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     In this Algorithm Theoretical Basis Document (ATBD) we report the methodology that is 
currently planned for use in mapping snow storage with AMSR2 data. The basic techniques rely 
on the ATBD of the current AMSR-E operational product. The algorithm has been tested 
operationally on AMSR-E. We also include the description of plans for algorithm refinement, 
validation and error analysis. 
 
     The scope of this work is to develop, implement and refine an operational algorithm based on 
spaceborne passive microwave observations that map snow water equivalent, snow depth and 
snow extent on a daily, pentad and monthly period producing Level-3 products gridded in an 
equal area projection in azimuthal projection in the Northern and Southern Hemispheres. The 
knowledge of the water stored in snowpacks is crucial for studying the global water and energy 
balance, fresh water budgets and improving weather prediction capabilities. In many areas of the 
world where inhabitants indeed rely on snow stored in mountain snow packs as a source for 
drinkable water, for hydropower production, and for recreation and industrial purposes. The 
presence of snow on ground affects the Earth’s energy budget through its high albedo and 
thermal insulating properties. Moreover, snow plays a key role in floods, and quantifying snow 
depth and/or SWE (snow water equivalent) provides critical information for flood forecast. For 
example, during summer 2011 melting of an above-average snow pack across the Northern 
Rocky Mountains and northern Great Plains, combined with above-average rainfall, caused the 
Missouri and Souris Rivers to swell beyond their banks, with estimated losses exceeding $2.0 
billion structure (http://www.ncdc.noaa.gov/oa/reports/billionz.html). Supporting the continuity 
of a NASA SWE operational product based on spaceborne microwave measurements is essential 
for the ultimate development of a robust long-term data set, extending back more than 30 years. 
AMSR2 and AMSR-E measurements are, indeed, the latest in a lineage of passive microwave 
measurements dating back to 1979 and starting with the Nimbus-7 Scanning Multi-channel 
Microwave Radiometer (SMMR, November 1978 - August 1987) and Special Sensor Microwave 
Imager (SSM/I, July 1987 - today), these instruments potentially constitute a long time series of 
SWE maps at regional to global scales. It is therefore essential that the AMSR-E operational 
scheme be extended to the forthcoming AMSR2 data. 
 
The baseline AMSR-E algorithm 
 
      In the original "baseline" SWE algorithm originally developed for SMMR and SSM/I data 
(Chang et al.1982, 1987, and Foster et al. 1997), and initially applied to AMSR-E data, SWE was 
computed from a linear regression between snow depth and the difference between the 
brightness temperatures at 19 and 37 GHz, or similar frequencies.   
 

SD = Rc* (TB19-TB37)      (1) 
SWE=Rc’*(TB19-TB37)     (2) 
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The retrieval coefficient (Rc) in the linear regression formula was set to 1.6 cm/K in the case of 
depth and Rc’ was set to 4.8 mm/K for SWE, being static in both space and time. A fixed value 
of mean grain radius (0.3 mm) and a fixed snow density (0.3 g/cm3) were assumed in the 
calibration. The algorithm was later modified to account for forest cover attenuation (Foster et al. 
1997) by dividing the coefficient Rc by (1-ff), with ff representing the forest cover fraction 
(ranging between 0 and 1). 
 

        SD = Rc* 1/	
  1-ff(TB19-TB37)     (3) 
 

     The low computational cost of the linear regression-based algorithm makes it suitable for 
operational applications but it is obviously also the origin of several limitations. For example, the 
representation of physical snowpack processes is not accounted in the algorithm, nor the 
evolution of the key snow parameters, such as grain size, along the snow season. 
 
     Recently, a dynamic algorithm was introduced (e.g. Kelly 2009) where Rc is computed for 
every pixel and day from the polarization ratio of Tb measurements and will be discussed in 
detail in the following section. 
 
The AMSR2 SWE operational algorithm 
 
     With respect to previous algorithms, the current AMSR-E SWE algorithm takes advantage of 
the low frequency channels available on the AMSR-E instrument with respect to the SSM/I and 
SMMR sensors. The data sets required for the retrieval algorithm are the following: 
 
Table 1. Ancillary data sets required for the AMSR-E SWE operational algorithm. In the table, S 
stands for ‘Static’ where ‘D’ stands for ‘Dynamic’.	
  
