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EXECUTIVE SUMMARY 
During the post-launch SMAP calibration and validation (Cal/Val) phase there are two objectives for 

each science data product team: 1) calibrate, verify, and improve the performance of the science 
algorithm, and 2) validate the accuracy of the science data product as specified in the science 
requirements and according to the Cal/Val schedule.  This report provides an assessment of the SMAP 
Level 4 Surface and Root Zone Soil Moisture Passive (L4_SM) product specifically for the product’s 
public beta release scheduled for 30 October 2015.  The primary objective of the beta release is to allow 
users to familiarize themselves with the data product before the validated product becomes available.  The 
beta release also allows users to conduct their own assessment of the data and to provide feedback to the 
L4_SM science data product team. 

The assessment of the L4_SM data product includes comparisons of SMAP L4_SM soil moisture 
estimates with in situ soil moisture observations from core validation sites and sparse networks.  The 
assessment further includes a global evaluation of the internal diagnostics from the ensemble-based data 
assimilation system that is used to generate the L4_SM product.  This evaluation focuses on the statistics 
of the observation-minus-forecast (O-F) residuals and the analysis increments.  Together, the core 
validation site comparisons and the statistics of the assimilation diagnostics are considered primary 
validation methodologies for the L4_SM product.  Comparisons against in situ measurements from 
regional-scale sparse networks are considered a secondary validation methodology because such in situ 
measurements are subject to upscaling errors from the point-scale to the grid cell scale of the data 
product.  Based on the limited set of core validation sites, the assessment presented here meets the criteria 
established by the Committee on Earth Observing Satellites for Stage 1 validation and supports the beta 
release of the data.  The validation against sparse network measurements and the evaluation of the 
assimilation diagnostics address Stage 2 validation criteria by expanding the assessment to regional and 
global scales. 

The beta release version of the L4_SM algorithm ingests only the SMAP L1C_TB radiometer 
brightness temperatures, contrary to the planned use of downscaled brightness temperatures from the 
L2_SM_AP product and of landscape freeze-thaw state retrievals from the L2_SM_A product.  The latter 
two products are based on radar observations and are only available for the period from 13 April to 7 July 
2015 because of an anomaly in the SMAP radar instrument.  The decision to use only radiometer 
(L1C_TB) inputs was made to ensure homogeneity in the longer-term L4_SM beta-release data record. 

An analysis of the time average surface and root zone soil moisture shows that the global pattern of 
arid and humid regions are captured by the L4_SM estimates.  The product further reflects major events, 
including the extremely wet conditions in May 2015 in Texas, Oklahoma, Kansas and parts of the US 
Midwest.  Another event that is captured well by the L4_SM product is the sharp gradient of wet versus 
dry conditions across Western Australia in May 2015.  

Results from the core validation site comparisons indicate that the beta-release version of the L4_SM 
data product meets the self-imposed L4_SM accuracy requirement, which is formulated in terms of the 
ubRMSE: the RMSE after removal of the long-term mean difference.  The overall ubRMSE of the 3-
hourly L4_SM surface soil moisture at the 9 km scale is 0.036 m3/m3.  The corresponding ubRMSE for 
L4_SM root zone soil moisture is 0.023 m3/m3.  Both of these metrics are comfortably below the 0.04 
m3/m3 requirement.  The L4_SM estimates are an improvement over estimates from a model-only SMAP 
Nature Run version 4 (NRv4), which demonstrates the beneficial impact of the SMAP brightness 
temperature data.  L4_SM surface soil moisture estimates are consistently more skillful than NRv4 
estimates, although not by a statistically significant margin.  The lack of statistical significance is not 
surprising given the limited data record available to date.  Root zone soil moisture estimates from L4_SM 
and NRv4 have similar skill.  Results from comparisons of the L4_SM product to in situ measurements 
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from 260 sparse network sites in the United States and Australia corroborated the core validation site 
results.    

The instantaneous soil moisture and soil temperature analysis increments are within a reasonable 
range and result in spatially smooth soil moisture analyses.  The O-F residuals exhibit only small biases 
on the order of 1-3 K between the (rescaled) SMAP brightness temperature observations and the L4_SM 
model forecast, which indicates that the assimilation system is largely unbiased.  The average (RMS) 
magnitude of the O-F residuals is 5.8 K, which reduces to 2.6 K for the observation-minus-analysis (O-A) 
residuals, reflecting the impact of the SMAP observations on the L4_SM system. Averaged globally, the 
time series standard deviation of the normalized O-F residuals is close to unity, which would suggest that 
the magnitude of the modeled errors approximately reflects that of the actual errors.  

The assessment report also notes several limitations of the beta-release L4_SM data product and 
science algorithm calibration that will be addressed prior to the release of the validated data product 
scheduled for summer 2016.  Regionally, the time series standard deviation of the normalized O-F 
residuals deviates considerably from unity, which indicates that the L4_SM assimilation algorithm either 
over- or underestimates the actual errors that are present in the system.   Planned improvements include 
revised land model parameters, revised error parameters for the land model and the assimilated SMAP 
observations, and revised surface meteorological forcing data for the operational period and underlying 
climatological data.  Moreover, a refined analysis of the impact of SMAP observations will be facilitated 
by the construction of additional variants of the model-only reference data.  Nevertheless, the beta-release 
version of the L4_SM product is sufficiently mature and of adequate quality for distribution to and use by 
the larger science and application communities.   

 



6 
 
 

1 INTRODUCTION 
The NASA Soil Moisture Active Passive (SMAP) mission provides global measurements of soil 

moisture from a 685-km, near-polar, sun-synchronous orbit.  SMAP data is used to enhance 
understanding of processes that link the water, energy, and carbon cycles, and to extend the capabilities of 
weather and climate prediction models (Entekhabi et al. 2014).   

The suite of SMAP data products includes the Level 4 Surface and Root Zone Soil Moisture 
(L4_SM) product, which provides deeper layer soil moisture estimates that are not available in the Level 
2-3 products.  The L4_SM product is based on the assimilation of SMAP brightness temperatures into the 
NASA Catchment land surface model (Koster et al. 2000) using a customized version of the Goddard 
Earth Observing System, version 5 (GEOS-5) land data assimilation system (Figure 1; Reichle et al. 
2014a).  This system propagates the surface information from the SMAP instrument data to the deeper 
soil.  The latency of the L4_SM product is about 2.5 days and is driven by the availability of the gauge-
based global precipitation product that is used to force the land surface model (Reichle et al. 2014b). 

 

 
 

The L4_SM product provides surface and root zone soil moisture (along with other geophysical 
fields) as 3-hourly, time-average fields on the global, cylindrical, 9 km Equal-Area Scalable Earth, 
version 2 (EASEv2) grid in the “geophysical” (or “gph”) output Collection (Reichle et al. 2015).  
Moreover, instantaneous soil moisture and soil temperature fields before and after the assimilation update 
are provided every three hours on the 9 km global EASEv2 grid in the “analysis update” (or “aup”) output 
Collection, along with other assimilation diagnostics and error estimates.  Time-invariant land model 
parameters, such as soil porosity, wilting point, and microwave radiative transfer parameters, are provided 
in the “land-model-constants” (or “lmc”) Collection (Reichle et al. 2015).   

For geophysical data products that are based on the assimilation of satellite observations into 
numerical process models, validation is critical and must be based on quantitative estimates of 
uncertainty. Direct comparison with independent observations, including ground-based measurements, is 
a key part of the validation.  This Assessment Report provides a detailed description of the L4_SM 
validation process and the status of the L4_SM data quality prior to the beta release of the L4_SM data 
product. 

 
Figure 1.  Schematic of the L4_SM algorithm. 
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2 SMAP CALIBRATION AND VALIDATION OBJECTIVES 
During the post-launch SMAP calibration and validation (Cal/Val) phase each science product team 

pursues two objectives: 

1. Calibrate, verify, and improve the performance of the science algorithm.  
2. Validate the accuracy of the science data product as specified in the science requirements and 

according to the Cal/Val schedule. 
 

 
 

The overall SMAP Cal/Val process is illustrated in Figure 2.  This Assessment Report describes how 
the L4_SM team addressed the above objectives prior to the beta release.  The validation approach and 
procedures follow those described in the SMAP Science Data Cal/Val Plan (Jackson et al. 2014), the 
SMAP L2-L4 Data Products Cal/Val Plan (Colliander et al. 2014), and the Algorithm Theoretical Basis 
Document for the L4_SM data product (Reichle et al. 2014b). 

SMAP established unified definitions to address the mission requirements.    These are documented 
in the SMAP Handbook (Entekhabi et al. 2014), where calibration and validation are defined as follows: 

• Calibration: The set of operations that establish, under specified conditions, the relationship 
between sets of values or quantities indicated by a measuring instrument or measuring system and 
the corresponding values realized by standards. 

• Validation: The process of assessing by independent means the quality of the data products 
derived from the system outputs.  

In order to insure the public’s timely access to SMAP data, the mission is required to release beta-
quality products before releasing validated products.  The objectives and maturity of the beta release 
products are defined as follows:  

• The beta release allows users to gain familiarity with data formats.  
• The beta release is intended as a testbed to discover and correct errors.  
• Beta-release data are minimally validated and still may contain significant errors.  

 
Figure 2.  Overview of the SMAP calibration and validation process. 
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• The general research community is encouraged to participate in the quality assessment and 
validation, but need to be aware that product validation and quality assessment are ongoing.  

• Beta-release data may be used in publications as long as the authors indicate the fact that the data 
are beta quality.  Drawing quantitative scientific conclusions is discouraged.  Users are urged 
to contact of the SMAP Science Team prior to using beta-release data in publications, and to 
recommend members of the instrument teams as reviewers.  

• The estimated uncertainties are documented.  
• Beta-release data may be replaced in the archive when an upgraded (provisional or validated) 

product becomes available.  
 

Due to the high quality of the SMAP L1C_TB brightness temperatures and the heritage and maturity 
of model-based soil moisture data products (Reichle et al. 2011), the beta release version of the L4_SM 
product already exceeds the above maturity requirements and is closer to a provisional release, which is 
defined as follows:  

• Incremental improvements are ongoing.  Obvious artifacts or errors observed in the provisional 
product have been identified and either minimized or documented.  

• The general research community is encouraged to participate in the quality assessment and 
validation, but need to be aware that product validation and quality assessment are ongoing.  

• Provisional-release data may be used in publications as long as the authors indicate the 
provisional quality.  Users are urged to contact science team representatives prior to using the 
data in publications, and to recommend members of the instrument teams as reviewers.  

• The estimated uncertainties are documented.  
• Provisional-release data will be replaced in the archive when an upgraded (validated) product 

becomes available.  
 

In assessing the maturity of the L4_SM product, the L4_SM team also considered the guidance 
provided by the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and 
Validation (CEOS 2015): 

• Stage 1: Product accuracy is assessed from a small (typically < 30) set of locations and time 
periods by comparison with in situ or other suitable reference data.  

• Stage 2: Product accuracy is estimated over a significant set of locations and time periods by 
comparison with reference in situ or other suitable reference data.  Spatial and temporal 
consistency of the product and with similar products has been evaluated over globally 
representative locations and time periods.  Results are published in the peer-reviewed literature.   

• Stage 3: Uncertainties in the product and its associated structure are well quantified from 
comparison with reference in situ or other suitable reference data.  Uncertainties are characterized 
in a statistically robust way over multiple locations and time periods representing global 
conditions.  Spatial and temporal consistency of the product and with similar products has been 
evaluated over globally representative locations and periods.  Results are published in the peer-
reviewed literature. 

• Stage 4: Validation results for stage 3 are systematically updated when new product versions are 
released and as the time-series expands. 
 

For the beta release the L4_SM team has completed Stage 1 and begun Stage 2 (global assessment).  
The Cal/Val program will continue through the above Stages over the SMAP mission life span. 



9 
 
 

3 L4_SM CALIBRATION AND VALIDATION APPROACH 
During the mission definition and development phase, the SMAP Science Team and Cal/Val 

Working Group identified the metrics and methodologies that would be used for L2-L4 product 
assessment.  These metrics and methodologies were vetted in community Cal/Val Workshops and tested 
in SMAP pre-launch Cal/Val rehearsal campaigns.  The following validation methodologies and their 
general roles in the SMAP Cal/Val process were identified: 

• Core Validation Sites: Accurate estimates at matching scales for a limited set of conditions.  

• Sparse Networks:  One point in the grid cell for a wide range of conditions.  

• Satellite Products:  Estimates over a very wide range of conditions at matching scales.  

• Model Products:  Estimates over a very wide range of conditions at matching scales. 

• Field Campaigns:  Detailed estimates for a very limited set of conditions. 

With regard to the CEOS Cal/Val stages, core validation sites address Stage 1, and satellite and 
model products are used for Stage 2 and beyond.  Sparse networks fall between these two Stages. 

For the L4_SM data product, all of the above methodologies can contribute to product assessment 
and refinement, but there are differences in terms of the importance of each approach for the validation of 
the L4_SM product.   

The assessment of the L4_SM data product includes comparisons of SMAP L4_SM soil moisture 
estimates with in situ soil moisture observations from core validation sites (CVS) and sparse networks.  
The assessment further includes a global evaluation of the internal diagnostics from the ensemble-based 
data assimilation system that is used to generate the L4_SM product.  This evaluation focuses on the 
statistics of the observation-minus-forecast (O-F) residuals and the analysis increments.  Together, the 
CVS comparisons and the statistics of the assimilation diagnostics are considered primary validation 
methodologies for the L4_SM product.   

Comparisons against in situ measurements from regional-scale sparse networks are considered a 
secondary validation methodology because such in situ measurements are subject to upscaling errors from 
the point-scale to the grid cell scale of the data product.   

Due to their very limited spatial and temporal extent, data from field campaigns play only a tertiary 
role in the validation of the L4_SM data product.  Note, however, that field campaigns are instrumental 
tools in the provision of high-quality, automated observations from the core validation sites and thus play 
an important indirect role in the validation of the L4_SM data product.  

