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1 EXECUTIVE SUMMARY 

During the post-launch Cal/Val Phase of SMAP there are two objectives for each science product 
team: 1) calibrate, verify, and improve the performance of the science algorithms, and 2) validate accuracies 
of the current release of the science data products as specified in the L1 science requirements according to 
the Cal/Val timeline.  This report provides analysis and assessment of the SMAP Level 2 Soil Moisture 
Passive (L2SMP) Version 7 and the L2SMP Enhanced (L2SMP_E) Version 4 data products (also known 
as the R17 data release in August, 2020).  The L2SMP product is provided on a 36-km grid and the 
L2SMP_E on a 9-km grid.  The SMAP Level 3 Soil Moisture Passive (L3SMP, L3SMP_E) products are 
simply a daily composite of the L2 half-orbit files.  Hence, analysis and assessment of the L2SMP and 
L2SMP_E products can also be considered to cover the L3SMP and L3SMP_E products. 

The R17 release incorporates the following changes which impact SMAP data products: (1) improved 
radiometer calibration methodology applied to Level 1 brightness temperatures, (2) use of a new version of 
NASA GMAO GEOS-FP model soil temperature data, (3) use of a new global soil texture database 
(SoilGrid250m available at https://openlandmap.org), (4) new GMAO soil depth layer definitions, and (5) 
a slight change in the parameterization of effective soil temperature.  In addition, the R17 data release 
introduces an improved version of the existing Modified Dual Channel Algorithm (MDCA), which is 
renamed back to the original name of DCA.  This new version of the Dual Channel Algorithm (DCA) 
achieves better retrieval performance through the addition of a regularizing term.  The baseline algorithm 
(SCA-V) remains unchanged for both Level-2 and Level-3 products, with performance metrics that 
continue to meet mission requirements. 

Assessment methodologies utilized include comparisons of SMAP soil moisture retrievals with in situ 
soil moisture observations from core validation sites (CVS) and sparse networks, and intercomparison with 
products from ESA’s Soil Moisture Ocean Salinity (SMOS) mission.  The primary assessment methodology 
is the CVS comparisons using established metrics and time series plots.  These metrics include unbiased 
root mean square error (ubRMSE), bias, mean absolute bias (MAB), and correlation.  The ubRMSE 
captures time-random errors, bias and MAB capture the mean differences or offsets, and correlation 
captures phase compatibility between data series.  It should be noted that some changes have been made in 
the calibration and upscaling of select CVS based upon follow-up investigations by Cal/Val Partners.  In 
addition, the assessment period is now 60 months (as opposed to 48 months in the L2SMP Version 6 and 
L2SMP_E Version 3 assessments [20]).  

SMAP L2SMP supports a total of three alternative retrieval algorithms: Single Channel Algorithm–H 
polarization (SCA-H), Single Channel Algorithm–V polarization (SCA-V), and Dual Channel Algorithm 
(DCA) are the focus of this assessment.  These same retrieval algorithms were also used in evaluating the 
performance of L2SMP_E. 

In all previous SMAP data releases, the accuracy of retrieved soil moisture from the SMAP L2SMP 
36-km standard product was assessed using a validation grid (VG) approach (Sec. 6.1).  In this approach, 
the 36-km EASE 2.0 grid was shifted at each CVS by 3-km increments in order to cover the maximum 
number of in situ measurement points possible at the given CVS before performance statistics were 
generated comparing SMAP soil moisture to in situ soil moisture.  The VG shifting was also done at each 
CVS to minimize the presence of non-representative areas and to maintain homogeneity across the grid cell 
to the extent possible.  However, in the R17 data release of August, 2020, the SMAP project decided to 
proceed with the L2SMP assessment using the same procedure as used for the L2SMP_E assessment – i.e., 
without using the shifted VG grid for the 36-km product.  Although this non-VG assessment could introduce 
some additional uncertainty, past assessment reports [1, 20, 25] have documented the close agreement in 
performance metrics between L2SMP at 36-km posting with VG processing and L2SMP_E at 9-km posting.  
With the non-VG L2SMP comparisons with in situ data from both CVS and sparse networks given in Sec. 
8.1 and the L2SMP_E assessments given in Sec. 8.2, it is felt that the community has sufficient information 
to judge the quality and accuracy of the L2SMP retrieved soil moisture. 

https://openlandmap.org/
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The first step in assessment was the comparison of the L2SMP AM (Descending) and PM (Ascending) 
Version 7 products to the CVS and sparse network observations.  CVS AM results indicated that the SCA-
V and DCA provided approximately the same best overall performance with an ubRMSE of 0.037 m3/m3, 
bias of 0.010 m3/m3 and correlation of 0.820 for SCA-V and an ubRMSE of 0.036 m3/m3, bias of 0.012 
m3/m3 and correlation of 0.815 for DCA.  The CVS PM results are similar, with an ubRMSE of 0.037 
m3/m3, bias of 0.007 m3/m3 and correlation of 0.818 for SCA-V and an ubRMSE of 0.035 m3/m3, bias of 
0.006 m3/m3 and correlation of 0.795 for DCA.  These metrics exceed the SMAP mission requirements and 
those of the SMOS products.  A portion of the change in the metrics from the previous data release may be 
associated with the longer period of record (60 vs 48 months) since longer records may include a wider 
range of anomalous conditions or a more typical set of conditions.  Sparse network results confirmed the 
trends seen in the CVS comparisons.  The overall conclusion is that the L2SMP AM and PM products have 
continued to have a sustained performance that exceeds the mission accuracy requirements for L2 passive 
retrieved soil moisture (the L2SMP soil moisture shall meet or exceed an accuracy of 0.040 m3/m3 ubRMSE 
over land in the absence of frozen ground, permanent snow/ice, or dense vegetation; this requirement is 
actually written for retrieved 6 AM soil moisture at 10 km spatial resolution, but has been applied by the 
SMAP team to all L2 passive soil moisture products).  The combination of analyses using the CVS and 
sparse networks, intercomparison with products from the SMOS mission, and recent triple colocation 
analyses have contributed to a better understanding of the performance uncertainties.  The assessment now 
includes 60 months of intercomparisons, and several papers have been published in peer-reviewed journals 
[2-5, 21-24] as well as numerous investigations listed in the SMAP Bibliography posted at NSIDC at 
https://nsidc.org/data/smap/research.html.  These analyses satisfy the criteria established by the Committee 
on Earth Observing Satellites (CEOS) for Stage 4 validation. 

The L2SMP_E are posted at 9 km but the contributing domain (i.e. primary spatial area contributing 
to the radiometer brightness temperature response) is approximately 33 km.  A different set of CVS domains 
than those used for the L2SMP were identified in order to assess the performance of the L2SMP_E product; 
all ground measurements of soil moisture within the 33-km domain were used and compared to the SMAP 
retrieved soil moisture at each CVS.  Additional information on the L2SMP_E product can be found in [1, 
25].  

Version 4 of the L2SMP_E, for both AM and PM orbits, was assessed using the CVS and sparse 
networks.  Both the AM and PM products meet the mission requirements and reflect the patterns for 
L2SMP.  Among the algorithms, SCA-V and DCA had t similarly good overall metrics with an ubRMSE 
of 0.037 m3/m3, bias of -0.006 m3/m3 and correlation of 0.817 for SCA-V AM orbits, and an ubRMSE of 
0.037 m3/m3, bias of -0.008 m3/m3 and correlation of 0.813 for the SCA-V PM orbits.  DCA performance 
shows an ubRMSE of 0.036 m3/m3, bias of -0.009 m3/m3 and correlation of 0.817 for AM orbits, and an 
ubRMSE of 0.036 m3/m3, bias of -0.013 m3/m3 and correlation of 0.792 for the PM orbits.  Both SCA-V 
and DCA satisfy the SMAP mission accuracy requirements.  For the same reasons noted for the L2SMP, 
the maturity of the L2SMP_E product is now at CEOS Stage 4. 

 Overall conclusions in this assessment: 

• L2SMP and L2SMP_E performances continue to meet project target accuracy (0.040 m3/m3 ubRMSE 
or better). 

• The DCA algorithm now has comparable performance to SCA-V in meeting project target accuracy 
(0.040 m3/m3 ubRMSE or better). 

• SCA-V continues as the baseline algorithm. 

• Both the L2SMP and L2SMP_E products have achieved CEOS Validation Stage 4.  

https://nsidc.org/data/smap/research.html
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2 OBJECTIVES OF CAL/VAL 

During the post-launch Cal/Val (Calibration/Validation) Phase of SMAP there are two objectives for 
each science product team: 

• Calibrate, verify, and improve the performance of the science algorithms, and 

• Validate accuracies of the science data products as specified in Level 1 science requirements 
according to the Cal/Val timeline. 

The process is illustrated in Figure 2.1.  In this Assessment Report the progress of the Level 2 Soil Moisture 
Passive Team in addressing these objectives is described.  The approaches and procedures utilized follow 
those described in the SMAP Cal/Val Plan [6] and Algorithm Theoretical Basis Document for the Level 2 
& 3 Soil Moisture (Passive) Data Products [7]. 

 

 

Figure 2.1.  Overview of the SMAP Cal/Val Process. 

 

SMAP established a unified definition base in order to effectively address the mission requirements.    
These are documented in the SMAP Handbook/ Science Terms and Definitions [8], where Calibration and 
Validation are defined as follows: 

• Calibration: The set of operations that establish, under specified conditions, the relationship 
between sets of values or quantities indicated by a measuring instrument or measuring system and 
the corresponding values realized by standards. 

• Validation: The process of assessing by independent means the quality of the data products derived 
from the system outputs. 

The L2SMP Team adopted the same soil moisture retrieval accuracy requirement for the fully validated 
L2SMP data (0.040 m3/m3) that is listed in the L1 Mission Requirements Document [9] for the active/ 
passive soil moisture product. 
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In assessing the maturity of the L2SMP (and L2SMP_E) products, the team considered the guidance 
provided by the Committee on Earth Observation Satellites (CEOS) Working Group on Calibration and 
Validation (WGCV) [10]: 

• Stage 1:  Product accuracy is assessed from a small (typically < 30) set of locations and time periods 
by comparison with in situ or other suitable reference data. 

• Stage 2: Product accuracy is estimated over a significant set of locations and time periods by 
comparison with reference in situ or other suitable reference data.  Spatial and temporal consistency 
of the product and with similar products has been evaluated over globally representative locations 
and time periods.  Results are published in the peer-reviewed literature. 

• Stage 3: Uncertainties in the product and its associated structure are well quantified from 
comparison with reference in situ or other suitable reference data.  Uncertainties are characterized 
in a statistically robust way over multiple locations and time periods representing global conditions.  
Spatial and temporal consistency of the product and with similar products has been evaluated over 
globally representative locations and periods.  Results are published in the peer-reviewed literature. 

• Stage 4: Validation results for stage 3 are systematically updated when new product versions are 
released and as the time series expands. 

Based on the extensive validation analyses to date, the number of peer reviewed publications as well as 
numerous investigations listed in the Bibliography section of the report, the length of the SMAP period of 
record, and the utilization of feedback of validation in a systematic update, with this version of L2SMP and 
L2SMP_E the team has completed Stage 4.  The Cal/Val program will continue with the goals of increasing 
the robustness of the soil moisture products and addressing specific site issues.  
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3 BRIEF DESCRIPTION OF THE L2SMP AND L2SMP_E 

The L2SMP product is derived using SMAP L-band radiometer time-ordered observations (L1CTB 
product) as the primary input [7] along with other ancillary data on finer grid resolutions, to retrieve soil 
moisture (and other geophysical parameters as applicable) from a forward model.  The resulting soil 
moisture retrieval output fields, along with others carrying supplementary geolocation information, 
brightness temperatures, quality flags, and ancillary data, are posted on a 36-km Earth-fixed grid using the 
global cylindrical Equal-Area Scalable Earth Grid projection, Version 2 (EASE Grid 2.0).  The 36-km grid 
resolution is close to the 3-dB native spatial resolution of the instrument observations.  The use of the fixed 
grid facilitates temporal analyses and ingestion of the products into some user applications.  However, it 
presents challenges to validation given that many core validation sites (CVS) are not centered or contained 
in a single 36-km EASE grid cell.  As a result, a shifted variation of the L2SMP grid has been used in all 
previous SMAP data releases for validation and assessment purposes (Validation Grid-VG).  As noted in 
Sections 1 (Executive Summary) and 6.1, however, non-VG-based L2SMP assessment is performed in the 
R17 release.   

Following the SMAP launch, methodologies for improving the spatial information of the SMAP 
radiometer products were explored that resulted in the L1CTB_E (Enhanced) product.  Backus-Gilbert 
(BG) optimal interpolation methodology is used that takes advantage of the radiometer oversampling on 
orbit.  The processing results in data at a higher spatial density by virtue of TB interpolation at a 9-km grid 
resolution in L1BTB_E.  It is important to note that the L1CTB_E processing does not improve the native 
resolution (~36 km) of the original TB measurements acquired by the SMAP radiometer.  It is a posting of 
data interpolated to a 9-km grid, which can enhance spatial information (see Figure 3.1). The fine grid 
resolution (9 km) of L1CTB_E provides a convenient basis to produce passive soil moisture retrieval at the 
same fine grid resolution.  Operationally, this is achieved by applying the same soil moisture inversion 
algorithms used for the standard 36-km L2SMP product to the enhanced 9-km L2SMP_E product.  The 9-
km posting provides more flexibility in co-locating the grids and CVS data and therefore does not require 
the use of the VG in validation and assessment of the L2SMP_E product. 

 

 
 
(a) Enhanced Passive Soil Moisture Product 

 
 
(b) Standard Passive Soil Moisture Product 

 

Figure 3.1.  Compared with the current standard L2SMP soil moisture product in (b), the enhanced 
L2SMP_E soil moisture product in (a) demonstrates a more detailed distribution of surface  

soil moisture and shows spatial features more clearly than does the standard product. 



