Record low extent in the Chukchi Sea

November 2017 will be remembered not for total Arctic ice extent, which was the third lowest recorded over the period of satellite observations, but for the record low extent in the Chukchi Sea. This is a key area for Arctic Ocean access, and is an indicator of oceanographic influences on sea ice extent.

Overview of conditions

Figure 1. Arctic sea ice extent for XXXX 20XX was X.XX million square kilometers (X.XX million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data||Credit: National Snow and Ice Data Center|High-resolution image

Figure 1. Arctic sea ice extent for November 2017 was 9.46 million square kilometers (3.65 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for November 2017 averaged 9.46 million square kilometers (3.65 million square miles), the third lowest in the 1979 to 2017 satellite record. This was 1.24 million square kilometers (479,000 square miles) below the 1981 to 2010 average and 830,000 square kilometers (321,000 square miles) above the record low November extent recorded in 2016. Extent at the end of the month was below average over the Atlantic side of the Arctic, primarily in the Barents and Kara Seas, slightly above average in western Hudson Bay, but far below average in the Chukchi Sea. This continues a pattern of below-average extent in this region that has persisted for the last year.

Conditions in context

timeseries graph

Figure 2. The graph above shows Arctic sea ice extent as of December 3, 2017, along with daily ice extent data for five previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, 2013 in purple, and 2012 in dotted red. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Ice growth during November 2017 averaged 80,100 square kilometers (30,900 square miles) per day. This was stronger than the average rate for the month of 69,600 square kilometers (26,900 square miles) per day. Ice growth was particularly rapid within Hudson Bay, Baffin Bay, and the Kara Sea.

November air temperatures at 925 hPa (about 3,000 feet above sea level) were above average over essentially all of the Arctic Ocean, with prominent warm spots (more than 6 degrees Celsius, or 11 degrees Fahrenheit above the 1981 to 2010 average) over the Chukchi Sea and north of Svalbard. The unusual warmth in the Chukchi Sea at least in part manifests the extensive open water in this region, but a pattern of winds blowing in from the southwest also appears to have had an influence. The warmth north of Svalbard is more clearly related to the average pattern of atmospheric circulation over the month, with an area of low pressure centered over the Norwegian Sea and an area of high pressure centered north of the Taymyr Peninsula combining to transport warm air into the region.

November 2017 compared to previous years

ice extent trend

Figure 3. Monthly November ice extent for 1979 to 2017 shows a decline of 5.14 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The linear rate of sea ice decline for November is 55,000 square kilometers (21,200 square miles) per year, or 5.14 percent per decade. Recall from our previous post that NSIDC recently revised the way in which monthly average extents are computed, which has minor impacts on computed trends.

Open water in the Chukchi Sea

sea ice concentration

Figure 4. The map at top shows an analysis of sea ice concentration on November 30, 2017 in the area of the Bering and Chukchi Seas. The graph at bottom shows the combined sea ice concentration from 1978 to 2017, based on Sea Ice Index data.

Credit: Rick Thoman of the NOAA National Weather Service Alaska Region
High-resolution image

Based on an analysis by Rick Thoman of the NOAA National Weather Service, as of 19 November, ice extent in the combined Beaufort and Chukchi Seas sector was the lowest ever observed in the sea ice record (Figure 4). This was largely driven by the lack of sea ice within the Chukchi Sea. By the end of November, the Beaufort Sea was completely ice-covered. The NOAA analysis makes use of the NSIDC Sea Ice Index data set. As discussed in our June 7 post, the current state of the ice cover in this region likely has its origin as far back as last year, when warm conditions favored the persistence of open water in the Chukchi Sea into December of 2016.

Strong winds from the north occurred for a few days at the end of March and early April, pushing ice southward in the Bering Sea, breaking up the ice in the Chukchi Sea, and even flushing some ice out through the Bering Strait. We also suggested a possible role of a strong oceanic heat inflow to the Chukchi Sea via Bering Strait. In support of this view, in the summer of 2017, Rebecca Woodgate of the University of Washington, Seattle, sailing on the research vessel Norseman II, recovered mooring data that indicated an early arrival of warm ocean water in the strait, about a month earlier than the average. This resulted in June ocean temperatures that were 3 degrees Celsius (5 degrees Fahrenheit) above average. Higher ocean temperatures in summer plays a large role in the timing of when the ice will form again in winter. There is likely a considerable amount of heat remaining in the top layer of the ocean, which will need to be lost to the atmosphere and outer space before the region becomes fully ice covered.

Low Antarctic sea ice extent

Figure 5a. Antarctic sea ice concentration from AMSR2, in percent, for November 28, 2017. The Maud Rise polynya is seen at top.

Credit: University of Bremen
High-resolution image

Figure 5b. Small tabular icebergs are seen in the marginal ice zone of the northern Weddell Sea on November 22, 2017 during a NASA Operation IceBridge flight.

Credit: NASA/John Sonntag
High-resolution image

In the Southern Hemisphere, where it is late spring, sea ice declined at a faster-than-average pace after the very late-season October 12 maximum extent. This led to the third-lowest November average monthly extent in the satellite record, behind 1986 and 2016. Sea ice extent was near-average in all regions except the Weddell Sea, where extent is at a satellite-era record low.

The atmospheric circulation for November exhibited a very strong wave-3 pattern. In a wave-3 pattern, there are three major low-pressure areas around the continent separated by three high-pressure areas. Air temperatures for the month were near-average in most regions except for the eastern Weddell Sea, consistent with the reduced sea ice extent there.

The Maud Rise Polynya (Figure 5a) continued to grow through November, as increased sunshine and air temperatures allowed the upwelling warm water to expand the opening in the floating sea ice cover. At the beginning of December,  retreat of the sea ice edge converted the polynya to a large embayment in the sea ice cover.

Arctic sea ice 2017: Tapping the brakes in September

After setting a record low seasonal maximum in early March, Arctic sea ice extent continued to track low through July. However, the rate of ice loss slowed in August and September. The daily minimum extent, reached on September 13, was the eighth lowest on record, while the monthly average extent was seventh lowest. In Antarctica, sea ice extent may have reached its annual winter maximum.

Overview of conditions

ice extent image

Figure 1. Arctic sea ice extent for September 2017 was 4.87 million square kilometers (1.88 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for September 2017 averaged 4.87 million square kilometers (1.88 million square miles), the seventh lowest in the 1979 to 2017 satellite record. This was 1.67 million square kilometers (645,000 square miles) below the 1981 to 2010 average, and 1.24 million square kilometers (479,000 square miles) above the record low September set in 2012.

After reaching the minimum on September 13 (eighth lowest on record), extent initially increased slowly (about 20,000 square kilometers, or 8,000 square miles, per day). However, starting September 26 and persisting through the end of the month, ice growth rates increased to about 60,000 square kilometers (23,000 square miles) per day. During the second half of the month, extent increased in all sectors except in the Beaufort Sea, where some local ice retreat persisted. The most rapid growth occurred along the Siberian side of the Arctic Ocean, where the ice edge advanced as much as 150 kilometers (90 miles) over the latter half of September. At the end of September, the ice edge in the Beaufort and Chukchi Seas remained considerably further north than is typical.

Conditions in context

extent timeseries

Figure 2a. The graph above shows Arctic sea ice extent as of October 4, 2017, along with daily ice extent data for five previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, 2013 in purple, and 2012 in dotted brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

pressure anomaly

Figure 2b. This image shows the departure from average sea level pressure in millibars over the Arctic for June, July, and August in 2017. Yellows and reds indicate higher than average pressures; blues and purples indicate lower than average pressures.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

September air temperatures at the 925 hPa level (approximately 2,500 feet above sea level) were above average over much of the Arctic Ocean. Temperatures ranged from 5 degrees Celsius (9 degrees Fahrenheit) above the 1981 to 2010 long term average in the far northern Atlantic east of Greenland, to 1 to 2 degrees Celsius (2 to 4 degrees Fahrenheit) above the reference period in the western Arctic. Cooler conditions (1 degree Celsius or 2 degrees Fahrenheit below average) were present in Baffin Bay. Part of the above average temperatures over the coastal areas of the Arctic Ocean and in the northern North Atlantic likely results from heat fluxes from open water.

Looking back at this past summer (June through August), air temperatures at the 925 hPa level averaged for June through August were near or below the 1981 to 2010 average over much of the Arctic Ocean, notably along the Siberian side centered over the Laptev Sea (1 degree Celsius or 1.8 degrees Fahrenheit below the 1981 to 2010 average). By contrast, temperatures were slightly above average over much of the East Siberian, Chukchi and Beaufort Seas (1 degree Celsius, or 1.8 degrees Fahrenheit above average).

Like 2016, the summer of 2017 was characterized by persistently stormy patterns over the central Arctic Ocean, reflected in the summer average sea level pressure field (Figure 2b) as an area of low pressure centered just south of the North Pole in the Siberian sector of the Arctic. As has been shown in past studies, low pressure systems found over the central Arctic Ocean in summer are typically “cold cored.” This helps to explain the cool summer temperatures noted above. The cyclonic (counterclockwise) winds associated with the stormy pattern also tend to spread out the sea ice. Both processes likely helped to slow sea ice loss this summer.

September 2017 compared to previous years

ice trend

Figure 3. Monthly September ice extent for 1979 to 2017 shows a decline of 13.2 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The linear rate of sea ice decline for September is 86,100 square kilometers (33,200 square miles) per year, or 13.2 percent per decade relative to the 1981 to 2010 average. For comparison, the decline rate was calculated at 13.7 percent after the 2013 minimum, and 13.4 percent in 2016. Although sea ice shows significant year-to-year variability, the overall trend of decline remains strong.

Thickness and age trends in Arctic sea ice from models and data

Figure 4a. This image from the Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS) shows Arctic sea ice thickness departures from average (anomaly) in meters for September 2017, relative to the 2000 to 2015 average. Reds indicate thicker than average ice; blues indicate thinner than average ice.