Based on the limited set of core validation sites, the assessment presented here meets the criteria 
established by CEOS for Stage 1 validation and supports the beta release of the L4_SM data.  The 
validation against sparse network measurements and the evaluation of the assimilation diagnostics address 
Stage 2 validation criteria by expanding the assessment to regional and global scales and suggest that the 
beta-release version of the L4_SM product is closer to a provisional data release (section 2). 
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4 L4_SM ACCURACY REQUIREMENT 
There is no formal Level 1 mission requirement for the validation of the L4_SM product, but the 

L4_SM team self-imposed an accuracy requirement mirroring the one that applies to the L2_SM_AP 
product.  Specifically, the L4_SM surface and root zone soil moisture estimates are required to meet the 
following criterion: 

ubRMSE ≤ 0.04 m3 m-3 within the data masks specified in the SMAP Level 2 Science 
Requirements (that is, excluding regions of snow and ice, frozen ground, mountainous 
topography, open water, urban areas, and vegetation with water content greater than 5 kg m-2),   

where ubRMSE is the RMSE computed after removing long-term mean bias from the data (Appendix A).  
(The ubRMSE is also referred to as the standard deviation of the error.)  This criterion applies to the 
L4_SM instantaneous surface and root zone soil moisture estimates at the 9 km grid-cell scale from the 
“aup” Collection.  It is verified by comparing the L4_SM product to the grid-cell scale in situ 
measurements from the core validation sites (section 6.2).   

L4_SM output fields other than instantaneous surface and root zone soil moisture are provided as 
research products (including surface meteorological forcing variables, soil temperature, evaporative 
fraction, net radiation, etc.) and will be evaluated against in situ observations to the extent possible given 
available resources.  

As part of the validation process, additional metrics (including bias, RMSE, time series correlation 
coefficient R, and anomaly R values) will be computed for the L4_SM output fields to the fullest extent 
possible.  This includes computation of the metrics outside of the limited geographic area for which the 
0.04 m3 m-3 validation criterion is applied.   

For the computation of the anomaly R metric, the seasonal cycle of the raw data (including the 
L4_SM product and the in situ measurements) is estimated, separately for each product and each location, 
by computing, for each day of the year (DOY), a climatological value of soil moisture.  Anomaly time 
series are then computed by subtracting the mean seasonal cycle from the raw data.  Lastly, the anomaly 
R metric is derived by computing the time series correlation coefficient of the anomaly time series.  
Because of the short data record of the beta-release, anomaly R metrics are not provided in this report.   

The validation includes additional metrics that are based on the statistics of the observation-minus-
forecast residuals and other data assimilation diagnostics (section 6.4).  The appendix provides detailed 
definitions of all the validation metrics used here.      
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5 L4_SM BETA RELEASE 

5.1 Process and Criteria 
Since the beginning of the science data flow, the team has been conducting frequent assessments of 

pre-beta L4_SM data products and will continue to do so throughout the intensive Cal/Val phase and 
beyond.  Frequent reviews of performance based upon core validation sites, sparse networks, and 
assimilation diagnostics were conducted for a period of 5+ months and captured a wide range of 
geophysical conditions.  The assessment presented here is a summary of the latest status of this process.    

The comparison against in situ measurements include metrics for a model-only “SMAP Nature 
Run,” version 4 (NRv4).  The NRv4 estimates are based on the same land surface model and forcing data 
as the L4_SM estimates, except that the NRv4 estimates do not benefit from the assimilation of the 
SMAP brightness temperature observations.  Specifically, the NRv4 estimates are the result of a single-
member, land model integration within the L4_SM system but without the ensemble perturbations and 
without the assimilation of the SMAP L1C_TB observations; any accuracy in the NRv4 estimates is thus 
derived from the imposed meteorological forcing and land model structure and parameter information.  
The NRv4 estimates are available for the period 1 January 2001 to present and also provide the model 
climatological information required by the L4_SM assimilation algorithm (Reichle et al. 2014b).   

Prior to the SMAP launch, the L4_SM team formulated the following criteria for the beta release of 
the L4_SM data: 

• The skill of the L4_SM assimilation product is no worse than that of the model-only reference 
(SMAP Nature Run, NRv4), where skill is measured against in situ observations from core 
validation sites and sparse networks. 

• The statistics of observations-minus-forecast residuals are within expectation as defined by 
published results (AMSR-E, ASCAT, SMOS). 

One key finding of this Assessment Report is that the above criteria have been met, and that the 
L4_SM product is sufficiently mature for a public beta release on 30 October 2015. 

 

5.2 Processing Options and Science ID Version 
The L4_SM product version used to prepare this Assessment Report has Science Version ID 

Vb1004.  The data were generated in mid-September 2015 as a “forward processing parallel” (FPP) 
stream (ECS Version ID 199).  The L4_SM algorithm slated for the beta release on 30 October 2015 is 
expected to have only very minor differences from Vb1004.   

In anticipation of the planned L4_SM beta release on 30 October 2015, the L4_SM team defined the 
assessment period for this report as 11 April 2015, 0z to 19 September 2015, 0z.  The start date matches 
the date when the radiometer was operating under reasonably stable conditions following instrument start-
up operations.  The end date was selected to allow sufficient time for analysis and preparation of this 
Assessment Report as well as other documents required for the beta release.   

The beta release version of the L4_SM algorithm ingests only the SMAP L1C_TB radiometer 
brightness temperatures, contrary to the planned use of downscaled brightness temperatures from the 
L2_SM_AP product and landscape freeze-thaw state retrievals from the L2_SM_A product.  The latter 
two products are based on radar observations and are only available for the period from 13 April to 7 July 
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2015 because of an anomaly in the SMAP radar instrument.  The decision to use only radiometer 
(L1C_TB) inputs was made to ensure homogeneity in the longer-term L4_SM beta-release data record.   

The L4_SM Vb1004 algorithm used the beta-release version of the SMAP L1C_TB brightness 
temperature data product (CRID R11850 until 9 Sep 2015 and CRID R11920 thereafter), which meets its 
requirements for noise equivalent differential temperature (NEDT) and geolocation and is generally 
considered of good quality.  A detailed report of the quality of the beta-release version of the L1C_TB 
data product is available from NSIDC (Piepmeier et al. 2015). 
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6 L4_SM DATA PRODUCT ASSESSMENT 
This section provides a detailed assessment of the L4_SM data product.  First, global patterns, 

features, and noteworthy events are discussed (section 6.1).  Next, we present comparisons and metrics 
versus in situ measurements from core validation sites (section 6.2) and sparse networks (section 6.3).  
Finally, we evaluate the assimilation diagnostics (section 6.4), which includes a discussion of the 
observation-minus-forecast residuals, the increments, and the data product uncertainty estimates.  

6.1 Global Patterns and Features 
Figure 3 shows global maps of time-averaged L4_SM surface and root zone soil moisture for the 

validation period (11 April 2015, 0z to 19 September 2015, 0z).  The global patterns are as expected – 
arid regions such as the southwestern US, the Sahara desert, the Arabian Peninsula, the Middle East, 
southern Africa, and central Australia exhibit generally dry surface and root zone soil moisture 
conditions, whereas the tropics (Amazon, central Africa, and Indonesia) and high-latitude regions show 
wetter conditions. One notable exception is that a portion of the Democratic Republic of Congo and 
adjacent areas appear unexpectedly dry.  This is because over Africa, the beta-release version of the 
L4_SM algorithm uses precipitation forcing directly from the GEOS-5 Forward Processing (FP) system, 
which has a known dry bias in central Africa.  

 

 

 

Figure 3.  Time-average of L4_SM (a) surface and (b) root zone soil moisture for 11 April 2015, 0z, to 19 
September 2015, 0z. 
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Generally, the global patterns of absolute soil moisture values are dominated by soil parameters and 
climatological factors.  The influence of soil texture is noticeable in the coarse-scale patterns in the 
Sahara desert, where little is known about the spatial distribution of mineral soil fractions.  Areas with 
peat soil include, for example, the region along the southern edge of Hudson Bay and portions of Alaska.  
In the land model, the soils in this region are assigned a high porosity value and show persistently wetter 
conditions than other areas.  

The strong impact of climate on soil moisture is reflected in the overall similarity between the time-
averaged fields of Figure 3 and the instantaneous fields for 1 June 2015 and 1 September 2015, both at 0z, 
shown in Figure 4.  Some areas, however, do exhibit strong changes in soil moisture conditions between 
the two dates.  For example, the extremely wet conditions on 1 June 2015 in Texas, Oklahoma, and 
Kansas and extending into the US Midwest (Figure  4a and c) resulted from well-documented extreme 
rainfall events throughout May 2015.  The wet conditions have clearly abated by 1 September 2015 
(Figure  4b and d).  

Another notable feature in the global maps of Figure 4 is the strong spatial contrast in dry and wet 
soil moisture conditions in western Australia on 1 June 2015.  This contrast resulted from parts of the 
region having seen unseasonably high rainfall conditions in May 2015, with a few locations recording 
their wettest May on record, and many locations recording their wettest May for over twenty years. In 
contrast, the rest of Western Australia recorded rainfall that was below to very much below average 
(Bureau of Meteorology 2015; http://www.bom.gov.au/climate/current). 

The L4_SM product also includes a large number of output fields that are not subject to formal 
validation requirements.  Such “research” output includes the surface meteorological forcing fields, land 
surface fluxes, soil temperature and snow conditions, runoff, and error estimates (derived from the 
ensemble).  Figure 5 illustrates two of these fields for 11 April 2015: the top-layer soil temperature (at 
12z) and the snow mass (3-hour average for 21z to 0z).  The global patterns are again consistent with 
expectation.  The top-layer soil temperature is hottest in the Arabian Peninsula, where the local time is 
around 3pm and the diurnal cycle of the soil temperature is at or near its peak.  The coolest temperatures 
can be found at the highest northern latitudes, where the soil is still frozen.  The snow mass distribution is 
also consistent with expectation, with nearly continuous snow cover remaining at the highest latitudes and 
in the northern hemisphere high mountain ranges.  Snow is all but absent in the southern hemisphere at 
the end of the austral summer.  

The temperature and snow fields shown in Figure 5 are of particular interest because they can be 
used to screen or flag the L4_SM soil moisture output for frozen conditions or situations where there is 
snow on the ground.  Unlike the SMAP Level 2 and 3 retrieval products, the L4_SM product does not 
provide binary flags to classify the conditions at the time for which the soil moisture estimates are valid.  
Rather, the L4_SM product provides quantitative estimates of surface and soil temperatures, snow mass, 
precipitation, etc. that contain far more complete information and can readily be converted into binary 
flags by users should the need arise.    
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Figure 4.  Snapshots of L4_SM (a,b) surface and (c,d) root zone soil moisture for (a,c) 1 June 2015, 0z, and (b,d) 1 September 2015, 0z.   
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Figure 5.  L4_SM (a) top layer soil temperature on 11 April 2015, 12z and (b) snow mass (three-hourly average 
from 11 April 2015, 21z to 12 April 2015, 0z).   
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6.2 Core Validation Sites 

6.2.1 Method and Overview 

In situ measurements are critical in the assessment of the SMAP data products.  Comparisons against 
in situ measurements provide error estimates and a basis for modifying algorithms and/or parameters.  A 
robust analysis requires many sites representing diverse conditions.  Unfortunately, there are relatively 
few sites that can provide measurements of the type, quality, and quantity needed for robust validation.  
The core validation sites used here are the result of the Cal/Val Partner Program established by SMAP to 
foster cooperation with the providers of in situ soil moisture measurements and to encourage the 
enhancement of these resources for the support of the SMAP Cal/Val program. 

For any given core validation site, the spatial distribution of the in situ sensors is typically not 
aligned with the grid cells of the standard EASE v2 grid of the SMAP data products.  Therefore, the 
SMAP Cal/Val team defined custom “shifted” grid cells (or “reference pixels”) that better exploit the 
spatial coverage of the in situ measurements at each site, but do not necessarily align with the standard 
EASE v2 grid.  A core validation site may provide in situ measurements for one or more 9 km and/or 36 
km reference pixels.   

The formal L4_SM accuracy requirement is expressed in terms of the ubRMSE metric and applies to 
the 9 km native resolution of the data product (section 4).  To maximize the use of the core validation site 
measurements, this section assesses the L4_SM product in terms of a variety of metrics (section 4) and for 
all available 9 km and 36 km core validation site pixels.  The formal requirement is verified by averaging 
only the ubRMSE values from the 9 km reference pixels at the core validation sites.  

The L4_SM assessment uses the in situ measurements at reference pixels that may not align with 
standard EASE v2 grid cells (Appendix C).  But unlike the Level 2 algorithms, the L4_SM algorithm 
cannot readily be applied to reference pixels. Therefore, L4_SM estimates are co-located with the 
reference pixels through bilinearly interpolating the L4_SM product estimates from their standard, 9 km 
EASE v2 grid to the reference pixels for the purpose of the in situ comparisons.   

Some sites may not offer the desired spatial distribution or quality of measurement.  These sites, 
classified as “candidate” validation sites, have not reached the level of maturity needed for use in the 
verification of the formal accuracy requirement (section 4).  In some cases this is simply a latency 
problem that will be resolved in time.  Prior to launch, the L4_SM and Cal/Val teams reviewed the status 
of all sites to determine which sites are ready to be designated as core validation sites.  The basic process 
was as follows: 

• Define the reference pixel (or grid cell, possibly shifted w.r.t. the standard EASE v2 grid).   
• Assess the site for conditions that would introduce uncertainty. 
• Determine if the number of sensor locations is large enough to provide reliable grid-cell average 

estimates.  
• Assess the geographic distribution of the sensors.  
• Determine if the instrumentation has been either (1) widely used and known to be well-calibrated 

or (2) calibrated for the specific site in question. 
• Perform a quality assessment of each sensor in the network.  
• Establish a scaling function. (The default function is a straight average of all sensors.) 
• Conduct a pre-launch assessment using surrogate data appropriate for the L4_SM product (e.g., 

the SMAP Nature Run).  
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• Review any supplemental studies that have been performed to verify that the site network 
represents the average soil moisture conditions over the reference pixel (or grid cell). 