 9 

4 L1 RADIOMETER PRODUCT UPDATES  

In the R17 data release, SMAP L2SMP soil moisture retrievals are based on the 2020 Version 5 of the 
radiometer Level 1B and 1C brightness temperature data [http://nsidc.org/data/smap/smap-data.html].  An 
assessment of the SMAP brightness temperature data quality and calibration is available in the relevant 
assessment reports posted at NSIDC [https://nsidc.org/data/smap/technical-references].  A more detailed 
discussion of the radiometer calibration and products can be found in [11,13, 26].  The Version 5 TB data 
meet the noise equivalent delta temperature (NEDT) and geolocation requirements with margin as they did 
in Versions 3 and 4 (see Table 4.1) [14]. 

The SMAP L1 radiometer calibration algorithm for the Version 5 release in 2020 was significantly 
revised compared to the Version 4 dataset.  The calibration changes can be summarized as follows: (1) the 
radiometer internal reference load was used as the hot calibration target instead of the global ocean used in 
the Version 4 dataset due to unknown bias in the ocean emissivity model, and (2) the use of concurrent 
reflector emissivity correction, antenna pattern correction (APC), and noise-diode calibration.  The 2020 
release radiometer calibration is being used for all L2 passive soil moisture products. 

The SMAP radiometer implemented an optimized concurrent calibration scheme that utilizes cold-sky 
looks with ocean back-lobes and cold-sky looks with ocean/land transition back-lobes.  The retrieved noise-
diode temperature, reflector emissivity and APC value calibration coefficients along with that the 
adjustment of the V and H-pol reflector emissivity values are forced to be the same.  The wind speed-
dependent sky maps are still used to correct for any galaxy contribution into the antenna temperature for 
ocean regions.  Any previously observed fore-aft differences in L1C_TB radio frequency interference (RFI) 
still remain.  The RFI behavior is similar as before: conditions in the Americas and Europe are good with 
poorer conditions in Asia. 

These changes in SMAP calibration resulted in a change in metrics when comparing SMAP TB to 
SMOS TB (to be discussed in more detail below).  SMAP global average brightness temperature 
comparisons over land areas are now -0.90 K (for H pol) and -2.37 K (for V pol) cooler than SMOS (mean 
bias at top of the atmosphere after Faraday rotation correction was applied).  General radiometer data 
characteristics are given in Table 4.1.  Overall, the radiometer calibration has remained stable over time, 
and changes in agreement with SMOS are consistent with intentional calibration changes in SMAP data.  
The noise and geolocation performance meet requirements with margin.  Excellent performance should be 
expected over homogeneous land surfaces. 

 

Table 4.1. Version 3* Characteristics of SMAP L1 Radiometer Data 
 (*now superseded by Version 5) 

Parameter  Mission Requirement 

NEDT1 1.1 K < 1.6 K1 

Geolocation accuracy 2.7 km < 4 km 

Land SMAP/SMOS bias (H pol) -0.90 K n/a 

Land SMAP/SMOS bias (V pol) -2.37 K n/a 
1 

 
1An NEDT of 1.6 K for a single-look L1B_TB footprint is equivalent to an NEDT of 0.51 K on a 30 x 30 km 

grid (Table 2.1 in SMAP Radiometer Error Budget, JPL D-61632 [14]).  When combined with other error terms in 
the L1 radiometer error budget, the current single-look footprint NEDT of 1.1 K should result in an NEDT of less than 
0.51 K on a 30 x 30 km grid.  If all other error sources are within the requirements, this level of NEDT (< 0.51 K) 

should result in a total radiometric uncertainty of less than 1.3 K as required in the L2SMP error budget.     
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For SMAP/SMOS comparisons, it should be noted that while SMOS and SMAP each have an 
equatorial overpass time of 6 AM, the 6 AM orbits for SMOS are ascending orbits and the 6 AM orbits for 
SMAP are descending orbits.  In order to minimize intercomparison errors associated with temporal 
changes in soil moisture and temperature, a maximum time window between the two satellite observations 
of 30 minutes was allowed.  Both SMAP and SMOS have an average 3-db footprint size of ~40 km.  Spatial 
variations in the contributing area were minimized by only using observations when the footprint distance 
was less than 1 km between SMAP and SMOS.  Brightness temperatures at the top of the atmosphere 
(TOA) were used in the intercomparison.  This analysis was done for both the horizontal (H) and vertical 
(V) polarizations.  Microwave observations from the SMOS mission were reprocessed to approximate 
SMAP microwave radiometer observations made at a constant incidence angle of 40o.  Only the alias-free 
portions of the SMOS field-of-view were used in the comparison.  Additionally, the alias-free portions of 
the swath provide brightness temperatures with the lowest NEΔT.  SMOS data version v620 was used for 
the analysis. 

The comparison was done with SMAP TB data version T16516.  Figure 4.1 shows the SMAP and 
SMOS observations over land for five years of SMAP data (2015-2020).  Statistical analysis results are 
summarized in Table 4.2.  The SMAP brightness temperatures show a very strong correlation with the 
SMOS observations and a strong linear relationship.  Some of the scatter in the intercomparison is likely 
due to the presence of RFI in either or both of the SMAP or SMOS observations.  Land surface 
heterogeneity of the footprint can also result in some scatter.  The SMAP brightness temperatures at H- and 
V-polarizations are cooler than SMOS brightness temperature observations.  The V-polarization values are 
relatively cooler than the H-polarization observations (relative to SMOS).   

  

  

 
Figure 4.1.  Density plot of the L1 brightness temperature comparison (top of the 

atmosphere) between SMAP (T16516) and SMOS (version 620) observations  
over land targets for V-pol (right) and H-pol (left). 
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Table 4.2.  Summary statistics of the brightness temperature comparison between SMOS (version 
620) and SMAP (T16516) for May 5, 2015-March 31, 2020. 

  RMSD (K) R Bias [SMAP-SMOS] (K) ubRMSD (K) 

H pol 

Land 3.56 0.9902 -0.90 3.45 

Ocean 2.18 0.8522 -0.46 2.14 

Overall 2.60 0.9994 -0.57 2.53 

V pol 

Land 3.81 0.9903 -2.37 2.98 

Ocean 2.55 0.6967 -1.59 2.00 

Overall 2.92 0.9994 -0.46 2.31 

 

4.1 Water Body Correction 

Prior to implementing the actual soil moisture retrieval, a preliminary step in the processing is to 
perform a water body correction to the brightness temperature data for cases where a significant percentage 
of the grid cell contains open water.  For the Version 7 L2SMP and Version 4 L2SMP_E, water correction 
is performed at the footprint level using the SMAP radiometer antenna gain pattern.  This correction 
procedure is performed in the Version 5 SMAP L1B Radiometer Half-Orbit Time-Ordered Brightness 
Temperatures (L1BTB) product.  Both the horizontally and vertically polarized L1B brightness 
temperatures over land are corrected for the presence of water within the antenna field of view (FOV).  The 
resulting L1B brightness temperatures are then interpolated on the 36-km EASE Grid 2.0 projections using 
the inverse-distance squared interpolation method and on the 9-km EASE Grid 2.0 projections using the 
Backus-Gilbert optimal interpolation method.  Overall it is expected that over land, the resulting brightness 
temperatures will become warmer upon the removal of the contribution of water to the original uncorrected 
observations.  As stated in the product page of the Version 5 SMAP L1BTB product, water correction is 
performed as long as the antenna-gain-weighted water fraction within the antenna FOV is less than or equal 
to 0.9 and when the antenna boresight falls on a land location as indicated by a static high-resolution 
land/water mask.  Further details of this procedure can be found in the User Guide, ATBD [13], or 
Assessment Report of the Version 5 SMAP L1B Radiometer Half-Orbit Time-Ordered Brightness 
Temperatures (L1BTB) product. 
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5 ALTERNATIVE L2SMP/L2SMP_E ALGORITHMS  

The current L2SMP/L2SMP_E products contain soil moisture retrieval fields produced by the baseline 
and two optional algorithms.  Inside an L2SMP/L2SMP_E granule the soil_moisture field is the one that 
links to the retrieval result produced by the currently-designated baseline algorithm.  At present, the 
operational L2SMP/L2SMP_E Science Production Software (SPS) produces and stores soil moisture 
retrieval results from the following three algorithms: 

1. Single Channel Algorithm V-pol     (SCA-V) 
2. Single Channel Algorithm H-pol     (SCA-H) 
3. Dual Channel Algorithm  (DCA) 

 
All algorithms operate on the same zeroth-order microwave emission model commonly known as the 

tau-omega model.  In essence, this model relates brightness temperatures (SMAP L1 observations) to soil 
moisture (SMAP L2 retrievals) through ancillary information (e.g. soil texture, soil temperature, surface 
roughness, and vegetation water content) and a soil dielectric model.  The algorithms differ in their 
approaches to solve for soil moisture from the model under different constraints and assumptions.  Below 
is a concise description of these three algorithms.  Further details are provided in [7].  

Given the results to date from the L2SMP/L2SMP_E Cal/Val analyses, the SCA-V algorithm and the 
new regularized version of the DCA algorithm now deliver comparable performance in retrieved soil 
moisture accuracy.  However, the SCA-V will continue to be the operational baseline algorithm for this 
release of L2SMP/L2SMP_E data.  Throughout the rest of the SMAP mission, the choice of the operational 
algorithm of the product will be evaluated on a regular basis as analyses of new observations and Cal/Val 
data become available or if significant improvements can be achieved by algorithm modifications. 

5.1 Single Channel Algorithm V-pol (SCA-V) 

In the SCA-V algorithm, the vertically polarized TB
 
observations are converted to emissivity using a 

surrogate for the physical temperature of the emitting layer.  The derived emissivity is corrected for 
vegetation and surface roughness to obtain the soil emissivity.  The Fresnel equation is then used to 
determine the dielectric constant from the soil emissivity.  Finally, a dielectric mixing model is used to 
solve for the soil moisture given knowledge of the soil texture.  [Note:  The software code includes the 
option of using different dielectric models.  Currently, the software switch is set to the Mironov model 
[15]].  Analytically, SCA-V attempts to solve for one unknown variable (soil moisture) from one equation 
that relates the vertically polarized TB to soil moisture.  Vegetation information is provided by an 11-year 
climatological data base of global NDVI and a table of tau-omega parameters based on land cover. 

5.2 Single Channel Algorithm H-pol (SCA-H) 

The SCA-H is similar to SCA-V in that the horizontally polarized TB
 
observations are converted to 

emissivity using a surrogate for the physical temperature of the emitting layer.  The derived emissivity is 
corrected for vegetation and surface roughness to obtain the soil emissivity.  The Fresnel equation is then 
used to determine the dielectric constant.  Finally, a dielectric mixing model is used to obtain the soil 
moisture given knowledge of the soil texture.  Analytically, SCA-H attempts to solve for one unknown 
variable (soil moisture) from one equation that relates the horizontally polarized TB to soil moisture. 
Vegetation information is provided by an 11-year climatological data base of global NDVI and a table of 
tau-omega parameters based on land cover. 
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5.3 Dual Channel Algorithm (DCA) 

The Dual Channel Algorithm (DCA) uses both H-polarized and V-polarized TB observations to 

simultaneously retrieve soil moisture and vegetation optical depth by minimizing the cost function 𝐹 

𝐹(𝑠𝑚, 𝜏) =  (𝑇𝐵𝑉
𝑜𝑏𝑠 − 𝑇𝐵𝑉

𝑚𝑜𝑑𝑒𝑙𝑒𝑑)
2

+ (𝑇𝐵𝐻
𝑜𝑏𝑠 − 𝑇𝐵𝐻

𝑚𝑜𝑑𝑒𝑙𝑒𝑑)
2

+ 𝜆2(𝜏 − 𝜏∗)2, 

where  𝑇𝐵𝑉
𝑚𝑜𝑑𝑒𝑙𝑒𝑑  and 𝑇𝐵𝐻

𝑚𝑜𝑑𝑒𝑙𝑒𝑑  are the brightness temperatures from the tau-omega model.  The 

regularization term 𝜆2(𝜏 − 𝜏∗)2 was applied to reduce the temporal and spatial noise caused by the nature 

of the cost function.   𝜏∗  is the initial guess for the unknown vegetation optical depth derived from the same 
11-year NDVI vegetation climatology used by SCA-V (Section 5.1) and SCA-H (Section 5.2).   

Similar to the SCA, some estimates of model parameters (e.g., surface temperature, surface roughness, 
and vegetation single scattering albedo) must be provided using ancillary datasets in the inversion process.  
In contrast with the SCA, the polarization mixing factor is assumed to be linearly related to the roughness 
parameter h as in Q = 0.1771 h [19].  h is provided to the algorithm through a pre-computed static ancillary 
file with global values of h over the 3 km EASE 2.0 grid.  In addition to these differences, DCA uses 
different values than SCA for the vegetation single scattering albedo. 

5.4 Effective Temperature Methodology  

Postlaunch, dynamic surface temperature forecast information is routinely ingested by SMAP from 
the GMAO GEOS-FP model and processed as an ancillary data input as part of the operational processing 
of the SMAP passive soil moisture product.  The effective surface temperature (Teff) is a critical parameter 
in passive soil moisture retrieval but is not to be confused with an actual physical temperature measured at 
a single depth.  New to the End-of-Prime-Mission data release in 2018 was an improved depth correction 
scheme for the effective soil temperature, with the parameterization in this scheme reexamined for the R17 
release in 2020.   

At L-band frequency, the contributing soil depth of microwave emission may be different from the 
pre-defined discrete soil depths at which the soil temperatures are available from a land surface model.  The 
resulting discrepancy can contribute to a dry bias of retrieved soil moisture (i.e., retrieval lower than in situ 
soil moisture) if the model-based effective soil temperature is colder than the soil temperature "seen" by 
the radiometer.  Conversely, wet bias of retrieved soil moisture will occur if the model-based effective soil 
temperature is warmer than the soil temperature "seen" by the radiometer.  Since the contributing soil depth 
of microwave emission varies with soil moisture, the corresponding depth correction scheme for the 
effective soil temperature must account for soil moisture variability for brightness temperature observations 
acquired between AM (descending overpasses) and PM (ascending passes).  To achieve this objective, the 
following modified formulation of the Choudhury model [16] has been found to result in good agreement 
between the in situ soil moisture data and the retrieved L2SMP and L2SMP_E soil moisture: 

Teff = K × [ Tsoil2 + C (Tsoil1 - Tsoil2) ] 

where C = 0.246 for AM soil moisture retrieval and 1.000 for PM soil moisture retrieval, and K = 1.007.  
K is a factor included to address an observed bias between ancillary modeled soil temperature and measured 
in situ temperature at core validation sites and sparse network stations.  Tsoil1 refers to the average soil 
temperature for the first soil layer (5-15 cm) and Tsoil2 refers to the average soil temperature for the second 
soil layer (15-35 cm) of the GMAO GEOS-FP land surface model.  Additional information on Teff can be 
found in the Appendix to this report. 
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5.5 General Flag Usage 

As with any satellite retrieval data product, proper data usage is encouraged.  The following two simple 
practices are recommended for using SMAP soil moisture retrievals with maximum scientific benefits: 

• Use the retrieval_qual_flag field to identify retrievals in the soil_moisture field estimated to be 
of recommended quality.  A retrieval_qual_flag value of either 0 or 8 indicates high-quality 
retrievals.  Proper use of the retrieval_qual_flag field is an effective way to ensure that only 
retrievals of recommended quality will be used in data analyses. 