Credit: NSIDC courtesy University of Washington Polar Science Center
High-resolution image

ice age

Figure 4b. Sea ice age distribution at the annual minimum extent for 1985 (upper left) and 2017 (upper right). Time series (bottom) of different age categories the minimum extent for 1985 to 2017. Note that the ice age product does not include ice in the Canadian Archipelago. Data from Tschudi et al., EASE-Grid Sea Ice Age, Version 3

Credit: W. Meier/National Snow and Ice Data Center, M. Tschudi et al.
High-resolution image

According to estimates from the University of Washington Polar Science Center’s PIOMAS, which assimilates observational data into a coupled ice-ocean model, sea ice volume was at record low levels from January through June of 2017. However, the generally cool summer conditions slowed the rate of ice melt, and the ice volume for September ended up fourth lowest in the PIOMAS record, above 2010, 2011, and 2012.

Another way to assess the volume of the ice, at least in a qualitative sense, is through tracking sea ice age (Figure 4b). Older ice is generally thicker ice. Over the satellite record, there has been a significant decline in coverage of the oldest, thickest ice. While this year’s minimum sea ice extent is higher than in 2016, the marginal gain can be largely attributed to younger ice types: first-year ice (0 to 1 years old) and second-year ice (1 to 2 years old). The oldest ice, that which is over 4 years old, is only slightly higher than last year and remains almost non-existent within the Arctic. At the minimum this year, ice older than 4 years constituted only ~150,000 square kilometers (~58,000 square miles), compared to over 2 million square kilometers (~770,000 square miles) during the mid-1980s.

Antarctic maximum extent

antarctic sea ice

Figure 5. The graph above shows Antarctic sea ice extent as of October 4, 2017, along with daily ice extent data for 2017 (aqua), 2016 (red), 2013 (dotted green), and 1986 (yellow). The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice may have reached its maximum extent on September 15, at 17.98 million square kilometers (6.94 million square miles), among the earliest maxima on record. If this date and extent hold, it will be the second-lowest daily maximum in the satellite record, 20,000 square kilometers (7,700 square miles) above 1986. Antarctic sea ice extent has been at record or near-record lows since September 2016. A series of recent studies have explored causes of the sudden decline in extent that occurred in austral late winter and spring of 2016. Most studies conclude that an unusual period of strong meridional winds—consistent with a very pronounced negative phase of the Southern Annular Mode index, coupled with a significant ‘wave-3 pattern’ in the atmospheric circulation—were the cause. A ‘wave-3 pattern’ refers to a tendency for circulation around the southern continent to resemble a three-leaf clover, rather than the more typical near-zonal (along lines of latitude) pattern.

The Maud Rise polynya, discussed in our last post, continues to grow and is now at about 35,000 square kilometers (14,000 square miles). A recent study (see Further reading, below) discusses how its formation is related to climate patterns and natural variability, and that the recent reappearance supports a forecast by an updated climate model.

Driftwood and long-term changes in Arctic ice movement

circulation

Figure 6. The maps show two modes of wintertime Arctic sea ice circulation patterns. (a) shows the Low Arctic Oscillation (AO) index has a strong Beaufort Gyre which supports ice re-circulation within the Arctic. (b) shows the High AO index in which the Beaufort Gyre is weak and the Transpolar Drift expands, leading to Arctic ice exported in a shorter time interval. Bold numbers show the average time in years for ice starting from various locations to be exported through Fram Strait under the illustrated patterns. The red dashed lines encircle the region of ice recirculation and persistence (Rigor et al., 2002). Over continents, light blue lines show watersheds with named major rivers (shown as bold blue lines) that export driftwood into the Arctic Ocean. Green letters indicate driftwood sample regions: CAA, Canadian Arctic Archipelago; EG, East Greenland; JM, Jan Mayen; NG, North Greenland; FJL, Franz Josef Land; NZ, Novaya Zemlya; SB, Svalbard. Circulation patterns compiled and modified from Rigor et al. (2002).

Credit: G. Hole and M. Macias-Fauria, The Cryosphere Discuss.
High-resolution image

While the satellite record has been key in documenting large declines in the Arctic sea ice cover during the past four decades, the data record is still relatively short. To provide a longer record, scientists turn to the geologic record and proxy data. One approach is to analyze the age, transport, and deposition of driftwood. Driftwood distribution depends strongly on past sea ice conditions and ocean currents. New research using 913 driftwood samples collected across the western Arctic (Figure 6) has shed new insight on sea ice changes during the Holocene, between 12,000 years ago to present. During the early Holocene (12,000 to 8,000 years ago), the analysis suggests that the clockwise Beaufort Gyre dominated Arctic Ocean circulation, allowing more sea ice to stay within the Arctic Ocean. In the mid-Holocene (8,000 to 4,000 years ago), temperatures were higher and the Transpolar Drift dominated, leading to more ice export out of the Arctic Ocean through Fram Strait and less sea ice in the Arctic Ocean. In the late Holocene (4,000 years ago to present), the Beaufort Gyre once again strengthened as temperatures slowly cooled until the most recent several decades.

Further reading

Hole, G. M. and M. Macias-Fauria. 2017. Out of the woods: Driftwood insights into Holocene pan-Arctic sea ice dynamic., J. Geophys. Res. Oceans, 122, doi:10.1002/2017JC013126.

Reintges, A., T. Martin, M. Latif, and W. Park. 2017. Physical controls of Southern Ocean deep-convection variability in CMIP5 models and the Kiel Climate Model. Geophys. Res. Lett., 44 (13), 6951-6958, doi:10.1002/2017GL074087.

Rigor, I.G., Wallace, J.M. and Colony, R.L. 2002. Response of sea ice to the Arctic Oscillation. Journal of Climate,15 (18), 2648-2663, doi:10.1175/1520-0442(2002)015<2648:ROSITT>2.0.CO;2.

Schlosser, E., Haumann, F. A., and Raphael, M. N. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay. The Cryosphere Discuss., doi:10.5194/tc-2017-192, in review, 2017.

Cooler conditions, slower melt

A cooler than average first half of the month kept ice loss at a sluggish pace with little change in the ice edge within the eastern Arctic. Retreat was mostly confined to the western Beaufort and northern Chukchi seas. Ice extent remains above that seen in 2012 and 2007.

Overview of conditions

Figure 1. Arctic sea ice extent for August 21, 2017 was 5.27 million square kilometers (2.03 million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

On August 21, 2017, ice extent stood at 5.27 million square kilometers (2.03 million square miles). This was 1.82 million square kilometers (703,000 square miles) below the 1981 to 2010 median extent for the same day, and 804,000 square kilometers (310,000 square miles) and 221,000 square kilometers (85,000 square miles) above the 2012 and 2007 extents for the same day, respectively. The ice edge remained nearly constant through the first half of the month in the Barents and Kara Seas, and retreated only slightly within the East Greenland Sea. The ice edge also remained stable in the Laptev and East Siberian Seas through the first half of the month. Ice retreat occurred primarily within the Chukchi and western Beaufort Seas as well as near the New Siberian Islands. Some ice continues to block the Northern Sea Route near Severnaya Zemlya. Both McClure Strait and the Amundsen Gulf routes within the Northwest Passage remain blocked by ice. On August 17, the Russian nuclear powered icebreaker 50 let pobedy reached the North Pole in just 79 hours, the fastest time yet.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of August 21, 2017, along with daily ice extent data for five previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, 2013 in purple, and 2012 as a dashed line. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Ice retreat from August 1 to August 21 averaged 73,000 square kilometers (28,000 square miles) per day. This was faster than the 1981 to 2010 average rates of ice loss of 57,300 square kilometers (22,000 square miles) per day, but slower than in 2012, which exhibited the fastest rate of ice loss compared to any other August in the passive microwave satellite data record. Normally the rate of ice retreat slows in August as the sun starts to dip lower in the sky. The rate of ice loss was more rapid at the beginning of August, slowing down considerably starting on August 17.

Air temperatures the first two weeks of August were 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) cooler than the 1981 to 2010 average throughout the Arctic Ocean and over Greenland and the North Atlantic. The lowest air temperatures relative to the long-term average were found in coastal regions of the Kara and Barents Seas, continuing the pattern seen throughout much of this summer. Cooler than average conditions within the Central Arctic were a result of persistent cold-core cyclones. These cyclones have not been as large or as strong as the Great Arctic Cyclones of 2012 and 2016, despite the central pressure of one of these systems dropping down to 974 hPa on August 10. In addition, these cyclones are located closer towards the pole within the consolidated ice pack, where they are less likely to cause significant ice loss, as did the 2012 Great Arctic Cyclone in the Chukchi Sea.

While air temperatures start to drop in August, ice melt continues through the month as heat gained in the ocean mixed layer during summer continues to melt the ice from below and from the sides. Sea surface temperatures have been up to 5 degrees Celsius (9 degrees Fahrenheit) above average near the coastal regions, but generally near average or slightly below average along the ice edge in the Beaufort and Chukchi Seas.

NASA Operation IceBridge conducts summer flights

Figure 3. This photograph, taken during NASA Operation IceBridge on July 25, 2017, shows melt ponds on the surface of Arctic sea ice.

Credit: Eric Fraim/NASA
High-resolution image

NASA’s Operation IceBridge (OIB) airborne campaign flew several missions over the Greenland ice sheet this summer to study changes in Greenland outlet glaciers, as well as to observe sea ice. A recent mission collected laser altimeter data to investigate sea ice thickness changes resulting from the piling up of sea ice (or convergence) as ice motion pushes the ice up against the coast. Flights were completed on July 17 and July 25. High-resolution visible imagery collected on the flights also provides close-up looks of melt pond development.

Influence of warm Pacific water

Figure 4. This plot shows measurements of sea surface temperature from drifting buoys, along with satellite-derived sea surface temperature from NOAA and ice concentration from NSIDC for August 6, 2017. Buoy positions as of August 6 are indicated with circles. A gray dot indicates that the buoy is reporting a temperature value outside the range of -2 to 10 degrees Celsius. Red, orange, and yellow indicate higher temperatures, while blues and purples indicate lower temperatures. Whites indicate higher sea ice concentration, and grays indicate lower concentration.