The status of candidate validation sites will be reviewed periodically to determine if they should be 
reclassified as core validation sites.  The current set of core validation sites that provide data for the 
broader L4_SM assessment are listed in Table 1, along with the details of the 9 km and 36 km reference 
pixels.  The table shows that the L4_SM validation is based on a total of 27 reference pixels from 12 
different core validation sites.  Surface soil moisture measurements are available for all 27 reference 
pixels, which include 10 reference pixels at the 36 km scale from 10 different sites and 17 reference 
pixels at the 9 km scale from 12 different sites.  For root zone soil moisture, measurements are available 
for only 14 reference pixels from 6 different core sites, including 6 reference pixels at the 36 km scale 
from 6 different sites and 8 reference pixels at the 9 km scale from just 4 different sites.  The 9 km 
reference pixels for root zone soil moisture belong to the core validation sites of Fort Cobb (Oklahoma), 
South Fork (Iowa), Kenaston (Saskatchewan), and TxSON (Texas).  This very limited set obviously lacks 
the diversity to be representative of global conditions.   

Table 1 also lists the depths of the deepest sensors that contribute to the in situ root zone soil 
moisture measurements.  The measurements from the individual sensors are vertically averaged with 
weights that are proportional to the spacing of the depth of the sensors within the 0-100 cm layer depth 
corresponding to the L4_SM estimates.  At all reference pixels except Little River, the deepest sensors are 
at 45 cm or 50 cm depth.  At Little River, the deepest sensors are at 30 cm.  The deepest sensors are 
therefore weighted most strongly in the computation of the vertical average.  To compute the vertically 
averaged root zone soil moisture at a given time from a given sensor profile, all sensors within the profile 
must provide measurements that pass the automated quality control.       

Across the reference pixels listed in Table 1, the average number of individual sensors that 
contribute to a given 36 km reference pixel ranges between 12.7 and 33.5, with a mean value of 21.3.  At 
the 9 km scale, 7 of the 17 reference pixels are based on just 4 individual sensor profiles, while the rest of 
the 9 km reference pixels consist of about 10 sensor profiles each.  The relative sampling density is 
therefore considerably lower for the 9 km reference pixels.  For most reference pixels, individual sensor 
profiles tend to drop out temporarily.  This leads to undesirable discontinuities in the reference pixel 
average soil moisture.  To mitigate this effect, a minimum of 8 individual sensor profiles were required 
(after quality control) to compute the reference pixel average, provided at least 8 sensor profiles were in 
the ground.  For the seven reference pixels that are based on just 4 sensor profiles, data from all 4 sensors 
(after quality control) was required to compute the reference pixel average.   

Table 2 lists the various skill metrics for all reference pixels, both for the L4_SM product and the 
Nature Run v4 (NRv4; section 5.1).  The table is primarily provided for reference.  A detailed discussion 
of the skill at select core validation sites is given in sections 6.2.2-6.2.5.  The results for individual 
reference pixels reveal many features that support the quality of the L4_SM data product and indicate 
potential avenues for improvement.  This is followed in section 6.2.6 by a discussion of the summary 
metrics obtained from averaging across the skill computed at all reference pixels, along with general 
conclusions from the core site validation.  
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Table 1.  Core validation sites and reference pixels for L4_SM validation.  36 km reference pixels are shown with gray shading. 

Min Mean Max
03013602 41.28 -5.41 36 0.05 13 16.9 20
03010908 41.32 -5.27 9 0.05 4 4.0 4
07013601 -34.85 146.17 36 0.05 9 25.5 29
07010902 -34.72 146.13 9 0.05 8 10.7 11
09013601 49.61 -97.94 36 0.05 8 19.7 20
09010906 49.67 -97.98 9 0.05 8 10.9 11
16013603 31.68 -110.04 36 0.05 12 20.7 24
16010906 31.72 -110.09 9 0.05 8 8.7 9
16010907 31.72 -109.99 9 0.05 8 10.6 11
16023602 34.88 -98.09 36 0.45 8 17.0 18
16020907 34.92 -98.04 9 0.05 4 4.0 4
16033602 35.42 -98.62 36 0.45 10 12.7 13
16030911 35.38 -98.57 9 0.45 4 4.0 4
16030916 35.29 -98.48 9 0.45 4 4.0 4
16043602 31.60 -83.59 36 0.30 12 19.1 21
16040901 31.72 -83.73 9 0.05 8 8.0 8

St Josephs USA (Indiana) Temperate Cropland 16060907 41.45 -84.97 9 0.05 8 8.3 9
16073602 42.47 -93.39 36 0.50 10 17.1 20
16070909 42.42 -93.53 9 0.50 4 4.0 4
16070910 42.42 -93.44 9 0.50 4 4.0 4
16070911 42.42 -93.35 9 0.50 4 4.0 4
27013601 51.45 -106.46 36 0.50 8 30.9 35
27010911 51.39 -106.42 9 0.50 8 12.8 14

Valencia Spain Cold Savanna woody 41010906 39.57 -1.26 9 0.05 8 8.0 8
48013601 30.31 -98.78 36 0.50 28 33.5 36
48010902 30.43 -98.82 9 0.50 8 10.3 11
48010911 30.27 -98.73 9 0.50 13 14.3 15

Horizontal 
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Table 2.  Metrics at individual reference pixels.  36 km reference pixels are shown with gray shading.  L4_SM metrics are shown in bold.  

NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval
03013602 36 0.025 0.020 0.015 0.048 0.050 0.008 0.62 0.73 0.19 n/a n/a n/a n/a n/a n/a n/a n/a n/a
03010908 9 0.035 0.032 0.008 0.014 0.017 0.009 0.55 0.62 0.20 n/a n/a n/a n/a n/a n/a n/a n/a n/a
07013601 36 0.050 0.034 0.026 -0.001 0.030 0.044 0.87 0.91 0.14 n/a n/a n/a n/a n/a n/a n/a n/a n/a
07010902 9 0.078 0.052 0.029 -0.023 0.010 0.068 0.90 0.93 0.10 n/a n/a n/a n/a n/a n/a n/a n/a n/a
09013601 36 0.022 0.039 0.007 -0.017 -0.015 0.008 0.70 0.21 0.17 n/a n/a n/a n/a n/a n/a n/a n/a n/a
09010906 9 0.025 0.037 0.013 0.047 0.054 0.009 0.63 0.25 0.19 n/a n/a n/a n/a n/a n/a n/a n/a n/a
16013603 36 0.026 0.024 0.015 0.053 0.044 0.008 0.68 0.76 0.14 n/a n/a n/a n/a n/a n/a n/a n/a n/a
16010906 9 0.031 0.033 0.011 0.031 0.030 0.007 0.59 0.60 0.16 n/a n/a n/a n/a n/a n/a n/a n/a n/a
16010907 9 0.028 0.029 0.012 0.037 0.030 0.007 0.60 0.63 0.15 n/a n/a n/a n/a n/a n/a n/a n/a n/a
16023602 36 0.037 0.029 0.011 0.009 -0.012 0.016 0.84 0.90 0.07 0.033 0.020 0.025 -0.034 -0.048 0.020 0.92 0.95 0.24
16020907 9 0.036 0.030 0.013 -0.009 -0.029 0.015 0.81 0.89 0.09 n/a n/a n/a n/a n/a n/a n/a n/a n/a
16033602 36 0.043 0.036 0.016 0.035 0.032 0.016 0.81 0.86 0.09 0.025 0.028 0.020 0.025 0.028 0.024 0.90 0.88 0.42
16030911 9 0.051 0.038 0.023 0.044 0.045 0.025 0.81 0.88 0.13 0.025 0.029 0.016 0.026 0.038 0.017 0.82 0.94 0.26
16030916 9 0.034 0.032 0.010 -0.002 -0.019 0.012 0.82 0.86 0.08 0.020 0.031 0.018 -0.033 -0.030 0.015 0.91 0.76 0.26
16043602 36 0.044 0.036 0.019 0.086 0.078 0.011 0.43 0.60 0.23 0.028 0.022 0.016 0.054 0.047 0.009 0.72 0.79 0.23
16040901 9 0.042 0.037 0.029 0.095 0.092 0.016 0.67 0.72 0.25 n/a n/a n/a n/a n/a n/a n/a n/a n/a

St Josephs 16060907 9 0.028 0.039 0.033 0.149 0.131 0.012 0.85 0.72 0.16 n/a n/a n/a n/a n/a n/a n/a n/a n/a
16073602 36 0.037 0.039 0.014 0.049 0.038 0.013 0.65 0.58 0.13 0.014 0.034 0.008 -0.007 -0.017 0.010 0.72 0.30 0.36
16070909 9 0.041 0.029 0.010 -0.014 -0.016 0.014 0.52 0.80 0.12 0.016 0.016 0.022 -0.074 -0.074 0.008 0.57 0.83 0.29
16070910 9 0.044 0.036 0.018 0.036 0.039 0.018 0.54 0.70 0.15 0.012 0.023 0.011 0.018 0.025 0.009 0.73 0.61 0.35
16070911 9 0.045 0.038 0.010 0.010 0.016 0.015 0.58 0.71 0.13 0.012 0.018 0.005 -0.010 -0.002 0.006 0.68 0.78 0.26
27013601 36 0.026 0.020 0.012 0.005 -0.005 0.013 0.61 0.81 0.11 0.017 0.015 0.043 -0.056 -0.066 0.025 0.82 0.83 0.65
27010911 9 0.030 0.032 0.010 0.000 -0.010 0.011 0.52 0.55 0.16 0.022 0.018 0.033 -0.089 -0.099 0.013 0.543 0.755 0.49

Valencia 41010906 9 0.024 0.023 0.023 0.093 0.085 0.009 0.51 0.53 0.22 n/a n/a n/a n/a n/a n/a n/a n/a n/a
48013601 36 0.043 0.032 0.039 0.097 0.078 0.024 0.82 0.93 0.21 0.033 0.027 0.142 0.062 0.056 0.268 0.95 0.93 0.50
48010902 9 0.044 0.044 0.044 0.140 0.131 0.022 0.74 0.82 0.24 0.028 0.016 0.060 0.099 0.100 0.035 0.94 0.96 0.50
48010911 9 0.057 0.045 0.046 0.135 0.112 0.025 0.75 0.87 0.25 0.031 0.030 0.086 0.094 0.083 0.075 0.90 0.90 0.50
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6.2.2 Little Washita (Oklahoma) 

The Little Washita watershed in Oklahoma has been utilized for many validation studies of 
microwave soil moisture retrievals.  Several in situ measurement campaigns addressed both in situ sensor 
calibration and upscaling.  Therefore, confidence in the quality of the in situ estimates is very high for this 
site, and performance at this site is considered to be an important factor in the L4_SM algorithm 
assessment.  

 

 
 

The 9 km reference pixel for Little Washita (#16020907) does not have root zone soil moisture 
measurements, but the results for surface soil moisture at the 9 km reference pixel are similar to those at 
the 36 km reference pixel at that site (Table 2).  Figure 6 therefore shows the L4_SM, NRv4, and in situ 
time series for the 36 km reference pixel (#16023602).  Soil moisture varies considerably during the 
validation period, owing to the exceptionally wet conditions during May, which were preceded by 
relatively dry conditions in April and followed by a 3-month general drying trend.  The L4_SM and 
NRv4 estimates clearly capture the overall variability, as well as the timing of the major rainstorms.  The 
time series correlation coefficients are therefore very high, with R values of 0.90 for L4_SM surface soil 

 
Figure 6.  (Top) Soil moisture from (black solid line) L4_SM Vb1004, (orange solid line) NRv4, and (magenta 
dots) in situ measurements at the 36 km Little Washita reference pixel #16023602.  The grey shading around the 
black solid line indicates the ensemble-based uncertainty estimates for surface soil moisture that are provided 
with the L4_SM product.  (Bottom) Same as top panel but for root zone soil moisture.  
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moisture and 0.95 for L4_SM root zone soil moisture, which is an improvement over the already high 
values of 0.84 and 0.92 for NRv4 surface and root zone soil moisture, respectively.  

The improvement is also reflected in the ubRMSE metric, which decreases from 0.037 m3m-3 for 
NRv4 surface soil moisture to 0.029 m3m-3 for L4_SM, and from 0.033 m3m-3 for NRv4 root zone soil 
moisture to 0.020 m3m-3 for L4_SM.  The improvements are mostly due to the increased dynamic range 
and the generally faster dry-downs of the L4_SM estimates that result from the assimilation of the SMAP 
observations and better match the in situ measurements.  Bias values are very low for surface soil 
moisture (around 0.01 m3m-3 for L4_SM and NRv4).  Root zone soil moisture, however, is generally 
more biased, with a higher value of 0.048 m3m-3 for L4_SM than the 0.034 m3m-3 bias for NRv4.  

6.2.3 TxSON (Texas) 

While Little Washita is one of the oldest sites, TxSON (Texas) is one of the newest.  The site was 
designed specifically to satisfy the validation of SMAP soil moisture products at the 3 km, 9 km, and 36 
km spatial scales.  Figure 7 shows the results for one of the 9 km TxSON reference pixels.  The results are 
generally similar at the two other (9 km and 36 km) TxSON reference pixels.  The figure shows that the 
precipitation pattern at TxSON was similar to that in Little Washita (section 6.2.2), with a dry April 
followed by an exceptionally wet May and then an extended drydown period.   

