A fractured winter

Arctic sea ice is nearing its winter maximum and will soon begin its seasonal decline. Ice extent remains below average, in part a result of the persistence of the negative phase of the Arctic Oscillation that has kept winter temperatures warmer than average. The Antarctic passed its summer minimum ice extent, reaching the second highest level in the satellite record at this time of year, primarily due to continued higher-than-average ice in the Weddell Sea.

Overview of conditions

Figure 1. Arctic sea ice extent for February 2013 was 14.66 million square kilometers (5.66 million square miles). The magenta line shows the 1979 to 2000 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Average sea ice extent for February 2013 was 14.66 million square kilometers (5.66 million square miles). This is 980,000 square kilometers (378,000 square miles) below the 1979 to 2000 average for the month, and is the seventh-lowest February extent in the satellite record. Since 2004, the February average extent has remained below 15 million square kilometers (5.79 million square miles) every year except 2008. Prior to 2004, February average extent had never been less than 15 million square kilometers. Ice extent remains slightly below average everywhere except the Bering Sea.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of March 3, 2013, along with daily ice extent data for the 2012, the record low year. 2013 is shown in blue, and 2012 in green. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Through the month of February, the Arctic gained 766,000 square kilometers of ice (296,000 square miles), which is 38% higher than the 1979 to 2000 average for the month. Air temperatures at the 925 hPa level were 2 to 5 degrees Celsius (4 to 9 degrees Fahrenheit) higher than average across the Atlantic sector of the Arctic, especially near Iceland and in Baffin Bay. Temperatures were lower than average by 2 to 6 degrees Celsius (4 to 11 degrees Fahrenheit) north of Greenland and the Canadian Archipelago, and in the Beaufort, Chukchi and East Siberian seas, linked to anomalously low sea level pressure over Alaska and Canada. The dominant feature of Arctic sea level pressure for February 2013 was unusually high pressure over the East Greenland and Barents seas, consistent with a predominantly negative phase of the Arctic Oscillation.

February 2013 compared to previous years

Figure 3. Monthly February ice extent for 1979 to 2012 shows a decline of -2.9% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Average Arctic sea ice extent for February 2013 was the seventh lowest for the month in the satellite record. Through 2013, the linear rate of decline for February ice extent is -2.9% per decade relative to the 1979 to 2000 average. Although the relative reduction in winter sea ice extent remains small compared to reductions in summer, the linear trend represents an overall reduction of more than 1.57 million square kilometers (606,000 square miles) from 1979 to 2013.

Persistence of the negative phase of the Arctic Oscillation

Figure 4. These ice motion images for November 2012 (left) and December 2012 (right) show strong export of ice through the Fram Strait in November, while in December ice export through the Fram was about average.

Credit: National Snow and Ice Data Center
High-resolution image

As discussed in the January and February posts, sea level pressure in the Arctic has remained higher than average, resulting in persistence of the negative phase of the Arctic Oscillation (AO). During the negative phase of the Arctic Oscillation, enhanced poleward transport of warm air tends to keep temperatures in the Arctic above average. At the same time, the negative phase of the Arctic Oscillation allows for more cold Arctic air to intrude or mix with air at lower latitudes. These cold air outbreaks can result in low temperatures and increased storminess in mid latitudes.

The Arctic Oscillation also impacts sea ice movement in the Arctic. The negative phase of the Arctic Oscillation is linked to an increase in the strength of the Beaufort Gyre and reduced outflow of ice through Fram Strait. A negative AO used to help promote ice survival through summer by strengthening the Beaufort Gyre and thereby increasing the distribution of old, thick ice along coastal Alaska and Siberia. However, the location and strength of positive sea level pressure anomalies has varied throughout winter, with varied impacts on ice motion.

For example, during November (weak AO index of -0.111) positive sea level pressure anomalies were centered over the Bering Sea and Alaska, resulting in strong ice motion from the central Arctic towards coastal Canada and north of Greenland outwards towards Fram Strait. In December, the strong negative AO index of -1.749 was reflected in positive sea level pressure anomalies centered over the Kara and Barents seas, enhancing ice motion from the southern Beaufort into the Chukchi sea and out towards the Bering Sea. Export of ice out of Fram Strait was about average. Similar variations in positive sea level pressure anomalies have continued, with the largest positive anomalies over the central Arctic in January, and over the Barents Sea in February.

This pattern is similar to that observed during the extreme negative Arctic Oscillation year of 2009/2010, when old ice was transported into the southern Beaufort and Chukchi seas where it then melted out during summer 2010, further depleting the Arctic of its store of old, thick ice.

Ice fracture

Figure 5. In this series of images from February 13 to March 2, from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), a large crack expands in the sea ice near the coasts of Canada and Alaska. Black areas indicate where the satellite instrument did not collect data due to lack of sunlight. The dark area decreases as the sun rises in the Arctic. Rapid Response imagery was obtained from the NASA Land Atmosphere Near-real time Capability for EOS (LANCE) system.