Credit: University of Washington Polar Science Center
High-resolution image

This May, sea ice in the Chukchi Sea was at a record low for the satellite data record. The early retreat of ice in this region may partially be a result of unusually warm ocean temperatures in the region. As reported by Rebecca Woodgate of the University of Washington, Seattle, the Research Vessel Norseman II spent eight days in the Bering Strait and southern Chukchi Sea region to recover oceanographic moorings and whale acoustic instruments, in addition to deploying new instruments. The mooring data indicated early arrival of warm water in the strait, about a month earlier than the average, resulting in June ocean temperatures that were 3 degrees Celsius (5 degrees Fahrenheit) above average. Early intrusion of warm water in the Bering Strait back in May helped to melt sea ice from below, and may have been one of the factors for early development of open water in the region.

Arctic air temperatures and the Paris Climate Accord target

Figure 5. The bar graph, top, shows the Berkeley Earth evaluation of the ten warmest years since 1979 in the Arctic north of 80°N; the plot, middle, shows Arctic average temperatures for the period 1900 to 2016, relative to a 1951 to 1980 reference period; bottom, a map of Arctic temperature differences, in degrees Celsius, for the 2012 to 2016 period (5 years) relative to a 1981 to 2010 reference period.

Credit: National Snow and Ice Data Center
High-resolution image

Our past reports, and many other sources, have noted that the Arctic region is warming faster than the rest of the globe. This warming has accelerated in recent years, particularly since 2005. The ten warmest years on record for the Arctic are within the past twelve years, and 2016 was by far the warmest in the record since 1900. These observations are supported by both NOAA National Centers for Environmental Prediction (NCEP) reanalysis climate data, and by our colleagues at Berkeley Earth. Berkeley Earth is an independent climate fact- and analysis-checking group dedicated to an objective evaluation of the main claims and data sets used to support climate trends and forecasts.

One of the major statements of the recent Paris Climate Accord, dealing with heat-trapping ga reductions, is a target to hold the increase in the global average temperature to well below 2 degrees Celsius (3.6 degrees Fahrenheit) above the pre-industrial average. While this reference for the increase (pre-industrial average) is somewhat ambiguous, using reference average temperatures of either 1951 to 1980 or 1980 to 2010 for the Arctic shows that much of the area north of 80°N is already above this guideline over the past five years (2012 to 2016). As the Arctic will likely continue to warm above 2 degrees Celsius, other areas will need to warm less than that if the threshold is not to be exceeded. In general, land warms about 30 percent faster than oceans in the models, so in a global-average 2 degree Celsius warmer world, much of the global land area would have warmed more than 2 degrees Celsius.

The annual average air temperature for 2016 for the Arctic north of 80°N was more than 3.5 degrees Celsius (6.3 degrees Fahrenheit) above the 1951 to 1980 reference period, the warmest year yet, and most years during the past decade had annual average temperatures between 2 to  2.5 degrees Celsius (3.6 to 4.5 degrees Fahrenheit) above the reference period. Geographically, the NOAA NCEP reanalysis shows that recent warming is primarily located over the Arctic Ocean, and smaller warming trends are seen in the circum-Arctic land areas.

Further reading

Hawkins, E., Ortega, P., Suckling, E., Schurer, A., Hegerl, G., Jones, P., Joshi, M., Osborn, T.J., Masson-Delmotte, V., Mignot, J. and Thorne, P. 2017. Estimating changes in global temperature since the pre-industrial period. Bulletin of the American Meteorological Society, doi:10.1175/BAMS-D-16-0007.1.

A recent slowdown

Arctic extent nearly matched 2012 values through the first week of July, but the rate of decline slowed during the second week. Weather patterns were unremarkable during the first half of July.

Overview of conditions

Figure 1. Arctic sea ice extent for July 17, 2017 was 7.88 million square kilometers (3.04 million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

As of July 17, Arctic sea ice extent stood at 7.88 million square kilometers (3.04 million square miles). This is 1.69 million square kilometers (653,000 square miles) below the 1981 to 2010 average, and 714,000 square kilometers (276,000 million square miles) below the interdecile range. Extent was lower than average over most of the Arctic, except for the East Greenland Sea (Figure 1). Hudson Bay was nearly ice free by mid July, much earlier than is typical, but in line with what has been observed in recent years.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of July 17, 2017, along with daily ice extent data for five previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, 2013 in purple, and 2012 as a dotted brown line. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. This map compares sea ice extent for July 11 in 2017 and in 2012. White shows where ice occurred only in 2012, medium blue is where ice occurred only in 2017, and light blue is where ice occurred in both years.

Credit: National Snow and Ice Data Center
High-resolution image

Through the first week of July, extent closely tracked 2012 levels. The rate of decline then slowed, so that as of July 17, extent was 169,000 square kilometers (65,300 square miles) above 2012 for the same date (Figure 2a). The spatial pattern of ice extent differs from 2012, with less ice in the Chukchi and East Siberian Seas in 2017, but more in the Beaufort, Kara, and Barents Seas and in Baffin Bay (Figure 2b).

Visible imagery provides up close details

Figure 4a. Sea ice in the Canadian Archipelago on July 3, 2017. The blue hues indicate areas of widespread melt ponds on the surface of the ice. ||Credit: RESEARCHER'S NAME/ORGANIZATION *or * National Snow and Ice Data Center| High-resolution image

Figure 3a. This image from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS) shows sea ice in the Canadian Archipelago on July 3, 2017. The blue hues indicate areas of widespread melt ponds on the surface of the ice.

Credit: Land Atmosphere Near-Real Time Capability for EOS (LANCE) System, NASA/GSFC
High-resolution image

sea ice floes

Figure 3b. The Sentinel-2 satellite captured this image of large sea ice floes in Nares Strait on July 8, 2017.

Credit: European Space Agency
High-resolution image

MODIS image of arctic

Figure 3c. This false-color composite image of the Arctic is based on NASA MODIS imagery from July 4 to 10. Most clouds are eliminated by using several images over a week, but some clouds remain, particularly over the ocean areas.

Credit: NASA/Canadian Ice Service
High-resolution image

NSIDC primarily relies on passive microwave data because it provides complete coverage—night and day, and through clouds—and because it is consistent over its long data record. However, other types of satellite data, for example visible imagery from the NASA MODIS instrument on the Aqua and Terra satellites or from the European Space Agency Sentinel 2 satellite, can sometimes provide more detail. When skies clear, details of the ice cover can be seen, including leads, individual ice floes and melt ponds. For example, on July 3 in the Canadian Archipelago, 1-kilometer resolution MODIS imagery shows that the ice surface has a distinctive blueish hue due to the presence of melt ponds on the surface (Figure 3a). Higher resolution Sentinel-2 imagery (10 meters, Figure 3b) on the other hand provides up close detail on individual melt ponds on the ice floes.

The Arctic is a cloudy place, and generally, it is difficult to obtain a clear-sky image of the entire region. However, if images are compiled, or composited, over several days, most of the region may have at least some clear sky. This approach can yield a composite image that is mostly cloud-free. The Canadian Ice Service uses this approach to create a weekly nearly cloud-free composite image of the Arctic (Figure 3c). However, because the ice cover moves (typically several kilometers per day) and melts (during the summer), over the week-long composite period, fine details that can be seen in the daily imagery are not as evident because they have been “smeared” out over the week.

An ice-diminished Arctic

In response to diminishing ice extent, the US Navy has been holding a semi-annual symposium to bring together scientists, policy makers, and others to discuss the sea ice changes and their impacts. The seventh Symposium is taking place this week in Washington, DC, and will be attended by NSIDC scientists Mark Serreze, Walt Meier, Florence Fetterer, and Ted Scambos.

Tendency for warmer winters is increasing

A new study published this week in Geophysical Research Letters by Robert Graham at the Norwegian Polar Institute shows that warm winters in the Arctic are becoming more frequent and lasting for longer periods of time than they used to. Warm events were defined by when the air temperatures rose above -10 degrees Celsius (14 degrees  Fahrenheit). While this is still well below the freezing point, it is 20 degrees Celsius (36 degrees Fahrenheit) higher than average. The last two winters have seen temperatures near the North Pole rising to 0 degrees Celsius. While an earlier study showed that winter 2015/2016 was the warmest recorded at that time, the winter of 2016/2017 was even warmer.

Reference

Graham, R. M., L. Cohen, A. A. Petty, L. N. Boisvert, A. Rinke, S. R. Hudson, M. Nicolaus, and M. A. Granskog. 2017. Increasing frequency and duration of Arctic winter warming events, Geophys. Res. Lett., 44, doi:10.1002/2017GL073395.

Sluggish ice retreat, except in the Chukchi Sea

After setting satellite-era record lows during winter, Arctic sea ice extent declined at a steady but somewhat sluggish pace during May. However, ice has retreated at a record rate in the Chukchi Sea, and open water extended to Barrow, Alaska. In the Southern Hemisphere, ice extent continues its seasonal expansion, but extent remains well below the long-term average for this time of year.

Overview of conditions

n_extn_hires

Figure 1. Arctic sea ice extent for May 2017 was 12.74 million square kilometers (4.92 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for May 2017 averaged 12.74 million square kilometers (4.92 million square miles), the fourth lowest in the 1979 to 2017 satellite record. This contrasts strongly with the past several months, when extent tracked at satellite-era record lows. May 2017 extent was 710,000 square kilometers (274,000 square miles) below the 1981 to 2010 long-term average, and 660,000 square kilometers (255,000 square miles) above the previous record low set in 2016. Sea ice extent remained below average in the Pacific sector of the Arctic and in the Barents Sea, but was slightly above average in Baffin Bay and Davis Strait towards the Labrador Sea. Ice extent was at average levels in the Greenland Sea. In the Chukchi Sea, extent was at record low levels for May.

