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1 Introduction	
Greenland’s mass balance, the difference between annual snowfall and ice loss 

from melting and iceberg calving, has changed dramatically over the last two decades 
[Shepherd et al., 2012]. One of the first large changes was the rapid disintegration and 
near-doubling in speed of Jakobshavn Isbrae, Greenland’s largest outlet glacier [Thomas 
et al., 2003; Joughin et al., 2004]. Large speedups soon followed on Greenland’s second 
and third largest outlet glaciers, Kangerdlugssuaq and Helheim [Howat et al., 2005; 
Luckman et al., 2006]. Over the same period nearly all of the glaciers along Greenland’s 
southeast coast sped up by 50% or more [Rignot and Kanagaratnam, 2006]., with 
continued acceleration since then [Joughin et al., 2010; Moon et al., 2012]. 

The highly-variable dynamics of outlet glaciers suggest that recent Greenland 
observations provide only isolated snapshots of mass balance. Therefore, special care 
must be taken in how these and other mass-loss estimates are evaluated, particularly 
when extrapolating to the future, since short-term spikes could yield erroneous long-term 
trends. Rather than yielding a well-defined trend, recent results are significant in that they 

 
Figure 2.1. Retreat of Greenland’s outlet glaciers (those with widths >2-km) over the periods 
from 1992-to-2000 and from 2000-to-2006. Note the significantly greater rates of retreat, 
particularly along the southeast coast, in the warmer 2000-to-2006 period (e.g., Figure 2). We 
will derive vector ice-front positions to continue the record of retreat shown here. 
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show Greenland mass balance can fluctuate rapidly and unpredictably. Therefore, 
accurate estimates of Greenland’s mass-balance and a firm understanding of the 
dynamics that drive mass balance requires annual-to-sub-annual observations of outlet 
glacier variability to avoid aliasing of this rapidly varying signal. 

Changes similar to those we see during the current warming may have occurred in 
Greenland during the warming in the 1930’s. Unfortunately, we have only limited data 
with which to look back at this period. In order that current and future researchers not 
face similar limitations with the present warming, through the Greenland Ice Mapping 
Project (GIMP), we are producing a uniform set of Earth System Data Records (ESDRs) 
to measure and document the current state and near-term evolution of the Greenland Ice 
Sheet. In addition to providing products of utmost priority to the community currently 
trying to assess ice sheet stability, we also are providing an important baseline data for 
future generations.  

1.1 Goals	of	This	Document	
This document provides an overview of the GIMP-1/2 products and descriptions 

of the algorithms used to produce them. Actual documentation of the products, including 
detailed descriptions of the formats, can be found along with the products at the National 
Snow and Ice Data Center (NSIDC). 

2 Product	Descriptions	
The Greenland Ice Mapping Project is producing a comprehensive suite of geo-

referenced products for the ice sheet, which includes: 

• Annual to sub-annual, high-resolution (20-m), ice-sheet-wide SAR image mosaics 
(e.g., Figures 2.1 – NSIDC-0633) and 50-m coastal region mosaics from Sentinel 
(NSIDC-TBD). 

• Annual ice-sheet wide velocity maps for Greenland derived using interferometric 
SAR (InSAR) and posted at 250/500-m intervals (e.g., Figure 2.2 – NSIDC-0478) 
and multi-year full ice sheet mosaic (NISC-0670). 

• Sub-annual velocity maps for fast outlet glaciers at the temporal sampling allowed 
by the suite of sensors used to generate the estimates (e.g., ASTER, LandSAT, 
and TerraSAR-X) and posted at 100-m intervals (NSIDC-0646 and NISDC-
0481). 

• Monthly (March-September) lower-resolution (250-m) ice-sheet-wide MODIS 
image mosaics (NSIDC-TBD).  

• An all-Greenland Digital Elevation Model (DEM) posted at 30-m intervals, with 
both time-averaged and time-varying versions to enable elevation change 
measurement (Version 1 NSIDC-0645; and Version 2 NSIDC-0715). 

• Greenland-wide 15-m rock and ice surface classification masks constructed from 
Landsat for the year 2000 (NSIDC-0714). 