Credit: NASA LANCE/National Snow and Ice Data Center
View the image series

During the last couple of weeks of February, a broad area of sea ice has fractured off the coast of Alaska and Canada, extending from Ellesmere Island in the Canadian Arctic to Barrow, Alaska. This fracturing event appears to be related to a series of storms that moved across central Alaska starting on February 10, 2013, causing intense easterly winds along the coast and strong off-shore ice motion.* The large area of fractured ice is located in predominantly first-year ice, which is thinner and easier to fracture than thick, multiyear ice. Similar patterns were observed in early 2011 and 2008, but the 2013 fracturing is quite extensive.  The animation (Figure 5) shows the progress of the fracturing, and the general strong rotation of the Beaufort Gyre ice motion pattern during late February. (See also this animation of the fracture from the AVHRR instrument, posted on the Arctic Sea Ice Blog.)

* Note: We originally attributed the fracturing event to a storm that passed over the North Pole, and stated “This fracturing event appears to be related to a storm that passed over the North Pole on February 8, 2013, creating strong off-shore ice motion.” We corrected this sentence after reexamining weather charts. The updated version now reads, “This fracturing event appears to be related to a series of storms that moved across central Alaska starting on February 10, 2013, causing intense easterly winds along the coast and strong off-shore ice motion.”

Antarctic sea ice extent continues above average

Figure 6. Antarctic sea ice extent for February 2013 was 3.83 million square kilometers (1.48 million square miles). The magenta line shows the 1979 to 2000 median extent for that month. The black cross indicates the geographic South Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

The Antarctic sea ice minimum extent appears to have passed, on February 20. Ice was quite extensive throughout the austral summer period. Monthly average sea ice extent for February 2013 was 3.83 million square kilometers (1.48 million square miles) and minimum daily sea ice extent for the Antarctic region was 3.68 million square kilometers (1.42 million square miles) on February 20. Unusual circulation patterns, likely resulting from higher-than-average pressure in the Bellingshausen Sea, pushed sea ice in the northwestern Weddell Sea far to the north, as we mentioned in our February post. NASA’s Earth Observatory posted this image of ice in the Weddell Sea as Image of the Day for March 1st, 2013. Extent was also well above average for the Ross Sea region relative to the entire 1979 to 2013 satellite record.

The Odden

Figure 7. This image shows sea ice cover in early May, 2012 in the east Greenland Sea. Sea ice extent is provided at 4 kilometer resolution by the NSIDC/NIC multi-sensor MASIE product and sea ice concentration (varying from 0 to 1) at 25 kilometer resolution by NSIDC’s Near-Real Time Passive Microwave product. The red dot shows the estimated position of an ARGO profiling float deployed as part of a NASA-sponsored project led by Michael Steele  and Patricia Matrai. This float is capable of storing ocean data while under the ice pack, which are then received via satellite when the ice recedes. Ongoing analysis of these data indicates that cold, fresh surface water lies just under the ice extension along the Jan Mayen Ridge, a signature of Arctic waters.

Credit: M. Steele, University of Washington and P. Matrai, Bigelow Lab/National Snow and Ice Data Center
High-resolution image

Within the East Greenland Sea, an ice tongue about 1,300 kilometers (807 miles) in length, referred to as “The Odden” (Norwegian word for headland), would regularly form during winter months eastwards from the main East Greenland ice edge. The Odden would form in winter because of an eastward flow of very cold ocean waters in the Jan Mayen current and may have played an important role in winter ocean convection as new ice would form. It would form as early as December and as late as April and was present during the 1980s, a few times in the 1990s, and very rarely since 2000. While the Odden rarely formed in last two decades, there is frequently a small extension of ice along the Jan Mayen Ridge, which may indicate that eastward flow of cold ocean water is still occurring.

Arctic rapidly gaining winter ice

Ice extent doubled in October. The rate of increase since the 2012 minimum was near record, resulting in an October monthly extent 230,000 square kilometers (88,800 square miles) greater than the previous low for the month, which occurred in 2007. Despite this rapid growth, ice extent remains far below normal as we begin November.

Overview of conditions

Figure 1. Arctic sea ice extent for October 2012 was 7.0 million square kilometers (2.7 million square miles). The magenta line shows the 1979 to 2000 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Average ice extent for October was 7.00 million square kilometers (2.70 million square miles). This is the second lowest in the satellite record, 230,000 square kilometers (88,800 square miles) above the 2007 record for the month. However, it is 2.29 million square kilometers (884,000 square miles) below the 1979 to 2000 average. The East Siberian, Chukchi, and Laptev seas have substantially frozen up. Large areas of the southern Beaufort, Barents and Kara seas remain ice free.