As for the Little Washita reference pixels, the time series correlation coefficients for the TxSON 
reference pixels are very high, with R values of 0.82 for L4_SM surface soil moisture and 0.96 for 
L4_SM root zone soil moisture.  The assimilation again results in faster drydowns and a greater dynamic 
range compared with NRv4, and therefore a better agreement with the in situ measurements.  For the 
reference pixel shown in Figure 7, the improvements are reflected in the R values for surface and root 
zone soil moisture as well as in the ubRMSE values for root zone soil moisture.  The improvements 
manifest themselves somewhat differently at the other TxSON reference pixels (Table 2), but overall the 
assimilation of SMAP observations is clearly beneficial.  Unlike for Little Washita, the TxSON bias 
values are very high, ranging from 0.10 m3m-3 to 0.14 m3m-3 depending on the specific variable, data set, 
and reference pixel (Table 2).  The bias is related to the model soil parameters for this site, including the 
relatively high clay fraction of 0.53 and wilting point of 0.24 m3m-3, which reflect average values across 
the entire 0-100 cm root zone because vertical gradients in soil texture are not represented in the soil 
hydrological component of the model. 

One notable feature is the rapid increase in the L4_SM uncertainty estimates for surface soil 
moisture once the surface and root zone soil moisture values drop below the model’s wilting point of 0.24 
m3m-3 around 15 July 2015.  At that point, the model’s transpiration shuts down, and modeled root zone 
soil moisture remains at the wilting point until a significant rain event results in sufficient infiltration to 
raise root zone soil moisture again.  While root zone soil moisture remains stagnant at the wilting point, 
bare soil evaporation still taps into the surface layer soil moisture, which is no longer replenished from 
below and becomes highly sensitive to the perturbations in the surface meteorological forcings and the 
soil moisture prognostic variables, which in turn results in a dramatically increased ensemble spread in 
surface soil moisture. 

Figure 7a also illustrates residual issues with the processing of the in situ measurements.  Surface 
soil moisture increases slightly on July 8 and August 7, which would suggest a minor rain event.  
However, the increase is not due to rainfall.  An analysis of the measurements from the individual sensor 
reveals that around the dates in question, data from several of the sensors reach extremely dry conditions 
and are then flagged by the quality control, which results in an average that is based on only the sensors 
with the somewhat wetter measurements.    
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6.2.4 Little River (Georgia) 

Little River, Georgia, has been providing in situ soil moisture measurements since the launch of 
AMSR-E on Aqua in 2002 (Jackson et al. 2010).  The site is unique in that it represents a humid 
agricultural environment.  It also includes a substantial amount of tree cover, has very sandy soils, and is 
subject to irrigated agriculture.  As in Little Washita, there are no in situ measurements of root zone soil 
moisture at the 9 km reference pixel for Little River, and the surface soil moisture results are similar for 
the 9 km and 36 km reference pixels.  Figure 8 therefore shows the time series for the 36 km reference 
pixel (#16043602).  

All time series reflect a drop from somewhat moister conditions in April during a long drydown in 
May, followed by somewhat drier conditions with frequent yet typically modest rain events during the 
rest of the validation period.  The frequent wetting and drying events shown in the in situ measurements 
are reasonably captured by the L4_SM and NRv4 estimates, but the exact timing and magnitude of the 
storms and drydowns is less certain, with much lower R values than for the Little Washita and TxSON 
reference pixels.  Surface soil moisture in particular has an R value of only 0.43 for NRv4, which 
improves to 0.60 for L4_SM with the assimilation of the SMAP observations.  The correlation for root 
zone soil moisture is somewhat higher, with R values of 0.72 for NRv4 and 0.79 for L4_SM.  The 
assimilation also improves the ubRMSE values of surface soil moisture estimates from 0.044 m3m-3 for 
NRv4 to 0.036 m3m-3 for L4_SM and of root zone soil moisture estimates from 0.028 m3m-3 for NRv4 to 
0.022 m3m-3 for L4_SM.  Bias values are relatively high at 0.08 m3m-3 for surface soil moisture and 0.05 
m3m-3 for root zone soil moisture.   

 

 
Figure 7.  Same as Figure 6 but for the 9 km TxSON reference pixel #48010902. 
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Figure 8b also reveals issues with the in situ measurements.  Between May 17 and June 5, the 
reference pixel average soil moisture shows somewhat erratic behavior.  In this particular case, bad data 
from one sensor passed the automated quality control, and sensors also drop out repeatedly during the 
period in question.  

 

 
 

6.2.5 South Fork (Iowa) 

South Fork, Iowa, is an agricultural region dominated by summer crops of corn and soybeans.  
Conditions in April 2015 were mostly bare soil or stubble, followed by intensive tillage that created large 
surface roughness.  Such variations in surface roughness are difficult to capture in the microwave 
radiative transfer model parameters of the L4_SM algorithm.  The roughness decreases again with 
subsequent soil treatments and rainfall, and becomes less of an issue as the growing season proceeds and 
crops cover the surface.  By early July, corn would typically have high vegetation water content (around 3 
kg m-2) while that of soybeans would typically be much smaller (around 0.3 kg m-2) (Jackson et al. 2004).  
It should also be noted that the agricultural fields are equipped with tiles to improve drainage, a process 
that is not captured in the global-scale Catchment land surface model of the L4_SM algorithm.  

 

 
 

 
Figure 8.  Same as Figure 6 but for the 36 km Little River reference pixel #16043602. 
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Figure 9 shows soil moisture time series for the 9 km reference pixel #16070911, one of three 9 km 
reference pixels at South Fork, for which there is also a 36 km reference pixel (Table 2).  Soil moisture 
conditions are dominated by approximately weekly rain events with subsequent drydowns, except for a 
generally wetter period from mid-June into early July.  The L4_SM estimates capture this pattern 
reasonably well and present an improvement over NRv4 in terms of R values, which increase from 0.58 
(NRv4) to 0.71 (L4_SM) for surface soil moisture and from 0.68 (NRv4) to 0.78 (L4_SM).   

In terms of ubRMSE, L4_SM surface soil moisture estimates are also better than those of NRv4, 
although neither estimate captures the larger dynamic range of the in situ observations, which may be a 
reflection of the tile drainage.  The assimilation of the SMAP observations brings the surface soil 
moisture ubRMSE down from 0.045 m3m-3 for NRv4 to 0.038 m3m-3 for L4_SM, thus ensuring that 
L4_SM meets the accuracy threshold of 0.04 m3m-3 at this particular reference pixel.  Root zone soil 
moisture estimates from L4_SM exhibit somewhat worse ubRMSE values than NRv4, but at 0.018 m3m-3 
are still well below the 0.04 m3m-3 threshold.  Bias values are generally low and are around 0.01 m3m-3 for 
L4_SM and NRv4 surface and root zone soil moisture.  This is encouraging because an extensive study 
involving sensor calibration and additional point sampling was conducted that clearly demonstrated that 
the network represents the average soil moisture of the 0-5 cm soil layer of the SMAP grid cell (M. Cosh 
2015, USDA Hydrology and Remote Sensing Laboratory, personal communication). 

 

 
Figure 9.  Same as Figure 6 but for the 9 km South Fork reference pixel #16070911. 
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6.2.6  Summary Metrics 

Table 3 lists the summary metrics for surface and root zone soil moisture.  The summary metrics are 
provided separately for the 9 km and 36 km reference pixels and are obtained by averaging across the 
metrics from all individual reference pixels at the given scale (Table 2).  The key findings for the 
summary metrics (Table 3) generally match those obtained for the sample reference pixels discussed 
above (sections 6.2.2-6.2.5).  Perhaps the most important result is that the ubRMSE values for surface and 
root zone soil moisture for L4_SM as well as NRv4 and at both the 9 km and the 36 km scales all meet 
the accuracy requirement of 0.04 m3m-3.   

 
Table 3.  Metrics averaged across core validation site reference pixels.  The product (NRv4 vs L4_SM) with the 
better skill score is indicated by green shading. 

NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval
9 km 17 0.039 0.036 0.020 0.046 0.042 0.017 0.67 0.71 0.16

36 km 10 0.035 0.031 0.017 0.037 0.032 0.016 0.70 0.73 0.15
9 km 8 0.021 0.023 0.032 0.004 0.005 0.022 0.76 0.82 0.36

36 km 6 0.025 0.024 0.042 0.007 0.000 0.059 0.84 0.78 0.40

Number 
of 

Reference 
Pixels

ubRMSE  [m3m-3] Bias  [m3m-3]

Root Zone 
Soil Moisture

R  [-]

Surface Soil 
Moisture

Horiz. 
Scale

 
 

For a more in-depth analysis, we first compare the skill of the L4_SM and NRv4 estimates.  The 
color-coding of the summary metrics in the table indicates whether the L4_SM or NRv4 skill is better.  
For all three metrics (ubRMSE, bias, and R) and for both the 9 km and the 36 km scales, the surface soil 
moisture skill of L4_SM exceeds that of NRv4, albeit not by a statistically significant margin.  For 
example, at the 9 km scale the ubRMSE for L4_SM is 0.036 m3m-3, compared to 0.039 m3m-3 for NRv4.  
The corresponding R values are 0.71 for L4_SM and 0.67 for NRv4. 

The summary metrics for root zone soil moisture show a more mixed picture.  At the 9 km scale, the 
L4_SM ubRMSE (0.023 m3m-3) is slightly higher than that of NRv4 (0.021 m3m-3), but the R value for 
L4_SM (0.82) is better than that of NRv4 (0.76).  The numbers are reversed for the 36 km scale, where 
the L4_SM ubRMSE is better and the L4_SM R value is worse than the corresponding NRv4 metrics.  

A closer look at the ubRMSE metric for the individual reference pixels (Table 2) reveals that the root 
zone soil moisture skill meets the 0.04 m3m-3 threshold at all reference pixels for both L4_SM and NRv4.  
Surface soil moisture estimates from NRv4 fail to meet the 0.04 m3m-3 threshold at 12 of the 27 reference 
pixels, including those at Yanco (2 out of 2), Little River (2 out of 2), TxSON (3 out of 3), Fort Cobb (2 
out of 3), and South Fork (3 out of 4).  By contrast, L4_SM surface soil moisture estimates fail to meet 
the threshold at only 3 of 27 reference pixels, the 9 km pixels at Yanco and TxSON.  This result further 
illustrates the key role played by the assimilation of SMAP observations in improving the skill of the 
surface soil moisture estimates beyond the levels obtained strictly from the land surface model’s 
integration of meteorological forcing.  

Next, we compare the skill values at 9 km to those at 36 km.  Here, the picture is also clearer for 
surface soil moisture.  The L4_SM and NRv4 skill at 36 km is better for all three metrics than that at 9 
km, which is consistent with the fact that the model forcing data and the assimilated SMAP brightness 
temperature observations are all at resolutions of about 30 km or greater.  The information used to 
downscale the assimilated information stems from the land model parameters, which are at the finer, 9 km 
resolution.  It is therefore not a surprise that the estimates at 36 km are more skillful than those at 9 km. 
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For root zone soil moisture, the results are again mixed.  The R value for NRv4 at 9 km (0.76) is 
lower than that at 36 km (0.84).  However, the R values for L4_SM as well as the ubRMSE metrics for 
L4_SM and NRv4 are better at 9 km than at 36 km.   It should be noted, though, that the differences are 
not statistically significant, and that there are far fewer pixels available for evaluating root zone soil 
moisture than for surface soil moisture.  As the time series become longer and core validation sites that 
are not automated (e.g., Tibet) are added, the results may become clearer.  

Finally, we compare the skill of the surface estimates to that of the root zone estimates.  Across all 
scales and metrics and for the L4_SM and NRv4 estimates, the skill of the root zone soil moisture 
estimates is always better than that of the surface estimates.  This result makes sense because there is 
much more variability in surface soil moisture.  

The results discussed here clearly demonstrate that the L4_SM product is of sufficient maturity and 
quality for beta-release to the public.  
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6.3 Sparse Networks 

6.3.1 Method and Overview 

The locally dense networks of the core validation sites are complemented by regional to continental-
scale sparse networks.  Although sparse networks are not ideal for soil moisture validation for the reasons 
discussed below, they offer in situ measurements in a larger variety of environments and provide data 
operationally with very short latency.   

The defining feature of the sparse networks is that the there is usually just one sensor (or profile of 
sensors) located within a given 9 km EASE v2 grid cell. The sensor location is not necessarily 
representative of the grid cell, which may result in discrepancies between the L4_SM estimates and the 
measured soil moisture values that do not necessarily constitute errors in either data set.  For example, the 
in situ sensor may be exposed to a locally intense rainstorm that has only a small impact on the grid cell 
average soil moisture.  Conversely, the sensor location may not experience rainfall, but rain may be 
falling elsewhere the grid cell, thus impacting the L4_SM estimates.  Moreover, the long-term mean and 
variability of soil moisture measurements from an individual sensor may not represent those of the grid 
cell scale soil moisture because of the heterogeneity of soil, vegetation or landscape characteristics.  (In 
the case of some networks, such as USCRN, there are three sensors in very close proximity, which 
increases the robustness of the network, in particular in terms of quality control, but does not impact 
whether the location is representative of the grid cell.)  Sparse network comparisons are therefore best 
interpreted in terms of time series correlation metrics.  Network-average values for the mean difference 
(bias) may also be useful, assuming that such differences are due to a lack of representativeness for 
individual locations and average out when the network as a whole is considered. 

The SMAP project has been evaluating methodologies for upscaling measurements from sparse 
networks to SMAP footprint resolutions, with a focus on using Triple Co-location approaches to correct 
for systematic errors in metrics derived from sparse network observations.  While the Triple Co-location 
approaches can provide estimates of time series correlation metrics and the RMSE of random errors 
versus the true soil moisture (for which the error-prone sparse network measurements are only an 
approximation), it is not possible to compute absolute RMSE (or ubRMSE) values using Triple Co-
location (Draper et al. 2013; Gruber et al. 2015).  Such absolute metrics include systematic errors, such as 
a bias in variability, which are accounted for in the definition of the accuracy requirement (section 4).  