Conditions in context

time series graph

Figure 2a. The graph above shows Arctic sea ice extent as of June 6, 2017, along with daily ice extent data for five previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, 2013 in purple, and 2012, the record low year, as a dashed line. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

temperature difference plot

Figure 2b. The plot shows differences from average for Arctic air temperatures from May 1 to 27, 2017 at the 925 hPa level (about 2,500 feet above sea level) in degrees Celsius. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA ESRL Physical Sciences Division
High-resolution image

For the Arctic as a whole, the rate of decline in Arctic sea ice extent through May was relatively slow. The May 2017 rate of decline was 42,800 square kilometers (16,500 square miles) per day, compared to the 1981 to 2010 average of 46,990 square kilometers (18,143 square miles) per day.

Sea ice was especially slow to retreat in the Atlantic sector of the Arctic, with little change in the ice edge in Baffin Bay and Davis Strait. The ice edge expanded in the Barents and Greenland Seas until the end of May, when the ice finally started to retreat. Most of the ice retreat in May occurred within the Pacific sector, particularly within the Sea of Okhotsk, and the Bering and Chukchi Seas.

Overall, air temperatures at the 925 hPa level were 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) below average over Eurasia and extending over the Barents, Kara and Laptev Seas, and 1 to 4 degrees Celsius (2 to 7 degrees Fahrenheit) above average over the East Siberian, Chukchi, and Beaufort Seas (Figure 2b).

May 2017 compared to previous years

monthly_ice_05_NH_v2.1

Figure 3. Monthly May ice extent for 1979 to 2017 shows a decline of 2.5 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The linear rate of decline for May is 33,900 square kilometers (13,100 square miles) per year, or 2.5 percent per decade.

Low ice in the Chukchi Sea

Fig. 4a. This map shows sea ice concentration in percent coverage for the Alaska area on May 22, 2017.

Credit: NOAA National Weather Service Alaska Sea Ice Program
High-resolution image

Figure 2d.

Figure 4b. The plot shows daily May sea ice extent, in square kilometers, in the Chukchi Sea region for 2012 to 2017.

Credit: J. Stroeve/ NSIDC
High-resolution image

Figure 4c. The graph shows cumulative temperature departures from average for each year, in degrees Fahrenheit, for Barrow, Alaska from 1921 to May 2017.

Credit: Blake Moore, Alaska Climate Research Center
High-resolution image

Notably, sea ice within the Chukchi Sea retreated earlier than seen at any other time in the satellite data record. By the third week in May, open water extended all the way to Barrow, Alaska (Figure 4a). Figure 4b shows daily ice extent for May from 2012 onward in the Chuckchi Sea. The rapid retreat in 2017 stands out. A recent report by the National Oceanographic Atmospheric Administration (NOAA) indicates that the amount of open water north of 68o N at this time of year is unprecedented.

Part of the explanation for earlier open water formation in the Chukchi Sea is the unusually high air temperatures in that region during the previous winter. It is instructive to look at the cumulative temperature departure from average for Barrow, Alaska (Figure 4c). From 1921 until about 1989, conditions at Barrow actually got progressively cooler. However, since that time, temperatures have markedly increased.

Consistent with warm conditions, extensive open water in the Chukchi Sea region persisted into December; the delayed ice growth potentially led to thinner ice than usual in spring. In addition, strong winds from the north occurred for a few days at the end of March and early April, pushing ice southward in the Bering Sea, breaking up the ice in the Chukchi Sea, and even flushing some ice out through the Bering Strait. At the same time further east near Barrow, winds helped to push ice away from the coast. Based on recent work by NSIDC and the University of Washington, the pattern of spring sea ice retreat also suggests a role of strong oceanic heat inflow to the Chukchi Sea via Bering Strait.

Impacts of low Chukchi Sea on Alaskan communities

The ARCUS Sea Ice for Walrus Outlook (SIWO) provides weekly reports from April to June on sea ice conditions in the northern Bering Sea and southern Chukchi Sea regions of Alaska to support subsistence hunters and coastal communities. While the reports are not intended for operational planning or navigation, they provide detailed ice and weather observations for the region, some made by local community members, others from operational forecast centers. The most recent update on June 2nd discusses the continued rapid deterioration of sea ice between Wales and Shishmaref, Alaska. Nearly ice-free conditions around Nome, Alaska reflect warmer waters from the Bering Sea moving into the region. Some sea ice remains attached to the shore along the northeast coast of St. Lawrence Island, but the Bering Sea is essentially ice free. Prime walrus hunting for these communities is typically in May. However, when the ice retreats early, the walrus go with it, reducing the number of walrus the local communities can hunt.

Sea ice data and analysis tools

NSIDC has released a new set of tools for sea ice analysis and visualization. In addition to Charctic, our interactive sea ice extent graph, the new Sea Ice Data and Analysis Tools page provides access to Arctic and Antarctic sea ice data organized in seven different data workbooks, updated daily or monthly. Animations of September Arctic and Antarctic month average sea ice and concentrations may also be accessed from this page.

Further Reading

Serreze, M.C., Crawford, A., Stroeve, J. C., Barrett, A.P. and Woodgate, R.A. 2016.  Variability, trends and predictability of seasonal sea ice retreat and advance in the Chukchi Sea.  Journal of Geophysical Research, 121, doi:10.1002/2016JC011977.

 

 

Another record, but a somewhat cooler Arctic Ocean

Arctic sea ice extent for March 2017 was the lowest in the satellite record for the month. The decline in ice extent has been uneven since the seasonal maximum was reached on March 7, 2017, with a modest period of expansion towards the end of the month.

Overview of conditions

extent map

Figure 1. Arctic sea ice extent for March 2017 was 14.43 million square kilometers (5.57 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for March 2017 averaged 14.43 million square kilometers (5.57 million square miles), the lowest March extent in the 38-year satellite record. This is only 60,000 square kilometers (23,000 square miles) below March 2015, the previous lowest March extent, and 1.17 million square kilometers (452,000 square miles) below the March 1981 to 2010 long-term average. This month continues the record low conditions seen since October 2016.

Conditions in context

timeseries graph

Figure 2a. The graph above shows Arctic sea ice extent as of April 9, 2017, along with daily ice extent data for five previous years. 2017 to 2016 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, 2012 to 2013 in purple, and 2011 to 2012 in dashed brown. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

air temperature plot

Figure 2b. The plot shows Arctic air temperature differences at the 925 hPa level (about 2,500 feet above sea level) in degrees Celsius for March 2017. Yellows and reds indicate temperatures higher than the 1981 to 2010 average; blues and purples indicate temperatures lower than the 1981 to 2010 average.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

sea level pressure plot

Figure 2c. The plot shows Arctic sea level pressure (in millibars) for March 2017 expressed as departures from average conditions. The dominant feature is a large area of below average pressure covering most of the Arctic Ocean.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

The decline in sea ice extent following the March 2017 seasonal maximum was interrupted by a brief period of expansion from about March 11 to 15, a decline extending through about March 26, then another period of growth through the end of the month into early April. On April 4th, the extent was greater than on the same day in 2016. This type of behavior is not unusual for this time of year when declines in extent in warmer, lower latitudes can be countered by periods of expansion in the still-cold higher latitudes. Shifts in wind patterns also lead to variability. Regions that experienced slight ice advance were at the end of the month in the Barents Sea and in the Bering Sea. Nevertheless, by early April, extent remained below average in the Barents Sea and in the Sea of Okhotsk and the western Bering Sea. Interestingly, ice extended further south than usual in the eastern Bering Sea.

March saw continued warmth over the Arctic Ocean. The warmest conditions for March 2017 as compared to average were over Siberia. While temperatures were still well above average along the Russian coastal seas (6 to 7 degrees Celsius, or 11 to 13 degrees Fahrenheit), those over the northern North Atlantic and the Canadian Arctic Archipelago were near average.

The dominant feature of the sea level pressure field for March 2017 was an area of below average pressure covering most of the Arctic Ocean. Locally, pressures were more than 15 millibars below the 1981 to 2010 average. This pattern points to a continuation of the stormy conditions that prevailed over the past winter and is broadly consistent with the positive phase of the Arctic Oscillation, a large-scale mode of climate variability. When the Arctic Oscillation is in its positive phase, sea level pressure is below average over the Arctic Ocean. The Arctic Oscillation has generally been in a positive phase since December. The unusually high Siberian temperatures for March 2017 are consistent with persistent winds from the south and east along the southern side of the low pressure.

March 2017 compared to previous years

trend graph

Figure 3. Monthly March ice extent for 1979 to 2017 shows a decline of 2.74 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The linear rate of decline for March is 42,700 square kilometers (16,500 square miles) per year, or 2.74 percent per decade.

Report from the field

research photo

Figure 4. The team prepares to measure snow thickness over sea ice in Cambridge Bay, Canada on April 5, 2017, during an AltiKa field validation campaign. NSIDC researcher Andrew Barrett is in a red jacket; Julienne Stroeve holds a magna probe.

Credit: Isobel Lawrence
High-resolution image

As of the publication of this post, NSIDC scientists Julienne Stroeve and Andrew Barrett are in Cambridge Bay, Canada on a satellite validation campaign. Efforts focus on ground measurements of snow depth over sea ice, ice thickness, and snow structure in order to validate the joint French/Indian AltiKa Ka band radar altimeter. Coincident aircraft Ka band and LiDAR measurements allow researchers to connect measurements on the ground with those made by the satellite. Air temperatures have ranged from -20 to -5 degrees Celsius (-4 to 23 degrees Fahrenheit), with wind chills from -40 to -20 degrees Celsius (-40 to -4 degrees Fahrenheit). Dr. Stroeve will then join another field campaign operating out of Alert, Canada for further validation of AltiKa and CryoSat2 over the Lincoln Sea.

Arctic sea ice thickness

sea ice volume plot

Figure 5. The graph shows sea ice volume from the PIOMAS model/observations for each year from 2010 through March 2017, and the 1979 to 2016 average (black line) and one (dark gray) and two (light gray) standard deviation ranges.

Credit: NSIDC courtesy University of Washington Polar Science Center
High-resolution image

A key early indicator for the upcoming melt season is the thickness of the sea ice. An assessment of available information suggests a fairly thin ice cover, not surprising given the warm temperatures over much of the Arctic Ocean during the winter.