• For further investigation, use the surface_flag field and the associated definition described in the 
User Guide to determine why the retrieval_qual_flag field did not report recommended quality 
at a given grid cell. 

 

5.6  Frozen Soil Flag 

At the start of the SMAP mission, the intention was to set the SMAP frozen soil flag during internal 
SDS processing based on either the radar ground flag (see L3_FT_A ATBD) or on the GMAO-based Teff.  
After the failure of the SMAP radar on July 7, 2015, a procedure was developed to replace the radar-based 
frozen soil flag with one generated from the SMAP radiometer data using normalized polarization ratios 
(see L3_FT_P ATBD).  However, due to uncertainties in reference freeze/thaw conditions, subgrid scale 
heterogeneity, and polarization changes due to changing vegetation and soil moisture conditions during the 
growing season at low-to-mid latitudes, the L3_FT_P frozen flag can result in false F/T indications.   For 
these reasons, currently (at the time of the R17 data release in 2020) the frozen soil area fraction is still 
based on the temperature information from the GMAO GEOS-FP model used by the SMAP operational 
processor (byte value of 0 or 8 in the Retrieval Quality Flag indicates a good non-frozen retrieval).   
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6 METHODOLOGIES USED FOR L2SMP/L2SMP_E CAL/VAL 

Validation is critical for accurate and credible product usage, and must be based on quantitative 
estimates of uncertainty.  For satellite-based retrievals, validation should include direct comparison with 
independent correlative measurements.  The assessment of uncertainty must also be conducted and 
presented to the community in normally used metrics in order to facilitate acceptance and implementation. 

During mission definition and development, the SMAP Science Team and Cal/Val Working Group 
identified the metrics and methodologies that would be used for L2-L4 product assessment.  These metrics 
and methodologies were vetted in community Cal/Val workshops and tested in SMAP pre-launch Cal/Val 
rehearsal campaigns.  The methodologies identified and their general roles are: 

• Core Validation Sites (CVS): Accurate estimates of products at matching scales for a limited set of 
conditions  

• Sparse Networks: One point in the grid cell for a wide range of conditions  

• Satellite Products: Estimates over a very wide range of conditions at matching scales  
• Model Products: Estimates over a very wide range of conditions at matching scales  

• Field Campaigns: Detailed estimates for a very limited set of conditions 

In the case of the L2SMP/L2SMP_E data products, all of these methodologies can contribute to product 
assessment and improvement.   

6.1 Validation Grid (VG) 

In all previous SMAP data releases, the accuracy of retrieved soil moisture from the SMAP L2SMP 
36-km standard product was assessed using a validation grid (VG) approach.  In this approach, the 36-km 
EASE 2.0 grid was shifted at each CVS by 3-km increments in order to cover the maximum number of in 
situ measurement points possible at the given CVS before performance statistics were generated comparing 
SMAP soil moisture to in situ soil moisture (see the VG description below).  The VG shifting was also done 
at each CVS to minimize the presence of non-representative areas and to maintain homogeneity across the 
grid cell to the extent possible.  However, in the R17 data release of August, 2020, the SMAP project 
decided to proceed with the L2SMP assessment using the same procedure as used for the L2SMP_E 
assessment – i.e., without using the shifted VG grid for the 36-km product.  Although this non-VG 
assessment could introduce some additional uncertainty, past assessment reports [1, 20, 25] have 
documented the close agreement in performance metrics between L2SMP at 36-km posting with VG 
processing and L2SMP_E at 9-km posting.  With the non-VG L2SMP comparisons with in situ data from 
both CVS and sparse networks given in Sec. 8.1 and the L2SMP_E assessments given in Sec. 8.2, it is felt 
that the community has sufficient information to judge the quality and accuracy of the L2SMP retrieved 
soil moisture. 

Description of Validation Grid approach used for L2SMP assessments in previous data releases: 

The scanning radiometer on SMAP provides elliptical footprint observations across the scan.  The 
orientation of this ellipse varies across the swath, and on successive passes a point on the ground might be 
observed with very different azimuth angles.  A standard assumption in using radiometer observations is 
that the signal is dominated by the energy originating within the 3 dB (half-power) footprint (ellipse).  The 
validity of this contributing area assumption will depend upon the heterogeneity of the landscape. 

A major decision was made for SMAP to resample the radiometer data to an Earth-fixed grid at a 
resolution of 36 km.  This was to facilitate temporal analyses and the disaggregation algorithm planned for 
the AP (active/passive) product.  It ignores azimuth orientation and some contribution beyond the 3 dB 
footprints mentioned above, although the SMAP L1B_TB data do include a sidelobe correction.  An 
important point is that TBs on the Earth-fixed 36-km grid are used in the retrieval of soil moisture, and it is 
the soil moisture for these 36-km grid cells that must be validated and improved. 
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The standard SMAP processor provides L2 surface (0-5 cm) soil moisture using only the radiometer 
(passive) data posted on a 36-km EASE2 Grid.  The standard SMAP grid was established without any 
consideration of where the CVS might be located.  In addition, the CVS were established in most cases to 
satisfy other (non-SMAP) objectives of the Cal/Val Partners.  One of the criteria for categorizing a site as 
a CVS is that the number of individual in situ stations (N) within the site is large (target is N ≥ 9 for 36 
km).  It was observed when examining the distribution of points at a site that in many cases only a few 
points fell in any specific standard 36-km grid cell.  Therefore, it was decided that special SMAP validation 
grids (VGs) would be established for validation assessment that would be tied to the existing SMAP 3-km 
standard grid but would allow the shifting of the 36-km grids at a site to fully exploit N being as large as 
possible (i.e. the validation grid would be centered over the collection of in situ points at a given CVS to 
the extent possible).  The approach used for validation grid processing is illustrated in Figure 6.1. 

 

 

Figure 6.1. Illustration of validation grid processing.  The EASE2 grid boxes are shifted 
by 3-km increments (although 9-km shifts are shown for clarity) to allow a better 

geographical match with the in situ validation sites. 
 

Computationally the L2 and L3 VG products are the same as the standard product.  The selection of 
the VGs for each site was done by members of the SMAP Algorithm Development Team and Science Team 
prelaunch.  As noted, the 3-km grid does not change.  The selection of the VGs also considered avoiding 
or minimizing the effects of land features that were not representative of the sampled domain or were known 
problems in retrieval (e.g., non-representative terrain, large water bodies, etc.). 
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7 SUMMARY OF REFINEMENTS IN L2SMP VERSION 7 AND 
L2SMP_E VERSION 4 AND VALIDATION 

 

• Expanded Assessment Period:  For the previous validated data release report, the analysis time 
period was April 1, 2015 – March 31, 2019 (48 months).  The start date in 2015 was based on 
when the radiometer data were judged to be stable following instrument start-up operations.  The 
end date was based upon the closing date of the Version 6/3 release report.  The current assessment 
report expands the time period from April 1, 2015 through March 31, 2020, which provides a 5-
year assessment.  

• New algorithm implementation: A regularized version of DCA was implemented as a replacement 
for the previous MDCA, with MDCA being renamed back to the original DCA.  The new DCA 
achieves better retrieval performance through the modeling of polarization mixing between the 
vertically and horizontally polarized brightness temperature channels, as well as new roughness 
coefficients and the addition of a regularization term based on the SMAP NDVI vegetation 
climatology as a constraint. 

• New output fields added to Level 3 products.  Additional output fields were added to the Version 
7 Standard 36 km Level 3 Radiometer Half-Orbit Soil Moisture Products and the Version 4 
Enhanced 9 km Level 3 Radiometer Half-Orbit Soil Moisture Products to include soil moisture 
retrievals from the SCA-H and DCA algorithms as well as the baseline SCA-V. 

 

• Other changes affecting L2SMP and L2SMP_E soil moisture products.   The R17 release 
incorporated the following additional changes: (1) improved radiometer calibration methodology 
applied to Level 1 brightness temperatures, (2) use of a new version of NASA GMAO GEOS-FP 
model soil temperature data, (3) use of a new global soil texture database (SoilGrid250m available 
at https://openlandmap.org), (4) new GMAO soil depth layer definitions, and (5) a slight change 
in the parameterization of effective soil temperature. 

 

• Assessment scope changes.  In the R17 release, CVS assessments reported in Sections 8.1.1 and 
8.2.1 do not include the Twente, HOBI, and MAHASRI CVS as in previous releases.  The sparse 
network assessments reported in Sections 8.1.2 and 8.2.2 have dropped the mixed forests and 
permanent wetlands land cover categories.  

 

• New omega lookup table values for forests.  SCA-V and SCA-H now use the same omega as DCA 
(ω = 0.07) for IGBP land cover classes 1-5. 
 

 

 

https://openlandmap.org/
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8 ASSESSMENTS 

In this section several assessments and intercomparisons are presented.  The standard L2SMP AM and 
PM (Version 7) and L2SMP_E AM and PM (Version 4) are examined for the expanded time period.  
Changes from the previous assessment (L2SMP Version 6 and L2SMP_E Version 3 [20]) will be noted if 
they occur.  These assessments utilize CVS, sparse network, and SMOS comparisons. 

8.1 L2SMP  

8.1.1 Core Validation Sites 

The primary validation for the L2SMP soil moisture is a comparison of retrievals at 36 km with 
ground-based observations that have been verified as providing a spatial average of soil moisture at the 
same scale, referred to as core validation sites (CVS) in the SMAP Calibration/Validation Plan [6]. 

In situ data are critical in the assessment of the SMAP products.  These comparisons provide error 
estimates and a basis for modifying algorithms and/or parameters.  A robust analysis will require many sites 
representing diverse conditions.  However, there are relatively few sites that can provide the type and quality 
of data required.  SMAP established a Cal/Val Partners Program in order to foster cooperation with these 
sites and to encourage the enhancement of these resources to better support SMAP Cal/Val.  The current 
set of sites that provide data for L2SMP are listed in Table 8.1. 

Not all of the sites in Table 8.1 have reached a level of maturity that would support their use as CVS.    
Prior to initiating the 2015 beta-release assessments, the L2SMP and Cal/Val Teams reviewed the status of 
all sites to determine which sites were ready to be designated as CVS.  This process is repeated prior to 
each new assessment, with the addition of new screening procedures for in situ data as well as changes in 
upscaling at some CVS.  The basic process is as follows: 

•  Develop and implement the validation grid 

•  Assess the site for conditions that would introduce uncertainty 

•  Determine if the number of points is large enough to provide reliable estimates  

•  Assess the geographic distribution of the in situ points 

•  Determine if the in situ instrumentation has been either (1) widely used and known to be well-
calibrated or (2) calibrated for the specific site in question 

•  Perform quality assessment of each point in the network 

•  Establish a scaling function (default function is a linear average of all stations) 

•  Conduct pre-launch assessment using surrogate data appropriate for the SMAP L2SMP product 
(i.e. SMOS soil moisture) 

•  Review any supplemental studies that have been performed to verify that the network represents 
the SMAP product over the grid domain 

The current CVS for the L2SMP product are marked with an asterisk in Table 8.1.  A total of 12 CVS 
were used in this assessment.  Each of these should have at least 9 points (ground in situ measurement 
stations); however, exceptions are made to allow fewer in situ stations if the site has a well-established 
scaling and calibration function.  The status of candidate sites will continue to be reviewed periodically to 
determine if they should be classified as CVS and used in future assessments.  Note that the table includes 
comments on sites that are used for some of the L2SMP_E analyses discussed later. 

The in situ data downloaded from the Cal/Val Partners is run through an automatic quality control 
(QC) before determining the upscaled soil moisture values for each pixel (grid cell).  The QC is 
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implemented largely following the approach presented in [17].  The procedure includes checks for missing 
data, out of control values, spikes, sudden drops, and physical temperature limits.  Additionally, the physical 
temperature is checked to be above 4°C because many sensors experience change in behavior at colder 
temperatures.  In several cases the sites include stations that do not perform as expected, or at all, during 
the comparison period.  These stations are removed from consideration altogether, and a new configuration 
is set for the site accounting for only the stations that produce a reasonable amount of data over the 
comparison period.  Consequently, the upscaling functions for these sites are also based on the remaining 
set of stations. 

The key tool used in L2SMP (and L2SMP_E) CVS analyses is illustrated by Figure 8.1.  These charts 
are updated as changes are made to L1 data, L2 algorithms, or in preparation for periodic reviews with 
Cal/Val Partners.  It includes a time series plot of in situ and retrieved soil moisture as well as flags that 
were triggered on a given day, an XY scatter plot of SMAP retrieved soil moisture compared to the average 
in situ soil moisture, and the quantitative statistical metrics.  It also shows the CVS individual station 
distribution.  When the in situ values are marked with a magenta color instead of red, it means that the in 
situ quality flag is raised.  Several alternative algorithms and the SMOS soil moisture product are also 
displayed (SMOS L2 v650 was used).  These plots are carefully reviewed and discussed by the L2SMP 
Team and Cal/Val Partners on a periodic basis.  Systematic differences and anomalies are identified for 
further investigation.  

All sites are then compiled to summarize the metrics and compute the overall performance.  Tables 
8.2 and 8.3 present the overall results for the current L2SMP Version 7 validated data sets.  The combined 
scatter plots associated with these results are shown in Figure 8.2.  These metrics and plots include the 
removal of questionable-quality and retrieval-flagged data. 