As of November 4, sea ice extent stood at 8.22 million square kilometers (3.17 million square miles). This is 520,000 square kilometers (201,000 square miles) below the extent observed in 2007 on the same date, and ice extent remains 2.04 million square kilometers (788,000 million square miles) below the 1979 to 2000 average for this date.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of October 31, 2012, along with daily ice extent data for 2011 and for the previous record year, 2007. 2012 is in blue, 2011 is orange, and 2007 is shown in green. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

After the record minimum ice extent on September 16 and through October 31, the Arctic gained 4.19 million square kilometers (1.62 million square miles) of ice. Ice extent doubled during the month of October. The average rate of ice growth for October was 121,000 square kilometers (46,700 square miles) per day, causing the extent to temporarily climb above the extent observed during October 2007 for a period. This led to a monthly average extent slightly above levels in 2007, the previous record low October. Slower ice growth during the last few days of the month then brought extent below 2007 levels.

On October 20, ice extent went above 6.0 million square kilometers (2.3 million square miles) for the first time since August 6.

October 2012 compared to previous years

Figure 3. Monthly October ice extent for 1979 to 2012 shows a decline of -7.1% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

Due to the rapid ice growth during October, Arctic sea ice extent for October 2012 was the second lowest in the satellite record, above 2007. Through 2012, the linear rate of decline for October Arctic ice extent over the satellite record is -7.1% per decade.

Asymmetric ice growth and temperatures

Figure 4. This graph shows rates of ice growth in the Arctic since the September 16, 2012 minimum extent and through October 31. Growth has been particularly rapid in the East Siberian and Laptev seas.

Credit: Julienne Stroeve/National Snow and Ice Data Center
High-resolution image

While overall the Arctic rapidly gained ice throughout October, the rate of ice growth was not the same everywhere. Ice growth in the Beaufort and Chukchi seas averaged about 8,500 square kilometers (3,300 square miles) per day and large areas still remain ice free. In the eastern Arctic there was rapid ice growth in the East Siberian and Laptev seas exceeding, respectively, 28,000 and 18,000 square kilometers per day (11,000 and 7,000 square miles per day). As a result, most of the region is now completely frozen over. The slowest rates of ice growth have occurred in the Kara Sea (less than 3,000 square kilometers, or 1,000 square miles per day). In large part because of extensive open water in the Kara and Barents seas, air temperatures for October in this area at the 925 hPa level (about 3,000 feet above the surface) were 3 to 4 degrees Celsius (5 to 7 degrees Fahrenheit) above average, with unusual warmth becoming more pronounced near the surface. October air temperatures over the ice-free southern Beaufort Sea were also far above average.

Ice extent and bathymetry: The floor’s the limit

Figure 5. This image provides a snapshot of how ocean depth in the Arctic influences sea ice extent. Sea ice cover for August 28, 2012 is shown in semi-transparent white; ocean depths are indicated in blues, with deeper blues indicating greater depth. Sea ice data are from the Multisensor Analyzed Sea Ice Extent (MASIE), which provides more accurate ice edge position.

Credit: National Snow and Ice Data Center courtesy Jamie Morison/Applied Physics Laboratory, University of Washington
High-resolution image

Research by our colleagues Jamie Morison at the University of Washington Seattle and NASA scientist Son Nghiem suggests that bathymetry (sea floor topography) plays an important role in Arctic sea ice formation and extent by controlling the distribution and mixing of warm and cold waters. At its seasonal minimum extent, the ice edge mainly corresponds to the deep-water/shallow-water boundary (approximately 500-meter depth), suggesting that the ocean floor exerts a dominant control on the ice edge position. However, in some cases, ice survives in the shallower continental shelf regions due to water circulation patterns. For example, the shelf area of the East Greenland Sea is almost always covered with sea ice because the southward-flowing cold Arctic surface water helps to limit melt.

In contrast, ice disappears in shallow areas like the Barents and Chukchi seas that are subject to warm ocean waters and river runoff. River runoff and ice melting have also contributed to changes in the amount and distribution of fresh water in the Arctic.

Further reading

Morison, J., R. Kwok, C. Peralta-Ferriz, M. Alkire, I. Rigor, R. Andersen, and M. Steele. 2012. Changing Arctic Ocean freshwater pathways. Nature 481, 66–70 (05 January 2012), doi:10.1038/nature10705.

Nghiem, S.V., P. Clemente-Colón, I.G. Rigor, D.K. Hall, and G. Neumann. 2012. Seafloor control on sea ice. Deep Sea Research Part II: Topical Studies in Oceanography, Volumes 77–80, 15 November 2012, pp. 52-61, ISSN 0967-0645, doi:10.1016/j.dsr2.2012.04.004.

Arctic sea ice falls below 4 million square kilometers

Following the new record low recorded on August 26, Arctic sea ice extent continued to drop and is now below 4.00 million square kilometers (1.54 million square miles). Compared to September conditions in the 1980s and 1990s, this represents a 45% reduction in the area of the Arctic covered by sea ice. At least one more week likely remains in the melt season.