Satellite data from the European Space Agency (ESA) CryoSat-2 radar altimeter, which is processed into sea ice thickness estimates at the University College London’s Center for Polar Observing and Modeling (CPOM) indicates ice along much of the Siberian coast with thicknesses of 1.5 to 2.0 meters (4.9 to 6.6 feet) or less. This is not atypical for seasonal ice; however this band of <2.0 meters of ice covers a much larger region and extends much farther north than it used to—well north of 80 degrees N latitude on the Atlantic side of the Arctic. NASA’s Operation IceBridge has also been collecting data over the past month. That data will not be available for a few weeks; a key focus of some flights has involved collaboration with ESA to collect coincident data with CryoSat-2 to help validate the satellite estimates.

Another way to estimate thickness and total ice volume is with a combination of observations and a model, which is done by the University of Washington Polar Science Center’s University of Washington Polar Science Center’s Pan-Arctic Ice Ocean Modeling and Assimilation System (PIOMAS). The model uses observed sea ice concentration fields to constrain the model and estimates thickness and total volume via physical simulations in the model. It shows that sea ice volume has been at record low levels throughout 2017 so far (Figure 5).

Sea ice loss and Atlantic layer heat

For many years, scientists have pondered how much of the sharp decline in summer sea ice extent and volume is due to “top down” forcing—a warmer atmosphere leading to more summer melt and less winter growth, versus “bottom up” forcing, in which ocean heat is brought to bear on the underside of the ice. There is a great deal of heat in the Arctic Ocean from waters that are imported from the Atlantic. As fairly warm and salty Atlantic water enters the Arctic Ocean it dives underneath the relatively fresh Arctic Ocean surface layer. Because the fresh surface layer has a fairly low density, the vertical structure of the Arctic Ocean is very stable. As such, it is hard to mix this Atlantic heat upwards to melt ice or keep it from forming in the first place. However, new work by an international team led by Igor Polyakov of the University of Alaska Fairbanks provides strong evidence that Atlantic layer heat is now playing a prominent role in reducing winter ice formation in the Eurasian Basin, which is manifested as more summer ice loss. According to their analysis, the ice loss due to the influence of Atlantic layer heat is comparable in magnitude to the top down forcing by the atmosphere.

Antarctic ice extent low, but on the rise

antarctic timeseries plot

Figure 6. The graph above shows Antarctic sea ice extent as of April 9, 2017, along with daily ice extent data for four previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, and 2013 in purple. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Following the record-low seasonal sea ice minimum, Antarctic sea ice extent has sharply risen, but extent is still far below average, and set daily record low values throughout the month of March. Regionally, sea ice recovered to near average conditions in the Weddell Sea and around much of the coast of East Antarctica. The primary region of below average extent was in the Ross, Amundsen, and Bellingshausen Sea regions, as has been the case throughout the spring and summer. This appears to be related to warmer-than-average sea surface temperatures.

Additional reading

Polyakov, I., A.V. Pnyushkov, M.B. Alkire, I.M. Ashik, T.M. Baumann, E.C. Carmack and 10 others. 2017. Greater role for Atlantic inflows on sea-ice loss in the Eurasian Basin of the Arctic Ocean. Science, doi:10.1126/science.aai8204.

 

 

2017 ushers in record low extent

Record low daily Arctic ice extents continued through most of January 2017, a pattern that started last October. Extent during late January remained low in the Kara, Barents and Bering Seas. Southern Hemisphere extent also tracked at record low levels for January; globally, sea ice cover remains at record low levels.

Overview of conditions

extent map

Figure 1. Arctic sea ice extent for January 2017 was 13.38 million square kilometers (5.17 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for January 2017 averaged 13.38 million square kilometers (5.17 million square miles), the lowest January extent in the 38-year satellite record. This is 260,000 square kilometers (100,000 square miles) below January 2016, the previous lowest January extent, and 1.26 million square kilometers (487,000 square miles) below the January 1981 to 2010 long-term average.

Ice growth stalled during the second week of the month, and the ice edge retreated within the Kara and Barents Seas, and within the Sea of Okhotsk. After January 16, extent increased at a more rapid pace, but the rate of ice growth was still below average for January as a whole. For a few days towards the end of the month, the extent was slightly greater than recorded in 2006, a year which also saw many record low days in January, but by the 30th it was tracking below 2006. Through most of January the ice edge remained north of the Svalbard Archipelago, largely due to the inflow of warm Atlantic water along the western part of the archipelago. However, by the end of January, some ice was found to the northeast and northwest of Svalbard. At the end of January, ice extent remained well below average within the Kara, Barents, and Bering Seas.

Conditions in context

time series graph

Figure 2a. The graph above shows Arctic sea ice extent as of February 5, 2017, along with daily ice extent data for four previous years. 2016 to 2017 is shown in blue, 2015 to 2016 in green, 2014 to 2015 in orange, 2013 to 2014 in brown, and 2012 to 2013 in purple. The 1981 to 2010 average is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. The plot shows Arctic air temperature difference from average, in degrees Celsius, for January 2017.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

January air temperatures at the 925 hPa level (approximately 2,500 feet above sea level) were above average over nearly all of the Arctic Ocean, continuing the pattern that started last autumn (Figure 2b). Air temperatures were more than 5 degrees Celsius (9 degrees Fahrenheit) above the 1981 to 2010 average over the northern Barents Sea and as much as 4 degrees Celsius (7 degrees Fahrenheit) above average in the northern Chukchi and East Siberian Seas. It was also unusually warm over northwestern Canada. Cooler than average conditions (up to 3 degrees Celsius, or 5 degrees Fahrenheit below average) prevailed over the northwest part of Russia and the northeast coast of Greenland.

Atmospheric circulation over the Arctic during the first three weeks of January was characterized by a broad area of below average sea level pressure extending over almost the entire Arctic Ocean. Higher-than-average sea level pressure dominated over the Gulf of Alaska and the North Atlantic Ocean south of Iceland. This set up warm southerly winds from both the northern North Atlantic and the Bering Strait areas, helping to explain the high January air temperatures over the Arctic Ocean. According to the analysis of NASA scientist Richard Cullather, the winter of 2015 to 2016 was the warmest ever recorded in the Arctic in the satellite data record. Whether the winter of 2016 to 2017 will end up warmer remains to be seen; conditions are typically highly variable. For example, during the last week of January, the area of low pressure shifted towards the Siberian side of the Arctic. In the northern Laptev Sea, pressures fell to more than 20 hPa below the 1981 to 2010 average. This was associated with a shift towards cooler conditions over the Arctic Ocean, which may explain why ice extent towards the end of the month rose above levels recorded in 2006.

January 2017 compared to previous years

trend graph

Figure 3. Monthly January ice extent for 1979 to 2017 shows a decline of 3.2 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2017, the linear rate of decline for January is 47,400 square kilometers (18,300 square miles) per year, or 3.2 percent per decade.

Amundsen Sea nearly free of ice

S_daily_extent_hires

Figure 4. Antarctic sea ice extent for February 5, 2017 shows the Amundsen Sea nearly free of ice. The orange line shows the 1981 to 2010 median extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Extent is tracking at records low levels in the Southern Hemisphere, where it is currently summer. As shown in this plot for February 5, this is primarily due to low ice extent within the Amundsen Sea, where only a few scattered patches of ice remain. By contrast, extent in the Weddell Sea is now only slightly below average. This pattern is consistent with persistent above average air temperatures off western Antarctica.

Further reading

Cullather, R. I., Y.-K. Lim, L. N. Boisvert, L. Brucker, J. N. Lee, and S. M. J. Nowicki. 2016. Analysis of the warmest Arctic winter, 2015-2016. Geophysical Research Letters,43, doi:10.1002/2016GL071228.

Sea ice hits record lows

Average Arctic sea ice extent for November set a record low, reflecting unusually high air temperatures, winds from the south, and a warm ocean. Since October, Arctic ice extent has been more than two standard deviations lower than the long-term average. Antarctic sea ice extent quickly declined in November, also setting a record low for the month and tracking more than two standard deviations below average during the entire month. For the globe as a whole, sea ice cover was exceptionally low.

Overview of conditions

sea ice extent map

Figure 1. Arctic sea ice extent for November 2016 was 9.08 million square kilometers (3.51 million square miles). The magenta line shows the 1981 to 2010 median extent for the month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

In November 2016, Arctic sea ice extent averaged 9.08 million square kilometers (3.51 million square miles), the lowest November in the satellite record. This is 800,000 square kilometers (309,000 square miles) below November 2006, the previous lowest November, and 1.95 million square kilometers (753,000 square miles) below the 1981 to 2010 long-term average for November. For the month, ice extent was 3.2 standard deviations below the long-term average, a larger departure than observed in September 2012 when the Arctic summer minimum extent hit a record low.

At this time of year, air temperatures near the surface of the Arctic Ocean are generally well below freezing, but this year has seen exceptional warmth. The overall rate of ice growth this November was 88,000 square kilometers (34,000 square miles) per day, a bit faster than the long-term average of 69,600 square kilometers (26,900 square miles) per day. However, for a brief period in the middle the month, total extent actually decreased by 50,000 square kilometers, or 19,300 square miles—an almost unprecedented occurrence for November over the period of satellite observations. A less pronounced and brief retreat of 14,000 square kilometers (5,400 square miles) occurred in 2013.

Ice growth during November as a whole occurred primarily within the Beaufort, Chukchi and East Siberian Seas, as well as within Baffin Bay. Ice extent slightly retreated in the Barents Sea for the month. Compared to the previous record low for the month set in 2006, sea ice was less extensive in the Kara, Barents, East Greenland, and Chukchi Seas, and more extensive in Baffin Bay this year.

