UpTempO buoys, along with sea ice concentration. UpTempO buoys measure ocean temperature in the euphotic surface layer of the Polar Oceans.

Credit: Figure from UpTempO at the University of Washington.
High-resolution image

Figure 2d. This figure shows air temperatures compared to average for October 2019. This includes a cross section (latitude by height, up to the 500 hPa level) along the 180 degrees E meridian, which is the date line and cuts through the Chukchi Sea. The prominent area in red at and near the surface manifests the extensive open water in the Chukchi Sea. ||Credit: NOAA/ESRL Physical Sciences Division. ||Credit: NCEP/NCAR Reanalysis| High-resolution image

Figure 2d. This figure shows air temperatures compared to average for October 2019. This is a cross section (latitude by height, up to the 500 hPa level) along the 180 degrees E meridian, which is the date line and cuts through the Chukchi Sea. The prominent area in red at and near the surface manifests the extensive open water in the Chukchi Sea.

Credit: NOAA/ESRL Physical Sciences Division.
High-resolution image

Ice growth through October 2019 averaged 89,900 square kilometers (34,700 square miles) per day. This was similar to the average rate of ice growth in October of 89,100 square kilometers (34,400 square miles) per day. However, the growth rate varied greatly during the month. On October 1, extent tracked 682,000 square kilometers (263,000 square miles) above that for the same day in 2012. However, ice growth was slow, and by October 13, extent began tracking below 2012, setting new record daily lows during the latter half of the month. On October 18, extent was 3.08 million square kilometers (1.19 million square miles) below the 1981 to 2010 average, the largest daily departure from average observed in the satellite data record. Ice growth rates increased during the last two weeks of the month so that by October 30, the extent started tracking above that recorded in 2016.

Overall, sea ice extent increased 2.79 million square kilometers (1.08 square miles) in October 2019. The largest October ice gain was in 2008 (4.22 million square kilometers; 1.63 million square miles), followed closely by 2012 (3.81 million square kilometers; 1.47 million square miles) and 2007 (3.70 million square kilometers; 1.43 million square miles) (Figure2b). However, this October, sea surface temperatures remained relatively high (2 to 5 degrees Celsius; 36 to 41 degrees Fahrenheit) in early October throughout large areas of the Chukchi, Laptev, Kara, and Barents Seas (Figure 2c). High sea surface temperatures imply considerable heat storage in the ocean surface layer, consistent with delayed freeze-up in those regions.

Air temperatures at 925 hPa level (about 2,500 feet above the surface) for the month were 1 to 4 degrees Celsius (2 to 7 degrees Fahrenheit) above average over most of the Arctic Ocean, with temperatures north of Greenland reaching 7 degrees Celsius (13 degrees Fahrenheit) above the 1981 to 2010 average. Below average air temperatures were only found southeast of Svalbard (on the order of 1 to 2 degrees Celsius, or 2 to 4 degrees Fahrenheit). Of particular interest are the unusually high temperatures at and near the surface in the Beaufort and Chukchi Seas due to the extensive open water there. These manifest large energy fluxes from the ocean to the atmosphere, as the warm ocean water cools to the freezing point. The vertical cross section (latitude by height) of air temperatures expressed as departures from average along the 180oE meridian (the date line, which cuts through the Chukchi Sea) shows this effect clearly (Figure 2d). Unusually high temperatures in the Beaufort and Chukchi Seas will linger until the ocean surface freezes over.

October 2019 compared to previous years

Figure 3. Monthly XXXXX ice extent for 1979 to 201X shows a decline of X.X percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly October ice extent for 1979 to 2019 shows a decline of 9.8 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Monthly sea ice extent reached a record low in October as assessed over the period of satellite observations. The linear rate of sea ice decline for October is 81,400 square kilometers (31,400 square miles) per year, or 9.8 percent per decade relative to the 1981 to 2010 average.

Figure 4. Sea ice extent around Svalbard has returned to the 1981 to 2010 median position for this time of year, as shown by the Synthetic Aperture Radar (SAR) data from the Sentinel-1 mission for October 28, 2019. ||Credit: Norwegian Meteorological Institute. | High-resolution image

Figure 4. Sea ice extent around Svalbard has returned to the 1981 to 2010 median position for this time of year, as shown by the Synthetic Aperture Radar (SAR) data from the Sentinel-1 mission for October 28, 2019.

Credit: Norwegian Meteorological Institute.
High-resolution image

Ice returns to “normal” near Svalbard

Recent winters have seen unusually low ice extent in the Barents Sea. Several studies have demonstrated a link between reduced winter ice in this region and increased ocean heat transport from the north Atlantic that prevents ice formation. However, the ocean heat transport is variable, and weakening could allow for temporary recovery of winter ice conditions in this region despite a warming climate. This appears to have been the case last winter, when the ice edge in the Barents Sea returned to its 1981 to 2010 average position. Early evidence suggests that this recovery may continue into the coming winter. Synthetic Aperture Radar (SAR) data from the Sentinel-1 mission for October 28 (Figure 4) shows the ice extent around Svalbard has returned to the 1981 to 2010 median position for this time of year. However, extent still remains much below average over most of the northern Barents Sea.

Update on sea ice age

Figure 5. Sea ice age for October 22 to 28 for 1985 (top left) and 2019 (top right), and timeseries of ages for that week from 1985 to 2019 (bottom) from NSIDC’s EASE-Grid Sea Ice Age, Version 4. ||Credit: National Snow and Ice Data Center | High-resolution image

Figure 5. This figure shows sea ice age for October 22 to 28 for 1985 (top left) and 2019 (top right), and a time series of ages for that week from 1985 to 2019 (bottom) from NSIDC’s EASE-Grid Sea Ice Age, Version 4.