Overview of conditions

Figure 1. Arctic sea ice extent for August 2012 was 4.72 million square kilometers (1.82 million square miles). The magenta line shows the 1979 to 2000 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Throughout the month of August, Arctic sea ice extent tracked below levels observed in 2007, leading to a new record low for the month of 4.72 million square kilometers (1.82 million square miles), as assessed over the period of satellite observations,1979 to present. Extent was unusually low for all sectors of the Arctic, except the East Greenland Sea where the ice edge remained near its normal position. On August 26, the 5-day running average for ice extent dropped below the previous record low daily extent, observed on September 18, 2007, of 4.17 million square kilometers (1.61 million square miles). By the end of the month, daily extent had dropped below 4.00 million square kilometers (1.54 million square miles). Typically, the melt season ends around the second week in September. 

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of September 3, 2012, along with daily ice extent data for the previous five years. 2012 is shown in blue, 2011 in orange, 2010 in pink, 2009 in navy, 2008 in purple, and 2007 in green. The 1979 to 2000 average is in dark gray. The gray area around this average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

In 2012, the rate of ice loss for August was 91,700 square kilometers (35,400 square miles) per day, the fastest observed for the month of August over the period of satellite observations. In August 2007, ice was lost at a rate of 66,000 square kilometers (25,400 square miles) per day, and in 2008, the year with the previous highest August ice loss, the rate was 80,600 square kilometers (31,100 square miles) per day. The average ice loss for August is 55,100 square kilometers (21,300 square miles) per day. This rapid pace of ice loss in 2012 was dominated by large losses in the East Siberian and the Chukchi seas, likely caused in part by the strong cyclone that entered the region earlier in the month and helped to break up the ice. However, even after the cyclone had dissipated, ice loss continued at a rate of 77,800 square kilometers (30,000 square miles) per day.

August air temperatures at the 925 hPa level (approximately 3,000 feet above the surface) remained slightly above average (1 to 3 degrees Celsius, or 2 to 5 degrees Fahrenheit) over the much of the Pacific sector of the Arctic Ocean as well as at its central sector, with slightly higher temperatures in the Beaufort Sea (approximately 4 degrees Celsius, or 7 degrees Fahrenheit above average). On the Atlantic side, the Kara and Barents seas continued to have air temperatures around 1 to 4 degrees Celsius (2 to 7 degrees Fahrenheit) below average.

At the end of August, ice remained in the Western Parry Channel, and neither the northern or southern routes of the Northwest Passage were open. While much of the ice has cleared out, ice still remains, as confirmed by our colleague Steve Howell at the Canadian Ice Service. In the latter half of August, more ice actually moved into the passage routes when ice was pushed down into the channels from the north. Whether that ice will clear out remains to be seen.

August 2012 compared to previous years

Figure 3. Monthly August ice extent for 1979 to 2012 shows a decline of 10.2% per decade.


Credit: National Snow and Ice Data Center
High-resolution image

The monthly averaged ice extent for August was 4.72 million square kilometers (1.82 square miles). This is 2.94 million square kilometers (1.14 million square miles) below the 1979 to 2000 average extent, and 640,000 square kilometers (247,000 square miles) below the previous record low for August set in 2007. Including 2012, the August trend is -78,100 square kilometers (-30,200 square miles) per year, or -10.2 % per decade relative to the 1979 to 2000 average.

Evolution of sea surface temperatures in August

sea surface temperature images

Figure 4. A buoy deployed on August 8, 2012 in open water during the storm initially shows a very warm 10-meter (33-foot) thick surface mixed layer (upper left image). On August 12 (upper right image), the buoy enters a relatively cooler patch, gradually warms, enters another cool patch 12 days later (bottom left image), and then starts to warm again through August 26 (bottom right image). Red, orange, and yellow indicate higher temperatures, while blues and purples indicate lower temperatures.

Credit: University of Washington Polar Science Center
High-resolution image

In recent summers, Arctic Ocean sea surface temperatures (SSTs) have been anomalously high (see our 2010 and 2011 end-of-summer posts), in part linked to loss of the reflective ice cover that allows darker open water areas to readily absorb solar radiation and warm the mixed layer of the ocean. According to Mike Steele, Wendy Ermold and Ignatius Rigor of the University of Washington, SSTs in the Beaufort, Chukchi, and Laptev seas were once again anomalously high before the strong cyclone (mentioned earlier and discussed in our previous post) entered the East Siberian and Chukchi seas on August 5, 2012. SSTs were as much as 5 degrees Celsius (9 degrees Fahrenheit) above normal along the coastal areas in those seas. After the storm, the warm water that developed through summer was interspersed with large areas of cold water created by ice melt. By the third week of August, sea surface temperatures were mostly back to levels observed before the storm, but with a few more patches of colder water interspersed from additional ice melt.