This Assessment Report therefore focuses on metrics obtained from a direct comparison of the 
L4_SM product to in situ measurements, that is, metrics derived without the use of Triple Co-location.  
The values of the time series correlation metrics thus provided are lower than those that would be 
obtained with the aid of Triple Co-location and therefore provide a conservative estimate of the true skill.  
Moreover, the relative performance of the model-only and assimilation products does not depend on the 
use of Triple Co-location approaches. 

For comparison to measurements from the single-profile sensors in the sparse networks, the L4_SM 
estimates are taken from the standard L4_SM 9 km EASEv2 grid cell that includes the sensor location 
(consistent with the approach that is used for L2 product validation).  Put differently, the L4_SM 
estimates are not interpolated bilinearly or otherwise to the precise location of the in situ sensor locations. 
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Table 4.  Overview of sparse networks used in L4_SM validation, with indication of the number of sites and sensor 
depths used here. 

Network Name Area 
Number of Sites Sensor Depths  

[cm] Surface Root Zone 
USDA Soil Climate Analysis Network (SCAN) USA 113 98 5, 10, 20  
US Climate Reference Network (USCRN) USA 111 85 5, 10, 20  
OZNet-Murrumbidgee Australia 36 14 4, 45  

All Networks 260 197  
 

 

The current set of sparse networks used for L4_SM validation is listed in Table 4.  Measurements 
used for L4_SM validation cover most of the United States (SCAN, USCRN) and parts of the 
Murrumbidgee basin in Australia (OZNet).  The in situ measurements from the sparse network sites were 
subjected to extensive automated and manual quality control procedures by the L4_SM team following 
(Liu et al. 2011), which removed spikes, temporal inhomogeneities, oscillations, and other artifacts that 
are commonly seen in these automated measurements.  Table 4 also lists the number of sites with 
sufficient data after quality control.  A total of 260 sites provided surface soil moisture measurements, and 
197 provided root zone soil moisture measurements.  Most of the sites are in the continental United 
States, including about 100 each in the USCRN and SCAN networks.  The OZNet network contributes 36 
sites with surface soil moisture measurements, of which 14 sites also provide root zone measurements.  
Table 4 also lists the sensor depths that were used to compute the in situ root zone soil moisture.  As for 
the core validation sites, vertical averages for SCAN and USCRN are weighted by the spacing of the 
sensor depths within the 0-100 cm layer corresponding to the L4_SM estimates, and the average is only 
computed if all sensors within a given profile provide measurements after quality control.  For SCAN and 
USCRN sites, measurements at 50 cm (and occasionally 100 cm) depth are available, but these deeper 
layer measurements are not of the quality and quantity required for L4_SM validation and are therefore 
not used here.  In future assessments, longer validation periods should facilitate the use of the 
measurements at 50 cm depth.  For OZNet, in situ root zone soil moisture is given by the measurements at 
the 45 cm depth, that is, no vertical average is computed. 

Because of the larger number of sparse network locations compared to the core validation site data, it 
is possible to examine the results stratified by general characteristics, including land cover and 
topographic complexity.  One key distinction is whether a site is within the mask for which the formal 
accuracy requirement applies (section 4).  A site falls outside the mask if it is in an area with mountainous 
topography or dense vegetation, or if it is in an urban area.  The delineation used here is based on the 
maximum climatological LAI, the land cover class, and the variance of the elevation within the 36 km 
EASEv2 grid cell (a measure of topographic complexity) that contains the site.  These parameters are 
readily available in the L4_SM modeling system.  Specifically, a site is within the mask if the maximum 
climatological LAI less than 5, if the land cover is not forest, wetlands, or urban (that is, if the site has 
IGBP class 6-10, 12, or 14), and if the elevation variance around the site less than 5,000 m2 (that is, if the 
standard deviation is less than 71 m). 
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6.3.2 Results 

Figure 10 illustrates the ubRMSE values for the L4_SM estimates at the sparse network sites.  The 
background shading in the figure also indicates whether a site is within the mask of the formal accuracy 
requirement (section 6.3.1).  The resulting delineation (Figure 10) suggests, for example, that sites in the 
topographically complex western United States mountain areas and in the more densely vegetated 
portions of the eastern United States fall outside the mask, which is commensurate with expectation.   

Overall, ubRMSE values range from 0.02 m3m-3 to 0.07 m3m-3, with generally lower values for root 
zone soil moisture than for surface soil moisture (Figure 10).  Errors are generally lowest in the dry and 
mountainous areas of the western United States, where the soil moisture variability is typically low, thus 
naturally limiting the ubRMSE values.  The R values for the sparse network sites, shown in Figure 11, 
range from 0.3 to 0.9, with generally similar values for surface and root zone soil moisture.  There is no 
obvious spatial pattern, except maybe that R values are almost universally high for the OZNet sites in 
Australia. 

 

 

 

 
Figure 10.  ubRMSE for L4_SM (a,b) surface and (c,d) root zone soil moisture.  (a,c) The United States sites 
include (dots) SCAN and (inverted triangles) USCRN.  (b,d) The Australian sites are from OZNet.  Green 
shading indicates areas with low or modest vegetation cover and topographic complexity that are within the 
mask of the SMAP accuracy requirement.  See text for details. 
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Figure 12 shows the average L4_SM metrics across the sites from all networks broken down by the 
exclusion mask of the accuracy requirement (as indicated by the shading in Figure 10).  The average 
metrics are computed based on a clustering algorithm that assigns the weights given to each location 
based on the density of sites in the surrounding region.  As suggested by the map plots, Figure 12 
illustrates that the ubRMSE values are considerably lower at the sites outside the mask, with values 
around 0.04 m3m-3 for surface soil moisture and 0.03 m3m-3 for root zone soil moisture, compared to 
around 0.05 m3m-3 and 0.04 m3m-3 for surface and root zone soil moisture, respectively, at sites within the 
mask.  Again, this result is related to the much lower variability of soil moisture in the arid regions of the 
western United States, which also happen to lie largely in mountainous terrain.  The result is reversed for 
the network-average absolute bias, where values are much lower within the mask (0.05-0.06 m3m-3) than 
outside the mask (0.08-0.09 m3m-3).  The values for the time series correlation coefficients are more 
similar inside and outside the mask and generally range between 0.65 and 0.75.   

Figure 12 also shows the skill of the NRv4 estimates.  Across the board, the L4_SM skill is slightly 
higher than that of NRv4, reflecting the additional information contributed by the assimilation of the 
SMAP brightness temperature observations in the L4_SM system.  The skill differences are small, 
though, and not statistically significant because of the relatively short data record.  As for the core 
validation sites, the typically small differences between L4_SM and NRv4 estimates reflect the fact that 
the sparse network measurements are located in areas where the surface meteorological forcing takes 
advantage of high-quality, gauge-based precipitation measurements.  Larger improvements from the 
assimilation of SMAP observations can be expected in areas where the precipitation forcing inputs are not 
as informed by gauge measurements. 

Table 5 provides average skill metrics broken down by land cover as well as by the individual 
networks.  The breakdown by network is provided for completeness, but it is difficult to interpret because 
of the large differences in the number and location of individual sites within each network. 

 
Figure 11.  Same as Figure 10 but for the time series correlation coefficient (R). 
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The breakdown by land cover follows the IGBP classes.  There are no sparse network sites in the 
closed shrublands, savannas, permanent wetlands, and snow/ice classes (IGBP classes 6, 9, 11, 15).  
Urban/built-up and barren/sparse classes include only one and two sites, respectively.  We lumped the 
five IGBP classes for forests, including evergreen/deciduous/needleleaf/broadleaf and mixed forest (IGBP 
classes 1-5), into a single “forest” class.  Besides this lumped forest class, there are five additional IGBP 
classes for which between 17 and 72 sites are available (Table 5).   

As stated above, the sparse network comparisons are best interpreted in terms of time series 
correlation coefficients, which discounts some of the errors that arise because a given in situ site is not 
representative of the grid cell average soil moisture.  The R values for the L4_SM product range roughly 
between 0.6 and 0.8, with skill on the higher end of that range in the forest, grasslands, and croplands 
classes, and skill at the lower end in the open shrublands and mixed crop/natural classes (Table 5).  The 
same ranking applies to surface and root zone soil moisture estimates.   

Table 5 also provides skill metrics for the NRv4 estimates.  The R values of the L4_SM surface soil 
moisture estimates exceed those of NRv4 for all IGBP classes (except for the single site in the 
barren/sparse class), by an average of 0.03.  For root zone soil moisture the R values of L4_SM are better 
than those of NRv4 except for grasslands, where NRv4 is better.  Averaging across all sites, the R value 
for root zone soil moisture matches that of NRv4.  The average ubRSME metrics across all networks 
similarly indicate a very small improvement in surface soil moisture (by 0.002 m3m-3) and a still smaller 
improvement in root zone soil moisture.  These results mirror the key finding of the core validation site 
analysis:  the assimilation of SMAP brightness temperatures primarily improves surface soil moisture 
estimates, and, on average, does not (yet) improve the skill of the modeled root zone soil moisture.  

The bias values listed in Table 5 suggest that across the four networks, the mean soil moisture from 
the L4_SM and NRv4 estimates is biased high (that is, wet) by about 0.06 m3m-3 for the surface and by 
about 0.02 m3m-3 for the root zone.  The root zone bias in particular is remarkably small and provides 
some confidence in the skill of the model-based estimates.  Note, however, that the typical bias at an 
individual site (as measured by the mean of the absolute bias) is around 0.08 m3m-3 for the surface and 
0.07 m3m-3 for the root zone (not shown).  This is at least partly a reflection of the fact that sparse network 
sites are not necessarily representative of the conditions in the 9 km grid cell for which the L4_SM and 
NRv4 estimates are valid.   This is particularly true for the forest class, because measurement sites are 
typically on grassy areas, regardless of the surrounding land cover.  For the forest class the L4_SM and 
NRv4 estimates have the highest bias values, around 0.10 m3m-3 for surface soil moisture and around 0.05 
m3m-3 for root zone soil moisture (not considering the much higher bias at the single site in the urban 
class).  

Overall, the skill values for the sparse network sites yield results that are very similar to those 
obtained from the core validation sites.  The beneficial impact of assimilating SMAP brightness 
temperature observations is greatest for surface soil moisture.  Furthermore, root zone soil moisture 
estimates are not getting worse when SMAP brightness temperatures are assimilated.  Finally, it is 
important to keep in mind that the skill metrics presented here underestimate the true skill because these 
metrics are based on a direct comparison against in situ measurements (which are subject to error).  
Therefore, the sparse network ubRMSE values suggest that the beta-release L4_SM estimates are at least 
very close to meeting the formal accuracy requirement across a very wide variety of surface conditions, 
beyond those that are covered by the few core validation sites that have been available to date.  The sparse 
network results thus provide additional confidence in the conclusions drawn from the core validation site 
comparisons. 
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Figure 12.  Skill metrics for L4_SM and NRv4 averaged over sparse network sites.  (a,b) ubRMSE, (c,d) 
absolute bias, and (e,f) time series correlation coefficient (R).  Summary metrics are averaged over sites (a,c,e) 
within and (b,d,f) outside the mask of the formal accuracy requirement.  See text for details. 
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Table 5.  Sparse network metrics by land cover (IGBP class), by network, and by the mask used for the (core validation site) accuracy requirement.  

 

NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval NRv4
L4_SM 
Vb1004

95% 
Conf. 

Interval
Forests (IGBP 1-5) 38 0.049 0.046 0.014 0.102 0.095 0.016 0.65 0.68 0.07 30 0.039 0.037 0.014 0.051 0.045 0.017 0.65 0.67 0.12
Open shrublands (IGBP 7) 25 0.035 0.031 0.005 0.020 0.027 0.005 0.50 0.57 0.06 17 0.029 0.024 0.032 0.008 0.014 0.052 0.60 0.63 0.18
Woody savannas (IGBP 8) 20 0.055 0.047 0.028 0.063 0.049 0.024 0.63 0.71 0.13 18 0.047 0.041 0.043 0.023 0.006 0.078 0.57 0.65 0.33
Grasslands (IGBP 10) 72 0.049 0.048 0.010 0.051 0.057 0.012 0.69 0.70 0.05 57 0.038 0.037 0.011 -0.001 0.009 0.017 0.75 0.71 0.12
Croplands (IGBP 12) 61 0.058 0.053 0.009 0.052 0.052 0.010 0.61 0.67 0.06 39 0.040 0.040 0.011 0.020 0.024 0.014 0.68 0.69 0.15
Urban/built-up (IGBP 13) 1 0.059 0.057 0.054 0.229 0.181 0.021 0.59 0.62 0.28 1 0.056 0.052 0.075 0.227 0.183 0.033 0.65 0.68 0.56
Crop/natural (IGBP 14) 37 0.056 0.055 0.006 0.041 0.030 0.007 0.58 0.61 0.06 32 0.042 0.041 0.007 0.012 0.000 0.008 0.58 0.60 0.15
Barren/sparse (IGBP 16) 2 0.026 0.022 0.007 -0.013 -0.001 0.005 0.40 0.39 0.13 n/a n/a n/a n/a n/a n/a n/a n/a n/a n/a
SCAN 113 0.052 0.050 0.005 0.039 0.039 0.005 0.57 0.60 0.05 98 0.038 0.038 0.007 -0.007 -0.005 0.008 0.60 0.59 0.11
USCRN 111 0.048 0.045 0.008 0.073 0.070 0.009 0.64 0.67 0.04 85 0.038 0.036 0.009 0.034 0.030 0.013 0.68 0.70 0.08
Oznet 36 0.057 0.048 0.039 -0.002 0.035 0.057 0.82 0.84 0.17 14 0.021 0.030 0.104 -0.082 -0.046 0.140 0.92 0.90 0.65
Inside mask 146 0.053 0.050 0.007 0.045 0.042 0.009 0.61 0.65 0.04 104 0.040 0.039 0.008 0.008 0.006 0.011 0.67 0.68 0.10
Outside mask 114 0.043 0.041 0.008 0.081 0.080 0.008 0.63 0.66 0.04 93 0.033 0.032 0.009 0.046 0.046 0.013 0.63 0.64 0.09
Average (all sites) 260 0.048 0.046 0.007 0.059 0.058 0.008 0.61 0.64 0.04 197 0.037 0.036 0.008 0.023 0.022 0.011 0.66 0.66 0.08

Sparse Network Subset Num- 
ber of 
sites

Root Zone Soil MoistureSurface Soil Moisture

Num- 
ber of 
sites

ubRMSE  [m3m-3] Bias  [m3m-3] R  [-] ubRMSE  [m3m-3] Bias  [m3m-3] R  [-]
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6.4 Data Assimilation Diagnostics 
This section provides an evaluation of the L4_SM data assimilation diagnostics, including the 

statistics of the observation-minus-forecast (O-F) residuals, the observation-minus-analysis (O-A) 
residuals, and the analysis increments.  Because the L4_SM algorithm assimilates brightness temperature 
observations, the O-F and O-A diagnostics are in terms of brightness temperatures (that is, in 
“observation space”).  Strictly speaking, the analysis increments are in the space of the Catchment model 
prognostic variables that make up the “state vector”, including the “catchment deficit”, “root zone 
excess”, “surface excess”, and “top-layer ground heat content” (Reichle et al. 2014b).  For the discussion 
below, the increments have been converted into equivalent soil moisture and soil temperature terms.    