The key results for this assessment are summarized in the SMAP Average results row in Table 8.2 for 
the descending (AM) orbits.  First, all algorithms have about the same ubRMSE, differing by 0.007 m3/m3, 
with SCA-V and DCA exceeding the SMAP mission goal of 0.040 m3/m3.  Second, the correlations are also 
very similar.  For both of these metrics, the SCA-V and DCA algorithms show the best performance, with 
both being superior to SCA-H.  SCA-V and DCA also have similar bias values which are lower than the 
SCA-H bias.   SCA-V has an ubRMSE of 0.037 m3/m3, a bias of 0.010, and an R of 0.820 for AM 
overpasses.  DCA has similar performance with an ubRMSE of 0.036 m3/m3, a bias of 0.012, and an R of 
0.815.  Although the SMAP L1 mission requirements for soil moisture retrieval accuracy (0.040 m3/m3 or 
better) strictly apply only to the descending (6 AM) orbits, Table 8.3 presents equally good results for the 
ascending (6 PM) orbits:  SCA-V has an ubRMSE of 0.037 m3/m3, a bias of 0.007, and an R of 0.818, and 
DCA has an ubRMSE of 0.035 m3/m3, a bias of 0.006, and an R of 0.795.  Given these results, SMAP users 
can have confidence in using both AM and PM data to increase the temporal frequency of SMAP soil 
moisture without sacrificing retrieval accuracy. 

Based upon the metrics and considerations discussed, SCA-V will continue as the operational baseline 
algorithm for this release (Version 7 L2SMP and Version 4 L2SMP_E), although some users may find 
DCA more suitable for their specific application given its comparable performance.  As a longer period of 
observations builds and additional CVS are added, the evaluations will be repeated on a periodic basis. 

For guidance in expected performance, the SMOS soil moisture products for each site over the same 
time period were analyzed.  Summary statistics are included in Tables 8.2 and 8.3.  For the CVS analyzed 
here, SMAP SCA-V outperforms SMOS for all metrics. 

Also shown in Tables 8.2 and 8.3 are the metric averages from the L2SMP Version 4, Version 5, and 
Version 6 assessments.  As noted previously, in addition to the product changes, there is also a longer period 
of record associated with Version 7.  Comparing the four versions, DCA shows continual improvement 
while SCA-V has stable performance in meeting mission requirements.  Both algorithms show a slight 
increase in bias due to all of the changes occurring in the R17 release. 

 

Table 8.1. SMAP Cal/Val Partner Sites Providing L2SMP Validation Data 
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 Site Name   Site PI   Area   Climate regime   IGBP Land Cover  

 Walnut Gulch*   M. Cosh   USA (Arizona)   Arid   Shrub open  

 Reynolds Creek*   M. Cosh   USA (Idaho)   Arid   Grasslands  

 Fort Cobb*   M. Cosh   USA (Oklahoma)   Temperate   Grasslands  

 Little Washita*   M. Cosh   USA (Oklahoma)   Temperate   Grasslands  

 South Fork*   M. Cosh   USA (Iowa)   Cold   Croplands  

 Little River*   M. Cosh   USA (Georgia)   Temperate   Cropland/natural mosaic  

 TxSON*   T. Caldwell   USA (Texas)   Temperate   Grasslands  

 Millbrook   M. Temimi   USA (New York)   Cold   Deciduous broadleaf  

 Kenaston*   A. Berg   Canada   Cold   Croplands  

 Carman*  H. McNairn   Canada   Cold   Croplands  

 Monte Buey*  M. Thibeault   Argentina   Arid   Croplands  

 Bell Ville   M. Thibeault   Argentina   Arid   Croplands  

 REMEDHUS*   J. Martinez   Spain   Temperate   Croplands  

Valencia  E. Lopez-Baeza Spain  Arid  Woody Savannas 

 Twente   Z. Su   Netherlands  Cold   Cropland/natural mosaic  

 HOBE  F. Udall  Denmark  Temperate Croplands 

 Kuwait   H. Jassar   Kuwait   Temperate   Barren/sparse  

 Niger   T. Pellarin   Niger   Arid   Grasslands  

 Benin   T. Pellarin   Benin   Arid   Savannas  

 Naqu   Z. Su   Tibet   Polar   Grasslands  

 Maqu   Z. Su   Tibet   Cold   Grasslands  

 Ngari   Z. Su   Tibet   Arid   Barren/sparse  

 MAHASRI   J. Asanuma   Mongolia   Cold   Grasslands  

 Yanco*   J. Walker   Australia   Arid   Croplands  

 Kyeamba   J. Walker   Australia   Temperate   Croplands  

*=CVS used in both L2SMP and L2SMP_E assessments. 

 

 

It should be noted that a small underestimation bias should be expected when comparing satellite 
retrievals to in situ soil moisture sensors during drying conditions.  Satellite L-band microwave signals 
respond to a surface layer of a depth that varies with soil moisture (this depth is taken to be ~0-5 cm for 
average soils under average conditions).  The in situ measurement is centered at 5 cm and measures a layer 
from ~ 3 to 7 cm.  For some surface conditions and climates, it is expected that the surface will be slightly 
drier than the layer measured by the in situ sensors.  For example, Adams et al. [18] reported that a mean 
difference of 0.018 m3/m3 existed between the measurements obtained by inserting a probe vertically from 
the surface versus horizontally at 5 cm for agricultural fields in Manitoba, Canada.  Drier conditions were 
obtained using the surface measurement and this difference was more pronounced for mid- to dry conditions 
and minimized during wet conditions. 

A review of the individual CVS indicates that several agricultural sites (such as South Fork and Little 
River) have larger bias values, possibly due to heterogeneous land cover and changing conditions 
throughout the crop growing season not being properly addressed by the current algorithm approach.    
Efforts are under way to better understand the causes of the errors and to determine if there is anything that 
can done to mitigate these errors. 
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Figure 8.1.  L2SMP_E assessment tool report for the TxSON core validation site  

descending (AM) passes. 
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Table 8.2.  SMAP L2SMP Version 7 CVS Assessment for Descending (AM) Overpasses 

 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.041 0.041 0.043 -0.052 -0.007  0.000 0.066 0.042 0.043 0.641 0.638 0.610 128 128 127 

Walnut Gulch 0.024 0.024 0.025 -0.027  0.010  0.015 0.036 0.026 0.029 0.796 0.832 0.788 316 348 328 

TxSON 0.022 0.021 0.025 -0.073 -0.016  0.003 0.076 0.026 0.025 0.918 0.925 0.924 635 635 635 

Fort Cobb 0.027 0.024 0.029 -0.057 -0.013 -0.004 0.063 0.027 0.029 0.891 0.908 0.904 636 636 636 

Little Washita 0.026 0.025 0.031 -0.046 -0.002  0.009 0.053 0.025 0.032 0.893 0.902 0.892 632 632 632 

South Fork 0.054 0.045 0.042 -0.080 -0.062 -0.054 0.096 0.077 0.069 0.710 0.767 0.753 439 450 366 

Little River 0.046 0.036 0.040  0.050  0.098  0.077 0.068 0.104 0.087 0.773 0.785 0.801 679 672 680 

Kenaston 0.036 0.031 0.032 -0.009  0.027  0.036 0.037 0.041 0.048 0.787 0.844 0.831 349 349 349 

Carman 0.089 0.066 0.050 -0.010 -0.004 -0.012 0.090 0.066 0.052 0.601 0.686 0.731 242 246 248 

Monte Buey 0.067 0.048 0.032 -0.021  0.001 -0.011 0.071 0.048 0.034 0.773 0.870 0.859 215 230 234 

REMEDHUS 0.041 0.041 0.040  0.014  0.043  0.048 0.043 0.060 0.062 0.739 0.761 0.767 359 371 343 

Yanco 0.047 0.043 0.047  0.013  0.044  0.036 0.049 0.061 0.059 0.927 0.926 0.918 196 199 207 

Mean Absolute Bias   0.038  0.027  0.025    

SMAP L2SMP 
Average V7 

0.043 0.037 0.036 -0.025  0.010  0.012 0.062 0.050 0.047 0.787 0.820 0.815  

SMAP L2SMP 
Average V6 

0.046 0.038 0.039 -0.026  0.001 -0.005 0.063 0.047 0.051 0.789 0.822 0.769  

SMAP L2SMP 
Average V5 

0.046 0.037 0.047 -0.028 -0.001  0.038 0.062 0.044 0.070 0.788 0.821 0.737  

SMOS L2SM 
Average V5 

0.053 -0.024 (MAB=0.035) 0.065 0.671  

SMAP L2SMP 
Average V4 

0.046 0.039 0.047 -0.037 -0.028 -0.015 0.071 0.061 0.066 0.772 0.795 0.700  

SMOS L2SM 
Average V4 

0.053 -0.028 0.072 0.710  
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Table 8.3.  SMAP L2SMP Version 7 CVS Assessment for Ascending (PM) Overpasses 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.041 0.041 0.043 -0.052 -0.007  0.000 0.066 0.042 0.043 0.641 0.638 0.610 128 128 127 

Walnut Gulch 0.024 0.024 0.025 -0.027  0.010  0.015 0.036 0.026 0.029 0.796 0.832 0.788 316 348 328 

TxSON 0.022 0.021 0.025 -0.073 -0.016  0.003 0.076 0.026 0.025 0.918 0.925 0.924 635 635 635 

Fort Cobb 0.027 0.024 0.029 -0.057 -0.013 -0.004 0.063 0.027 0.029 0.891 0.908 0.904 636 636 636 

Little Washita 0.026 0.025 0.031 -0.046 -0.002  0.009 0.053 0.025 0.032 0.893 0.902 0.892 632 632 632 

South Fork 0.054 0.045 0.042 -0.080 -0.062 -0.054 0.096 0.077 0.069 0.710 0.767 0.753 439 450 366 

Little River 0.046 0.036 0.040  0.050  0.098  0.077 0.068 0.104 0.087 0.773 0.785 0.801 679 672 680 

Kenaston 0.036 0.031 0.032 -0.009  0.027  0.036 0.037 0.041 0.048 0.787 0.844 0.831 349 349 349 

Carman 0.089 0.066 0.050 -0.010 -0.004 -0.012 0.090 0.066 0.052 0.601 0.686 0.731 242 246 248 

Monte Buey 0.067 0.048 0.032 -0.021  0.001 -0.011 0.071 0.048 0.034 0.773 0.870 0.859 215 230 234 

REMEDHUS 0.041 0.041 0.040  0.014  0.043  0.048 0.043 0.060 0.062 0.739 0.761 0.767 359 371 343 

Yanco 0.047 0.043 0.047  0.013  0.044  0.036 0.049 0.061 0.059 0.927 0.926 0.918 196 199 207 

Mean Absolute Bias   0.038  0.027  0.025    

SMAP L2SMP 
Average V7 

0.043 0.037 0.036 -0.025  0.010  0.012 0.062 0.050 0.047 0.787 0.820 0.815  

SMAP L2SMP 
Average V6 

0.046 0.038 0.039 -0.026  0.001 -0.005 0.063 0.047 0.051 0.789 0.822 0.769  

SMAP L2SMP 
Average V5 

0.046 0.037 0.047 -0.028 -0.001  0.038 0.062 0.044 0.070 0.788 0.821 0.737  

SMOS L2SM 
Average V5 

0.053 -0.024 (MAB=0.035) 0.065 0.671  

SMAP L2SMP 
Average V4 

0.046 0.039 0.047 -0.037 -0.028 -0.015 0.071 0.061 0.066 0.772 0.795 0.700  

SMOS L2SM 
Average V4 

0.053 -0.028 0.072 0.710  
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Figure 8.2.  Scatterplot of SMAP non-VG L2SMP Version 7 CVS Assessment for Descending (AM) Overpasses  
(SCA-H left panel, SCA-V middle panel, and DCA right panel). 
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8.1.2 Sparse Networks 

The intensive network CVS validation described above can be complemented by sparse networks as 
well as by new/emerging types of soil moisture networks.  The current set of networks being utilized by 
SMAP are listed in Table 8.4. 

The defining feature of these networks is that the measurement density is low, usually resulting in one 
ground measurement point per SMAP footprint.  These observations cannot be used for validation without 
addressing two issues: verifying that they provide a reliable estimate of the 0-5 cm surface soil moisture 
layer and that the one measurement point is representative of conditions across the entire SMAP footprint. 

SMAP has been evaluating methodologies for upscaling data from these networks to SMAP footprint 
resolutions.  A key element of the upscaling approach is Triple Colocation that combines the in situ data 
and SMAP soil moisture product with another independent source of soil moisture, likely to be a model-
based product [5]. 

Although limited by upscaling, sparse networks do offer many sites in different environments and are 
typically operational with very low latency.  They are very useful as a supplement to the limited number of 
CVS. 

Table 8.4.  Sparse Networks Providing L2SMP and L2SMP_E Validation Data 

Network Name PI/Contact Area 
No. of Sites 

(L2SMP) 

No. of Sites 
(L2SMP_E) 

NOAA Climate Reference Network (CRN) M. Palecki USA 60 56 

USDA NRCS Soil Climate Analysis Network 
(SCAN) 

M. Cosh USA 101 100 

GPS E. Small Western USA 80 77 

COSMOS M. Zreda Mostly USA 30 32 

SMOSMania J. Calvet Southern France 10 11 

Pampas M. Thibeault Argentina 16 14 

Oklahoma Mesonet - Oklahoma, USA 94 96 

Mongolian Grasslands (MAHASRI) J. Asanuma Mongolia 13 13 

 

The sparse network metrics are summarized in Table 8.5 and 8.6.  Because of the larger number of 
sites, it is possible to also examine the results based upon the IGBP land cover classification used by SMAP.  
For these comparisons the SMOS metrics are included for each category. The reliability of the analyses 
based upon these classes will depend upon the number of sites available (N). 