A closer view of the variation in SSTs before and after the storm is recorded in the University of Washington Polar Science Center UpTempO buoy data. A buoy deployed on August 8, 2012 in open water during the storm initially shows a very warm 10-meter (33-foot) thick surface mixed layer, likely the result of solar heating. On August 12, the buoy enters a relatively cooler patch, gradually warms, enters another cool patch 12 days later and then starts to warm again through August 26. These patches of cooler water may be a result of ice melt and/or the impact of advection from the storm.

Old ice continues to decline

Figure 5. These images from March 2012 (left) and August 2012 (right) show the age of the ice cover in spring and at the end of summer. Much of the Arctic ice cover now consists of first-year ice (shown in purple), which tends to melt rapidly in summer’s warmth. However, the oldest ice, that had survived five or more summers (shown in white), declined by 51%.

Credit: M. Tschudi and J. Maslanik, University of Colorado Boulder
High-resolution image

Ice age is an important indicator of the health of the ice cover. Old ice, also called multiyear ice, tends to be thicker ice and less prone to melting out in summer. The last few summers have seen increased losses of multiyear ice in the Pacific sector of the Arctic; multiyear ice that is transported into the Beaufort and Chukchi seas tends to melt out in summer before being transported back to the central Arctic Ocean through the clockwise Beaufort Gyre circulation. This summer, the tongue of multiyear ice along the Alaska coast mostly melted out by the end of August, with a small remnant left in the Chukchi Sea. The ice on the Pacific side of the Arctic has melted back to the edge of the multiyear ice cover, which should help to slow further ice loss in the region. In the Laptev Sea, by contrast, a large amount of first-year ice remains. In the last two weeks, open water areas have developed within the first-year ice in the Laptev Sea, helping to further foster melt in that region.

Between mid-March and the third week of August, the total amount of multiyear ice within the Arctic Ocean declined by 33%, and the oldest ice, ice older than five years, declined by 51%.

Further reading

Kwok, R., and G. F. Cunningham. 2010. Contribution of melt in the Beaufort Sea to the decline in Arctic multiyear sea ice coverage: 1993–2009. Geophys. Res. Lett., 37, L20501, doi:10.1029/2010GL044678.

Maslanik, J.A., C. Fowler, J. Stroeve, and W. Emery. 2011. Distribution and trends in Arctic sea ice age through spring 2011. Geophys. Res. Lett., 38, L13502, doi:10.1029/2011GL047735.

Sea ice tracking at record low levels

After a period of rapid ice loss through the first half of June, sea ice extent is now slightly below 2010 levels, the previous record low at this time of year. Sea level pressure patterns have been favorable for the retreat of sea ice for much of the past month.

Figure 1. Arctic sea ice extent for 18 June 2012 (left) was 10.62 million square kilometers (4.10 million square miles), 31,000 square kilometers (12,000 square miles) below the same day in 2010 (right). The orange line shows the 1979 to 2000 median extent for that day. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution images: Figure 1a, Figure 1b

Overview of conditions

On June 18, the five-day average sea ice extent was 10.62 million square kilometers (4.10 million square miles). This was 31,000 square kilometers (12,000 square miles) below the same day in 2010, the record low for the day and 824,000 square kilometers (318,000 square miles) below the same day in 2007, the year of record low September extent.

Figure 2. The graph above shows Arctic sea ice extent as of June 18, 2012, along with daily ice extent data for the previous five years. 2012 is shown in blue, 2011 in orange, 2010 in pink, 2009 in navy, 2008 in purple, and 2007 in green. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Conditions in context

The main contributors to the unusually rapid ice loss to this point in June are the disappearance of most of the winter sea ice in the Bering Sea, rapid ice loss in the Barents and Kara Seas, and early development of open water areas in the Beaufort and Laptev Seas north of Alaska and Siberia. Recent ice loss rates have been 100,000 to 150,000 square kilometers (38,600 to 57,900 square miles) per day, which is more than double the climatological rate.

Figure 3: This map of mean sea level pressure from 15 May 2012 to 15 June 2012 shows a pattern of high pressure over the Beaufort Sea and a pattern of low pressure over the Laptev Sea, conditions favorable to summer ice loss.

Credit: NSIDC courtesy NOAA/ESRL PSD
High-resolution image

Sea level pressure favors the advection of ice

A pattern of high pressure over the Beaufort Sea and low pressure over the Laptev Sea has been present for the past few weeks. This pattern is favorable for summer ice loss, by advecting warm winds from the south (in eastern Asia) to melt the ice and transport it away from the coastlines in Siberia and Alaska. The high pressure over the Beaufort leads to generally clear skies, and temperatures are now above freezing over much of the Arctic pack. Snow cover in the far north is nearly gone, earlier than normal, allowing the coastal land to warm faster.