6.4.1 L4_SM Analysis 

Figure 13 illustrates, for 29 May 2015, 0z, the soil moisture and temperature analysis that lies at the 
heart of the L4_SM algorithm.  The panels only show a part of North America (the continental United 
States and portions of Mexico and Canada) to reveal the details of the global analysis.  Figure 13a depicts 
the map of H-pol brightness temperature O-F residuals, which typically range between -15 K and 15 K.  
V-pol data exhibit similar features (Figure 13b).  At the analysis time in question, brightness temperature 
observations were available from two ascending swaths, one crossing the eastern portion and another 
crossing the western portion of North America.  Observations were not assimilated everywhere.  For 
example, the quality control steps in the L4_SM processing exclude brightness temperature observations 
in the vicinity of open water surfaces or where model temperatures indicate surface conditions near or 
below freezing, for example, in the Rocky Mountains.   

Note that while the O-F residuals are posted on the 9 km EASE v2 grid of the L4_SM “aup” 
Collection, the assimilated L1C_TB brightness temperature observations and thus the O-F residuals are 
effectively on the 36 km EASE v2 grid.  In contrast, the increments are at the 9 km resolution of the 
model.  One key feature of the L4_SM analysis is the downscaling of the SMAP radiometer data to the 9 
km model resolution based on the modeled error characteristics, which vary dynamically and spatially.  

Figures 13c, e, and g show the resulting analysis increments in surface soil moisture, root zone soil 
moisture, and surface soil temperature, respectively.  Areas where the observed brightness temperature is 
warmer than the model forecast result in negative increments in soil moisture and positive increments in 
soil temperature.  Increments in surface soil moisture typically range from -0.03 m3m-3 to 0.03 m3m-3.  
Increments in root zone soil moisture are generally smaller and mostly range between -0.01 m3m-3 and 
0.01 m3m-3, reflecting the fact that the brightness temperature observations are directly sensitive only to 
the soil moisture and temperature in a surface layer of approximately 5 cm thickness.  Root zone soil 
moisture increments rely on the error cross correlations between the modeled brightness temperatures and 
root zone soil moisture that evolve dynamically with the model ensemble.  

The analysis increments are generally smooth and cover an area that is slightly larger than the 
coverage of the O-F residuals, owing to the spatially distributed (three-dimensional) ensemble Kalman 
filter used in the L4_SM analysis.  Finally, Figures 13d, f, and h show the resulting analysis fields for 
surface soil moisture, root zone soil moisture, and surface soil temperature, respectively.  The analysis 
fields are computed by adding the analysis increments of Figures 13c, e, and g to the model forecast (not 
shown).  Figures 13d, f, and h illustrate that the analysis increments blend seamlessly into the model 
forecast fields, and that the geometrical features of the satellite swaths of assimilated observations cannot 
be discerned in the final analysis. 
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Figure 13.  L4_SM analysis for 29 May 2015, 0z.  Top row shows O-F residuals for (a) H-pol and (b) V-pol.  
Analysis increments are shown for (c) surface soil moisture, (e) root zone soil moisture and (g) surface soil 
temperature.  The resulting analysis fields are shown for (d) surface soil moisture, (f) root zone soil moisture and 
(h) surface soil temperature. 
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6.4.2 Observation-Minus-Forecast Residuals 

Figure 14 shows the global coverage of the SMAP L1C_TB observations that were used in the 
L4_SM analysis for 7 June 2015, 0z.  The analysis window includes brightness temperature observations 
between 22:30z on 6 June 2015 and 01:30z on 7 June 2015.  Within this window, approximately 9,000 
observations were used in total, including about 2,700 H-pol and 2,700 V-pol observations from two 
descending half-orbits over eastern Russia and Indonesia and about 1,800 H-pol and 1,800 V-pol 
observations from two ascending half-orbits over the Americas.  

SMAP L1C_TB observations were not used over China where L-band radio-frequency interference 
(RFI) is common.  SMAP is equipped with a variety of hardware and software tools to deal with RFI and 
generally provides near-global coverage.  However, the L4_SM algorithm requires knowledge of the 
long-term L-band brightness temperature climatology to address observation-minus-forecast bias in the 
system (Reichle et al. 2014b).  The necessary climatological information is derived from observations 
provided by the Soil Moisture Ocean Salinity (SMOS) mission, which cannot provide good quality 
observations in the RFI-affected areas. 

 

 
 

The gaps in spatial coverage are further illustrated in Figure 15, which shows the total number of 
L1C_TB observations that were assimilated during the validation period (11 Apr 2015, 0z, to 19 Sep 
2015, 0z).  This count includes H- and V-pol observations from ascending and descending orbits.  The 
average data count across the globe is approximately 213 for the 161-day period, but no data are 

 
Figure 14.  (Top) Coverage of the assimilated SMAP L1C_TB brightness temperature 
observations that were used in the L4_SM analysis for 7 June 2015, 0z (Vb1004).  In the 
map, the coverage of V-pol observations obscures the areas where H-polarized 
observations are used. (Bottom) Number of brightness temperature observations 
assimilated in this analysis. 
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assimilated across large areas in eastern Europe and the southern half of continental Asia due to the lack 
of a SMOS brightness temperature climatology because of RFI.  Moreover, few or no SMAP brightness 
temperatures are assimilated in mountainous areas, including the Rocky Mountains and the Andes, in the 
vicinity of lakes, such as in northern Canada, and next to major rivers, including the Amazon and the 
Congo.  High-latitude northern areas exhibit the highest counts of assimilated brightness temperature 
observations because of SMAP’s polar orbit, which results in more frequent revisit times there. 

 

 
 

Next, Figure 16 shows a time series of the global observations counts for July 2015, again including 
H-pol and V-pol observations from ascending and descending half-orbits.  There are 8 analysis times per 
day (at 0z, 3z, …, 18z, and 21z), with data counts varying depending on the time of day, primarily based 
on the amount of land surface area where the local time is close to 6am or 6pm local time, when SMAP 
crosses the Equator.  Each L4_SM analysis typically ingests between 5,000 and 15,000 observations, with 
mean and median values very close to 10,000.   

The bottom panel of Figure 16 shows the time series of the O-F and O-A statistics.  Global mean O-
F values (cyan bars) are around 2-3 K prior to 7 July 2015, the day on which the radar anomaly occurred.  
Because of the changes in the observatory’s thermal conditions, the calibration of the Level 1 brightness 
temperatures changed slightly.  This is reflected in a subtle shift of the mean O-F values, which after 7 
July 2015 are typically between 0 K and 2 K.  Mean O-A values (orange bars) are slightly smaller than 
mean O-F values.  Overall, the relatively small mean O-F and O-A values suggest that the assimilation 
system is reasonably bias-free in a global average sense.  

Typical magnitudes of the O-F residuals, indicated by the RMS values (blue bars), range between 3 
K and 7 K. The RMS values of the O-A residuals (red bars) are generally lower and rarely exceed 5 K, 
thereby reflecting the reduction in uncertainty obtained from the analysis.   

 

 

 
Figure 15.  Number of L1C_TB observations used in the L4_SM algorithm (Vb1004) during the validation 
period (11 Apr 2015, 0z, to 19 Sep 2015, 0z).  Data counts include H-pol and V-pol data from ascending and 
descending half-orbits. 
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The O-F RMS values show occasional spikes exceeding 10 K.  One such spike can be seen for the 15 
July 2015, 6z, analysis and corresponds to a major rain event in southeastern Niger that was missed in the 
L4_SM precipitation forcing.  This resulted in forecast brightness temperature values that were much 
larger than those observed by SMAP, with O-F values as low as -90 K (and thus a large O-F RMS value).   

Figure 17 shows the global distributions of the time series mean and standard deviation of the O-F 
residuals.  The time mean values of the O-F residuals are typically small and mostly range from 0 K to 2 
K.  Overall, there is a positive bias of 1.3 K, with very few areas exhibiting negative mean O-F values.  
The largest values are found in the Sahel and in central and southern Africa.  Over Africa, the L4_SM 
precipitation forcing is not corrected to the gauge-based product.  The L4_SM algorithm therefore relies 
heavily on the consistency of the present forcing data from the ¼ degree GEOS-5 operational forward 
processing (FP) system (GEOS-5.13) and the historic forcing data from the ½ degree reprocessing (RP-
IT/FP-IT) system (GEOS-5.9) that was used to derive the brightness temperature rescaling factors in the 
calibration of the L4_SM algorithm.  High values are also seen in the center of the United States, 
Argentina, Australia, and portions of Siberia, which indicates that the L4_SM system would benefit from 
further calibration. 

The time series standard deviation of the O-F residuals ranges from a few Kelvin to around 15 K, 
with a global average of about 5.8 K.  The highest values are found in central North America, the Sahel, 
central Asia, and the southern half of Australia.  These regions have sparse or modest vegetation cover 
and typically exhibit strong variability in soil moisture conditions.  The O-F residuals are generally 
smallest in more densely vegetated regions, including the eastern United States, the Amazon basin, and 

 

Figure 16.  (Top) Counts of L1C_TB observations assimilated into L4_SM (Vb1004) during July 2015, 
including H-pol and V-pol data from ascending and descending orbits.  (Bottom) Statistics of the corresponding 
O-F (or O-B) and O-A residuals, where the mean and RMS values are computed separately for each 3-hourly 
analysis by averaging across the global domain.    
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tropical Africa.  Small values are also found in high-latitudes, including Alaska and Siberia, and in the 
Sahara desert.   

By construction, the analysis pulls the forecast brightness temperatures closer to the (rescaled) 
observations.  The global average of the time mean observation-minus-analysis brightness temperature 
residuals is about 0.3 K, down from the 1.3 K bias of the O-F residuals (not shown).  The time series 
standard deviation of the O-A residuals ranges from less than 1 K to around 7 K, with a spatial pattern 
that roughly matches that of Figure 17b and a global average of about 2.6 K (not shown).  

 

 

 

Figure 17.  (a) Mean and (b) standard deviation of the O-F residuals from the L4_SM algorithm (Vb1004) for 11 
Apr 2015, 0z, to 19 Sep 2015, 0z.   
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Finally, Figure 18 shows the standard deviation of the normalized O-F residuals, which measures the 
consistency between the expected (modeled) errors and the actual errors.  Specifically, the normalization 
of the O-F residuals is with the standard deviation of their expected total error, which is composed of the 
error in the observations (including instrument errors and errors of representativeness) and errors in the 
brightness temperature model forecasts (Appendix B).  The parameters that determine the expected error 
standard deviations are key inputs to the ensemble-based L4_SM assimilation algorithm.  If they are 
chosen such that the modeled errors are fully consistent with the actual errors, the metric shown in the 
figure should be unity.  If the metric is less than one, the actual errors are overestimated by the 
assimilation system, and if the metric is greater than one, the actual errors are underestimated.    

The global average of the metric is 1.25 (Figure 18), which would suggest that, on average, the 
modeled errors are roughly consistent with the actual errors.  The metric, however, varies greatly across 
the globe.  Typical values are either too low or too high.  In the Amazon basin, the eastern US, tropical 
and southern Africa, and the high northern latitudes, values range from 0.25 to 0.5, and thus errors there 
are considerably overestimated.  Conversely, in central North America, the Sahel, India, and southeastern 
Australia, values range from 1.5 to 4, meaning that errors in these regions are considerably 
underestimated.  Future work will focus on improving the calibration of the input parameters that 
determine the model and observation errors in the L4_SM system.  

 

Figure 18.  Standard deviation of the normalized O-F residuals from the L4_SM algorithm (Vb1004) for 11 Apr 
2015, 0z, to 19 Sep 2015, 0z.      
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6.4.3 Increments 

Figure 19 shows the average number of increments that the L4_SM algorithm generated per day 
during the validation period.  The global mean is very close to unity, which means that for a given 
location, one increment per day is applied on average, either from an ascending or a descending overpass.  
The overall pattern of the increments count follows that of the count of the assimilated observations 
shown in Figure 15.  The coverage of the increments, however, is somewhat greater than that of the 
observations due to the spatial interpolation and extrapolation of the observational information in the 
distributed analysis update of the L4_SM algorithm.  The figure also reveals the diamond patterns 
resulting from SMAP’s regular 8-day repeat orbit.  Furthermore, circular features can be seen in southern 
Africa and northwestern Australia.  It is not yet clear how these patterns arise.  