Overall, the relative performance of the algorithms is similar to that obtained from the CVS -- SCA-V 
and DCA again have the best metrics, with SCA-V exhibiting an ubRMSE of 0.048 m3/m3, bias of 0.00 
m3/m3 and correlation of 0.684 for AM orbits, and an ubRMSE of 0.049 m3/m3, bias of 0.003 m3/m3 and 
correlation of 0.643 for the PM orbits.  DCA shows an ubRMSE of 0.047 m3/m3, bias of 0.010 m3/m3 and 
correlation of 0.693 for AM orbits, and an ubRMSE of 0.049 m3/m3, bias of 0.011 m3/m3 and correlation of 
0.650 for the PM orbits.  Compared to the CVS results, the sparse network values are higher for ubRMSE 
and lower for R, which is expected due to the significant change in scale between a point and the grid 
product.  When comparing Version 7 to Versions 4, 5, and 6, SCA-V and DCA demonstrate stable or 
improved performance.   Considering the many caveats that must be considered in making sparse network 
comparisons, the algorithm performance is quite good.  This result provides additional confidence in the 
previous conclusions based on the CVS.   
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Interpreting the results based on land cover is more complex.  There are no clear patterns associated 
with broader vegetation types.  The ubRMSE values for SCA-V are all between 0.026 and 0.066 m3/m3.  
Grasslands/savannas had larger bias values, which needs to be investigated.  Forest results are based on 
very limited sites and should not be generalized.   

As an example, Figure 8.3 contains sparse network scatterplots of the SCA-V retrieved versus 
observed in situ soil moisture for SMAP standard and enhanced L2 passive soil moisture products from a 
previous release.  The equivalent scatter plots from the current release (V7 L2SMP and V4 L2SMP_E) are 
very similar to Fig. 8.3 and reflect the summary metrics discussed above. 

SMOS (Level 2 UDP) metrics are also included in Tables 8.5 and 8.6 (in blue) as supporting 
information.  It should be noted that while SMOS retrievals are based on a different land cover classification 
scheme (ECOCLIMAP), this does not have any impact on the comparisons shown, which compares the soil 
moisture retrievals to the in situ observations for the points that fall into these categories.  Overall, the 
SMOS products are showing a higher bias and ubRMSE and lower correlation than the SMAP SCA-V 
retrievals.   

 

 

 
Figure 8.3.  Scatterplots of the sparse network in situ observations and SMAP baseline SCA-V retrievals:  

(a) L2SMP AM Version 5, (b) L2SMP PM Version 5, (c) L2SMP_E AM Version 2,  
and (d) L2SMP_E PM Version 2.  



 
 

27 

Table 8.5.  SMAP L2SMP Version 7 Sparse Network Assessment for Descending (AM) Overpasses 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.041 0.041 0.043 -0.052 -0.007  0.000 0.066 0.042 0.043 0.641 0.638 0.610 128 128 127 

Walnut Gulch 0.024 0.024 0.025 -0.027  0.010  0.015 0.036 0.026 0.029 0.796 0.832 0.788 316 348 328 

TxSON 0.022 0.021 0.025 -0.073 -0.016  0.003 0.076 0.026 0.025 0.918 0.925 0.924 635 635 635 

Fort Cobb 0.027 0.024 0.029 -0.057 -0.013 -0.004 0.063 0.027 0.029 0.891 0.908 0.904 636 636 636 

Little Washita 0.026 0.025 0.031 -0.046 -0.002  0.009 0.053 0.025 0.032 0.893 0.902 0.892 632 632 632 

South Fork 0.054 0.045 0.042 -0.080 -0.062 -0.054 0.096 0.077 0.069 0.710 0.767 0.753 439 450 366 

Little River 0.046 0.036 0.040  0.050  0.098  0.077 0.068 0.104 0.087 0.773 0.785 0.801 679 672 680 

Kenaston 0.036 0.031 0.032 -0.009  0.027  0.036 0.037 0.041 0.048 0.787 0.844 0.831 349 349 349 

Carman 0.089 0.066 0.050 -0.010 -0.004 -0.012 0.090 0.066 0.052 0.601 0.686 0.731 242 246 248 

Monte Buey 0.067 0.048 0.032 -0.021  0.001 -0.011 0.071 0.048 0.034 0.773 0.870 0.859 215 230 234 

REMEDHUS 0.041 0.041 0.040  0.014  0.043  0.048 0.043 0.060 0.062 0.739 0.761 0.767 359 371 343 

Yanco 0.047 0.043 0.047  0.013  0.044  0.036 0.049 0.061 0.059 0.927 0.926 0.918 196 199 207 

Mean Absolute Bias   0.038  0.027  0.025    

SMAP L2SMP 
Average V7 

0.043 0.037 0.036 -0.025  0.010  0.012 0.062 0.050 0.047 0.787 0.820 0.815  

SMAP L2SMP 
Average V6 

0.046 0.038 0.039 -0.026  0.001 -0.005 0.063 0.047 0.051 0.789 0.822 0.769  

SMAP L2SMP 
Average V5 

0.046 0.037 0.047 -0.028 -0.001  0.038 0.062 0.044 0.070 0.788 0.821 0.737  

SMOS L2SM 
Average V5 

0.053 -0.024 (MAB=0.035) 0.065 0.671  

SMAP L2SMP 
Average V4 

0.046 0.039 0.047 -0.037 -0.028 -0.015 0.071 0.061 0.066 0.772 0.795 0.700  

SMOS L2SM 
Average V4 

0.053 -0.028 0.072 0.710  
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Table 8.6.  SMAP L2SMP Version 7 Sparse Network Assessment for Ascending (PM) Overpasses 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.041 0.041 0.043 -0.052 -0.007  0.000 0.066 0.042 0.043 0.641 0.638 0.610 128 128 127 

Walnut Gulch 0.024 0.024 0.025 -0.027  0.010  0.015 0.036 0.026 0.029 0.796 0.832 0.788 316 348 328 

TxSON 0.022 0.021 0.025 -0.073 -0.016  0.003 0.076 0.026 0.025 0.918 0.925 0.924 635 635 635 

Fort Cobb 0.027 0.024 0.029 -0.057 -0.013 -0.004 0.063 0.027 0.029 0.891 0.908 0.904 636 636 636 

Little Washita 0.026 0.025 0.031 -0.046 -0.002  0.009 0.053 0.025 0.032 0.893 0.902 0.892 632 632 632 

South Fork 0.054 0.045 0.042 -0.080 -0.062 -0.054 0.096 0.077 0.069 0.710 0.767 0.753 439 450 366 

Little River 0.046 0.036 0.040  0.050  0.098  0.077 0.068 0.104 0.087 0.773 0.785 0.801 679 672 680 

Kenaston 0.036 0.031 0.032 -0.009  0.027  0.036 0.037 0.041 0.048 0.787 0.844 0.831 349 349 349 

Carman 0.089 0.066 0.050 -0.010 -0.004 -0.012 0.090 0.066 0.052 0.601 0.686 0.731 242 246 248 

Monte Buey 0.067 0.048 0.032 -0.021  0.001 -0.011 0.071 0.048 0.034 0.773 0.870 0.859 215 230 234 

REMEDHUS 0.041 0.041 0.040  0.014  0.043  0.048 0.043 0.060 0.062 0.739 0.761 0.767 359 371 343 

Yanco 0.047 0.043 0.047  0.013  0.044  0.036 0.049 0.061 0.059 0.927 0.926 0.918 196 199 207 

Mean Absolute Bias   0.038  0.027  0.025    

SMAP L2SMP 
Average V7 

0.043 0.037 0.036 -0.025  0.010  0.012 0.062 0.050 0.047 0.787 0.820 0.815  

SMAP L2SMP 
Average V6 

0.046 0.038 0.039 -0.026  0.001 -0.005 0.063 0.047 0.051 0.789 0.822 0.769  

SMAP L2SMP 
Average V5 

0.046 0.037 0.047 -0.028 -0.001  0.038 0.062 0.044 0.070 0.788 0.821 0.737  

SMOS L2SM 
Average V5 

0.053 -0.024 (MAB=0.035) 0.065 0.671  

SMAP L2SMP 
Average V4 

0.046 0.039 0.047 -0.037 -0.028 -0.015 0.071 0.061 0.066 0.772 0.795 0.700  

SMOS L2SM 
Average V4 

0.053 -0.028 0.072 0.710  

 



 
 

29 

8.2 L2SMP_E  

8.2.1 Core Validation Sites 

The new L2SMP_E Version 4 is assessed using the same approach as that employed for L2SMP.   The 
major difference between L2SMP_E and L2SMP is that this product is assessed using a different set of 
CVS.  Because it is possible to now provide a retrieval for every SMAP 9-km grid cell where feasible, the 
need for using the validation grid (as used in previous releases for L2SMP) is not expected to be as 
important an issue in performing validation.  It should be noted that the validation grid allowed centering 
the retrieval on any 3-km grid, whereas the L2SMP_E retrieval process can only be centered on a 9-km 
grid.  Thus, the ability to match the in situ network to the grid may be more restrictive for L2SMP_E.  Each 
available CVS was reviewed to identify the 9-km grid cell that satisfied the CVS criteria for the new 33-
km contributing domain.  Therefore, the mix/weighting of in situ stations and grid center will be different 
between the CVS sets used for the two products.  

The CVS results are summarized in Tables 8.7 and 8.8 for the AM and PM overpasses, respectively. 
The best algorithm choice remains SCA-V, although DCA has almost comparable performance, and their 
ubRMSE meet/exceed the SMAP mission requirements.  SCA-V has an ubRMSE of 0.037 m3/m3, bias of 
-0.006 m3/m3, and correlation of 0.817 for AM orbits, and an ubRMSE of 0.037 m3/m3, bias of -0.008 m3/m3 
and correlation of 0.813 for the PM orbits.  DCA shows an ubRMSE of 0.036 m3/m3, bias of -0.009 m3/m3 
and correlation of 0.817 for AM orbits, and an ubRMSE of 0.036 m3/m3, bias of -0.013 m3/m3 and 
correlation of 0.792 for the PM orbits.  When compared to the L2SMP retrievals, the differences in the 
metrics are negligible.  These results indicate that the L2SMP_E products can be used in place of L2SMP 
without loss of accuracy.  

8.2.2 Sparse Networks 

The sparse network results are summarized in Tables 8.9 and 8.10 for the AM and PM overpasses, 
respectively.  Comparing the overall metrics for the L2SMP products to the L2SMP_E products, the results 
are nearly identical and therefore support the trends observed in the CVS analysis. 
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Table 8.7.  SMAP L2SMP_E Version 4 CVS Assessment for Descending (AM) Overpasses 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.041 0.040 0.044 -0.069 -0.021 -0.012 0.080 0.045 0.046 0.639 0.667 0.622 146 170 167 

Walnut Gulch 0.025 0.026 0.028 -0.012 0.026 0.030 0.028 0.037 0.041 0.762 0.772 0.675 240 256 227 

TxSON 0.022 0.021 0.025 -0.073 -0.016 0.002 0.076 0.026 0.025 0.931 0.933 0.927 688 688 688 

Fort Cobb 0.033 0.029 0.031 -0.083 -0.046 -0.042 0.089 0.054 0.052 0.88 0.896 0.893 654 655 640 

Little Washita 0.023 0.021 0.027 -0.060 -0.015 -0.003 0.064 0.026 0.027 0.896 0.917 0.915 550 550 550 

South Fork 0.052 0.045 0.040 -0.074 -0.053 -0.046 0.090 0.07 0.061 0.701 0.742 0.765 342 349 316 

Little River 0.045 0.035 0.039 0.017 0.066 0.042 0.048 0.075 0.058 0.772 0.800 0.816 719 716 720 

Kenaston 0.041 0.030 0.031 -0.034 0.000 0.007 0.053 0.03 0.032 0.727 0.785 0.795 260 261 261 

Carman 0.084 0.061 0.051 -0.067 -0.061 -0.067 0.108 0.087 0.084 0.626 0.683 0.703 326 329 330 

Monte Buey 0.067 0.045 0.033 -0.035 -0.013 -0.021 0.075 0.047 0.040 0.755 0.852 0.85 327 345 354 

REMEDHUS 0.041 0.040 0.038 -0.021 0.006 0.007 0.046 0.04 0.039 0.815 0.829 0.828 522 568 530 

Twente 0.071 0.060 0.055 0.002 0.029 -0.025 0.071 0.067 0.060 0.81 0.813 0.824 409 422 433 

HOBE 0.045 0.036 0.042 0.002 0.001 -0.004 0.045 0.036 0.042 0.749 0.864 0.848 122 122 122 

MAHASRI 0.034 0.033 0.025 -0.017 -0.01 -0.021 0.038 0.035 0.033 0.778 0.803 0.878 286 277 113 

Yanco 0.042 0.038 0.034 -0.016 0.019 0.018 0.045 0.042 0.039 0.893 0.903 0.921 531 532 522 

Mean Absolute Bias  0.039 0.025 0.023    

SMAP L2SMP_E 
Average V4 

0.044 0.037 0.036 -0.036 -0.006 -0.009 0.064 0.048 0.045 0.782 0.817 0.817  

SMOS L2SMP_E 
Average V3 

0.053 -0.023 0.067 0.683  

SMAP L2SMP_E 
Average V3 

0.046 0.038 0.040 -0.030 -0.002 -0.007 0.063 0.047 0.050 0.783 0.817 0.772  

SMOS L2SMP_E 
Average V2 

0.053 -0.022 0.067 0.665 
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Table 8.8.  SMAP L2SMP_E Version 4 CVS Assessment for Ascending (PM) Overpasses 

CVS 
ubRMSE (m3/m3) Bias (m3/m3) RMSE (m3/m3) R N 

SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA SCA-H SCA-V DCA 

Reynolds Creek 0.046 0.043 0.046 -0.074 -0.027 -0.017 0.087 0.051 0.049 0.559 0.639 0.612 199 238 233 

Walnut Gulch 0.026 0.025 0.026 -0.025 0.011 0.014 0.036 0.028 0.029 0.713 0.745 0.644 467 538 474 

TxSON 0.020 0.019 0.022 -0.067 -0.015 0.001 0.07 0.024 0.022 0.932 0.936 0.927 731 731 731 

Fort Cobb 0.038 0.030 0.029 -0.078 -0.048 -0.049 0.087 0.056 0.057 0.875 0.895 0.879 726 734 676 

Little Washita 0.024 0.021 0.026 -0.048 -0.01 -0.003 0.054 0.024 0.026 0.903 0.917 0.900 590 590 587 