Credit: National Snow and Ice Data Center
High-resolution image

After the sea ice minimum in September, the remaining sea ice had its “birthday,” aging one year in the NSIDC sea ice age fields. Much of the Arctic is now covered by second-year (1- to 2-year-old) ice, meaning ice that grew over the autumn and winter of 2018/2019 and survived the melt season. There is also already about 1 million square kilometers (386,100 square miles) of ice that has grown since the September 2019 minimum—the 0- to 1-year-old category—but there is substantially less ice older than two years old than there used be—about one-third of the amount “old ice” as there was in the mid-1980s and about one-half as much as there was as recently as the mid-2000s.

IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC)

Figure 6. The IPCC Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) Summary for Policy Makers Report shows the observed and modeled historical changes in the ocean and cryosphere since 1950, as well as the future projections under a low emission scenario that limits the global warming to less than 2 degrees Celsius (4 degrees Fahrenheit), compared to a high emission scenario where global temperatures rise above 4 degrees Celsius (7 degrees Fahrenheit). Changes are shown changes relative to 1986-2005 for: (a) global mean surface air temperature; (b) global-mean sea surface temperature; (c) number of surface ocean marine heatwave days; (d) global ocean heat content (0 to 2000 meter depth); (e) Greenland mass loss; (f) Antarctic mass loss; (g) glacier mass loss; (h) global mean surface pH; (i) global mean ocean oxygen averaged over 100 to 600 meter depth; (j) Arctic sea ice; (k) Northern Hemisphere snow cover; (l) near-surface permafrost area and (m) global sea level. ||Credit: International Panel on Climate Change (IPCC). | High-resolution image

Figure 6. The Intergovernmental Panel on Climate Change (IPCC) Special Report on the Ocean and Cryosphere in a Changing Climate (SROCC) Summary for Policymakers shows the observed and modeled historical changes in the ocean and cryosphere since 1950, as well as the future projections under a low emission scenario that limits the global warming to less than 2 degrees Celsius (4 degrees Fahrenheit), compared to a high emission scenario where global temperatures rise above 4 degrees Celsius (7 degrees Fahrenheit). Changes are shown relative to 1986-2005 for: (a) global mean surface air temperature; (b) global-mean sea surface temperature; (c) number of surface ocean marine heatwave days; (d) global ocean heat content (0 to 2000 meter depth); (e) Greenland mass loss; (f) Antarctic mass loss; (g) glacier mass loss; (h) global mean surface pH; (i) global mean ocean oxygen averaged over 100 to 600 meter depth; (j) Arctic sea ice; (k) Arctic snow cover; (l) near-surface permafrost area and (m) global sea level.

Credit: International Panel on Climate Change (IPCC).
High-resolution image

In late September, the Intergovernmental Panel on Climate Change (IPCC) released a new report on the state of the oceans and the cryosphere, highlighting observed changes and forecasts of what may occur in the future. The report provides a timely update on how the cryosphere is changing and its implications for society and ecosystems. It also highlights the high confidence in rates of Arctic sea ice loss and its causes, with anthropogenic forcing and natural climate variability playing nearly equal roles.

NSIDC scientist Julienne Stroeve was one of the contributors to the chapters on sea ice and Arctic amplification—the outsized rise in Arctic air temperatures compared to the globe as a whole. One of the drivers of the special report is recognition that the oceans play a key role in the changing climate system, absorbing 90 percent of the excess heat within Earth’s system and up to a third of the carbon dioxide. Sea ice also reflects much of the sun’s energy back out to space, helping to keep the planet cooler than it otherwise would be. There is high confidence that the Arctic sea ice cover will continue to shrink (Figure 6).

The effects of anthropogenic warming are not as clear in the Antarctic, in particular for sea ice trends. This results in low confidence in any forecast of how Antarctic sea ice will evolve. The report also highlights how permafrost and snow cover are expected to change, as well as sea level rise from glacier and ice sheet mass losses. Given that the Antarctic ice sheet is starting to contribute more each year to global mean sea level rise, the potential for a meter (3.28 feet) of sea level rise by the end of the century remains possible. A key message of the report is that limiting global warming to a total of less than 2 degrees Celsius (4 degrees Fahrenheit) by the end of the century will help to mitigate the negative effects of climate change.

Sloshing Around in the Polar Twilight

The end of the Arctic sea ice melt season is nigh. The last couple of weeks have seen small rises and falls in ice extent, primarily due to changes in wind patterns. However, falling temperatures will soon accelerate the pace of ice growth.

Overview of conditions

Figure 1. Arctic sea ice extent for XXXX XX, 20XX was X.XX million square kilometers (X.XX million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for September 16, 2019, was 4.21 million square kilometers (1.62 million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent was 4.21 million square kilometers (1.62 million square miles) on September 16, which is likely near the seasonal minimum extent that is expected within the next week. The last two weeks have seen periods of declining extent along with periods of little change or even gains in extent. From August 30 through September 5, there was a total loss of about 320,000 square kilometers (123,600 square miles). The ice cover then experienced an increase in extent from September 7 through 10. From September 10 through 16, the decline resumed, dropping 118,000 square kilometers (45,600 square miles).