Conditions in context

sea ice extent plot

Figure 2a. The graph above shows daily Arctic sea ice extent as of December 5, 2016, along with daily ice extent data for four previous years. 2016 is shown in blue, 2015 in green, 2014 in orange, 2013 in brown, and 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

air temperature plot

Figure 2b. This plot shows air temperature difference from average in the Arctic for November 2016. Air temperatures at the 925 hPa (approximately 2,500 feet) level in the atmosphere were above the 1981 to 2010 average over the entire Arctic Ocean and, locally up to 10 degrees Celsius (18 degrees Fahrenheit) above average near the North Pole. This is in sharp contrast to northern Eurasia, where temperatures were up to 4 to 8 degrees Celsius (7 to 14 degrees Fahrenheit) below average.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

Continuing the warm Arctic pattern seen in October, November air temperatures were far above average over the Arctic Ocean and Canada. Air temperatures at the 925 hPa level (about 2,500 feet above sea level) were above the 1981 to 2010 average over the entire Arctic Ocean and, locally up to 10 degrees Celsius (18 degrees Fahrenheit) above average near the North Pole. This is in sharp contrast to northern Eurasia, where temperatures were as much as 4 to 8 degrees Celsius (7 to 14 degrees Fahrenheit) below average (Figure 2b). Record snow events were reported in Sweden and across Siberia early in the month.

In autumn and winter, the typical cyclone path is from Iceland, across the Norwegian Sea and into the Barents Sea. This November, an unusual jet stream pattern set up, and storms instead tended to enter the Arctic Ocean through Fram Strait (between Svalbard and Greenland). This set up a pattern of southerly wind in Fram Strait, the Eurasian Arctic and the Barents Sea and accounts for some of the unusual warmth over the Arctic Ocean. The wind pattern also helped push the ice northwards and helps to explain why sea ice in the Barents Sea retreated during November.

Sea surface temperatures in the Barents and Kara Seas remained unusually high, which also helped prevent ice formation. These high sea surface temperatures are a result of warm Atlantic water circulating onto the Arctic continental shelf seas.

November 2016 compared to previous years

extent trend graph

Figure 3. Monthly November ice extent for 1979 to 2016 shows a decline of 5.0 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2016, the linear rate of decline for November is 55,400 square kilometers (21,400 square miles) per year, or 5.0 percent per decade.

Warm Arctic delays ice formation in Svalbard’s fjords

temperature plot

Figure 4a. This plot shows ocean temperature by depth (y axis, in decibars; a decibar is approximately one meter) along a transect (x axis, in kilometers) from the outer continental shelf to the inner parts of Isfjorden, the largest fjord in the Svalbard archipelago, for mid November 2016. (Areas in black show the undersea topography.) Atlantic Water is as warm as 5 degrees Celsius (41 degrees Fahrenheit) and the surface layer still about 2 degrees Celsius (36 degrees Fahrenheit). The surface layer would normally have cooled to the salinity adjusted freezing point at (-1.8 degrees Celsius, 29 degrees Fahrenheit) at this time of year, enabling sea ice formation.

Credit: University Centre in Svalbard
High-resolution image

ocean current map

Figure 4b. The West Spitsbergen Current consists of three branches (red arrows) that transport warm and salty Atlantic Water northward: the Return Atlantic Current (westernmost branch), the Yermak Branch and the Svalbard Branch. The Spitsbergen Trough Current (purple) transports Atlantic Water from the Svalbard Branch into the troughs indenting the shelf along Svalbard. Since 2006, changes in atmospheric circulation have resulted in more warm Atlantic Water reaching these fjords. The blue and red circles on the figure indicate locations where hydrographic data were collected.

Credit: University Centre in Svalbard (UNIS)
High-resolution image

photo of moon

Figure 4c. An inky-black polar night—but no cooling. The moon is the only source of light in the Arctic now, and here shines over open water in Isfjorden, the largest fjord in the Svalbard archipelago, in mid-November 2016.

Credit: Lars H. Smedsrud
High-resolution image

In the Svalbard archipelago, sea ice usually begins to form in the inner parts of the fjords in early November. This November, however, no sea ice was observed. Throughout autumn, the wind pattern transported warm and moist air to Svalbard, leading to exceptionally high air temperatures and precipitation, which fell as rain.

Atmospheric and oceanic conditions in the fjord system were assessed by students from the University Centre in Svalbard. They noted an unusually warm ocean surface layer about 4 degrees Celsius (7 degrees Fahrenheit) above the salinity-adjusted freezing point (Figure 4a). Coinciding with exceptionally high air temperatures over Svalbard during autumn, the water has hardly cooled at all, and it is possible that no sea ice will form this winter.

The above average ocean temperatures arose in part from changes in ocean currents that bring warm and salty Atlantic Water into the fjords. As the warm Gulf Stream moves east, it becomes the branching North Atlantic Drift. One small branch is named the West Spitsbergen Current (Figure 4b). This current flows along the continental shelf on the west coast of Svalbard and is one mechanism for transporting heat towards the fjords. Since 2006, changes in atmospheric circulation have resulted in more Atlantic water reaching these fjords, reducing sea ice production in some and stopping ice formation entirely in others.

Antarctic sea ice continues to track well below average

ice trend graph

Figure 5a. Monthly November Antarctic sea ice extent for 1979 to 2016 shows an increase of 0.36 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

air temperature plot

Figure 5b. This plot shows air temperature difference from average in the Antarctic for October 27 to November 17, 2016. Air temperatures at the 925 hPa level (approximately 2,500 feet) during the period of rapid sea ice decline in Antarctica (October 27 through November 17) were 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) above average near the sea ice edge.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

ice concentration anomaly plot

Figure 5c. This map of sea ice concentration difference from average for November 2016 shows very low ice extent in three areas of the ice edge (near the Antarctic Peninsula, near the western Ross Sea and Wilkes Land, and near Enderby Land) as well as extensive areas of lower-than-average concentration within the interior ice pack in the Weddell Sea, Amundsen Sea, and near the Amery Ice Shelf. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

This year, Antarctic sea ice reached its annual maximum extent on August 31, much earlier than average, and has since been declining at a fairly rapid pace, tracking more than two standard deviations below the 1981 to 2010 average. This led to a new record low for the month of November over the period of satellite observations (Figure 5a). Average extent in November was 14.54 million square kilometers (5.61 million square miles). This was 1.0 million square kilometers (386,000 square miles) below the previous record low of 15.54 million square kilometers (6.00 million square miles) set in 1986 and 1.81 million square kilometers (699,000 square miles) below the 1981 to 2010 average.

For the month, Antarctic ice extent was 5.7 standard deviations below the long-term average. This departure from average was more than twice as large as the previous record departure from average, set in November 1986.

Ice extent is lower than average on both sides of the continent, particularly within the Indian Ocean and the western Ross Sea, but also to a lesser extent in the Weddell Sea and west of the Antarctic Peninsula in the eastern Bellingshausen Sea. Moreover, several very large polynyas (areas of open water within the pack) have opened in the eastern Weddell and along the Amundsen Sea and Ross Sea coast.

Air temperatures at the 925 mbar level were 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) above average near the sea ice edge during late October and early November, corresponding to the period of rapid sea ice decline (Figure 5b).

The entire austral autumn and winter (since March 2016) was characterized by generally strong west to east winds blowing around the continent. This was associated with a positive phase of the Southern Annular Mode, or SAM. This pattern tends to push the ice eastward, but the Coriolis force acting in the ice adds a component of northward drift. During austral spring (September, October and November), the SAM index switched from strongly positive (+4 in mid-September, a record) to negative (-2.8 in mid-November). When the westerly wind pattern broke down in November, winds in several areas of Antarctica started to blow from the north. Over a broad area near Wilkes Land, the ice edge was pushed toward the continent. Areas with southward winds were also located between Dronning Maud Land and Enderby Land, and near the Antarctic Peninsula. This created three regions where ice extent quickly became much less extensive than usual (Figure 5c), reflected in the rapid decline in extent for the Antarctic as a whole. Interspersed with the areas of compressed sea ice and winds from the north, areas of south winds produced large open water areas near the coast, creating the polynyas.

Arctic sea ice loss linked to rising anthropogenic CO2 emissions

co2 plot

Figure 6. This plot shows the relationship between September sea ice extent (1953 to 2015) and cumulative CO2 emissions since 1850. Grey diamonds represent the individual satellite data values; circles represent pre-satellite era values; the solid red line shows the 30-year running average. The dotted red line indicates the linear relationship of 3 square meters per metric ton of CO2.

Credit: D. Notz, Max Planck Institute for Meteorology High-resolution image

A new study published in the journal Science links Arctic sea ice loss to cumulative CO2 emissions in the atmosphere through a simple linear relationship (Figure 6). Researchers conducting the study, including NSIDC scientist Julienne Stroeve, examined this linear relationship based on observations from the satellite and pre-satellite era since 1953, and in climate models. The observed relationship is equivalent to a loss of 3 square meters (32 square feet) for every metric ton of CO2 added to the atmosphere, compared the average from all the climate models of 1.75 square meters (19 square feet). This smaller value, or lower sensitivity, from the models is consistent with findings that the models tend to be generally conservative relative to observations in regard to how fast the Arctic has been losing its summer ice cover. The observed rate of ice loss per metric ton of CO2 allows individuals to more easily grasp their contribution to Arctic sea ice loss.

Global sea ice far below average

sea ice extent plot

Figure 7. This time series of daily global sea ice extent (Arctic plus Antarctic, month and first day of month on the x axis) shows global extent tracking below the 1981 to 2010 average. Sea Ice Index data.

Credit:W. Meier, NASA Cryospheric Sciences, GSFC
High-resolution image

As a result of both Arctic and Antarctic sea ice currently tracking at record low levels, global ice extent near November’s end stood at 7.3 standard deviations below average (Figure 7). However, the processes governing the evolution of sea ice in both hemispheres is a result of different atmospheric and oceanic processes and geographies and it unlikely that record low conditions in the two hemispheres are connected. Also, it is not especially instructive to assess a global sea ice extent because the seasons are opposite in the two hemispheres. In November the Arctic is in its ice growth season while Antarctic is losing ice. Antarctic sea ice as a whole has slightly increased over the past four decades (but with the last two austral winters having average and below average extent, respectively). The slight overall increase in Antarctic ice over the satellite record can be broadly linked to wind patterns that have helped to expand the ice cover towards the north (towards the equator).