 

 
 

Figure 20 shows the time mean values of the analysis increments for surface and root zone soil 
moisture as well as for the surface layer soil temperature.  In the long-term average, the increments for 
root zone soil moisture and surface soil temperature vanish nearly everywhere.  Only the increments in 
surface soil moisture exhibit a slight bias in some regions, including the US Great Plains, the Sahel, and 
southern Africa, with extreme values of around -0.01 m3m-3.  These drying increments are a reflection of 
the slight warm bias in the O-F residuals (Figure 17a).  Overall, Figure 20 suggests that the analysis 
system is very nearly unbiased. 

Figure 21 shows the time series standard deviation of the increments in surface and root zone soil 
moisture as well as surface soil temperature.  This metric measures the typical magnitude of instantaneous 
increments.  Typical increments in surface soil moisture are on the order of 0.015 m3m-3 in the western 
US, central Mexico, the Sahel, eastern Africa, southern India, and most of Australia.  They are around 
0.005 m3m-3 in the eastern US, Argentina, southern Africa, and the high northern latitudes.  Over the 

 

Figure 19.  Average number of increments per day generated by the L4_SM algorithm (Vb1004) during the 
validation period (11 Apr 2015, 0z, to 19 Sep 2015, 0z).  The result applies equally to all elements of the control 
vector, including the model prognostic variables related to surface soil moisture, root zone soil moisture, surface 
temperature, and top-layer soil temperature.  
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tropical forests, surface soil moisture increments are generally negligible, reflecting the fact that in those 
areas the measured SMAP brightness temperatures are mostly sensitive to the dense vegetation and are 
only marginally sensitive to soil moisture and soil temperature. 

Typical increments in root zone soil moisture (Figure 21b) show a global pattern that is very similar 
to that of the surface soil moisture increments, albeit with smaller magnitudes that again reflect the lesser 
sensitivity of the L-band brightness temperatures to the deeper layer soil moisture.  The magnitude of the 
average root zone soil moisture increments rarely exceeds 0.01 m3m-3, with a global average value of 
about 0.003 m3m-3.  Finally, increments for the top layer soil temperature (Figure 21c) and surface (skin) 
temperature (not shown) also exhibit a pattern similar to that of the surface soil moisture increments, 
particularly in the northern Hemisphere for which the validation period coincides with the warmest 
months of the year.  Surface soil temperature increments in the southern Hemisphere are smaller because 
the winter conditions imply a reduced diurnal cycle and thus a reduced variability of physical 
temperatures.  
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Figure 20.  Time series mean of the increments for (a) surface soil moisture, (b) root zone soil moisture, and (c) 
top layer soil temperature from the L4_SM algorithm (Vb1004) for 11 Apr 2015, 0z, to 19 Sep 2015, 0z.  
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a)

b)

c)

 

Figure 21.  Same as Figure 20 but for time series standard deviation of the increments.  Note the difference in 
colorscale for (a) and (b). 
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6.4.4 Uncertainty Estimates 

The L4_SM data product also includes error estimates for key output variables, including surface and 
root zone soil moisture as well as surface soil temperature.  These uncertainty estimates vary dynamically 
and geographically because they are computed as the standard deviation of a given output variable across 
the ensemble of land surface states at a given time and location.  (The ensemble is an integral part of the 
ensemble Kalman filter employed in the L4_SM algorithm, and the ensemble mean provides the estimate 
of the variable under consideration.)  By construction, the uncertainty estimates represent only the random 
component of the uncertainty.  Bias and other structural errors such as errors in the dynamic range are not 
included.  

Figure 22 shows the time mean of the uncertainty estimates for the validation period.  Across the 
globe, surface soil moisture uncertainty typically ranges from 0.01 m3m-3 to 0.03 m3m-3, with the larger 
uncertainties concentrated in the driest regions such as the Sahara desert.  Uncertainty is also large where 
few or no SMAP brightness temperatures are assimilated in the L4_SM system so that the ensemble 
spread is never reduced through analysis updates.  These regions include most of eastern Europe and the 
southern half of continental Asia where the lack of climatological information from SMOS prevents the 
assimilation of SMAP observations this early in the mission (section 6.4.2).  This limitation will be 
removed later in the mission when a sufficient number of SMAP observations will be available to derive 
rescaling parameters based solely on SMAP information.  Uncertainty is also high in the portions of the 
northern high-latitudes where few observations are assimilated, presumably because of frozen or snow-
covered conditions during a considerable portion of the validation period.   

Uncertainty in root zone soil moisture (Figure 22b) is generally smaller than for surface soil 
moisture, with typical values ranging from 0.005 m3m-3 to 0.025 m3m-3.  The global pattern of uncertainty 
in root zone soil moisture is quite different from that of surface soil moisture.  The driest areas are 
associated with low values of uncertainty, because in arid regions the deeper layer soil moisture is mostly 
constant, with random errors in surface forcings (precipitation and radiation) having only a small impact.  
Uncertainty is highest in southern China, where root zone soil moisture is variable but SMAP 
observations cannot be assimilated.  Finally, uncertainty in surface soil temperature (Figure 22c) ranges 
from 0.5 K to 2 K and is again largest in dry (and hot) regions and in regions where SMAP brightness 
temperatures are not assimilated. 
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Figure 22.  L4_SM uncertainty estimates for (a) surface soil moisture, (b) root zone soil moisture, and (c) top-
layer soil temperature averaged across the validation period (11 April 2015, 0z to 19 September 2015, 0z).  
Uncertainty estimates are computed as the standard deviation across the model ensemble that is used in the 
L4_SM assimilation algorithm.   
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6.5 Summary 
The SMAP L4_SM Vb1004 data product was validated using in situ soil moisture measurements 

from core validation sites and sparse networks.  The product was further evaluated through an assessment 
of the data assimilation diagnostics generated by the L4_SM algorithm, such as the observation-minus-
forecast residuals and the increments.  

Based on the comparisons with the core validation site measurements, the L4_SM Vb1004 estimates 
of surface and root zone soil moisture meet the accuracy requirement (ubRMSE < 0.04 m3m-3).  For 
surface soil moisture the ubRMSE is 0.036 m3m-3 at the 9 km scale and 0.031 m3m-3 at the 36 km scale.  
For root zone soil moisture, the ubRMSE is 0.023 m3m-3 at the 9 km scale and 0.024 m3m-3 at the 36 km 
scale.  

The assimilation of SMAP brightness temperatures in the L4_SM algorithm is beneficial primarily 
for surface soil moisture estimates, where the improvements over the model-only SMAP Nature Run 
(NRv4) are consistent across the 9 km  and 36 km scales and all three metrics (ubRMSE, bias, and R).  
Note, however, that the improvements are not statistically significant.  For root zone soil moisture, 
L4_SM and NRv4 estimates have essentially the same skill.   

The comparison with in situ measurements from sparse networks in the United States and Australia 
corroborate the results obtained for the core validation sites, thus moving the data product closer to 
compliance with Stage 2 Validation requirements.   

The data assimilation diagnostics further broaden the validation to the global domain and indicate 
that the L4_SM system is reasonably unbiased in the global average sense.  However, the observation-
minus-forecast residuals of brightness temperature reveal a modest warm bias of a few Kelvin in the 
L4_SM product in select regions, which is reflected in a small negative (that is, dry) bias in the surface 
soil moisture increments of up to -0.01 m3m-3 in those regions.  The time mean analysis increments in root 
zone soil moisture and in the skin and surface soil temperatures are very small.  The assimilation 
diagnostics further reveal that, on a regional basis, the actual errors in brightness temperature are typically 
over- or underestimated considerably by the L4_SM system, even though the global average of that 
diagnostic would suggest unbiased error estimates.  

Uncertainty estimates for the analyzed surface soil moisture, root zone soil moisture, surface 
temperature, and top layer soil temperature are also provided with the product.  These uncertainty 
estimates are designed to reflect the random error in key geophysical product fields.  While the 
uncertainty estimates appear reasonable, it is not yet clear how well they reflect actual uncertainties.        

It is important to keep in mind that the comparisons against the in situ measurements are impacted by 
the fact that the measurements themselves are prone to errors.  The metrics presented here therefore 
underestimate the true skill of the product.  In fact, the ubRMSE results presented in the report should be 
interpreted as the unbiased RMS difference between the model estimates and the in situ measurements, 
rather than errors with respect to actual (or true) soil moisture conditions.   

Based on the results presented in this report, the public beta-release of the L4_SM data product is 
recommended.  The results also uncovered limitations in the current version of the L4_SM data product 
and possible avenues for future development.  These limitations and developments are addressed in the 
next section. 
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7 OUTLOOK AND PLAN FOR VALIDATED RELEASE 
The assessment of the L4_SM product presented in the previous section revealed a number of current 

limitations as well as avenues for future development. 

 

7.1 Bias and L4_SM Algorithm Calibration 
Figure 17a showed that there are regions with a modest residual bias between the predicted brightness 

temperatures from the L4_SM modeling system and the SMAP observations.  There are several potential 
causes for this.  First, the surface meteorological forcing data that are used in the operational L4_SM 
system are based on data from the current GEOS-5 Forward Processing (“FP”) system (GEOS-5.13; ¼ 
degree resolution).  The corresponding retrospective SMAP Nature Run version 4 (NRv4) uses data from 
the GEOS-5 Reprocessing and Forward Processing for Instrument Teams (“RP/FP-IT”) system (GEOS-
5.9; ½ degree resolution).  The vintage of the two systems is quite different, and the climatological 
parameters derived from NRv4 data do not necessarily reflect the true climatology of the L4_SM 
modeling component. 

The second reason for the residual biases could be differences between SMAP brightness 
temperatures (beta-release version) and the SMOS v504 brightness temperatures that were used in the 
calibration of the microwave radiative transfer parameters of the L4_SM system.  

To address the biases in the L4_SM algorithm, the calibration of the system will be revisited.  This 
includes the development of a revised version of the SMAP Nature Run that is forced with the newly 
available MERRA-2 reanalysis data (GEOS-5.12; ½ degree resolution), which is closer to the current 
L4_SM forcing from the FP system.  The new version of the Nature Run will also include a somewhat 
revised approach to precipitation corrections along with updates to the GEOS-5 land model and its 
ancillary data.  Based on this new version of the Nature Run and the latest version of the SMOS 
brightness temperatures (v620), the parameters of the L4_SM microwave radiative transfer model will be 
recalibrated.  The objective of these revisions is to provide an improved L4_SM modeling component 
along with retrospective data that is as consistent as possible with the present-day data in terms of its 
climatology.  

Because SMOS observations are impacted by RFI and thus do not provide a climatology of L-band 
brightness temperatures in large parts of Asia and Europe, the L4_SM algorithm cannot assimilate SMAP 
data in those regions (Figure 15).  This limitation manifests itself in two steps in the calibration of the 
L4_SM system.  First, the L4_SM microwave radiative transfer model parameters cannot be calibrated 
locally.  Second, the brightness temperature scaling parameters cannot be computed for the affected 
regions.  The first limitation can be addressed by setting the microwave radiative transfer model 
parameters in the regions in question according to land cover (vegetation) class (De Lannoy et al. 2013, 
2014).  The second limitation is more difficult to overcome, as the residual seasonal model biases in 
brightness temperature cannot be addressed through the pentad rescaling factors used in the L4_SM 
algorithm.  Ultimately, the solution is to calibrate the L4_SM system using a history of SMAP 
observations, but a robust calibration based solely on SMAP data can only be accomplished towards the 
end of the SMAP mission.  In the meantime, we will investigate whether the L4_SM system can be 
provisionally calibrated in the RFI-affected regions by using land cover-based microwave radiative 
transfer model parameters along with a short history from SMAP to scale out the residual seasonal biases.  

Another aspect of algorithm calibration involves the tuning of the L4_SM observation and model 
error parameters.  Initial research into tuning the observation error parameters using a poor man’s 
adaptive filter has been inconclusive.  Such tuning resulted, by construction, in improved assimilation 
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diagnostics, but it has so far failed to consistently improve the skill metrics obtained from the 
comparisons against independent in situ observations.      

 

7.2 Impact of SMAP Observations and Ensemble Perturbations 
The assessment of the L4_SM product presented herein uses NRv4 estimates as the model-based 

reference.  Both estimates use the same gauge-corrected precipitation forcing.  By necessity, the 
assessment of the L4_SM (and NRv4) estimates versus in situ soil moisture observations is focused on 
regions for which the model forcing data take advantage of typically dense and reliable precipitation 
gauge observations.   The generally good skill of the NRv4 estimates therefore leads to an 
underestimation of the impact of the SMAP brightness temperature observations in the L4_SM 
assimilation system.  In regions with poor precipitation data, the impact of the SMAP observations should 
be larger, but because of the lack of observations of any kind in those regions, the precise impact remains 
unknown.  

Secondly, the NRv4 estimates and the L4_SM estimates differ because the NRv4 estimates are from a 
single-member model run without perturbations, whereas the L4_SM estimates are based on an ensemble 
of model realizations that experiences perturbations to its model forcing and prognostic variables.  An 
undesirable yet at this time unavoidable side effect of the perturbations regime is that it leads to biases 
between the ensemble mean estimates and the estimates from the unperturbed NRv4 model integration.  
This is particularly acute in very arid regions such as the Sahara desert, where the perturbations in soil 
moisture are, by construction, biased wet because the unperturbed, single-member model run typically 
remains at the lowest possible soil moisture value, thereby making negative (that is, drying) perturbations 
unphysical.  Some of the differences between the NRv4 and L4_SM estimates will therefore partly reflect 
the impact of the perturbations regime rather than the use of SMAP observations.  