South Fork 0.052 0.045 0.038 -0.068 -0.057 -0.054 0.086 0.073 0.066 0.727 0.760 0.772 350 360 294 

Little River 0.046 0.037 0.038 0.027 0.068 0.044 0.053 0.078 0.058 0.784 0.779 0.800 652 646 652 

Kenaston 0.036 0.026 0.030 -0.031 -0.001 0.007 0.047 0.026 0.031 0.830 0.887 0.851 349 350 348 

Carman 0.083 0.062 0.049 -0.073 -0.066 -0.072 0.111 0.090 0.087 0.522 0.566 0.587 385 385 382 

Monte Buey 0.060 0.040 0.033 -0.006 0.000 -0.022 0.061 0.040 0.040 0.838 0.882 0.804 306 326 328 

REMEDHUS 0.041 0.039 0.036 -0.029 -0.007 -0.008 0.051 0.040 0.037 0.789 0.831 0.837 555 690 648 

Twente 0.072 0.059 0.054 0.018 0.030 -0.026 0.074 0.066 0.06 0.832 0.825 0.817 516 536 552 

HOBE 0.043 0.035 0.042 0.010 0.008 0.001 0.045 0.036 0.042 0.719 0.845 0.835 122 122 122 

MAHASRI 0.034 0.031 0.031 -0.025 -0.017 -0.019 0.042 0.035 0.036 0.768 0.777 0.699 347 440 211 

Yanco 0.048 0.041 0.034 -0.013 0.016 0.011 0.050 0.044 0.035 0.899 0.905 0.919 561 563 511 

Mean Absolute Bias  0.039 0.025 0.023    

SMAP L2SMP_E 
Average V4 

0.045 0.037 0.036 -0.032 -0.008 -0.013 0.063 0.047 0.045 0.779 0.813 0.792  

SMOS L2SMP_E 
Average V3 

0.052 -0.029 0.068 0.701  

SMAP L2SMP_E 
Average V3 

0.046 0.036 0.039 -0.025 -0.002 -0.013 0.062 0.045 0.050 0.785 0.825 0.760  

SMOS L2SMP_E 
Average V2 

0.055 -0.026 0.068 0.677  
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Table 8.9.  SMAP L2SMP_E Version 4 Sparse Network Assessment for Descending (AM) Overpasses 

IGBP Class 
ubRMSD (m3/m3) Bias (m3/m3) RMSD (m3/m3) R N 

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS  

Evergreen needleleaf forest 0.038 0.036 0.032 0.094 -0.038 0.021 0.062 -0.042 0.062 0.051 0.069 0.122 0.730 0.730 0.734 0.026 2 

Evergreen broadleaf forest                                  

Deciduous needleleaf forest                                  

Deciduous broadleaf forest                                  

Mixed forest 0.060 0.060 0.059 0.057 -0.071 -0.028 -0.018 -0.074 0.093 0.066 0.062 0.092 0.711 0.710 0.711 0.732 1 

Closed shrublands                                  

Open shrublands 0.041 0.040 0.041 0.053 -0.046 -0.001 0.015 -0.008 0.067 0.055 0.058 0.064 0.505 0.530 0.525 0.502 42 

Woody savannas 0.060 0.055 0.055 0.095 -0.029 0.024 0.014 -0.052 0.097 0.091 0.085 0.139 0.704 0.731 0.749 0.429 19 

Savannas 0.037 0.035 0.037 0.045 -0.037 -0.003 -0.006 -0.020 0.065 0.053 0.054 0.063 0.822 0.826 0.829 0.795 3 

Grasslands 0.051 0.050 0.050 0.062 -0.077 -0.031 -0.019 -0.044 0.097 0.073 0.071 0.088 0.668 0.679 0.681 0.616 233 

Permanent wetlands                                  

Croplands 0.076 0.068 0.066 0.080 -0.044 -0.015 -0.011 -0.044 0.121 0.106 0.102 0.119 0.552 0.592 0.600 0.552 60 

Urban and built-up                                  

Crop/Natural vegetation 
mosaic 0.072 0.063 0.062 

0.100 
-0.033 0.014 -0.004 -0.057 0.103 0.090 0.089 0.145 0.571 0.639 0.660 0.401 23 

Snow and ice                                  

Barren/Sparse 0.022 0.022 0.023 0.031 -0.017 0.014 0.022 -0.003 0.036 0.034 0.038 0.039 0.506 0.494 0.509 0.533 6 

Mean Absolute Bias  0.069 0.058 0.059 0.081    

SMAP L2SMP_E         
Average V4 

0.051 0.048 0.047 0.069 -0.043 -0.001 0.006 -0.038 0.082 0.069 0.070 0.097 0.641 0.659 0.667 0.510  

SMAP L2SMP_E         
Average V3 

0.050 0.047 0.049 0.069 -0.036 0.003 0.008 -0.040 0.077 0.066 0.070 0.097 0.673 0.688 0.660 0.514  

Average is based upon all sets of observations, not the average of the land cover category results. 
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Table 8.10.  SMAP L2SMP_E Version 4 Sparse Network Assessment for Ascending (PM) Overpasses 

IGBP Class 
ubRMSD (m3/m3) Bias (m3/m3) RMSD (m3/m3) R N 

SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS SCA-H SCA-V DCA SMOS  

Evergreen needleleaf forest 0.039 0.038 0.040 0.077 -0.042 0.021 0.061 -0.040 0.063 0.054 0.074 0.122 0.646 0.639 0.647 0.036 2 

Evergreen broadleaf forest                                   

Deciduous needleleaf forest                                   

Deciduous broadleaf forest                                   

Mixed forest 0.057 0.054 0.053 0.057 -0.061 -0.021 -0.012 -0.060 0.084 0.058 0.054 0.083 0.743 0.777 0.787 0.732 1 

Closed shrublands                                   

Open shrublands 0.042 0.041 0.042 0.058 -0.051 -0.004 0.011 -0.006 0.070 0.056 0.058 0.070 0.466 0.471 0.468 0.417 42 

Woody savannas 0.060 0.054 0.054 0.095 -0.014 0.030 0.018 -0.040 0.094 0.092 0.086 0.126 0.696 0.715 0.729 0.481 19 

Savannas 0.038 0.037 0.038 0.057 -0.030 0.002 -0.003 -0.020 0.063 0.056 0.056 0.076 0.827 0.815 0.824 0.712 3 

Grasslands 0.050 0.049 0.049 0.062 -0.073 -0.031 -0.021 -0.042 0.094 0.073 0.072 0.087 0.662 0.671 0.670 0.619 233 

Permanent wetlands                                   

Croplands 0.076 0.066 0.064 0.082 -0.033 -0.013 -0.014 -0.041 0.120 0.106 0.101 0.117 0.549 0.589 0.589 0.553 60 

Urban and built-up                                   

Crop/Natural vegetation 
mosaic 0.071 0.062 0.061 0.098 -0.010 0.024 0.003 -0.051 0.098 0.090 0.087 0.135 0.562 0.628 0.647 0.431 23 

Snow and ice                                   

Barren/Sparse 0.023 0.024 0.025 0.039 -0.021 0.013 0.020 -0.003 0.038 0.034 0.037 0.046 0.434 0.389 0.394 0.407 6 

Mean Absolute Bias  0.068 0.058 0.059 0.079    

SMAP L2SMP_E         
Average V4 

0.051 0.047 0.047 0.069 -0.037 0.002 0.007 -0.034 0.080 0.069 0.069 0.096 0.621 0.633 0.639 0.407  

SMAP L2SMP_E         
Average V3 

0.050 0.047 0.049 0.068 -0.029 0.007 0.009 -0.035 0.076 0.067 0.071 0.095 0.654 0.662 0.623 0.495  

Average is based upon all sets of observations, not the average of the land cover category results. 
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8.3 Summary 

Three alternative L2SMP/L2SMP_E retrieval algorithms were evaluated using three methodologies in 
preparation for this release.  The algorithms included the Single Channel Algorithm–H Polarization (SCA-
H), Single Channel Algorithm–V Polarization (SCA-V), and Dual Channel Algorithm (DCA).  Assessment 
methodologies were Core Validation Sites (CVS), sparse networks, and intercomparisons with SMOS.  The 
baseline algorithm (SCA-V) remains unchanged for both L2 and L3 products. 

For the current validated release (Version 7 of L2SMP and Version 4 of L2SMP_E), the goal was to 
update the previous assessment of the retrieval algorithms over a larger period of time and to assess the new 
DCA algorithm in comparison with SCA-V.  This assessment was supported by global analyses using 
sparse networks and SMOS intercomparisons as well as CVS matchups.  These analyses indicated that the 
SCA-V and DCA had comparable performance statistics, with better unbiased root mean square error and 
correlation and lower bias than SCA-H.  Based on these results, SCA-V will be continued as the operational 
baseline algorithm for this release, although certain users may find DCA more appropriate to their specific 
application given its comparable performance to SCA-V.  The overall ubRMSE of the DCA and SCA-V 
retrieved soil moisture from the descending (AM) and ascending PM orbits is 0.036-0.037 m3/m3, which is 
better than the project target accuracy (0.040 m3/m3 ubRMSE or lower).   

Sparse network comparisons are more difficult to interpret due to upscaling but provide many more 
locations than the CVS.  The analyses conducted here supported the conclusion reached in the CVS 
assessment, and contributed to improving validation through Triple Colocation analyses of uncertainties.  
The sparse network data also allowed the evaluation of performance based on land cover. 

SMAP CVS and sparse network retrievals were compared to SMOS. These analyses supported the 
conclusions of prior assessments that the L2SMP currently has better performance metrics than SMOS.  

The analyses described above were repeated for the L2SMP/L2SMP_E PM products. These show 
comparable performance to the AM results for all metrics. The comparable performance for AM and PM 
retrievals is attributed to the improved land surface temperature correction approach implemented in the 
previous version and continued in this release with a slightly modified parameterization.  

The L2SMP_E Version 4 product was assessed using CVS chosen specifically to exploit the L2SMP_E 
grid posting (9 km) and contributing domain (33 km).  Results were essentially the same as those obtained 
in the L2SMP Version 7 analyses.  

Based on the extensive validation analyses to date, the number of peer-reviewed publications 
(including the numerous independent investigations noted in the SMAP bibliography posted at NSIDC), 
the length of the SMAP period of record, and the utilization of feedback of validation in a systematic update, 
with this version of L2SMP and L2SMP_E the team has progressed beyond CEOS Stage 4 validation [10].  
The Cal/Val program will continue throughout the mission with the goals of increasing the robustness of 
the soil moisture products and addressing specific site issues.  
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9 OUTLOOK AND FUTURE PLANS 

Satellite passive microwave retrieval of soil moisture has been the subject of intensive study and 
assessment for the past several decades.  Over this time there have been improvements in the microwave 
instruments used, primarily in the availability of L-band sensors on orbit.  However, sensor resolution has 
remained roughly the same over this period, which is actually an achievement considering the increase in 
sensor wavelength from X band to C band to L band over the years.  With spatial resolution in the 25-50 
km range, there will always be heterogeneity within the satellite footprint that will influence the accuracy 
of the retrieved soil moisture as well as its validation.  Precipitation types and patterns are one of the biggest 
contributors to this heterogeneity.  As a result, one should not expect that the validation metric ubRMSE 
will ever approach zero except in very homogeneous domains.  In contrast, bias tends to be indicative of a 
systematic error, possibly related to algorithm parameterization and model structure.  High quality data are 
needed to discover and address these systematic errors.  Some issues that should be considered during the 
extended SMAP mission include: 

• Increasing the number of potential validation sites.  Although very useful in SMAP product 
assessments, the current set of SMAP CVS are somewhat limited in the different environments and 
land covers they represent, especially at the high resolutions typical of active/passive or 
disaggregated passive soil moisture products.  Additional high resolution core sites in different 
geographical areas would provide increased confidence in SMAP global performance.   

• Evaluate the impacts of algorithm structure and components on retrieval.  There are some aspects 
of soil moisture retrieval algorithms that are used because they facilitate operational soil moisture 
retrieval.  One of these simplifying aspects is the use of the Fresnel equations that specify that 
conditions in the microwave contributing depth are uniform.  While there is ample evidence that 
this is true in most cases, it should be recognized that this assumption is a potential source of error 
– some effort should be made to evaluate when and where it limits soil moisture retrieval accuracy.  
Another assumption is that a single dielectric mixing model applies under all conditions globally.  
All of the commonly-used dielectric models are highly dependent on the robustness of the data set 
used in their development.  The impact of this assumption on retrieval error needs further 
evaluation.  Another consideration in the current DCA is the assumption of equality of the 
vegetation parameters for the H and V polarizations.  This assumption does simplify retrieval but 
it is not valid for all categories of vegetation.  

• Possible subdivision of crop land cover class into distinct crop subclasses.  Another source of error 
is SMAP’s use of a single IGBP land cover class to cover the great variety of global crops.  One 
area of future work will examine the possibility of subdividing the single crop class into a number 
of distinct subclasses (e.g., corn, soybeans, wheat, rice) with appropriate parameterization which 
would better represent the main global crop structural categories.  Due to the latency problem in 
acquiring up-to-date crop maps, this issue is not likely to be addressed until the final bulk 
reprocessing of SMAP data.  

• Incorporating field campaign results into algorithm assessments and improvements.  Several 
SMAP field campaigns were conducted postlaunch, and results from these field campaigns will be 
used in future assessments and algorithm improvements.   

• Improvement of retrievals over forests. Dense forests (where VWC > 5 kg/m2) typically exceed the 
currently accepted threshold for accurate soil moisture retrieval.  SMAP provides a flagged retrieval 
over forests, and the spatial extent of these flagged areas is quite large.  At this point there is no 
supporting validation of the L2SMP soil moisture retrieved for forest areas, and the SMAP forest 
retrievals are quite different from SMOS.  Efforts to improve soil moisture retrievals over forests 
should include a careful evaluation of alternative algorithms and improving validation resources 
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through a combination of temporary in situ soil moisture networks and field campaigns.   The 
SMAPVEX19-21-NE field campaign will collect data in two temperate forests (Millbrook, NY and 
Harvard Forest, MA) to begin to address soil moisture retrieval in forested areas.  The 
SMAPVEX21-BERMS campaign will extend these studies to boreal forests.  Both field campaigns 
will deploy temporary in situ stations, ground radiometers, and the aircraft PALS SMAP simulator 
instrument to collect sufficient ground truth data for meaningful comparisons with SMAP data in 
forested domains.  