 
Data set Source Temporal 

Static/Dynamic 
Global forest fraction Boston University IGBP data 

(MOD12Q1IGBP) (Hansen et al., 2003) 
S 

Global forest ‘density’ UMD/VCF (based on MOD09A1) S 
Land, Ocean Coasts & Ice 
mask 

derived from MODIS MOD12Q1 IGBP 
land cover data (collection V004). 

S 

Snow 
possibility/impossibility 

Snow climatology data set (Dewey and 
Heim, 1984) 

S 

Snow density 
Seasonal snow classification map Liston 
and Sturm (1998) 

S 

 
 
     Snow depth retrieval is performed using AMSR-E/Aqua L2A Global Swath native resolution 
and spatially resampled brightness temperature (TB) measurements on the instantaneous field of 
view (IFOV) samples. Thresholds on Level 2A AMSR-E brightness temperatures are checked to 
minimize the presence of melting snow (Tb36H<245K & Tb36V<255K), where SWE retrieval is 
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impossible. If dry snow is estimated to be present, then shallow or medium depth snow is 
retrieved. If Tb10V-Tb36V > 0 K or Tb10H-Tb36H > 0 K then medium to deep snow is assumed to be 
present. If Tb10V-Tb36V <=0 K and Tb10H-Tb36H <=0 K then snow presence is possible but it is 
likely to be shallow snow if: Tb89V <= 255 K and Tb89H <= 265 K & Tb23V-Tb89V >0 K & Tb23H-
Tb89H >0 K & Tsnow_K < 267 K. If shallow snow is detected, snow depth is set to 5.0 cm. If 
medium or deep snow is present then snow depth is computed as follows: 
 

SD = ff(SDf) + (1-ff)*(SDo)    (4) 
 
where SD is the snow depth, SDf is the snow depth from the forest component of the 
instantaneous field of view (IFOV) and SDo is the snow depth from non-forested component of 
the IFOV. ff is the forest fraction (where 1.0 = 100% forest fraction and 0.0 = 0% forest 
fraction). The forest and non-forest components of the snow depth are computed as follows: 
 

   SDf [cm] =polfact36 * (TB18V-TB36V)/(1-fd*0.6)   (5) 
SDo [cm] = [polfact36*(TB10V-TB36V)] + [polfact18*(TB10v-TB18V)]  (6) 

 
with polfact36 = 1/log10(pol36) and polfact18 = 1/log10(pol18), pol36 = TB36V-TB36H, pol18 = 
TB18V-TB18H, fd = forest density (g cm-3) from UMD VCF data circular smoothed at 15km 
diameter and re-gridded to global 1 km. For practical purposes if pol36 <1.1 then pol36=1.1 to 
ensure log(pol36) > 0. SWE is lastly estimated using the snow density data set as: 
 

    SWE [mm] = SD (cm) * density (g cm-3) * 10.0   (7) 
 
To convert SD to SWE a density map in EASE-grid projection was produced by mapping the 
mean January through March density measurements from data sets of Brown and Braaten (1998) 
and Krenke (2004) to the Sturm et al. (1995) seasonal snow classification map. Within each 
Sturm et al (1995) seasonal snow class, the average in situ density was computed and this value 
is mapped to all pixels in that Sturm class. Hence, there is an average density for each of the 6 
classes. Note the use of the difference between the 18 and 36 GHz channels to maximize spatial 
resolution in forested areas, and the use of 10V-36V (increased dynamic range) and 10V-18V for 
deep snow. Note also that fd is scaled (0.6) through optimization of validation data. Snow depth 
estimated from the L2A brightness temperatures is then accumulated within each 25 km x 25 km 
EASE-Grid projection. Then, average snow depth is calculated for each 25 km EASE-Grid cell. 
For each snow class, a static value of density is assigned which is then used to estimate SWE 
from SD following: 
 

    SWE (mm) = SD (cm) * density (g cm-3) * 10.0   (8) 
 
Overview of Algorithm-Related Error Sources 
 
     There are several known algorithm-related error sources. Some are intrinsic to the problem of 
retrieving SWE at large spatial scales from passive microwave observations (e.g., the small 
sensitivity of TBs to snow depth with respect to other parameters such as grain size, for example) 
where other factors are related to the heterogeneity of the scene observed by the sensor (e.g., 
mixed pixel problem) and by the simplicity of the algorithm (which is suggested by the 
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operational nature of the approach). Some of these error sources are the temporal and spatial 
evolution of grain size and density, obscuration by forest, inability to map the water equivalent 
of partially wet snow covers, presence of water bodies, effects of the atmospheric attenuation. 
 