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of XXXXX XX, 20XX, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 20XX in purple, and 20XX in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of September 16, 2019, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 2015 in purple, and 2012 in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars (hPa) for September 5 to 10, 2019. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division |High-resolution image

Figure 2b. This plot shows average sea level pressure in the Arctic in millibars (hPa) for September 5 to 10, 2019. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars (hPa) for September 10 to 14, 2019. Yellows and reds indicate high air pressure; blues and purples indicate low pressure. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division |High-resolution image

Figure 2c. This plot shows average sea level pressure in the Arctic in millibars (hPa) for September 10 to 14, 2019. Yellows and reds indicate high air pressure; blues and purples indicate low pressure.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Rises and falls in extent are not unusual when nearing the sea ice minimum; the sea ice edge is in near-equilibrium with ocean and atmospheric temperatures. However, variable winds can either push the edge outward to increase ice extent or compact areas of lower-concentration ice to decrease ice extent. From August 26 to August 30, the overall change in extent was near zero; surface winds as depicted in the NCEP Reanalysis during this period pushed ice southward in Beaufort, Chukchi, and East Siberian Seas sectors, while winds from the south led to declines in extent in the East Greenland and Barents Seas.

From August 30 through September 5, strong winds from the south in the Beaufort, Chukchi, and East Siberian Seas pushed the ice edge northward. Essentially, the expansion at the end of August was reversed. Ice loss in the East Greenland Sea and the Canadian Archipelago also contributed to the overall extent decline during this period.

Conditions changed once again from September 5 through September 10. Extent declined only slightly until September 7 and then increased. Again, variable winds played a leading role. Winds from the north persisted on the Pacific side of the Arctic Ocean, but strong winds from the west in the Barents, Kara, and East Greenland Seas, as indicated by strong low pressure centered near the North Pole (Figure 2b), led to an increase in extent there. The Canadian Archipelago region also gained ice, reflecting low temperatures and the onset of freeze-up.

After September 10, the decline in ice extent resumed, with losses particularly north of Svalbard and between Svalbard and Franz Josef Land. This was related to northward winds as a low pressure center moved south to the east of Greenland. To a lesser degree, the ice also retreated northward on the Pacific side, also related to northward winds in the Chukchi and East Siberian Sea sectors. Southward winds prevailed in the Beaufort Sea, but these did not extend the ice edge southward, possibly because of warm waters that melted ice. Ice growth continued in the Canadian Archipelago.

Sea ice hanging on in the Beaufort Sea

Figure 3. This shows a true-color composite image of a tongue of ice that has persisted in the eastern Beaufort Sea. This tongue mostly consists of thin, small floes of ice close to melting completely, interspersed by thicker, large floes and (likely) multi-year ice. Image taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the NASA Terra satellite on September 9, 2019. ||Credit: Land Atmosphere Near-Real Time Capability for EOS (LANCE) System, NASA/GSFC. |High-resolution image

Figure 3. This shows a true-color composite image of a tongue of ice that has persisted in the eastern Beaufort Sea. This tongue mostly consists of thin, small floes of ice close to melting completely, interspersed by thicker, large floes and (likely) multi-year ice. Image taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the NASA Terra satellite on September 9, 2019.

Credit: Land Atmosphere Near-Real Time Capability for EOS (LANCE) System, NASA/GSFC.
High-resolution image

While most of the ice in the Beaufort Sea has melted out well beyond the Alaskan and Canadian coasts, a tongue of ice has persisted in the eastern Beaufort, just off the western coast of Banks Island. MODIS imagery from NASA Worldview shows that this tongue mostly consists of thin, small floes of ice close to melting completely, interspersed by thicker, large floes and (likely) multi-year ice. Most of this ice will likely survive the melt season.

 

Shipping passages and the MOSAiC expedition

The southern (Amundsen) route of the Northwest Passage appears to be open, but only via the narrow Bellot Strait between Somerset Island and the Boothia Peninsula; the wider passage through Peel Sound on the west side of Somerset Island still has ice in the mouth of the sound. The Northern Sea Route is open with the largest constriction just east of Severnaya Zemlya.

The German icebreaker Polarstern will leave port from Tromso, Norway, on September 20 and head north into the ice. It will be frozen into Arctic sea ice for the next year as part of the MOSAiC expedition, and scientists aboard will conduct numerous experiments—collecting data on ocean, ice, and atmospheric conditions. The U.S. lead scientist for the project, Matthew Shupe, is at the Cooperative Institute for Research in Environmental Sciences (CIRES), of which NSIDC is a part. NSIDC senior research scientist Julienne Stroeve will be on the ship for several weeks this coming winter. Readers can expect much more information on MOSAiC from CIRES in the coming months.

Dead heat

At mid-month, Arctic sea ice extent is tracking close to 2012, the year with the lowest minimum in the satellite record. Sea ice volume is also tracking at low levels. Smoke from Siberian wildfires continues to cover much of the Pacific side of the Arctic Ocean, but as solar input declines this late in the melt season, it is unlikely to impact sea ice loss.

Overview of conditions

Figure 1a. Arctic sea ice extent for XXXX XX, 20XX was X.XX million square kilometers (X.XX million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1a. Arctic sea ice extent for August 14, 2019 was 5.04 million square kilometers (1.95 million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Comparison map

Figure 1b. This map compares Arctic sea ice extents between August 14, 2012 and August 14, 2019 from the NSIDC comparison tool.

Credit: National Snow and Ice Data Center
High-resolution image

From August 1 to 14, sea ice extent declined at a daily rate of 91,000 square kilometers (35,000 square miles), still above the 1981 to 2010 rate of decline of 71,000 square kilometers (27,400 square kilometers) during this period. However, this is still below the decline of 112,000 square kilometers (43,000 square miles) per day observed in 2012. At the beginning of the month, the 2019 ice extent was well below 2012. Because the decline through August was slower, the 2019 and 2012 sea ice extents are now close to each other. Because 2012 is a leap year, and our tracking follows the day of the year, August 13 in 2012 is August 14 in non-leap years. The ice extent for August 14, 2019 is 5.04 million square kilometers (1.95 million square miles), approximately 100,000 square kilometers (38,600 square miles) higher than for August 14, 2012 (Figure 1a).