NASA Operation IceBridge completes its 2016 Antarctic campaign

sea ice photo

Figure 8. This photograph from Operation IceBridge shows broken floes of sea ice floating in the Weddell Sea. A large area of open water can be seen on the horizon.

Credit: J. Beitler/National Snow and Ice Data Center
High-resolution image

In October, four NSIDC personnel accompanied the NASA Operation IceBridge campaign on its airborne surveys over Antarctica. The campaign completed a total of 24 flights over the continent in October and November, covering sea ice, land ice, ice shelves, and glaciers as Antarctica headed into its austral summer. Missions surveyed sea ice in the Weddell and Bellinghausen Seas with instruments that measure both sea ice extent and thickness. These measurements add to a time series of data that measures changes in sea ice and helps researchers assess the future trajectory of the ice pack and its impact on the climate. Visual observations from the flights confirmed that areas in the Bellingshausen Sea that are typically covered in sea ice were open water this year.

One of this year’s missions flew over a massive rift in the Antarctic Peninsula’s Larsen C Ice Shelf. Ice shelves are the floating parts of ice streams and glaciers, and they buttress the grounded ice behind them; when ice shelves collapse, the ice behind accelerates toward the ocean, where it then adds to sea level rise. Larsen C neighbors a smaller ice shelf that disintegrated in 2002 after developing a rift similar to the one now growing in Larsen C.

The IceBridge scientists measured the Larsen C fracture to be about 70 miles long, more than 300 feet wide and about a third of a mile deep. The crack completely cuts through the ice shelf but it does not go all the way across it. Once it does, it will produce an iceberg roughly the size of the state of Delaware.

The mission of Operation IceBridge is to collect data on changing polar land and sea ice and maintain continuity of measurements between NASA’s Ice, Cloud and Land Elevation Satellite (ICESat) missions. The original ICESat mission ended in 2009, and its successor, ICESat-2, is scheduled for launch in 2018. Operation IceBridge, which began in 2009, is currently funded until 2019. The planned overlap with ICESat-2 will help scientists validate the satellite’s measurements.

Further reading

Nilsen, F., Skogseth, R., Vaardal-Lunde, J., and Inall, M. 2016. A simple shelf circulation model: Intrusion of Atlantic Water on the West Spitsbergen Shelf. J. Physical Oceanography, 46, 1209-1230. doi:10.1175/JPO-D-15-0058.1

Notz, D. and J. Stroeve. 2016. Observed Arctic sea-ice loss directly follows anthropogenic CO2 emission. Science, 11 Nov 2016: Vol. 354, Issue 6313, pp. 747-750. doi:10.1126/science.aag2345.

Parkinson, C. 2014. Global sea ice coverage from satellite data: Annual cycle and 35-year trends. Journal of Climate, December 2014. doi:10.1175/JCLI-D-14-00605.1.

References

Fetterer, F., K. Knowles, W. Meier, and M. Savoie. 2016, updated daily. Sea Ice Index, Version 2. Boulder, Colorado USA. NSIDC: National Snow and Ice Data Center. doi:10.7265/N5736NV7.

 

 

Rapid ice growth follows the seasonal minimum, rapid drop in Antarctic extent

Since reaching its seasonal minimum on September 10 of 4.14 million square kilometers (1.60 million square miles), Arctic sea ice extent has increased at a rapid rate. Antarctic ice extent saw a sharp decline during the first half of September.

Overview of conditions

extent map

Figure 1. Arctic sea ice extent for September 2016 was 4.72 million square kilometers (1.82 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent during September 2016 averaged 4.72 million square kilometers (1.82 million square miles), the fifth lowest in the satellite record. Average September extent was 1.09 million square kilometers (421,000 square miles) above the record low set in 2012, and 1.82 million square kilometers (703,000 square miles) below the 1981 to 2010 long-term average. Extent remains especially low in the Beaufort, Chukchi and East Siberian Seas. The Northern Sea Route along the Russian coast appears to still be open, but the southern Northwest Passage route (Amundsen’s route) appears to be closed.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of October 4, 2016, along with daily ice extent data for four previous years. 2016 is shown in blue, 2015 in green, 2014 in orange, 2013 in brown, and 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

air pressure plot

Figure 2b. This plot shows Arctic sea level pressure difference from average for September 2016. Yellows and reds indicate higher than average pressures; blues and purples indicate lower than average pressures.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

Figure 2c. This plot shows Arctic air temperature (at the 925 hPA level) difference from average for September 2016. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

As of October 1, Arctic sea ice extent stood at 5.19 million square kilometers (2.00 million square miles), which is an increase of 1.05 million square kilometers (405,000 square kilometers) from the seasonal minimum of 4.14 million square kilometers (1.60 million square miles) recorded on September 10. Compared to some other years, the growth rate since the seasonal minimum has been quite rapid. The ice growth has been predominantly in the central Arctic Ocean and the East Siberian Sea sector. There has been little ice growth in the Laptev and Kara Seas, and ice has actually retreated in the Barents Sea.

September saw a shift in weather patterns. The summer of 2016 was characterized by unusually low pressure over the central Arctic Ocean, west of the dateline. While low pressure was still a dominant feature of September, the center of low pressure shifted towards North America, and a center of high pressure strengthened over north central Eurasia (Figure 2b). Conditions under the high pressure region were quite warm; temperatures at the 925 hPa level were up to 6 degrees Celsius (11 degrees Fahrenheit) above the 1981 to 2010 average (Figure 2c).

September 2016 compared to previous years

trend graph

Figure 3. Monthly September ice extent for 1979 to 2016 shows a decline of 13.3% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Through 2016, the linear rate of decline for September is 87,200 square kilometers (33,700 square miles) per year, or 13.3 percent per decade. While the absolute seasonal minimum for 2016 was tied with 2007 as second lowest, the average extent for the month of September 2016 of 4.72 million square kilometers (1.82 million square miles) ends up being fifth lowest in the satellite record, behind both 2012 and 2007. This reflects the rapid growth of ice following the seasonal minimum recorded on September 10.

Antarctic sea ice reaches winter maximum on a record early date

Figure 4. The graph above shows Antarctic sea ice extent as of October 4, 2016, along with daily ice extent data for four previous years. 2016 is shown in blue, 2015 in green, 2014 in orange, 2013 in brown, and 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice extent reached 18.44 million square kilometers (7.12 million square miles) on August 31, 2016, and this appears to be the maximum extent for this year. This is the earliest maximum in the satellite record since 1979, and the first time the maximum has occurred in August. The maximum was 240,000 square kilometers (93,000 square miles) greater than the average extent for this date of 18.20 million square kilometers (7.03 million square miles). It is the tenth lowest maximum extent on record. On average, the maximum occurs much later (September 23 to 24).

The early maximum appears to be the result of an intense wind pattern in September, spanning nearly half of the continent from the Wilkes Land area to the Weddell Sea, and centered on the Amundsen Sea. Stronger than average low pressure in this area, coupled with high pressure near the Falkland Islands, and near the southern tip of New Zealand in the Pacific Ocean, created two regions of persistent northwesterly winds. Sea ice extent decreased in the areas where the northwesterly winds reached the ice front.

A comparison of sea ice extent from the date of the maximum (August 31) and the last day of September (one month later) shows that sea ice extent decreased through the month along a broad region west and east of the Antarctic Peninsula. It also decreased on the other side of the continent north of Wilkes Land. By comparison, this was partly offset by increases in the northern Amundsen Sea and north of Dronning Maud Land.

The 2016 Arctic melt season in review

sum_slp_2016

Figure 5a. This plot shows Arctic sea level pressure difference from average for June, July, and August 2016. Yellows and reds indicate higher than average pressures; blues and purples indicate lower than average pressures.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

sum_temp_2016

Figure 5b. This plot shows Arctic air temperature (at the 925 hPA level) difference from average for June, July, and August 2016. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA/ESRL Physical Sciences Division
High-resolution image

The winter of 2015/2016 was extremely warm over the Arctic Ocean. The maximum sea ice extent in March set a new low in the satellite record, barely beating out March 2015. Extent for the month of March as a whole ended up second lowest on record. In April, problems with the F-17 sensor forced a temporary cessation of sea ice updates until data from the newer F-18 satellite could be brought online. Data from other sources documented that during this time, ice was still tracking very low. The months of May and June set more record lows in ice extent.

Although the onset of surface melt was early over much of the Arctic Ocean, as the melt season progressed, a pattern of stormy weather set up. This ended up being a very persistent pattern; as averaged from June through August, sea level pressure was much lower than average over the central Arctic Ocean (Figure 5a), and air temperatures over most of the ocean were average or below average (Figure 5b). Such conditions have been previously shown to limit summer ice loss, and by the early August it became clear that a new record low for September extent was not in the offing. Two very strong storms crossed the central Arctic Ocean in August. In 2012, a strong storm contributed to accelerated ice loss, but this year, the overall influence of the storms remains unclear.

Despite the generally unfavorable weather conditions, the seasonal minimum of 4.14 million square kilometers (1.60 million square miles), reached on September 10, ended up in a statistical tie with 2007 as the second lowest in the satellite record. While previous analyses have shown that there is little correlation between the seasonal maximum extent and the season minimum extent, in large part because of the strong impacts of summer weather patterns, it is likely that the 2016 melt season started with a lot of fairly thin ice. This may help to explain why, despite summer weather unfavorable to sea ice loss, extent at the seasonal minimum ended up tied for second lowest.

Sea ice age

sea ice age still image

Figure 6. This image shows sea ice age for the week of the 2016 sea ice minimum. The bar chart shows the extent of each multi-year age category (in millions of square kilometers); the green lines on the bar chart are the high values in the satellite record for the minimum week.

Credit: NASA Scientific Visualization Studio
High-resolution image

Age is another indicator of the state of sea ice because older ice is generally thicker ice (Tschudi et al., 2016). As mentioned in previous posts, there has been an overall decline in ice age, particularly the oldest ice types—ice that has been in the Arctic for more than four years. Near-real-time updates (which are preliminary) indicate that at this year’s minimum, only 106,000 square kilometers (41,000 square miles) of 4+ year old ice remained, or 3.1 percent of the total ice extent. This is in stark contrast to the mid-1980s when over 2 million square kilometers (33 percent, or 772,000 square miles) of the summer minimum extent was composed of old ice that had survived at least four summer melt seasons.