Early melt onset, and clear skies near the solstice are favorable conditions for more rapid melting, and warming of the ocean in open-water areas. The persistence of this type of pressure pattern throughout summer 2007 was a major factor toward causing the record low September extent that year. Conversely, in 2010, the patterns were not as favorable for loss of ice and the seasonal decline slowed later in the summer, and the extent did not approach the record low levels of 2007.

While these patterns and conditions have looked similar to 2007, over the last couple days the high pressure pattern over the Beaufort Sea has broken down. And while the extent is at a record low for the date, it is still early in the melt season. Changing weather patterns throughout the summer will affect the exact trajectory of the sea ice extent through the rest of the melt season.

Arctic sea ice variable, ends May below average

After reaching near-average levels in late April, sea ice extent declined rapidly during the early part of May. The rest of the month saw a slower rate of decline. Ice extent in the Bering Sea remained above average throughout the month.

Figure 1. Arctic sea ice extent for May 2012 was 13.13 million square kilometers (5.07 million square miles). The magenta line shows the 1979 to 2000 median extent for that month. The black cross indicates the geographic North Pole. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Overview of conditions
Arctic sea ice extent for May 2012 averaged 13.13 million square kilometers (5.07 million square miles). This was 480,000 square kilometers (185,000 square miles) below the 1979 to 2000 average extent. This May’s extent was similar to the May 2008 – 2010 extent, but it was higher than May 2011. May ice extent was 550,000 square kilometers (212,000 square miles) above the record low for the month, which happened in the year 2004.

Ice cover remained extensive in the Bering Sea, continuing the pattern observed this past winter and spring. The anomalously heavy ice conditions were countered by unusually low extents in the Barents and Kara Seas, resulting in Arctic-wide ice conditions that remained below normal. By the end of the month, open water areas had begun to form along some parts of Arctic Ocean coast.

While the ice extent for May is not especially low this year, there is little correlation between the extent of the ice cover in May and that at the end of the melt season in September.

Figure 2. The graph above shows Arctic sea ice extent as of June 4, 2012, along with daily ice extent data for the previous five years. 2012 is shown in blue, 2011 in orange, 2010 in pink, 2009 in navy, 2008 in purple, and 2007 in green. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Conditions in context
For May, the Arctic as a whole lost 1.62 million square kilometers (625,000 square miles) of ice, which was 180,000 square kilometers (69,500 square miles) more than the 1979 to 2000 average. The average daily rate of ice loss was 52,000 square kilometers (20,000 square miles) per day, which was slightly faster than the long-term average of 46,000 square kilometers (18,000 square miles) per day. However, the rate of ice loss for the month was composed of two distinct periods: a rapid loss of ice during the first part of the month, followed by near-average rates during the latter part of the month.

Air temperatures for May were higher than usual over the central Arctic Ocean and the Canadian Archipelago. Over the Bering Sea, Hudson Bay, and parts of the East Greenland and Norwegian seas, temperatures were slightly below average.

Figure 3. Monthly May ice extent for 1979 to 2012 shows a decline of 2.3% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

May 2012 compared to past years
Arctic sea ice extent for May 2012 was below average for the month, compared to the satellite record from 1979 to 2000. However, the ice extent this May was not as low as it has been in some recent years. Including the year 2012, the linear rate of decline for May ice extent over the satellite record is 2.3% per decade.

May and April have the smallest trends of the year, indicating that spring is a period during the year when there is less variability and conditions tend to converge. It also demonstrates that spring extents are not necessarily indicative of conditions later in the summer.

Figure 4. This map of sea level pressure anomalies for May 2012 shows that low pressure continued to dominate off of southern Alaska, resulting in northerly winds in the Bering Sea.

Credit: NSIDC courtesy NOAA/ESRL PSD
High-resolution image

A persistent pattern of extensive ice in the Bering Sea

Continuing the pattern of the past six months, ice cover remained unusually extensive in the Bering Sea. Normally by the end of May, the Bering is largely ice-free, but this year, 350,000 square kilometers (135,000 square miles) of ice remained. As was also the case for February through April, May 2012 had the highest average Bering Sea ice extent for the month in the satellite record.

The higher than normal extent and late spring break up of the ice cover in the Bering Sea are mainly due to unusually low air temperatures and persistent winds from the north, related to a region of low atmospheric pressure centered over Kodiak, Alaska. As these cold winds slowed ice melt, they also pushed the ice edge to the south. The heavy ice in the region may delay the start of Shell Alaska’s Arctic drilling this summer, which will be the first exploratory drilling in the Arctic Ocean in 20 years.

With the overall springtime warming of the Arctic, the ice has nevertheless started to break up and large areas of open water are now present in the northern part of the Bering Sea.

Figure 5. In this Moderate Resolution Imaging Spectroradiometer (MODIS) Arctic Mosaic image for the Beaufort Sea on May 29, 2012, open water is apparent between fast ice along the coast and the broken-up floes off-shore. Toward the bottom of the image, thin clouds can be seen over the open water.