Sea ice retreat in the first half of August 2019 was mainly in an area of patchy sea ice in the East Siberian Sea and along the ice edge in the northern Beaufort and Chukchi Seas. The Northern Sea Route appears to be open in our satellite-based mapping, but ice may remain in some areas. The Northwest Passage is still closed. There was little change in the ice edge in the Svalbard region and northern Barents and Laptev Seas. However, areas of low sea ice concentration are present along much of the remaining ice edge.

A comparison of 2019 and 2012 ice extent for August 14 shows remarkable similarities. In 2012, some patchy ice remained in the east Siberian Sea; however, the ice edge in the northeastern Beaufort and northern Chukchi Seas was further north, and some larger channels in the Canadian Archipelago were open (Figure 1b).

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of XXXXX XX, 20XX, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 20XX in purple, and 20XX in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of August 14, 2019, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 2015 in purple, and 2012 in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for July 1 - 14, 2019. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division |High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for August 1 to 13, 2019. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Over the first half of the month, air temperatures along the Siberian coast at the 925 hPa level (about 2,500 feet above the surface) were generally 2 to 7 degrees Celsius (4 to 13 degrees Fahrenheit) above the 1981 to 2010 average, and 1 to 6 degrees Celsius (2 to 11 degrees Fahrenheit) above average over the Canadian Archipelago (Figure 2b). This was partly balanced by below-average temperatures in northern Scandinavia and the Kola Peninsula by 4 to 6 degrees Celsius (7 to 11 degrees Fahrenheit), a sharp counterpoint to the near-record heat of the late July European heat wave. Near-average temperatures prevailed over the central Arctic Ocean and slightly lower-than-average temperatures were present along the North Slope of Alaska and northwestern Canada. The atmospheric circulation was characterized by high pressure over the Northern Pacific, the Aleutians, and Greenland, and by a center of lower air pressure over northern European Russia. This combination drove cool Arctic air into Scandinavia and easternmost Russia.

Smoke gets in your ice

Figure 3. This NASA Worldview MODIS mosaic image from August 10, 2019, shows the locations of wildfires in the Arctic as detected by thermal images (not shown). Red areas indicate wildfires. Huge areas of burning forests in Siberia have filled the air with smoke over much of the Pacific side of the Arctic Ocean.||Credit: NASA Worldview| High-resolution image

Figure 3. This NASA Worldview image from August 10, 2019, shows the locations of wildfires in the Arctic as detected by thermal images (not shown). Red areas indicate wildfires. Huge areas of burning forests in Siberia have filled the air with smoke over much of the Pacific side of the Arctic Ocean. This image was taken by the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the NASA Terra satellite.

Credit: NASA Worldview
High-resolution image

Huge areas of burning forests in Siberia have filled the air with smoke over much of the Pacific side of the Arctic Ocean. However, at this late stage in the melt season, with rapidly declining solar input, it is unlikely to have much impact on sea ice loss. The fires are a result of the very warm and dry spring and summer conditions over the eastern Siberian Arctic.

There is such a thing as too thin

Figure 4a. This figure shows average Arctic sea ice thickness by month for several recent years as determined by PIOMAS.||Credit: Axel Schweiger, University of Washington| High-resolution image

Figure 4a. This figure shows average Arctic sea ice thickness by month from 1980 t0 2019 as determined by the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS).

Credit: Axel Schweiger, University of Washington
High-resolution image

Figure 4b. This map shows Arctic sea ice thickness difference from average, relative to 2011 to 2018, from PIOMAS. ||Credit: Axel Schwieger/University of Washington| High-resolution image

Figure 4b. This map shows Arctic sea ice thickness in July 2019 as a difference from average (in meters), relative to 2011 to 2018, from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS).

Credit: Axel Schweiger, University of Washington
High-resolution image

Arctic sea ice volume, as estimated by a well-validated model produced by our colleagues at the University of Washington, is tracking at low levels as seen from satellite observations (Figure 4a). Arctic sea ice cover is thus very thin in addition to being very low in extent. Average Arctic sea ice thickness is estimated to be less than half of what it was at this time of year in 1980.

Sea ice thickness follows the change in the seasons. Early in the year, cold conditions and snowfall steadily thicken the sea ice. At the start of the melt season, typically in March, the thinner southern edges of sea ice cover melt first. Hence, the average thickness of the remaining sea ice increases, even though spring ice retreat has begun. By June, when much of the Arctic Ocean surface has reached the melting point, rapid thinning of the ice pack begins. Thickness and extent both reach a minimum in September. However, even though ice extent continues to decline through August, average sea ice thickness begins to increase slightly as the thinner ice at the edge melts away. Then, after the minimum extent, typically reached in mid-September, a rapid increase of sea ice extent begins, with thin sea ice covering large areas of the Arctic Ocean in a few weeks. This rapid increase of very thin ice reduces the average ice thickness, even though sea ice extent is increasing rapidly.

Is a new record minimum possible?

Figure 5. Comparison of several possible sea ice decline paths for 2019 with the 2012 minimum.

Figure 5. This figure compares 2019 projections of sea ice minimum extents based on rates of decline from previous years. The red line uses the rate of decline from the 1981 to 2010 reference period. The green line uses the rate of decline from 2007 to 2018 average. The dotted purple line uses the 2012 rate of decline and the dotted turquoise line uses the 2006 rate of decline.

Credit: Walt Meier, NSIDC
High-resolution image

The ASINA team conducted a revised analysis of the likely course of the 2019 Arctic summer sea ice minimum, using rates of loss from several recent years. While sea ice extent is now above extent for the same date in 2012, overall our projection for the minimum is lower than estimated in our previous post. Using the average decline rate of the past 12 years, from 2007 to 2018, the 2019 minimum is estimated to be 3.75 million square kilometers (1.45 million square miles). If the 2012 decline pattern is applied from August 14 forward, sea ice reaches 3.44 million square kilometers (1.33 million square miles). This is still above the 2012 summer minimum extent of 3.39 million square kilometers (1.31 million square miles). However, nearly all of the recent rates of sea ice loss lead to 2019 being second lowest in ice extent, surpassing 2007 and 2016.