• Greenland-wide 15-m pan-sharpened Landsat 7 mosaic for the year 2000 with 
time-stamped pixels for change detection (NISDC–0713). 
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• Annual vector ice-front positions for all Greenland glaciers (~180) wider than 2-
km (NSIDC-0642).  

2.1 SAR	Image	Mosaics	
The GIMP project produces annual, high-resolution (20-m), ice-sheet-wide SAR 

image mosaics for the Greenland Ice Sheet (e.g., Figure 2.1). These products are 
distributed both as calibrated radar backscatter, , and as grayscale values with a 

 

s o

 
Figure 2.2. Map of flow speed for winter 2006 over a SAR image mosaics for the same 
period. Because the range of speeds varies from 0 to nearly 14-km/yr, a log color table is 
used. Irregular gaps in coverage correspond to regions where the interferometric 
coherence is poor. Despite these gaps, we obtain velocities on nearly all fast moving 
outlet glaciers, which represent the most critical regions for this study. Note at each point 
where speed is shown, we obtain estimates of both horizontal components of velocity. 
Both the velocity and image mosaics shown here are representative of the types of GIMP 
products. 
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contrast stretch optimized for visual interpretation. We produced new RADARSAT 
mosaics for the winters of 2000/1, 2005/6, 2006/7, 2007/8, and 2008/9, and 2012/13 
[Joughin et al., 2016]. For 2009/10, GIMP provides an uncalibrated mosaic for the 
2009/2010 winter using ALOS L-band SAR data.  

As an additional product, GIMP produces un-calibrated geo-referenced images at 
around the Greenland margin starting in 2015 using Sentinel 1A/B data. These data are 
available for 2015 through present (at 50-m resolution).  

2.2 Annual	Velocity	Mosaics	
Using the same data used to derive the SAR mosaics, GIMP generates annual 

velocity mosaics (e.g. Figure 2). Currently, the project has sufficient data for a minimum 
of 6 winters: 2000/1, 2005/6 through 2009/10, 2012/2013. From 2014/2015 onwards we 
rely on Sentinel 1A/B data to produce these products.  

2.3 Multi-Year	Velocity	Mosaic	
In addition to the annual velocity maps, GIMP provides a composite map that is 

an average of the annual maps. This product provides the greatest accuracy and coverage 
on the slow-moving interior regions, which provides an important constraint for ice sheet 
modeling studies. Caution should be excercised in interpretation of this product on fast 
moving glaciers with changing flow speed. 

2.4 Velocity	Time	Series	for	Targeted	Sites	
Where the necessary data are available on fast moving glaciers that are changing 

rapidly, we generate velocity time series that sample the glacier as frequently as possible. 
During daylight periods, we use ASTER/LandSAT image pairs to measure velocity.  We 
also use fine-resolution TerraSAR-X data at least 20 sites around Greenland, which DLR 
began acquiring in early 2009. Although not as frequent, these tiles also include a more 
extensive set of TerraSAR-X sites, which are only acquired in winter. 

 At each targeted site, we establish a rectangular grid so that all the estimates for 
that glacier are geo-referenced to the same area, creating a “stack” of velocity maps 
through time.  Although some products are oversampled, we produce all of these 
products with a 100-m posting to accommodate the higher resolution of TerraSAR-X. 

2.5 Greenland	DEM	
We have combined the best available data from several sources to produce a new 

high-resolution DEM for Greenland with a 30-m posting. Our original product relied on 
ASTER photoclinometry constrained by ICESAT and ERS altimetry. Although the 
resolution is limited (~250 m), this product represents the relatively smooth ice sheet 
surface with a 1-to-10 m error suitable for most glaciological applications. Our 
subsequent GIMP DEM version 2, is largely based on WorldView stereo imagery, greatly 
improving accuracy. 

2.6 MODIS	Mosaics		
We produce a monthly (March-through-September) set of MODIS image 250-m 

resolution mosaics using cloud-free near-nadir regions from several individual images. 
The processing for these mosaics emulates the MODIS Mosaic of Greenland, although 
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with fewer images (similar to the recently-published MODIS Mosaic of Antarctica 
[Scambos et al., 2007]). For each monthly product, we produce gray-scale ~200-m 
resolution Band 1 enhanced-resolution Greenland mosaics. We also produced a single, 
pan-sharpened, 250-m true color (Band 1-4-3) mosaic product.  