Credit: NASA/GSFC, Rapid Response
High-resolution image

Open water areas within the Arctic Ocean

Although ice extent has remained high in the Bering Sea, open water areas have developed in parts of the Arctic Ocean, notably along the coasts of the Beaufort and Laptev seas. These openings are largely driven by winds pushing the ice away from fast ice, ice that is attached to the coast and that does not move with the winds. That the open water areas have not refrozen points to the relatively warm conditions over the Arctic, particularly in the Beaufort Sea.

The ice cover in the southern Beaufort Sea is also substantially broken up, with many individual ice floes instead of a consolidated pack. This makes the ice in this region vulnerable to enhanced melt during summer, as the sun rises higher in the sky and the dark open water areas between the floes readily absorb solar energy.

Quicker thickness data from NASA IceBridge

As we discussed last month, thickness information is extremely important for understanding the state of the ice cover. It is particularly important to seasonal forecasts (such as the SEARCH Sea Ice Outlook that will be released later this month), because thinner ice is more likely to melt completely during summer.

Sea ice age can be inferred from satellite data, and can help indicate the locations of relatively thin versus relatively thick ice. But direct measurements of ice thickness have been limited. Satellite missions such as ICESat and CryoSat, which measure ice thickness with altimeters, have been extremely valuable in better understanding overall changes in Arctic sea ice volume.

Currently, the NASA IceBridge mission supplies both sea ice thickness and snow depth measurements in spring, providing timely information on the state of the ice cover as the melt season begins. IceBridge data are collected from aircraft that fly over the ice cover carrying a suite of instruments, including altimeters that can directly measure ice thickness above the surface. These measurements are at high spatial resolution that can also be used to validate satellite data.

This year, the IceBridge Arctic sea ice campaign collected data in late March and early April, and provided data to NSIDC for distribution shortly thereafter. The data, collected from the North American side of the Arctic, indicate thick ice north of Greenland due to wind and ocean current patterns piling ice into thick ridges. In the Beaufort Sea, the offshore ice is fairly thin (1 to 2 meters, or 3 to 6 feet), indicative of first-year ice. Such thin ice will be prone to melt out completely this summer.

Ice along the Alaskan coast is thicker. Thicker ice tends to have a deeper overlying snow cover. The amount of snow is an important factor in the summer melt, because the snow reflects solar energy. The snow must melt away before surface melting of the ice can begin in earnest.

Arctic sea ice reaches near-average extent in April

Arctic sea ice extent declined slowly through the first three weeks of April, compared to recent years. The slow decline through March and the first few weeks of April meant that by mid-April, ice extent was at near-average levels. However, much of the extensive ice cover is thin ice that will melt quickly once temperatures rise in the Arctic. Over the past week, extent has started to fall sharply.

Figure 1. Arctic sea ice extent for April 2012 was 14.73 million square kilometers (5.69 million square miles). The magenta line shows the 1979 to 2000 median extent for that month. The black cross indicates the geographic North Pole.Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Overview of Conditions
Arctic sea ice extent in April 2012 averaged 14.73 million square kilometers (5.69 million square miles). Because of the very slow rate of ice loss through the last half of March and the first three weeks of April, ice extent averaged for April ranked close to average out of 34 years of satellite data.  It was the highest average ice extent for the month since 2001, only 270,000 square kilometers (104,000 square miles) below the 1979 to 2000 average extent. April ice extent was 860,000 square kilometers (330,000 square miles) above the record low for the month, which happened in 2007.

In April, ice cover remained unusually extensive in the Bering Sea, continuing a pattern that persisted over the winter.  Ice extent was also slightly higher than average in Baffin Bay and part of the Sea of Okhotsk.  As in recent winters, ice extent was well below normal in the Barents Sea, compensating for the extensive ice in the Bering Sea.

As discussed in previous posts, the high Bering Sea ice extent this winter stemmed from unusually low air temperatures and persistent winds that helped to push ice southwards. During April, atmospheric conditions changed, warming the air to near-average temperatures for this time of year and slowing the strong southerly winds.

During April, air temperatures over most of the Arctic were higher than usual, particularly over the central Arctic Ocean.  Over the Bering Sea and parts of the East Greenland and Norwegian seas, temperatures ranged from average to slightly below average.

Figure 2. The graph above shows Arctic sea ice extent as of May 1, 2012, along with daily ice extent data for the previous five years. 2012 is shown in blue, 2011 in orange, 2010 in pink, 2009 in navy, 2008 in purple, and 2007 in green. The gray area around the average line shows the two standard deviation range of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image
Note: That image originally published on May 3 contained an error in the climatology. The image has been replaced with the correct image. About the data

Conditions in context
Overall, the Arctic lost 1.07 million square kilometers (413,000 square miles) of ice during April, somewhat less than the 1979 to 2000 average April loss of 1.21 million square kilometers (467,000 square miles). The average daily rate of ice loss was 35,600 square kilometers (13,700 square miles) per day.  On April 24, ice extent was only 118,000 square kilometers (45,6000 square miles) below the 1979 to 2000 average for that day, although the difference has increased since then.