Erratum

Readers alerted us to an error. On August 15, 2019, we reported that “Because 2012 is a leap year, and our tracking follows the day of the year, August 15 in 2012 is August 14 in non-leap years.” On August 26, 2019, we corrected this to say “August 13 in 2012 is August 14 in non-leap years.”

Europe’s heat wave moves north

Arctic sea ice extent in July tracked at record low levels for multiple individual days and for the month as a whole. During the second half of the month, air temperatures over the Arctic Ocean returned to average, while Europe experienced another record-breaking heat wave. By the end of the month, the European heat wave had moved north, enhancing melt over the Greenland ice sheet.

Overview of conditions

Figure 1. Arctic sea ice extent for XXXX 20XX was X.XX million square kilometers (X.XX million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for July 2019 was 7.59 million square kilometers (2.93 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for July 2019 set a new record low of 7.59 million square kilometers (2.93 million square miles). The monthly average extent was 80,000 square kilometers (30,900 square miles) below the previous record low set in 2012 and 1.88 million square kilometers (726,000 square miles) below the 1981 to 2010 average. On a daily basis, ice tracked at record low levels from July 10 through July 14 and July 20 through the end of the month. Ice retreated over most regions of the Arctic Ocean, especially over the Laptev Sea, northern Chukchi and Beaufort Seas, and Hudson Bay, where no ice remained at the end of the month. There was little retreat in the Barents Sea where the ice edge had already pulled back to its average northward position for this time of year. Ice also continued to linger along the coast in the East Siberian Sea near the Russian port town of Pevek and Wrangel Island. However, the sea ice concentrations in the region are now low, with many open water areas between ice floes. By the end of the month, the Northern Sea Route that links Europe and Asia through the East Siberian and Laptev Seas appeared to be essentially open, whereas the Northwest Passage (both the southern and northern routes) remained blocked by ice.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of XXXXX XX, 20XX, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 20XX in purple, and 20XX in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of July 31, 2019, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 2015 in purple, and 2012 in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. The graph above shows Arctic sea ice extent decline per decade since satellite observations began in 1979. 1979 to 1989 is shown in light pink, the 1990s in dark pink, the 2000s in magenta, and the 201os in purple. 2019 is shown in a thick purple line ending on July 31, 2019, while the 2012 record low is also marked. ||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2b. The graph above shows Arctic sea ice extent decline per decade since satellite observations began in 1979. 1979 to 1989 is shown in light pink, the 1990s in dark pink, the 2000s in magenta, and the 201os in purple. 2019 is shown in a thick purple line ending on July 31, 2019, while the 2012 record low is also marked. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2c. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for July 2019. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division | High-resolution image

Figure 2c. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for July 2019. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

July is typically the warmest month of the year, with the largest rate of ice loss. Sea ice extent this July declined at an average rate of 105,700 square kilometers (40,800 square miles) per day, exceeding the 1981 to 2010 average of 86,800 square kilometers (33,500 square miles) per day. Only seven previous years—1990, 1991, 2007, 2009, 2013, 2015, and 2018—experienced daily rates of ice loss exceeding 100,000 square kilometers (38,600 square miles) per day, with 2007 holding the record low of 114,200 square kilometers (44,100 square miles) per day.

Rapid ice loss for July 2019 was in part driven by warm conditions during the first half of the month. The latter half of the month, in contrast, was relatively cool over the East Siberian and Laptev Seas, as well as near Svalbard and the Canadian Arctic Archipelago, where temperatures at the 925 hPa level (about 2,500 feet above the surface) were 1 to 4 degrees Celsius (2 to 7 degrees Fahrenheit) below the 1981 to 2010 average. These relatively cool conditions were the result of below average sea level pressure centered over the East Siberian Sea, coupled with above average sea level pressure over the west Siberian Plain, which brought cold air southwards and helped to push the ice towards the coast. However, by July 30, the heat wave that had been plaguing Europe moved north, baking Greenland with temperatures at the 925 hPa level 10 degrees Celsius (18 degrees Fahrenheit) above average while parts of the Arctic Ocean saw temperatures 1 to 7 degrees Celsius (2 to 13 degrees Fahrenheit) above average. During this heat wave, about 60 percent of the Greenland ice sheet experienced melt. Despite the fluctuations during the month, the average monthly temperature was above average over most of the Arctic Ocean (Figure 2c).

By the beginning of August, the pace of ice loss tends to drop rapidly. 2012 was an exception, when the average August ice loss rate remained quite rapid at 89,500 square kilometers per day (34,600 square miles per day), leading to a new record low for the September minimum that year. As of August 5, 2019, the total sea ice extent has dropped below 6 million square kilometers, something which has not occurred prior to 1999. Sea ice extent in September of 2019 is likely to be among the five lowest minimums recorded.

July 2019 compared to previous years

Figure 3. Monthly XXXXX ice extent for 1979 to 201X shows a decline of X.X percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly July ice extent for 1979 to 2019 shows a decline of 7.32 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

In total, sea ice extent during July 2019 decreased by 3.28 million square kilometers (1.27 million square miles). This was larger than the 1981 to 2010 average loss for the month. The linear rate of sea ice decline for July from 1979 to 2019 is 693,000 square kilometers (268,000 square miles) per year, or 7.32 percent per decade relative to the 1981 to 2010 average.