Reference

Tschudi, M.A., J.C. Stroeve, and J.S. Stewart. 2016. Relating the age of Arctic sea ice to its thickness, as measured during NASA’s ICESat and IceBridge campaigns. Remote Sensing, 8, 457, doi:10.3390/rs8060457.

Arctic sea ice nears its minimum extent for the year

Throughout August, Arctic sea ice extent continued to track two or more standard deviations below the long-term average. The month saw two very strong storms enter the central Arctic Ocean from along the Siberian coast. In the Antarctic, ice extent remained near average.

Overview of conditions

sea ice extent map

Figure 1. Arctic sea ice extent for August 2016 was 5.60 million square kilometers (2.16 million square miles). The magenta line shows the 1981 to 2010 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Average sea ice extent for August 2016 was 5.60 million square kilometers (2.16 million square miles), the fourth lowest August extent in the satellite record. This is 1.03 million square kilometers below the 1981 to 2010 average for the month and 890,000 square kilometers (344,000 square miles) above the record low for August set in 2012. As of September 5, sea ice extent remains below average everywhere except for a small area within the Laptev Sea. Ice extent is especially low in the Beaufort Sea and in the East Siberian Sea. With about two weeks of seasonal melt yet to go, it is unlikely that a new record low will be reached. However, since August 26, total sea ice extent is already lower than at the same time in 2007 and is currently tracking as the second lowest daily extent on record. In addition, during the first five days of September the ice cover has retreated an additional 288,000 square kilometers (111,000 square miles) as the tongue of sea ice in the Chukchi Sea has started to disintegrate.

Conditions in context

sea ice extent graph

Figure 2a. The graph above shows Arctic sea ice extent as of September 5, 2016, along with daily ice extent data for four previous years. 2016 is shown in blue, 2015 in green, 2014 in orange, 2013 in brown, and 2012 in purple. The 1981 to 2010 average is in dark gray. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

ice concentration map

Figure 2b. The map shows Arctic sea ice concentration from the AMSR2 satellite instrument for September 5, 2016. Light blues and greens in ocean areas indicate areas of low ice concentration. The grey circle at the North Pole indicates where the satellite does not collect data, due to its orbit.

Credit: National Snow and Ice Data Center/University of Bremen
High-resolution image

The average ice loss rate through August was 75,000 square kilometers per day (29,000 square miles), compared to the long-term 1981 to 2010 average of 57,300 square kilometers per day (22,100 square miles per day), and a rate of 89,500 square kilometers per day for 2012 (34,500 square miles per day). Total ice extent loss in August was 2.34 million square kilometers (904,000 square miles).

Air temperatures at the 925 hPa level were 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) below average for a large area stretching from the northern Kara Sea, through the Laptev Sea, and into north-central Eurasia. Temperatures elsewhere over the Arctic Ocean were near average. Reflecting the generally stormy pattern through the month, sea level pressures were well below average (as much as 10 hPa) over the central and eastern Arctic Ocean. Two very strong cyclones entered the central Arctic Ocean in August from along the Siberian coast, bringing strong winds. On August 16, the central pressure of the first cyclone dropped to 968 hPa, nearly rivaling the storm in early August 2012 that attained a minimum central pressure of 966 hPa. On 22 August, the second storm started moving to the central Arctic Ocean along a similar track, and on August 23, attained a central pressure of 970 hPa.

Past studies have shown that stormy summers tend to end up with more sea ice at the end of the melt season than summers with high pressure over the central Arctic Ocean, primarily because stormy summers are both fairly cool and the wind pattern tends to spread the ice out. However, the impact of strong individual storms may be different—the 2012 event appears to have temporarily boosted ice loss by breaking up the ice cover, with the wave action tending to mix warmer waters from below to hasten melt. It may also be that, as the ice cover thins, its response to storms is changing.

It indeed appears that the August 2016 storms helped to break up the ice and spread it out, contributing to the development of several large embayments and polynyas. Some of this ice divergence likely led to fragmented ice being transported into warmer ocean waters, hastening melt. Whether warmer waters from below were mixed upwards to hasten melt remains to be determined, but as discussed below, these storms were associated with very high wave heights.

August 2016 compared to previous years

sea ice trend graph

Figure 3. Monthly August ice extent for 1979 to 2016 shows a decline of 10.4 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent averaged for August 2016 was the fourth lowest in the satellite data record. Through 2016, the linear rate of decline for August is 10.4 percent per decade.

Cyclones, ocean wave heights, and ice retreat

wave height maps

Figure 4. This series of plots shows significant wave height (in meters, indicated by color scale) in the western Arctic Ocean during the 2016 Arctic cyclone, from August 14 to August 16, 2016, as predicted by a numerical wave model (WAVEWATCH III), run at the Naval Research Laboratory (NRL). The solid red lines correspond to the analysis ice concentrations (25 percent, 50 percent and 75 percent) used as input for the wave model. White arrows indicate wave direction. This hindcast uses two time-varying inputs: 10-meter wind vectors from the atmospheric model NAVGEM (Navy Global Environmental Model, Hogan et al. 2014) run at the Fleet Numerical Meteorology and Oceanography Center (FNMOC), and analyses of ice concentrations (also produced at FNMOC) from passive microwave radiometer data (SSM/I). The wave model is run on a polar stereographic grid with a resolution of approximately 18 kilometers.

Credit: Erick Rogers, Naval Research Laboratory
High-resolution image

Large waves are common at high latitudes; 10-meter wave heights (33 feet) are not unusual for the Nordic Seas, and 15-meter wave heights (49 feet) can occur in the high latitudes of the Southern Ocean. However, large waves are a relatively new feature of the western Arctic Ocean. The height of waves is in part determined by surface wind speed, as well as the fetch (distance over open water that the wind can travel) and the duration of a wind event. A moderate sea ice cover damps ocean waves by absorbing and dispersing the wave energy through jostling of the ice floes against one another. A dense ice pack cover acts as a shield between the ocean and the surface wind, preventing wave formation.

In the latter half of the twentieth century, 4 to 6 meter waves (13 to 20 feet) rarely occurred in the western Arctic Ocean, but with more open water they have become more frequent, especially when strong storms enter the Arctic Ocean in late summer or early autumn. During the first of the two August cyclones discussed above, waves up to 5.9 meters (19 feet) were predicted. This occurred during the early part of the cyclone’s lifecycle (1800 UTC August 14), in the eastern Kara Sea. Further east, north of the New Siberian Islands, wave heights were estimated as high as 4.3 meters (14 feet) late on August 15. In this region, the waves were directly incident on the ice edge. In response, the ice edge retreated following the 4.3 meter waves on August 15.

Northwest Passage update

Figure 5. The time series shows total sea ice area for selected years and the 1981-2010 average within the northern route of the Northwest Passage. The cyan line shows 2016 and other colors show ice conditions in different years. Data are from the Canadian Ice Service.

Credit: Stephen Howell, Environment and Climate Change Canada
High-resolution image

The Northwest Passage refers to the fabled shortcut between the Atlantic and Pacific through the Canadian Archipelago. However, it is not one route. There is a northern, deep-water route through the Parry Channel, entered from the west through the M’Clure Strait and a shallower southern route, known as Amundsen’s route. Sea ice in the Parry Channel route has shown a sharp decline since the middle of July, but the channel is still not entirely ice free. Considerable ice remains in the western (M’Clure Strait) region and there are lesser amounts in the eastern regions. This is mostly (~80 percent) multiyear ice. Low ice years in the Parry Channel are typically the result of early summer breakup associated with high sea level pressure over the Beaufort Sea and Canada Basin that displace the Arctic Ocean pack ice away from the western entrance. Conversely, low sea level pressure anomalies over the Beaufort Sea and Canada Basin keep the Arctic Ocean pack ice up against the western entrance. This has been the case for much of the 2016 melt season. The southern (Amundsen’s) route is open but it is still uncertain whether the northern route will open in the coming weeks.

Even during mild ice years, thick multiyear ice is typically advected into these routes during the summer months. Multiyear ice is a significant obstacle for ships. Nevertheless, taking advantage of mild sea ice conditions, the 68,000-ton Crystal Serenity set sail from Anchorage, Alaska on August 16 for its 32-day journey through the Northwest Passage via Amundsen’s route. This is the largest ship thus far to navigate the Northwest Passage and is accompanied by an icebreaker ship and two helicopters. The ship sailed through the Northwest Passage in less than three weeks—52 times faster than Amundsen’s nearly three-year voyage.

On the other side of the Arctic, the Northern Sea Route appears mostly ice free.

Further reading

Collins, C. O., W. E. Rogers, A. Marchenko and A. V. Babanin. 2015. In situ measurements of an energetic wave event in the Arctic marginal ice zone. Geophysical Research Letters, 42, doi:10.1002/2015GL063063.

Haas, C., and S. E. L. Howell. 2015. Ice thickness in the Northwest Passage. Geophysical Research Letters, 42, 7673–7680, doi:10.1002/2015GL065704.

Hogan, T., et al. 2014. The Navy Global Environmental Model, Oceanography, 27(3), 116-125.

Howell, S. E. L., T. Wohlleben, M. Dabboor, C. Derksen, A. Komarov and L. Pizzolato. 2013. Recent changes in the exchange of sea ice between the Arctic Ocean and the Canadian Arctic Archipelago. Journal of Geophysical Research, 118, 3595–3607, doi:10.1002/jgrc.20265.

Thomson, J., and W. E. Rogers. 2014. Swell and sea in the emerging Arctic Ocean, Geophysical Research Letters 41, doi:10.1002/2014GL059983.

Thomson, J. et al. 2016. Emerging trends in the sea state of the Beaufort and Chukchi seas, Ocean Modelling 105, doi:10.1016/j.ocemod.2016.02.009.