• Improvement of retrievals for organic soils. Organic soils in areas with high vegetation provide a 
challenge for soil moisture retrievals.  SMAP currently uses the Mironov dielectric mixing model 
for estimating soil moisture.  At the present time this model does not account for the presence of 
organic material in the soil.  The impact of organic matter on the dielectric constant is unknown 
and will be studied in the future along with the forest retrievals.  The presence of organic matter 
also leads to uncertainty in the bulk density value/porosity which is taken to be the upper limit of 
retrieved soil moisture.  
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12 LINK TO BIBLIOGRAPHY OF PUBLISHED SMAP PAPERS  

Please see the SMAP bibliography posted at NSIDC at the following link for SMAP-related papers:  
https://nsidc.org/data/smap/research.html. 
 
  

https://nsidc.org/data/smap/research.html
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13  APPENDIX 3:  Parameterization of Effective Soil Temperature (Teff) 
 

     Accurate soil moisture retrievals from SMAP 1.4 GHz brightness temperature data require an estimate 
of the soil effective temperature (Teff).  The Choudhury two-layer approach for Teff [Choudhury et al., 1982] 
has been used in all previous SMAP data releases and by other missions with good success.  This approach 
combines estimates of a “surface” temperature and a “deep” temperature using a proportional coefficient 
dependent on the microwave wavelength.  In the SMAP 2018 data release, the Choudhury approach was 
modified by an additional parameter K to address an observed bias between ancillary modeled soil 
temperatures and measured in situ temperatures at core validation sites and sparse network stations.  In 
January, 2020 NASA GMAO modified atmospheric and land modules in the GEOS-FP modeling system, 
resulting in a change to the soil temperature ancillary data used in SMAP processing and a change in the 
definition of soil layer depths [Koster et al., 2020].  As a result, the SMAP project conducted a number of 
different analyses to determine the most appropriate parameterization of the Choudhury effective 
temperature.  This appendix contains two summaries of these efforts.  As of the R17 release in August, 
2020, the approach outlined in section A3.2 was adopted as the baseline approach for Teff formulation. 
 
A3.1.   Rationale for a Two-Layer Effective Soil Temperature Model for SMAP Passive Soil Moisture 

Products 

 (Lead Investigator: Steven Chan, JPL) 

     Experimental and theoretical literature (Choudhury 1982 and Lv 2014, 2016) have long established the 
physics that at L-band frequencies, microwave emission from land primarily comes from the deep soil layer 
(Tdeep), and to a lesser extent, the shallower soil layer (Ttop).  The combined use of Tdeep and Ttop in effective 
soil temperature (Teff) modeling has in the past enabled great science advances for L-band satellite missions 
including SMOS (2009-present) and SMAP (2015-present) as well as enabling other research reported in 
refereed literature. 
   
     The upcoming SMAP R17 release consists of upgrades in/changes to radiometer calibration, GMAO 
ancillary soil temperatures, GMAO soil layer depths, and the global soil texture database used.  As such, 
the pre-R17 two-layer Teff model was examined to see if parameter retuning was required.  Since the impacts 
of Teff are most directly felt in soil moisture retrieval accuracy, sensitivity analysis was applied to the in situ 
soil moisture observations from core validation sites to determine the new parameters (C, K) for the R17 
two-layer Teff model.  To ensure validation with minimal partiality in product assessment, observations 
from only a random half of all CVS stations were used at a time in the sensitivity analysis. 
 
     The parameters determined in this way also independently confirmed three outcomes: (1) a larger Ttop 
contribution in R17 that is in line with theoretical prediction (e.g., Lv, 2014) and the new GEOS-FP soil 
depth layer definitions, (2) the validity of a two-layer model to describe Teff for SMAP 6:00 AM data, and 
(3) the validity of using C=1 to describe Teff for SMAP 6:00 PM data.  The resulting retrieval performance 
metrics and spatial/temporal variability continue to be consistent with those derived before R17, giving 
additional confidence in SMAP’s continued ability to produce high-quality soil moisture data products. 
 
     The analysis started with the objective to determine if (a) SMAP TB observations and (b) footprint-scaled 
CVS soil moisture observations support a two-layer Teff model or a one-layer Teff model.  Baseline soil 
moisture retrieval time series were obtained at all CVS one (C, K) pair at a time using the following two-
layer Teff formulation, which reduces to a one-layer Teff model when C = 1. 

Teff = K × [ TSOIL1 × C + TSOIL2 × (1 – C)] 

where K is a factor that modifies the original Choudhury formulation to address an observed bias between 
ancillary modeled soil temperature and measured in situ temperature at core validation sites and sparse 
network stations.  Tsoil1 refers to the average soil temperature for the first soil layer (5-15 cm) and Tsoil2 refers 
to the average soil temperature for the second soil layer (15-35 cm) of the GMAO GEOS-FP land surface 
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model.  Assuming direct correspondence between (a) and (b) above, favorable metrics are expected along 
C = 1 for the validity of a one-layer Teff model, or along C ≠ 1 for the validity of a two-layer Teff model.  In 
this sensitivity analysis setup, no implicit a priori assumption was made on what (C, K) values should take 
to dictate the metric pattern one way or the other. 
 
     The SMAP CVS data are comprised of in situ soil moisture observation time series from 15 stations.  To 
minimize partiality upon assessing the data product with the same dataset, 8 stations were randomly selected 
(~50% of all available stations) at a time, and their time series were used to determine one realization of 
(C, K).  This process was repeated until all 15C8 = 15! / (7! × 8!) = 6,435 possible combinations were 
exhausted.  All realizations of (C, K) were then averaged to provide their mean values and standard 
deviations: 

(C, K) = (0.43 ± 0.14,1.0106 ± 0.0042) 

which approach their theoretical limits (C, K) = (0.46,1.0103) had all CVS been used in the first place.  
However, this random-selection sensitivity analysis approach is not without drawbacks: for example, even 
though only half of them were used in sensitivity analysis for any given realization, all of them were 
eventually involved, though not all at the same time.  In view of the inherent difficulty in Teff’s direct 
observability other than in soil moisture retrievals, however, this lack of rigor in analysis design appears to 
be a temporary but reasonable compromise in subsequent validation in order to help answer the following 
pressing question that initiated this investigation: 

Do SMAP TB observations and CVS soil moisture observations indicate  
a two-layer Teff model or a one-layer Teff model? 

 

     As an illustration, Figure A3-1 shows the 6:00 AM and 6:00 PM performance metrics over the (C, K) 
space for the 4-year T16540 OASIS run.  Two observations follow from this figure.  First, favorable 6:00  
PM metrics – defined as low ubRMSE, small bias observed over CVS magnitude, and high correlation – 
all occur simultaneously near the C = 1 line.  The corresponding K varies within a narrow band of values 
around 1.01.  The fact that C = 1 implies that the one-layer model provides the best analytical form for Teff 
at 6:00 PM.  This result independently affirms the choice made by the team in 2017 to simply use C = 1 for 
the SMAP 6:00 PM data.  Under this formulation, the effect of TSOIL2 is negated and only TSOIL1 is used for 
Teff modeling in Level 2 soil moisture geophysical inversion for 6:00 PM data. 
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Figure A3-1.  6:00 AM and 6:00 PM performance metrics as a function of C and K 

 
     On the other hand, the favorable 6:00 AM metrics (low ubRMSE, small bias magnitude, and high 
correlation) convey a different structure.  Unlike their 6:00 PM counterparts, they do not align well with 
the C = 1 line, implying that the two-layer model is necessary to provide the best analytical form for Teff 
for the SMAP 6:00 AM data.   Since C ≠ 1 to obtain the best results at 6:00 AM, both TSOIL1 and TSOIL2 are 
needed simultaneously to explain the correspondence between the SMAP TB observations and CVS soil 
moisture observations for 6:00 AM data. 
 
     Although the two-layer model can be reduced to the one-layer model by setting C = 1 (as for the 6:00 
PM data), the converse is not possible – the one-layer model cannot be modified easily to predict and absorb 
the contribution of TSOIL2 implicitly in the simple analytical form: Teff = K × TSOIL1.  For this reason, the 
two-layer Teff model is recognized to be the better candidate for its flexibility to take into account the need 
to use TSOIL1 and TSOIL2 for the 6:00 AM data and TSOIL1 only for the 6:00 PM data. 
 
     Note also that the colocation of the favorable 6:00 AM metric patterns in Fig. A3-1 occurs around C ~ 
0.40.  This value of C is higher than the traditional Choudhury value (C = 0.246) used in previous data 
releases.  In other words, based on the results shown in Figure A3-1, TSOIL1 should now assume a 40% 
weight in Teff.  This increase is consistent with (1) a change in soil depth definitions in the GEOS-FP 
ancillary soil temperatures as well as (2) theoretical predictions outlined in Lv, 2014 (Figure A3-2).   
Because the CVS soil temperatures in the sensitivity analysis do not stay constant everywhere at 20 ºC as 
assumed in Lv’s calculations, a perfect match is not expected between our C and Lv’s C, but they are 
nonetheless in close agreement. 
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Figure A3-2.  Theoretical prediction of C ~ 0.45 for the typical dynamic range of 

soil moisture observations at CVS and the sampling depth of TSOIL1 
according to the new GMAO GEOS-FP soil depth layer definition. 

 
 

CONCLUSION 
 

     Using the sensitivity analysis outlined above, the two-layer Teff model was determined to provide the 
best explanation for the correspondence between the SMAP TB observations and CVS soil moisture 
observations, with C = 0.435 for the SMAP 6:00 AM data and C = 1 for the SMAP 6:00 PM data (K = 1.01 
in both cases) over biomes where SMAP soil moisture retrieval is expected to meet or exceed the mission 
target accuracy of 0.040 m3/m3 (1-sigma). 
 
 

ADDENDUM 
 

     No account for justifying the two-layer Teff model is considered complete without a critical examination 
into why the other alternative – the one-layer Teff model – is considered a less preferred candidate.  From a 
modeling perspective, the one-layer Teff model is conceptually simple and elegant; it adheres well to a 
minimalist’s approach, requiring no “knobs” to account for the contribution from the deeper soil layers. 
 
     It turns out the lack of “knobs” in the one-layer Teff model is also one of its major limitations – there is 
simply no robust way to account for diverse land surface conditions where the contribution from the deeper 
soil layers is significant, unless additional corrections are developed on top of this formulation to model the 
impacts of heat diffusion, soil texture, and soil moisture from the deeper soil layers.  None of these are 
trivial to implement in Level 2 soil moisture geophysical inversion.  As a rule of thumb in using and 
understanding remote sensing data, effective corrections should be applied as close to the first source(s) as 
possible.  Since TSOIL2 is already available in the SMAP operational data stream, there is strong incentive 
to use it to provide correction sooner at Teff rather than later.  Furthermore, there is a large body of theoretical 
and experimental research which indicates that at L-band frequencies, there is significant contribution to 
the observed TB from the deeper soil layers.  This is especially true in areas where there is not an excessive 
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amount of vegetation and/or soil moisture.  Globally, these areas represent a significant portion of the 
original “SMAP Retrieval Mask” where mission target accuracy is expected to be satisfied. 
 
     For the one-layer Teff model to be able to “ignore” contributions to the emission temperature from TSOIL2, 
it is necessary that the isothermal condition be met.  The isothermal condition is a rather stringent condition 
because it goes beyond requiring the vertical thermal gradient in the soil to be small or minimum (e.g. at 
dawn hours) – it actually requires TSOIL1 = TSOIL2 so that their difference is zero (mathematically, as long as 
TSOIL2 is a constant multiple of TSOIL1, the two-layer Teff model can still be reduced to the one-layer Teff 
model but nature is not likely to act like this everywhere all the time!).  To examine the validity of this 
isothermal condition, both TSOIL1 and TSOIL2 were extracted and global local solar time correction was 
performed using all available hourly files from the GEOS-FP soil temperatures.  Figure A3-3 shows the 
global TSOIL1 - TSOIL2 differences at local solar time 6:00 AM everywhere. 
 

 
Figure A3-3.  Global TSOIL1 - TSOIL2 difference at local solar time 6:00 AM 

 
 
     White areas indicate where TSOIL1 = TSOIL2, whereas blue areas indicate where TSOIL1 < TSOIL2 by about 
3-5 K.  Clearly, there are non-zero thermal gradients over many places even at dawn hours, thus 
undermining the validity of the one-layer Teff model.  Note that Figure A3-3 refers to only the difference 
between the 5-15 cm soil layer and the 15-35 cm soil layer as given by the GEOS-FP model.  If soil 
temperature for the 0-5 cm soil layer were available, its gradient from the 5-15 cm soil layer would be even 
greater (see Fig. 1 in Choudhury et al., 1982).  This would further challenge the isothermal condition 
required by the one-layer Teff model. 
 
 
A3.2.   Emission Temperature and Its Inference from Dynamic Ancillary Data  

 (Lead Investigator: Dara Entekhabi, MIT) 

I. The Effects of Temperature and Moisture Profiles and Their Parameterization 
 

     The microwave emission brightness temperature of soils 𝑇 depends on the soil temperature profile 𝑇𝑔(𝑧) 

and the attenuation coefficient 𝛼(𝑧) profile: 

𝑇 = ∫ 𝑇𝑔(𝑧) ∙ 𝛼(𝑧) 𝑒𝑥𝑝 [− ∫ 𝛼(𝑧′) 𝑑𝑧′
𝑧

0

] 𝑑𝑧
∞

0

 

where 
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𝛼(𝑧) =
4𝜋

𝜆
 

𝜖′′(𝑧)

2√𝜖′(𝑧)
 

 

𝜖 = 𝜖′ + 𝑖 𝜖′′ is the complex dielectric constant that is dependent on the soil volumetric water content, and 

𝜆 is the wavelength. 
 