Early melt brings early ice break-up and warmer ocean temperatures to the Beaufort Sea

Figure 4. Melt onset for 2019 expressed as differences (in days) with respect to 1981 to 2010 averages based on the passive microwave satellite data record. ||Credit: Data courtesy of Jeff Miller at NASA GSFC. | High-resolution image

Figure 4a. This map shows the 2019 melt onset expressed as differences (in days) with respect to 1981 to 2010 averages. Values are based on the passive microwave satellite data record.

Credit: Data courtesy of Jeff Miller at NASA Goddard Space Flight Center.
High-resolution image

Figure 4b. Sea surface temperature in degrees Celsius for July 31, 2019 from the University of Washington Polar Science Center UpTempO buoys and satellite-derived values from NOAA. ||Credit: National Oceanic and Atmospheric Organization| High-resolution image

Figure 4b. This map of the Arctic Ocean shows sea surface temperature in degrees Celsius for July 31, 2019. Data are from the University of Washington Polar Science Center UpTempO buoys and satellite-derived values from the National Oceanic and Atmospheric Association (NOAA).

Credit: National Oceanic and Atmospheric Association (NOAA)
High-resolution image

As mentioned in our July mid-month post, numerous ice floes have broken away from the main pack ice in the southern Beaufort Sea. This was in part fueled by early melt onset; ice began to melt nearly a month earlier than average (Figure 4a). Melt also started earlier than average within the northern Bering and southern Chukchi Seas and also within Baffin Bay along the west coast of Greenland. Melt onset over the central Arctic Ocean near the longitudes of the Laptev Sea, the Lincoln Sea, and parts of Hudson Bay was up to 20 days earlier than average. The timing of melt onset plays an important role in melt pond development and ice breakup, both of which allow for more solar radiation to be absorbed in the upper ocean, promoting more ice melt. The timing of melt pond development has been shown to be a useful predictor of how much ice will be left at the end of summer. The impact of this year’s early melt onset is evident in sea surface temperatures along the coast of Alaska and the Chukchi Sea, which are at least 5 degrees Celsius (9 degrees Fahrenheit) above average (Figure 4b).

Wildfires continue to rage across Arctic region

Figure 6a. MODIS image from July 24, 2019. Red dots show locations of fires. ||Credit: National Snow and Ice Data Center| High-resolution image

Figure 5a. This image from July 24, 2019 from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) sensor shows the locations of fires (red dots) in the Arctic. Since the beginning of June, more than 100 large wildfires have been observed

Credit: National Snow and Ice Data Center
High-resolution image

Figure 6b. Fire radiative power from the Copernicus Atmosphere Monitoring Service (CAMS). Fire radiative power is a measure of heat output from wildfires as shown for June 2019 (red) and the 2003-2018 average (grey). ||Credit: National Snow and Ice Data Center| High-resolution image

Figure 5b. This figure shows the Total Fire Radiative Power (TFRP) in the Arctic Circle detected by the Copernicus Atmosphere Monitoring Service (CAMS). Fire radiative power is a measure of heat output from wildfires as shown for June 2019 (red) and the 2003 to 2018 average (grey).

Credit: National Snow and Ice Data Center
High-resolution image

Figure 6c. Caption Needed||Credit: NASA Worldview|High-resolution image

Figure 5c. In this photo taken during a NOAA flight north of Utqiagvik, Alaska, sea ice appears to be highly decayed with deep melt ponds.

Credit: Kevin Woods, NOAA Pacific Marine Environmental Laboratory
High-resolution image

Another factor that plays a role in ice melt is deposition of dark soot from wildfires on the highly reflective snow and ice surfaces, allowing more of the sun’s energy to be absorbed. Since the beginning of June, more than 100 large wildfires have been observed over Arctic lands, including Alaska, Greenland, and Siberia (Figure 5a). Smoke from these fires has been observed to blow across Greenland and over sea ice areas. Wildfires do not only deposit soot, they also pose a health hazard to local communities. According to the European Union Copernicus Atmospheric Monitoring Service (CAMS), the fires this year are far more intense than normal, with a Total Fire Radiative Power (TFRP) up to about 10 times higher than average for a given date (Figure 5b). TFRP is derived from Moderate Resolution Imaging Spectroradiometer (MODIS) data and incorporates the thermal radiation (intensity of buring) and the amount of smoke produced. Further, the fires release a substantial amount of carbon dioxide. The report notes that these fires have released as much carbon dioxide into the atmosphere as the annual total emissions of Sweden, or more than 50 megatons of this greenhouse gas; this is more than all fires within the same month between 2010 and 2018.

The National Oceanic and Atmospheric Administration (NOAA) has been tracking the melt season with aircraft flights over the ice north of Utqiagvik, Alaska, as part of its Arctic Heat program. While onboard some of these flights in mid-July, Kevin Woods of the NOAA Pacific Marine Environmental Lab in Seattle, Washington took several photos of the sea ice (Figure 5c). The ice appeared to be highly decayed with deep melt ponds, many melted completely through the ice. In other areas, the ice was sparse with isolated floes surrounded by open water. Much of this is likely to melt out completely by the end of the summer.

Open water again north of Greenland

Figure 7. Sea ice as seen from an aircraft over Utqiagvik, Alaska. The ice appeared to be highly decayed with deep melt ponds, many melted completely through the ice. ||Credit: Kevin Woods, NOAA Pacific Marine Environmental Lab | High-resolution image | High-resolution image

Figure 6. This true-color composite image taken by the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) sensor shows sea ice as seen from an aircraft over Peary Land, Northeast Greenland. Areas of open water have appeared on the north coast of Greenland where two large floes that were fast ice broke away last week.