2.7 Annual	Ice	Front	Positions	
Using the high-resolution image mosaics, we hand-digitize the annual positions of 

the ice fronts for all of Greenland’s outlet glaciers with width of 2-km or more. Figure 2.1 
demonstrates the utility of such products for detecting ice front retreat. These vector ice 
front positions are distributed both as ESRI shape files and ASCII text files. 

3 SAR	Image	Mosaics	
We have produced several SAR image mosaics as part of this project. In addition 

to the mosaics, the SAR data are used to generate velocity products. Thus, aspects of the 
SAR processing (e.g. geo-location) also are relevant to the velocity products. 

3.1 Range-Doppler	Processing	
Fine azimuth resolution (~5 m) is achieved in SAR images by correlating the data 

with the expected Doppler history (reference function) for each pixel. The Doppler 
centroid is the frequency about which the Doppler bandwidth is centered. If the Earth did 
not spin, the Doppler centroid would be zero for a radar that images from broadside. The 
motion of the earth, however, shifts the Doppler spectrum to yield a non-zero, latitude-
varying Doppler centroid. ERS-1 and 2 use yaw-steering to continually adjust their 
pointing to compensate for the Earth’s motion in order to achieve a nearly zero Doppler 
centroid that exhibits only minor variation along track. ERS data are well suited to most 
SAR processing algorithms, which process an entire image using a fixed Doppler 
centroid. All the images we produce processed with a basic range-doppler algorithm to 
produce single-look complex images, which are subsequently multi-looked, calibrated, 
and mosaicked.  

3.1.1 RADARSAT	
RADARSAT operates with a nominally broadside imaging geometry so that the 

Doppler centroid varies significantly with latitude, particularly near the poles. This can 
degrade image quality when there is no compensation for the shift in Doppler centroid, 
limiting the portion of a data take that can be processed as single image (e.g., <200 to 300 
km). Breaking a data take into several small frames makes later processing considerably 
more difficult. To avoid this limitation, a method is needed that allows along-track 
Doppler updates. 

A typical range-Doppler processor creates an image as a sequence of patches. 
Simply updating the Doppler centroid for each patch is a non-trivial solution, because this 
changes the image geometry at each patch, leading to discontinuities at patch boundaries 
without proper compensation. Instead we used a simpler approach that allowed easy 
modification of an existing version of the Gamma Modular SAR processor (MSP) 
[Werner et al., 2000].  Note more recent versions of the MSP processor include a similar 
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implementation. For consistency with past data sets, however, we use the version that we 
modified specifically for RADARSAT. 

Doppler bandwidth is limited by the width of the antenna pattern. The pulse 
repetition rate of the radar is set to adequately sample this bandwidth. To maintain a 
consistent patch-to-patch geometry, we assumed a fixed Doppler centroid for the entire 
image, but with a reference function that has twice the bandwidth (length) imposed by the 
antenna pattern. This double bandwidth reference function, however, is not adequately 
sampled. To avoid aliasing, at each patch the reference function is band-pass filtered to 
use only an adequately sampled portion of the bandwidth centered about the true Doppler 
centroid. This has the effect of compressing the energy in the actual Doppler bandwidth, 
while maintaining the geometry of a fixed Doppler centroid throughout the image. The 
length of the expanded reference function is arbitrary. This double-length reference 
function allows the Doppler centroid to vary by roughly 1250 Hz along a RADARSAT 
image, allowing roughly 1000-km of SAR data to be processed as single image. The 
penalty is a reduction in processing efficiency because twice as many samples are lost at 
the end of the patches during the convolution. Large patch sizes can reduce this 
computational penalty to 10 to 20%. 

3.1.2 ALOS	
Because the Doppler does not vary significantly for ALOS, we process all ALOS 

data to single-look complex images using the Gamma MSP (version 20080630).  

3.1.3 TerraSAR-X	
The German Space Agency (DLR) does 

not provide raw signal data. Instead, we receive 
the single-look complex images that are produced 
by their standard processor, which include the 
precise science-quality orbits. 