     In order to produce estimates of surface soil moisture from brightness temperature observations, the soil 

temperature 𝑇𝑔 has to be treated as a dynamic ancillary data input which can be inferred from atmospheric 

forecast models that include land surface parameterizations (surface energy balance and heat diffusion into 
discretized soil media).  NASA GMAO’s Goddard Earth Observing System-Forward Processing (GEOS-
FP) modeling system is the source of these soil temperature forecasts for the SMAP project. 
 
     Atmospheric modeling systems discretize the soil column into a finite set of nodes for solving the heat 
diffusion and advection in the soil vertical profile.  The number of nodes is usually limited (typically in the 
two to five range).  Therefore, the emission temperature has to be parameterized in terms of a finite number 
of soil layers.  The Choudhury et al. (1982) model is applicable to estimating an emission temperature based 
on finite soil temperature estimates within the profile.  An emission temperature is defined based on two 

soil temperature values – one near the surface 𝑇𝑠𝑢𝑟𝑓  and another deep in the soil 𝑇𝑑𝑒𝑒𝑝  –   such that: 

 

𝑇 = 𝑇𝑑𝑒𝑒𝑝 + 𝐶 ∙ (𝑇𝑠𝑢𝑟𝑓 − 𝑇𝑑𝑒𝑒𝑝) 

 

     The factor 𝐶 primarily depends on wavelength 𝜆 but can also be influenced by soil texture, time-of-day, 
and soil moisture and temperature profile shapes.  Choudhury et al. (1982) used the coherent radiative 
transfer model of Wilheit (1978) in conjunction with observed soil moisture temperature and moisture 

profiles at a site in Phoenix, Arizona in order to estimate the value of factor 𝐶.  The soil temperature and 
moisture observations are at multiple depths, allowing definition of a vertical profile.  The site in Arizona 
experienced large variations in diurnal soil temperature profiles.  Since the site is in an arid region and was 
sporadically irrigated, the soil moisture profile conditions also spanned a large range.  Based on the coherent 
radiative transfer model and the soil profile observations, Choudhury et al. (1982) reported that at L-band 

𝜆 = 21 [𝑐𝑚], 𝐶 = 0.246 ± 0.009.  SMAP has adopted this value for estimating an emission temperature 

𝑇 based on 𝑇𝑠𝑢𝑟𝑓  and 𝑇𝑑𝑒𝑒𝑝 ancillary data inputs (current baseline SMAP L2/L3 products have all used 𝐶 =

0.246 for the descending 6 AM overpass time since the start of SMAP science data acquisition).  The 
SMAP Level 1 science requirements for the accuracy of retrieved surface soil moisture products are defined 
only for descending overpass times (about 6 AM local time).  At this time the soil and overlying vegetation 
temperatures are least divergent compared to the rest of the day (near isothermal condition) which allows 
simplification of the radiative transfer model at the core of the retrieval algorithm. The ~6 PM ascending 
overpass data are similarly used to produce estimates of surface soil moisture for 6 PM, but these retrievals 
are not strictly required to meet the same level of accuracy as the 6 AM retrievals. Not having an accuracy 
requirement also means that 6 PM soil moisture retrievals are not a driver of algorithm design and 
independent ground truth science product assessment and validation.    
 

II. Source of Dynamic Soil Temperature Ancillary Data 
 
     For SMAP the source of ancillary soil temperature data is the GMAO GEOS-FP system.  In January 
2020 the GEOS-FP system upgraded to a new land surface model that redefined the surface and soil 
temperature layer depths as shown below (Koster et al., 2020): 
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In the upgraded GEOS system, 𝑇𝑠𝑢𝑟𝑓 is a temperature prognostic that is formed based on bare soil, 
vegetation, and snowpack temperatures in proportion to their prevalence across the pixel area.   This 
temperature is a flux temperature which is used in the gradient-driven exchanges of heat between the surface 

and the atmospheric boundary layer.  𝑇𝑆𝑂𝐼𝐿1 and 𝑇𝑆𝑂𝐼𝐿2 are consistently soil media temperature 
prognostic variables that are characterized by these extensive attributes: 

 Depth Range Node Center Position 

𝑇𝑆𝑂𝐼𝐿1   -5 to -15 [cm] -10 [cm] 

𝑇𝑆𝑂𝐼𝐿2 -15 to -35 [cm] -25 [cm] 

 

These GEOS temperature variables (𝑇𝑆𝑂𝐼𝐿1 and 𝑇𝑆𝑂𝐼𝐿2) need to be linked to the Choudhury et al. (1982) 

model variables (𝑇𝑠𝑢𝑟𝑓  and 𝑇𝑑𝑒𝑒𝑝). 

 
III. Offset and Scaling Biases in Model Prognostics 

 
     Atmospheric and land surface model forecasts of soil temperatures may be biased (model structural 

biases) and may need corrections to represent soil temperatures 𝑇𝑠𝑢𝑟𝑓  and 𝑇𝑑𝑒𝑒𝑝.  Such structural biases are 

inevitable given the fact that they are parameterized and the result of numerical models as well as because 
the model grids (in the horizontal) are often tens of kilometers which span large heterogeneities in landscape 
conditions like slope, aspect, land use, and soil texture. 
 
     The model variables can be biased (offset) or they can be modulated (scaled).  The offset and scaling 
may be seasonally variable and depend on land use and soil physical characteristics.  Identification of the 
required scaling (modulation of the seasonal and diurnal amplitude) and its dependence on landscape 
characteristics is complicated and beyond the immediate priorities of the SMAP Project.  The offset, 
however, is identifiable with the use of in situ soil temperature measurements.   
 

     To start this analysis, the 𝑇𝑆𝑂𝐼𝐿1 variable at the time of the descending overpass was compared with 

the most common measurement of soil temperature at in situ stations, i.e., 𝑇𝑔(𝑧 = −5 [𝑐𝑚]).  The offset 

between the two variables may be captured by an additive factor or a multiplicative factor.  The figure 
below over the range of typical non-frozen soil temperatures shows that when the temperatures are given 
in units of [Kelvin], the additive and multiplicative characterization of the offset factor is comparable. 
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Based on the above figure, the decision was made to proceed with a multiplicative model for the offset so 
that: 

𝑇𝑠𝑢𝑟𝑓 = 𝐾𝑠𝑢𝑟𝑓 ∙ 𝑇𝑆𝑂𝐼𝐿1 

 
 

IV. Descending Overpass Time  
 

     Based on ground-based observations of soil temperature 𝑇𝑔(𝑧 = −5 [𝑐𝑚]) and GMAO GEOS-FP 

𝑇𝑆𝑂𝐼𝐿1, the values of 𝐾𝑠𝑢𝑟𝑓 across CVS and sparse network ground stations are: 

 

Descending Overpasses  (~6:00 am Local Time) 

 𝐾𝑠𝑢𝑟𝑓 Number of Stations 

CVS 
(Chaubell, 2020, 

personal communication) 

 
1.006 +/- 0.005 

 
15 

USCRN 
(Colliander, 2020, 

personal communication) 

 
1.0068 +/- 0.0051 

 
299 

 
 

Colliander (2020) and Chaubell (2020) show that 𝐾𝑠𝑢𝑟𝑓 has a distinct seasonal cycle at some stations (peak 

in the summer) and that drier soil climates have higher 𝐾𝑠𝑢𝑟𝑓 values.  Examples at the TxSON and 

REMEDHUS stations (in red) are shown below (Chaubell, 2020): 
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Repeat of the same offset identification but for the deep soil temperature, i.e. 

𝑇𝑑𝑒𝑒𝑝 = 𝐾𝑑𝑒𝑒𝑝 ∙ 𝑇𝑆𝑂𝐼𝐿2 

has more options to consider.  The first option is to estimate 𝐾𝑑𝑒𝑒𝑝  in the same manner as for the surface 

soil but using deeper ground-based observations of soil temperature such as 𝑇𝑔(𝑧 = −20 [𝑐𝑚]).  The 

availability of ground-based soil temperature at this depth is more limited. But a more serious consideration 
is the potential hazard of disturbing the soil temperature gradient provided by the GMAO GEOS-FP system 
if separate multiplicative offset factors are applied.  
 
     As a solution, offsets are applied to the GMAO GEOS-FP soil temperature prognostics that preserve the 
gradient but shift the profile so that they match the surface ground-based soil temperature measurements.  

This implies 𝐾𝑑𝑒𝑒𝑝 = 𝐾𝑠𝑢𝑟𝑓 = 𝐾.  With this approach the GMAO GEOS soil temperature gradient is not 

disturbed and the shift is a translation on the temperature scale. 
 

     Based on the table above, 𝐾 = 1.007 is selected together with the Choudhury et al. (1982) 𝐶 = 0.246 
for the 6 AM descending passes according to the combined model: 
 

𝑇 = 𝐾 ∙ [𝐶 ∙ 𝑇𝑆𝑂𝐼𝐿1 + (1 − 𝐶) ∙ 𝑇𝑆𝑂𝐼𝐿2] 
 
 

V. Ascending Overpass Time 
 
     There are no SMAP project requirements on the accuracy of soil moisture retrievals using ascending 
pass 6 PM data.  Nevertheless, the project makes every effort to provide accurate soil moisture retrievals 
from the 6 PM SMAP observations as well as from 6 AM to essentially double the soil moisture estimates 
available to the science and applications community.  There are known challenges to applying the retrieval 
algorithm to ascending data since isothermal conditions between the soil and the overlying vegetation 
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canopy is one of the major requirements of the soil moisture retrieval algorithm as it is formulated now, 
and this condition is more likely to be violated at 6 PM. 
 
     The SMAP project has identified two major use-cases for the ascending soil moisture retrievals: 1) those 
that are interested in the diurnal cycle of soil moisture (in response to daytime drying and nighttime re-
moistening by hydraulic lift of soil water from below to the drier surface) during non-precipitating days, 
and 2) those who seek to double their data count for more robust time-series analyses.  These two use-cases 
lead to conflicting design criteria: the first use-case requires detection of the subtle small changes associated 
with the diurnal cycle of soil moisture, while the second use-case requires much consistency between 
ascending and descending estimates, i.e., no saw-tooth patterns. 
 
     Meeting the requirements of the first use-case is very challenging since characterization of the 
temperature gradient between the soil and the canopy – to the accuracy required to detect subtle diurnal soil 
moisture changes – is not readily feasible.  This use-case community is encouraged to access the SMAP 
Level 1 brightness temperature data and design their own retrieval algorithms that might better suit their 
particular application (including the use of alternative ancillary data sources). 
 
     The second use-case can be enabled by ensuring an ascending (6 PM) data product that best meets two 
criteria: 1) best possible performance in terms of matching in situ soil moisture at the time of the evening 
overpass, and 2) as much as possible tracking the descending soil moisture product except for when 
precipitation events occur in between the two measurements. 
 
     The offset factor for the ascending overpass time (6 PM) may be approached in the same manner as for 
the descending (6 AM) overpasses described above.  The results of this estimation process are listed in the 
table below. 
 

Ascending Overpasses  (~6 PM Local Time) 

 𝐾𝑠𝑢𝑟𝑓 Number of Stations 

CVS 
(Chaubell, 2020, 

personal communication) 

 
1.002 +/- 0.007 

 
15 

USCRN 
(Colliander, 2020, 

personal communication) 

 
1.0024 +/- 0.0071 

 
299 

 
 

     Since the ascending overpass time is not part of the SMAP Science Requirements, there is greater 

latitude in selecting the 𝐾 and 𝐶 parameters, with the possibility that the nominal values from the current 
analysis will be revisited in the future. 
 

     For the parameter 𝐶 for the 6 PM ascending overpasses, the project plans to continue to use 𝐶 = 1, 
which is the same as the value used to produce the baseline surface soil moisture science data product 
publicly available now.  This value was selected based on the understanding of the evolution of canopy and 
soil profile temperatures during the course of the solar day.  It should be revisited with more evidence based 
on radiative transfer modeling and in situ observations of canopy and multi-layer soil temperatures. 
   

     For the parameter 𝐾, a lower value than the descending pass estimated value is warranted. At this time 

it was decided to use the same K during the ascending time as the descending time, i.e., 𝐾 = 1.007, until 
the fidelity of the forecasts of the diurnal cycle amplitude in the GMAO GEOS-FP system is better 
understood.  This diurnal cycle amplitude is certainly related to the vegetation cover, soil moisture level, 
season, and available energy and other environmental factors.  It is prudent to not assign a different offset 
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to the ascending overpass time model temperatures until there is greater understanding of the role of the 
amplitude of the diurnal cycle. 

 
 K C 

Descending 1.007 0.246 

Ascending 1.007 1.000 

 
 

VI. Assessments 
 
     In the analysis described here, the soil emission temperature parameter estimation has only used in situ 
soil temperatures and model temperature prognostics.  This leaves CVS and sparse network soil moisture 
information intact for use invalidation of the SMAP retrieved soil moisture values.  The table below shows 
the assessment of the SMAP surface soil moisture product at CVS using Plan 2.2 of the L1 brightness 
temperature calibration as well as the new OpenLandMap soil texture database.  The results of the 
independent assessment are: 

 

 ubRMSE 
(m3 m-3) 

Bias 
(m3 m-3) 

RMSE 
(m3 m-3) 

Correlation 

Descending Orbits 0.037 -0.006 0.048 0.816 

Ascending  Orbits 0.037 -0.008 0.048 0.811 

 
 

The random errors (ubRMSE) and correlation are unaffected by the updated parameters of the soil emission 
model and updated GMAO GEOS-FP soil temperature dynamic soil temperature ancillary data inputs.  
Although slightly larger than before the updates, the bias is small and within the bounds of uncertainty 
(~0.01) in determining grid-average values based on finite point samples (Chen et al., 2019). 
 
     Two major use-cases were identified for the combined descending and ascending surface soil moisture 
products.  Besides product performance based on 6 AM/6 PM local time in situ soil moisture ground truth, 
efforts were made to minimize spurious ‘saw-tooth’ variations beyond normal differences in the two 
overpass soil moisture estimates.  This saw-tooth pattern would manifest itself in the mean bias between 
the ascending and descending soil moisture as well as in other statistics.   With the current selection of soil 
emission parameters, the bias between the descending and ascending surface soil moisture estimates 
averaged over all CVS is small (around -0.002 m3 m-3).  
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