Credit: NASA
High-resolution image

Once again, areas of open water have appeared on the north coast of Greenland. A similar situation was observed during two periods in 2018, including one in mid-winter and one in late summer. Two large floes that were fast ice (attached to the coast) broke away last week (Figure 6). The largest floe is roughly 110 kilometers by 65 kilometers (70 miles by 40 miles), about 50 percent larger than the state of Rhode Island.

Antarctic update

Figure 8. Antarctic sea ice extent for May 2019 was 8.80 million square kilometers (3.40 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 7. Antarctic sea ice extent for May 2019 was 15.30 million square kilometers (5.91 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice growth has been slightly slower than average since the end of the austral summer in March, pushing an already-low sea ice extent lower. By July, Antarctic sea ice extent was tracking among the lowest in the continuous satellite record. The other near-record years were widely dispersed (1983, 1986, 2002, and 2017), underscoring the high variability of Antarctic sea ice. While an overall positive linear trend is still evident in the 40-year Antarctic sea ice extent record, variability dominates, with 2014 being a record high maximum and 2017 a record low maximum extent.

Our site has from time to time noted the comings and goings of the Maud Rise Polynya, an opening within the pack ice thought to form when deeper warm water is forced to the surface. In late July, a similar feature formed in the Cosmonaut Sea, the name for the area of the Southern Ocean along the western coast of Enderby Land (40 degrees to 55 degrees E longitude). The Cosmonaut Sea Polynya has been identified and studied for many years, first in 1987. It can appear in July or August as the sea ice edge expands northward over a region near 66 degrees S, 43 degrees E, occurring in about a third of the winter sea ice seasons. The polynya is formed by a combination of ocean currents and winds that create an upward dome shape in warmer, or a few degrees above freezing, deep ocean layers. If this warmer water mixes upward, it prevents the formation of sea ice even as cold winter weather freezes adjacent areas.

References

Comiso, J. C. and Gordon, A. L. 1987. Recurring polynyas over the Cosmonaut Sea and the Maud Rise. Journal of Geophysical Research: Oceans. doi: 10.1029/JC092iC03p02819.

Schröder, D., D. L. Feltham, D. Flocco, and M. Tsamados. 2014. September Arctic sea-ice minimum predicted by spring melt-pond fraction. Nature: Climate Change. doi:10.1038/NCLIMATE2203.

Markus, T., J. C. Stroeve, and J. Miller. 2009. Recent changes in Arctic sea ice melt onset, freezeup, and melt season length. Journal of Geophysical Researchdoi:10.1029/2009JC005436.

Stroeve, J. C., T. Markus, L. Boisvert, J. Miller, and A. Barrett. 2014. Changes in Arctic melt season and implications for sea ice loss. Geophysical Research Letters. doi.org/10.1002/2013GL058951.

Warm May in the Arctic sets the stage

May saw above average temperatures over nearly all of the Arctic Ocean, Baffin Bay, and Greenland. Early sea ice retreat in the Bering Sea extended into the southern Chukchi Sea. Northern Baffin Bay and the Nares Strait have low ice cover. By month’s end, open water extended along the northeastern Alaskan and northwestern Canadian coasts, all well ahead of schedule. However, this was partly balanced by slower-than-average ice loss in the Barents Sea. At the end of May, Arctic sea ice daily extent stood at second lowest in the 40-year satellite record.

Overview of conditions

Figure 1. Arctic sea ice extent for XXXX 20XX was X.XX million square kilometers (X.XX million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for May 2019 was 12.16 million square kilometers (4.70 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent averaged for May was 12.16 million square kilometers (4.70 million square miles). This is 1.13 million square kilometers (436,000 square miles) below the 1981 to 2010 average and 240,000 square kilometers (93,000 square miles) above the previous record low for the month set in May 2016. The month saw rapid ice loss in the Bering Sea and southern Chukchi Sea. During the second half of the month, an extended coastal polynya opened along the northwestern coast of the Beaufort Sea extending into the Mackenzie River Delta area. Visible MODIS imagery shows many large ice floes interspersed with open water along the ice edge and fracturing of ice further within the pack.

Although ice loss in the Barents Sea was rapid in early May, it subsequently slowed and extent slightly increased late in the month. There was nevertheless an overall ice retreat for May as a whole. Around mid-month, a polynya began to open at the north end of Baffin Bay, near the Nares Strait. At about this time, an ice arch that restrains southward ice drift in the Lincoln Sea began to fail, allowing transport of ice through the strait and creating a small polynya northwest of Greenland (discussed below). By the end of May, other polynyas started to form around the New Siberian Islands as well as Severnaya Zemlya, and open water began to develop along coastal regions in the Kara Sea and in northern Hudson Bay.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of June 3, 2019, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 2015 in purple, and 2012 in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.||Credit: National Snow and Ice Data Center|High-resolution image

Figure 2a. The graph above shows Arctic sea ice extent as of June 3, 2019, along with daily ice extent data for four previous years and the record low year. 2019 is shown in blue, 2018 in green, 2017 in orange, 2016 in brown, 2015 in purple, and 2012 in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for May 2019. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures. ||Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division|High-resolution image

Figure 2b. This plot shows the departure from average air temperature in the Arctic at the 925 hPa level, in degrees Celsius, for May 2019. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

Broadly following the pattern for April, air temperatures at the 925 hPa level (approximately 2,500 feet above the surface) for May were again well above average over nearly all of the Arctic Ocean. Along the western Greenland coast, a broad area north of Greenland, and westward north of the Canadian Archipelago, temperatures were as much as 7 degrees Celsius (13 degrees Fahrenheit) above the 1981 to 2010 reference average for the month. Over much of the remainder of the Arctic Ocean, temperatures were 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) above average. By contrast, over the Barents Sea as well as along the Laptev Sea coast, temperatures were near average or up to 2 degrees (4 degrees Fahrenheit) below average. As averaged for May, there was an area of high sea level pressure, an anticyclone, centered near the pole. This pattern drew warm air from the south into Baffin Bay and into the Arctic Ocean. Also, air under an anticyclone descends and warms. Both factors help to explain the unusually high temperatures over much of the Arctic Ocean.