To address these issues, the assessment will be refined by expanding the comparison of the L4_SM 
skill to that of additional model-only data sets.  To better assess the impact of the SMAP observations, a 
model-only run will be conducted without the gauge-based precipitation corrections.  Furthermore, an 
ensemble integration will be conducted in which the perturbations are applied but no SMAP data are 
assimilated.  By comparing the L4_SM estimates to the different model-only runs, it will be possible to 
more clearly identify the impact of the SMAP observations.    

 

7.3 Expanded Site Locations, Record Length, and Data Sets  
The assessment of the beta release data is limited by the period of record.  Only 5.5 months of data 

have been available for this assessment report.  By the time of the validated L4_SM release in 2016, there 
will be one year of SMAP observations covering the full annual cycle in the Northern and Southern 
Hemispheres.   

There are a number of in situ measurement sites that are currently classified as candidate validation 
sites.  For several of these, the SMAP Project is only awaiting data delivery, which is not automated 
because of the remoteness of the locations (for example, Mongolia and Tibet).  Measurements from other 
candidate validation sites require more processing and verification by the data providers (for example, 
Twente, Niger, and Benin).  Several more sites are still under development and may become available 
within the time frame of the validated release (including Millbrook, Kuwait, and Bell Ville).  It is, 
however, unlikely that any additional sites beyond those already known will be developed and 
implemented. 
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Sparse network validation will also be expanded.  SMOSMania measurements are nearly ready for 
use in the L4_SM validation.  Data from the COSMOS network have already been used provisionally, but 
further development is required before the results can be included in a formal report.  Specifically, a 
better understanding of the variable measurement depth of the COSMOS probes is needed.  Moreover, 
efforts are underway to complete the automated acquisition of data from additional networks, including 
networks in the United States, Argentina and South Africa. 

Time and resources permitting, the L4_SM data product will also be evaluated by comparison with 
model-based estimates from other data providers, including the ERA-Land reanalysis data from the 
European Centre for Medium-Range Weather Forecasts and data products from Environment Canada. 

 

7.4 L4_SM Algorithm Refinements 
Despite its overall complexity, the L4_SM algorithm includes many simplifications.  For example, 

SMAP brightness temperatures are not assimilated when the water fraction of the observed field-of-view 
exceeds a threshold of 5%.  Rather than discarding such water-contaminated observations, the L4_SM 
algorithm could be refined to include the brightness temperatures of open water in its forward operator.  
This would require a dynamic model of the surface temperature of lakes and large rivers in the L4_SM 
modeling system, as well as a corresponding radiative transfer model, based, for example, on the model 
by Klein and Swift (1977).   Due to the complexity of adding water surfaces into a modeling system that 
so far includes only land, it is not likely that such development is possible in time for the validated 
L4_SM release.  

Another simplification in the current L4_SM algorithm is the use of flags in the L1 Radiometer 
product.  Currently, the L4_SM system only checks the summary flag for the assimilated L1C_TB 
brightness temperatures.  More specific binary flags, including dynamic surface flags, are available in the 
input data product and could perhaps be used in a refined L4_SM algorithm.  Finally, the L4_SM 
algorithm uses the L1C_TB data product because of its convenient data format and posting on the 36 km 
EASE v2 grid.  Since the L4_SM algorithm operates on the finer, 9 km EASE v2 grid, and since the 
SMAP radiometer greatly oversamples the brightness temperature relative to the size of its instantaneous 
field-of-view, the L4_SM algorithm might benefit from the direct assimilation of the time-ordered 
brightness temperatures from the L1B_TB data product. 

As mentioned in section 5.2, the SMAP radar anomaly that occurred on 7 July 2015 means that 
radar-based data products from SMAP are only available for a short period at the beginning of the SMAP 
mission.  The L4_SM algorithm originally included plans for a freeze-thaw analysis using the SMAP 
radar-based freeze-thaw retrievals.  The SMAP Project is considering the development and generation of 
a freeze-thaw data product using the passive microwave observations.  If an operational freeze-thaw 
product becomes available, the L4_SM algorithm could be expanded to assimilate it, provided adequate 
resources are available.  
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APPENDIX 

A Validation Metrics Based on In Situ Measurements 
This section outlines how the validation metrics are computed from the in situ measurements and the 

L4_SM soil moisture estimates. In situ measurements may be from SMAP core validation sites (section 
6.2) or from SMAP sparse networks (section 6.3).  

A.1 Long-term Average and Mean Seasonal Cycle 

Let s(i,t) denote the SMAP product for time t and grid cell i (see Appendix C for SMAP “reference 
pixels”), and let v(i,t) denote the corresponding observation that is used for validation.  Assume further 
that both the SMAP data product and the corresponding in situ measurements at grid cell i are available at 
Nt (i) different times (excluding times and locations for which in situ measurements are eliminated in pre-
processing; Appendix C).   Then let )(is  denote the (long-term) average of s(i,t), and let )(iv  denote the 
corresponding (long-term) average of v(i,t), that is: 
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The long-term average is undefined for a given grid cell i if Nt(i,t)<Nmin, that is, if fewer than 
Nmin=480 three-hourly data points are available to compute the long-term average for the grid cell in 
question.   

Moreover, let ),( tis  and ),( tiv  define the (long-term) mean seasonal cycles (denoted as periodic 
functions with a period of one year).  These mean seasonal cycles are computed in two steps.  First, 30-
day moving average time series of s(i,t) and v(i,t) are computed:   
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where N30(i,t) is the number of data points at grid cell i within 15 days of time t.  Next, the moving 
average time series are averaged across all available years, separately for each time-of-year:  
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where Na(i,t) is the number of years for which s30(i,t) and v30(i,t) are available at grid cell i and for the 
time-of-year corresponding to time t.  (Recall that ),( tis  and ),( tiv  are denoted as periodic functions 
with a period of one year).  The mean seasonal cycle is undefined for a given time-of-year at grid cell i if 
N30(i,t)<Nmin, that is, if fewer than Nmin=480 three-hourly data points are available to compute the 30-day 
moving average for the time and grid cell in question.  Furthermore, the mean seasonal cycle is also 
undefined for Na(i,t)<3, that is, if the running mean values for a given time-of-year and grid cell are 
available for fewer than three different years.  The mean seasonal cycle during the SMAP Cal/Val phase 
(approximately the first year after launch) could be computed using in situ measurements taken prior to 
the SMAP launch in combination with a retrospective land model-only L4_SM prototype product. 

A.2 Bias and Root-Mean-Square Error  

For each grid cell i (see Appendix C for SMAP validation grid cells or “reference pixels”) with a 
sufficient number of in situ measurements, the bias and unbiased root-mean-square error (ubRMSE) 
metrics are computed as follows: 
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The metrics are undefined for a given grid cell i if Nt(i,t)<Nmin, that is, if fewer than Nmin=480 three-

hourly data points are available. 

 
Note that the root-mean-square error (RMSE) is related to the bias and the ubRMSE as follows: 
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A.3 Time Series Correlation and Anomaly Time Series Correlation  

For each grid cell i (Appendix C) with a sufficient number of in situ measurements, the time series 
correlation R(i) and the anomaly time series correlation Ranom(i) metrics are computed as follows: 
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The R and Ranom metrics are undefined for a given grid cell i if  Nt(i,t)<Nmin  or  Nt,anom(i,t)<Nmin, 
respectively, that is, if fewer than Nmin=480 three-hourly data points are available.  Note that Nt,anom(i,t) is 
also determined by availability of the mean seasonal cycle estimates, which are themselves subject to a 
minimum data requirement (Appendix A.1).  

Note that the bias, ubRMSE, and R metrics are related (Entekhabi et al. 2010; their equation (5)).  

 

A.4 Confidence Intervals 

The bias, ubRMSE, R, and Ranom metrics discussed in the previous subsections are supplemented with 
95% confidence intervals, based on a Student T-distribution for the bias, a χ2 distribution for the ubMSE, 
and an asymptotic normal distribution for R and Ranom after a Fisher transformation.  The confidence 
intervals are first computed separately for each sparse network site or core validation site reference pixel.  
Since errors in soil moisture (anomaly) time series are highly auto-correlated, the number of independent 
data in the time series is smaller than the length of the time series.  Hence, the confidence intervals are 
calculated using an effective sample size (Dawdy and Matalas 1964; Draper et al. 2012). 

Confidence intervals for metrics that represent average skill across several sites are then computed as 
follows.  For core validation sites, the confidence intervals across several references pixels are simply 
averaged.  For sparse network sites, the average is computed using a k-means spatial clustering algorithm 
that discounts the weight of individual sensors in areas where the sensor density is large.  Within each 
cluster, an average confidence interval is computed by taken the straight average of the confidence 
intervals at individual sensors within the given cluster, reflecting the fact that estimates from nearby 
sensors are not independent.  Finally, the confidence interval for the average metric in question is 
computed by averaging the confidence intervals of the Nc clusters and then dividing that average by the 
square root of Nc, reflecting the assumption that confidence intervals for different clusters are fairly 
independent.  
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B Validation Metrics Based on Assimilation Diagnostics 

The L4_SM product is the result of the assimilation of SMAP brightness temperatures into a land 
surface model.  The assimilated brightness temperature observations along with the corresponding model 
forecasts are provided in the L4_SM “aup” output Collection.  Differencing the two quantities yields the 
observation-minus-forecast (OmF) brightness temperature residuals.  Moreover, the “aup” output 
Collection also provides information on the soil moisture and soil temperature analysis increments.  The 
statistics of the OmF residuals and the analysis increments are computed as part of the validation of the 
L4_SM product. 

 

B.1 Statistics of the Observation-Minus-Forecast Residuals 

The OmF brightness temperature residuals are computed by differencing the assimilated brightness 
temperature observations and the corresponding model forecasts from the “aup” file Collection:  

 

 (12) OmF(i,t,p,r) = tb_[p]_obs_assim(i,t) – tb_[p]_forecast(i,t) 

 

where i denotes the grid cell, t denotes the time, p denotes the polarization (H- or V-pol), and r denotes 
the effective resolution of the assimilated brightness temperatures (either 36 km if the observations 
originate from the SMAP L1C_TB product or 9 km if the observations originate from the L2_SM_AP 
product).  The right-hand-side variable names follow the notation in the SMAP L4_SM Data Product 
Specification Document (Reichle et al. 2015).   

 

The OmF brightness temperature residuals are normalized through division by their expected 
standard deviation: 

 

 (13) OmF_norm(i,t,p,r) =  

OmF(i,t,p,r) / sqrt( tb_[p]_errstd(i,t)2 + tb_[p]_forecast_ensstd(i,t)2 ) 

 

where tb_[p]_errstd and tb_[p]_forecast_ensstd are the observation and forecast error standard 
deviations, respectively.  Data assimilation theory suggests that for an optimally configured system, the 
OmF residuals have a mean of zero, and the (normalized) OmF_norm residuals have a variance of one.   

 

B.2 Statistics of the Analysis Increments 

The analysis increments are computed by differencing select variables from the “aup” file 
Collection:  
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 (14) [varname]_incr(i,t) = [varname]_analysis – [varname]_forecast 

 

where [varname] is one of the five geophysical soil moisture and soil temperature variables, that is, 
[varname]= {“sm_surface”, “sm_rootzone”, “sm_profile”, “surface_temp”, or “soil_temp_layer1”}  
(following the notation in the SMAP L4_SM Data Product Specification Document; Reichle et al. 2015).   

Note that the spatial mean and variability metrics of the OmF residuals and the analysis increments 
are provided in the L4_SM “quality assurance” granules (*.qa files).   
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C  Preprocessing, Quality Control, and Upscaling of In Situ 

Measurements  
In situ measurements from SMAP core validation sites and sparse networks undergo the following 

pre-processing and quality control steps: 

 

1) Eliminate soil moisture measurements outside of the physically meaningful range defined by site-
specific porosity or texture data where possible, and [0, 0.6] m3m-3 otherwise. 

 

2) Eliminate soil moisture measurements when the corresponding in situ soil temperature 
measurement is below 4°C. 

 
3) Eliminate soil moisture measurements that are inconsistent with site-specific precipitation 

measurements (as permitted by availability of precipitation measurements and resources). 
 
4) Eliminate soil moisture measurements that exhibit obviously unphysical characteristics.   Such 

characteristics include spikes, sudden dry-downs (discontinuities), climatological shifts 
(typically related to changes in sensor calibration), and high-frequency oscillations.  These 
checks are implemented as automatic detection tools to be run routinely, combined with visual 
inspection as resources permit. 

 
5) Vertically aggregate in situ measurements to approximate the 0-100 cm layer depth of the L4_SM 

root zone soil moisture product.  Vertical averages are weighted by the vertical spacing between 
the individual sensor depths and the boundaries of the root zone layer at the surface and at 100 
cm depth. 

 
6) Eliminate soil moisture measurements when the L4_SM product indicates the presence of snow 

(snow water equivalent > 0 kg m-2) or the L4_SM soil temperature is below 4°C.  This step is 
equivalent to the use of QC flags in the validation of the Level 2 soil moisture products. 

 

The distributed in situ measurements from select individual core validation site sensors are 
aggregated into soil moisture “measurements” at the 9 km (or 36 km) scale for so-called reference pixels.  
The definition of the reference pixels is based on the characteristics of each site, including the layout of 
the network and land cover.  This results in reference pixels that are not necessarily aligned with standard 
EASEv2 grid cells. The default upscaling function for the SMAP core validation site measurements is to 
use equal weights when averaging the sensor measurements within a reference pixel (separately for each 
sensor depth).   If provided by the SMAP Cal/Val Partners, more sophisticated upscaling functions are 
used. 

For core validation sites, the quality checks that are based on the in situ measurements (steps 1-4 
above) are conducted prior to the aggregation using the individual sensor measurements.   The vertical 
aggregation into “root zone” measurements (step 5) and the model-based quality checks (step 6) are 
applied to the horizontally aggregated in situ measurements (that is, at the scale of the reference pixels). 
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