While ice conditions approached the 1979 to 2000 average levels for this time of year, the high ice extent will have little influence on how much ice melts this summer. Much of the ice cover is recently formed thin ice that will melt out quickly. Research has shown that sea ice extent in spring does not tell us much about ice extent the following summer. More important to the summer melt is the thickness of the ice cover, and summer weather.

Figure 3. Monthly April ice extent for 1979 to 2012 shows a decline of 2.6% per decade.

Credit: National Snow and Ice Data Center
High-resolution image

April 2012 compared to past years
Arctic sea ice extent for April 2012 was near average for the month in the satellite record, but was the highest since 2001. Including the year 2012, the linear rate of decline for April ice extent over the satellite record is 2.6% per decade.

Figure 4. This graph shows Antarctic sea ice extent as of May 1, 2012 (light blue line), along with the average ice extent and the ice extent from last year (dark blue). The average Southern Annular Mode (SAM) index number for each month is overlaid on the image. A stronger SAM correlates to stronger winds, which help to spread the sea ice and increase ice extent.

Credit: National Snow and Ice Data Center
High-resolution image

Antarctic sea ice spread by strong winds

The sea ice cover that surrounds the continent of Antarctica has been higher than average through most of the Southern Hemisphere summer (December to March). Ice extent declined much more slowly than usual in late November and remained above average through December and January, although it did not reach record highs for those months. At its minimum extent in March, Antarctic sea ice remained above average. Ice extent was the highest in the Weddell Sea and the northwestern Ross Sea.

The high ice extent likely stemmed from unusually strong winds that circled the continent of Antarctica during most the southern summer. These circumpolar winds tend to push the ice out from the continent, increasing the extent of the ice, although not necessarily the volume. Air temperatures in December and January were close to average over most of the sea ice-covered water. Researchers approximate the circumpolar wind intensity by an index called the Southern Annular Mode (SAM). A positive value for SAM indicates strong circumpolar winds around the continent; negative values indicate weaker winds. This index was at a record high for the two months of December 2011 and January 2012, at the same period of the higher-than-normal seasonal extents. For more information on Antarctic sea ice, see the NSIDC Icelights article: Sea ice down under: Antarctic sea ice and climate.

Figure 5. This map shows Arctic sea ice thickness, as well as the elevation of the Greenland Ice Sheet, for March 2011. The data come from the European Space Agency CryoSat-2 satellite. For the sea ice, green shades indicate thinner ice, while the yellows and oranges indicate thicker ice.

Credit: NSIDC courtesy CPOM/UCL/Leeds/ESA/PVL
High-resolution image

Cryosat provides new ice thickness data

NSIDC data provide a long-term record of the Arctic and Antarctic sea ice cover. But researchers also want to know how thick the ice cover is, since thinner ice melts faster than thicker ice. Ice thickness measurements are more limited than ice extent, because researchers can only sample small regions in person, and there have only been a few satellite sensors that can measure ice thickness. For example, the NASA ICESat satellite recorded Arctic sea ice thickness between 2003 and 2008, but the mission ended in 2009, and the follow-on mission is not expected to begin until 2016. In the meantime, NASA is filling some of the data gap with airplane-borne instruments as part of Operation IceBridge.

The European Space Agency (ESA) has released initial data from the radar altimeter on their CryoSat-2 satellite. Last week, ESA released the first calibrated maps of Arctic sea ice thickness capturing thickness changes through the winter from October 2010 through March 2011. In the coming years, CryoSat-2 will provide monthly fields of thickness that will allow scientists to track the evolution of the ice cover. For more information on CryoSat-2 and an animation of the thickness maps, see: http://www.esa.int/SPECIALS/Cryosat/SEMU55NW91H_0.html.

Further Reading

Kwok, R., G. F. Cunningham, M. Wensnahan, I. Rigor, H. J. Zwally, and D. Yi. 2009. Thinning and volume loss of the Arctic Ocean sea ice cover: 2003–2008, J. Geophys. Res., 114, C07005, doi:10.1029/2009JC005312.

Kwok, R., G. F. Cunningham, S. S. Manizade, and W. B. Krabill. 2012. Arctic sea ice freeboard from IceBridge acquisitions in 2009: Estimates and comparisons with ICESat, J. Geophys. Res., 117, C02018, doi:10.1029/2011JC007654.

Kwok, R., and G. F. Cunningham. 2008. ICESat over Arctic sea ice: Estimation of snow depth and ice thickness, J. Geophys. Res., 113, C08010, doi:10.1029/2008JC004753.

Laxon, S., N. Peacock, and D. Smith. 2003. High interannual variability of sea ice thickness in the Arctic region, Nature, 424, 947-950, October, doi:10.1038/nature02063.