May 2019 compared to previous years

Figure 3. Monthly May ice extent for 1979 to 2019 shows a decline of X.X percent per decade.||Credit: National Snow and Ice Data Center| High-resolution image

Figure 3. Monthly May ice extent for 1979 to 2019 shows a decline of 2.74 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Overall, sea ice extent during May 2019 decreased by 1.49 million square kilometers (575,300 square miles). This was fairly close to the 1981 to 2010 average loss for the month. The linear rate of sea ice decline for May from 1979 to 2019 is 36,400 square kilometers (14,100 square miles) per year, or 2.74 percent per decade relative to the 1981 to 2010 average.

Ice arch break up in the Lincoln Sea

Figure 4. Animation from Aqua MODIS true color composite images from NASA Worldview. The animation was created using the new Worldview animation function.||Credit: NASA| High-resolution image

Figure 4. This NASA Worldview (download to view animation) image shows sea ice in the Nares Strait from April 19 to May 11. A new Worldview functions creates an animation using Aqua Moderate Imaging Spectroradiometer (MODIS) true color composite images.

Credit: NASA
High-resolution image

In most years (2007 being a notable exception), an ice arch forms during late autumn and winter at the north end of Nares Strait, the narrow passage that separates Greenland from Ellesmere Island. This arch acts as a barrier, preventing ice from the Arctic Ocean from drifting through the strait and into Baffin Bay. The arch typically breaks up in June or July, allowing ice to drift through the narrow channel. This year, the arch broke up by late March, much earlier than is typical. Since then, there has been a steady flow of ice through Nares Strait (download animation to view). Since 2000, only four other years appear to have had similar early breakups of the arch: 2007 (when no arch formed at all), 2008, 2010, and 2017 (Moore et al., 2018). Typically, strong wind events trigger the break up, but warm temperatures and thinner ice can also contribute.

Arctic sea ice variability linked to atmospheric temperature fluctuations

Figure 5. Top, this figure shows how the year-to-year sea ice area co-varies with mid-atmosphere temperatures (average of temperatures between 850 HPa to 400 HPa, or about 5000 to 25000 feet above sea level). Below, a bar graph provides the contributions of other suggested mechanisms – combined, they account for about 25 percent of the sea ice variations. The direct influence of mid-atmosphere temperature fluctuations remains as the primary cause of year-to-year sea-ice variations. ||Credit: NSIDC Sea Ice index and ERA-Interim Reanalysis | High-resolution image

Figure 5. The top figure shows how the year-to-year sea ice area co-varies with mid-atmosphere temperatures (average of temperatures between 850 HPa to 400 HPa, or about 5,000 to 25,000 feet above sea level). The below bar graph provides the contributions of other suggested mechanisms. Combined, they account for about 25 percent of the sea ice variations. The direct influence of mid-atmosphere temperature fluctuations remains as the primary cause of year-to-year sea-ice variations.

Credit: NSIDC Sea Ice Index and ERA-Interim Reanalysis
High-resolution image

While Arctic sea ice extent is declining sharply, it is also highly variable from one year to the next. Scientists from the Max Planck Institute for Meteorology (MPI-M) and the University of Stockholm have proposed that this strong variability is closely related to fluctuations in the air temperature above the Arctic Ocean driven by atmospheric heat transport into the Arctic from lower latitudes. In contrast to previous assumptions, they argue that other factors, such as the ice-albedo feedback, cloud and water vapor feedbacks, and oceanic heat transported into the Arctic together explain only 25 percent of the year-to-year sea ice extent variations. Most of the sea ice variations are thus directly caused by mid-atmospheric temperature conditions; this is evident in both observational data and climate models. Their study implies that year-to-year fluctuations in sea ice extent are easier to understand than previously thought. However, their study also suggests that it may be more difficult to predict the summer extent of Arctic sea ice from one year to the next, because the problem of predicting atmospheric heat transport is closely related to the challenges of long-term weather forecasting.

Antarctic sea ice extent exceptionally low in the Weddell and Amundsen Seas

Figure 6. Antarctic sea ice extent for May 2019 was 12.16 million square kilometers (4.69 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 6. Antarctic sea ice extent for May 2019 was 8.80 million square kilometers (3.40 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice extent continues to climb toward its seasonal maximum, which is expected in late September or early October. At the end of May, Antarctic sea ice extent was very close to record daily lows over the period of satellite observations, previously set for the month in 1980. Unusually low ice extent in the eastern Weddell Sea and northern Amundsen Sea are responsible for the low overall total extent, with smaller areas of open water in the eastern Wilkes Land coastal region and southwestern Indian Ocean (Cosmonaut Sea). Slightly above average sea ice extent is present in the north-central Ross Sea and northwestern Weddell Sea.

References

Kwok, R., L. Toudal Pedersen, P. Gudmandsen, and S. S. Pang. 2010. Large sea ice outflow into the Nares Strait in 2007. Geophysical Research Letters. doi: 10.1029/2009GL041872.

Moore, G. W. K. and K. McNeil. 2018. The early collapse of the 2017 Lincoln Sea ice arch in response to anomalous sea ice and wind forcing. Geophysical Research Lettersdoi:10.1029/2018GL078428.

Olonscheck, D., T. Mauritsen, and D. Notz. 2019. Arctic sea-ice variability is primarily driven by atmospheric temperature fluctuations. Nature Geoscience. doi:10.1038/s41561-019-0363-1.