3.1.4 Sentinel	1A/B	
Sentinel 1A/B are provided as a series of 

individual bursts for the SLC iamge. We use the 
Gamma ISP package to assemble these bursts into 
a single SLC, which we run through our 
processing chain in the same manner as other 
SLC products. 

3.2 Geolocation	
All of our geo-location of SAR data, 

including velocity products, is accomplished with 
the same basic set of routines to transform 
latitude, longitude, and elevation to the 
range/azimuth SAR image coordinates.  

The latitude and longitude coordinates are 
converted to ground-range coordinates of the 
SAR frame using an algorithm developed by Li 

 
Figure 3.1 Oversampled SAR image 
mosaic showing runway at Thule, 
Greenland.  Cyan-color points show a 
GPS runway survey performed with the 
NASA Airborne Terrain Mapper (ATM). 
The results suggest subpixel (< 20-m) 
absolute geo-location error. Note for 
scale the image is ~2km wide. 
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[1993]. This algorithm initially transforms the latitude and longitude to an intermediate 
Cartesian coordinate system. It then uses the image center point, corner points, and an 
additional point to solve for the coefficients of a quadratic mapping from the intermediate 
coordinates to the ground-range coordinates.  The ground range coordinates are then 
converted to slant-range coordinates of the SAR image using the known elevation of the 
point. Further details of this transformation are described by Joughin [1995]. 

This mapping was originally based on the image corner coordinates output by the 
SAR processor, which later proved inaccurate for long, non-frame swaths. Instead, we 
adapted the algorithm by tiling the image into several subregions, each with an individual 
mapping similar to that just described, but using the coordinates of the sub-region to 
define the transformation for that portion of the image. The algorithm uses an initial 
coarse mapping based on the image corner coordinates to find the approximate 
coordinates, which are used to determine the appropriate sub-region coordinate transform 
for the final coordinate transformation. 

Geolocation errors of 10s to 100s of meters often are introduced by errors in the 
satellite-along-track time relative to the state-vectors, 𝛿", and errors in the range-delay 
times, 𝛿#. Thus, the SAR images also require geometric calibration to improve location 
accuracy. 

In our early processing of the RADARSAT mosaics we noticed along-track 
location inconsistencies of up to about 70 meters between adjacent tracks. To fix this, we 
cross-correlated patches in adjacent, overlapping images of the 2005/6 data at 15-m 
resolution to determine the relative timing errors. We used these relative values of 𝛿" to 
adjust the satellite timing to bring all of the tracks into relative agreement and then 
corrected by an additional term so that the mean shift (for 54 data takes) was zero. For the 
other C-band mosaics, we used a similar registration procedure except that we 
determined values of 𝛿" by aligning the data for each track with the 2005/6 mosaic. The 
ALOS-PALSAR along-track positions were consistent from track to track, but required a 
uniform correction of 𝛿"=0.062 seconds to align the mosaicked results with independent 
data (e.g., LandSat and TerraSAR-X). 

Comparison of the RADARSAT data with other independent images indicated 
that there was an approximately constant (for a given year) range delay. To fix this error, 
we located several easily identifiable features that were visible in both the 2005/6 mosaic 
and other well-geolocated data (e.g., WorldView and TerraSAR-X). Using these features, 
we determined that a correction in 𝛿# equivalent to 70 m was required to align the 2005/6 
RADARSAT data with independent data. After evaluating all of the RADARSAT data, 
we used a fixed 𝛿# correction for each year ranging from 66 to 70 m. For the ALOS data 
no range correction was required.  

After application of the range and along-track timing corrections, all of the 
RADARSAT mosaics were internally consistent to within better than the 20-m pixel 
spacing of the final mosaics. Comparison with other data (Landsat, WorldView, 
TerraSAR-X) indicates mean errors are also less than 20-m. Thus, the remaining source 
of error is the GIMP DEM used for terrain correction [Howat et al., 2014]. For a nominal 
incidence angle of 38o, the horizontal range-dependent location error at a point should be 
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a factor ~1.25 (1/tan[380]) greater than the corresponding elevation error [Curlander and 
Mcdonough, 1991]. For the ice sheet the GIMP-elevation error is 8.5 m [Howat et al., 
2014], indicating sub-pixel (<20 m) location errors for ice-covered regions. For ice-free 
terrain the elevation errors assessed in different areas of Greenland vary substantially (8–
40 m), indicating location errors of up to 50 m. In areas with severe slopes such as 
mountainous regions along the southeast coast, the DEM errors may be substantially 
larger.  