     A significant source of uncertainty is linked to the dynamic nature of retrieval coefficients 
(e.g., Kelly et al. ,2003, Tedesco et al., 2010). These depend on snow grain size and density, 
which can change dramatically during the snow season, even on short-term scales (Tedesco et 
al., 2010). After snow deposition on Earth’s surface, snow crystals metamorphose in response to 
vapor gradients within the snowpack (either kinetic or equi-temperature forms) and as a result of 
melting and refreezing cycles. Also snowpack bulk density usually increases during the snow 
season. Although empirical and physically-based models have been developed to predict the 
growth of the snow crystal (e.g. Navarre, 1974; Brun et al., 1992), it is not straightforward to 
select a general model that will account for regional to global scale conditions. The same can be 
said with regard to the snow density. 
 
     The presence of liquid water within the snowpack increases the absorption, reducing the 
penetration depth, making the SWE/snow depth retrieval impossible. To reduce the number of 
occurrences of erroneous retrievals in wet snow conditions, knowledge of surface or air 
temperature might not be enough: melting can occur also from the bottom of the snowpack from 
geothermal heat fluxes. 
 
     The presence of water bodies within the area under study can affect the retrieval of SWE 
because of the strong TB gradient between liquid and frozen water. Analysis of airborne passive 
microwave data acquired in the Northwest Territories, Canada in April 2005 showed the 
relationship between 37 GHz brightness temperature and lake cover fraction is reversed across 
the northern boreal forest compared to the open tundra (Derksen et al., 2006). Over forested 
sites, lower 37 GHz brightness temperatures were measured over lakes relative to land, while the 
19 GHz data showed little sensitivity to lakes. Conversely, at tundra sites the 37 GHz brightness 
temperatures were higher over lakes than over terrestrial surfaces. This difference in response to 
lake ice at 37 GHz will have an effect on SWE retrievals because the increase in brightness 
temperature at 37 GHz across lake rich tundra areas will decrease the 37-19 GHz (or 37-10) 
difference, and therefore decrease SWE estimates with conventional algorithms. 
 
     Forest cover represents an important source of error, representing a major challenge to the 
refinement of a robust passive microwave SWE retrieval algorithm. Indeed, the presence of 
forest attenuates the radiation emitted by the underlying snowpack, affecting the retrieval 
accuracy of the algorithm. In general, the problem shows a high degree of complexity; both 
fractional volume and stem closure within a footprint are important modulators of the passive 
microwave emission. Crown closure, basal area and foliage biomass are all inversely related to 
visible reflectance (Franklin, 1986) and are also directly related to microwave emission. 
  
     Upwelling microwave radiation emitted from the Earth’s surface passes through the 
atmosphere before being detected by the space-borne sensor, and thus it is subject to the effects 
of atmospheric absorption and (re-)emission. These effects have been neglected so far in the 
retrieval algorithm but recent studies show that they should be accounted to reduce retrieval 
errors further (e.g., Wang and Tedesco, 2007). 



5	
  

 
     Tedesco and Narvekar (2010) show that the current SWE algorithm is suffering from the 
limitation of using a static mask for density (used to convert satellite-estimated snow depth into 
SWE), with optimal density values (e.g., derived from fitting operational density values with 
those obtained from an electromagnetic model) increasing along the snow season. In the same 
study, the authors also show that the current approach for accounting for grain size variability is 
not adequate. Moreover, error sources and limitations intrinsic to a linear regression-based 
algorithm include the fact that the retrieval is generally limited to a single parameter and there is 
a poor understanding of the physical processes involved, that the approach is not easily adaptable 
(as opposed to ‘modular’), meaning that it is not possible to ingest additional information from 
other sources (e.g., either land models or other satellites/sensors or other AMSR-E or Terra/Aqua 
products) to improve the retrieval or to substitute some of the data sets or elements used in the 
retrieval. 
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