In general, the DEM-dependent errors are common to all RADARSAT mosaics, 
so relative positions are consistent to better than 20 m. An exception occurs where 
glaciers have thinned by 10s of meters over the 12-year period over which the images 
were ACQUIRED. In such regions horizontal location errors are similar (~1.25x) in 
magnitude to the corresponding elevation change.  

While the RADARSAT mosaics are relatively self-consistent, location differences 
between the RASARSAT mosaics and ALOS-PALSAR mosaic can be substantially 
larger. Such differences arise because the RADARSAT images were acquired along 
descending orbits (satellite moving toward the equator in the northern hemisphere) and 
the ALOS-PALSAR data were acquired along ascending orbits (satellite moving toward 
the pole). As a result, points in the mosaics were imaged from opposing sides by the two 
satellites. Thus, if the location error due to terrain distortion is Δ𝑋 in a RADARSAT 
mosaic, the corresponding error in the ALOS-PALSAR image will be roughly in the 
opposite direction in the ALOS-PALSAR image, so the relative error between the images 
will be  ~2ΔX, assuming the elevation error is the same for both images. In addition, 
because of this opposite-side viewing, areas that are shadowed in the RADARSAT image 
will be laid-over or foreshortened in the ALOS-PALSAR image and vice versa. 
Foreshortening occurs when radar-facing slopes are such that slant-range pixels project to 
a large area on the ground, causing the radar-side of a mountainous feature to be 
compressed in slant-range coordinates. Layover occurs when slopes are such that points 
that are farther in ground range are nearer when mapped into slant-range coordinates than 
other points that are actually closer in ground range (i.e., a peak may be closer to the 
radar due to its height, even though it farther way horizontally than a lower elevation 
point). Although the terrain correction can fix much of this distortion, differences can be 
large (10s of meters) in areas of extreme slopes.    

3.3 Calibration	
The MSP processor produces uncalibrated SAR images. Calibrated SAR images 

typically are distributed as radar backscatter coefficient, 𝜎*, values, which are the ratios 
of the reflected power per unit area to the power incident on the surface[El-Darymli et 
al., 2014]. Since many SAR processors produce imagery with no knowledge of the 
topography, 𝜎* typically is computed as though the Earth were flat (i.e., zero elevation 
relative to the ellipsoid). Because ground-range resolution varies strongly with surface 
slope, the true 𝜎* has a slope-dependent component. Hence, for a surface with uniform 
scattering properties (i.e., constant 𝜎*), the radar derived 𝜎* will appear brighter for 
slopes facing the radar while it will appear darker for slopes facing away.  Although the 
mosaicking algorithm uses a DEM, we have chosen not to perform a slope correction.  
This avoids potential spurious variations in backscatter due to errors in, and limited 
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resolution of, the GIMP DEM, and is consistent with the way the RADARSAT 
Antarctica Mapping Project (RAMP) and Modified Antarctic Mapping Mission 
(MAMM) mosaics were produced [Jezek, 1999; Jezek et al., 2003]. For the relatively flat 
interior of the ice sheet, this approach produces values relatively close to the actual 
values. For the mountainous areas at the coast, it produces an image in which it is easier 
to distinguish topographic features (i.e., it adds a shaded-relief-like effect). 

After application of the antenna pattern correction, the imagery was calibrated as 

(1) 𝜎* = 𝑎 ∙ 𝐷𝑁 − 𝑏. 

Here the antenna-pattern-corrected output of the processor is given by a DN (digital 

number), and a and b are processor-dependent calibration coefficients, which were 

initially unknown. Because  𝜎* values have a large dynamic range, the backscatter 

coefficients are provided in dB (i.e., 10𝑙𝑜𝑔78[𝜎*]). 

To determine the backscatter coefficients, we calibrated the processor output 
using the MAMM mosaic of Antarctica [Jezek et al., 2003] to compute the parameters in 
Equation (1). The MAMM mosaic was calibrated using processor parameters determined 
from global surveys of targets with known backscatter properties, and is thus a good 
reference surface to calibrate our processor. To do this, we processed uncalibrated 
RADARSAT images for seventeen areas around Antarctica, which we multi-looked 
(averaged) 4 pixels in range and 6 pixels in azimuth. After correction for the antenna 
pattern, we extracted data from areas of overlap with the MAMM mosaic, smoothing 
both data sets to 400-m resolution. For each area we performed a least-squares fit to 
extract the calibration parameters. Based on this analysis, we used the mean values of 
a=0.03663 and b=0.0058 to calibrate the Greenland RADARSAT mosaics. With these 
values the mean difference between the MSP processed data and the MAMM mosaic was 
0.0 with a standard deviation of 0.7 dB.  Some of this variance likely reflects the fact that 
we could not ensure that we used the same images as those that went into the MAMM 
mosaic.  

We used a single set of parameters and antenna pattern to calibrate the 
RADARSAT data. As a consequence, potential variability in the instrument performance 
or antenna pattern with time could affect our radiometric precision [Srivastava et al., 
2007]. To assess the extent to which such drift might be present in our data, we examined 
average radar backscatter coefficients for three 12kmx12km regions of exposed rock 
where we expect natural variation in backscatter to be small. For these regions, the data 
were consistent to within ~1.5 dB with a decreasing trend of about 0.11 dB yr-1 (-0.09, -
0.13, -0.12 dB yr-1 at 3 sites). We did not attempt to correct for this apparent drift. The 
MAMM mosaic that we used as our reference was collected at the same time as the 
2000/1 Greenland mosaic. Hence, the 2000/1 mosaic should have the least uncertainty in 
an absolute sense insomuch as the reference MAMM mosaic is correct.  
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Because we produced only a single mosaic and did not have a calibration 
reference for ALOS-PALSAR, we did not calibrate the L-band data. Nonetheless, as an 
image product it is still useful for studying changes such as glacier retreat. 

3.4 Mosaicking	
We mosaic the various strips of SAR imagery into a nearly seamless mosaic. In 

producing the annual mosaics, we select the imagery to satisfy two criteria: 1) the image 
are derived from approximately the same period each year; 2) the images for a given year 
are collected as close in time as possible, ideally from the same acquisition cycle. Nearly 
all RADARSAT cycles have some missing tracks, in which case we use the data for that 
track from the nearest (in time) available cycle. 

The mosaicking code starts by defining an output grid for the specified region. 
Then for each image, the routine determines the corresponding bounding rectangular sub-
region that contains the image. The code then loops through each point in this sug-region 
and maps the output coordinates to the SAR image coordinates using the geo-location 
procedures described above. If the result corresponds to a valid location in the image, a 
simple bi-linear interpolation is used to determine the value for that point.  

With this mode, where overlapping images correspond to the same point in the 
output grid, the results are averaged together. To improve appearance, a feathering 
weight is applied to the points near image edges. All weights are summed in a weight 
buffer, and used to normalize the weighted average at the final step before the image is 
output.  In slow moving, featureless regions in the interior, this produces a cosmetically 
pleasing result, since image boundaries are feathered and averaged where there is 
overlap. On fast moving glaciers, however, movement of the glacier between the 
collection of overlapping images can produce a “blurred” effect. (The alternative would 
be to only use a single image, which would introduce a discontinuity in fast moving 
regions.) 

For the Sentinel 6- and 12-day velocity maps, since we mix ascending and 
descending coverage, rather than averaging we only use on image at each output point. 
The algorithm gives priority to descending images and uses the first image in the 6- or 
12-day sequence.  

4 Velocity	Maps	
Our SAR velocity maps are derived using a combination of speckle tracking and 

conventional interferometry. This is a processing intensive task, with several hundred 
Gigabytes of raw SAR data being processed to produce each velocity map. 

4.1 SAR	Processing	
Drift in the instrument azimuth pointing from pass to pass produces differences in 

the Doppler centroid from image to image, which is particularly acute for RADARSAT 
because it does not use yaw-steering to achieve precise pointing. When this happens, the 
portions of the Doppler spectrum that do not overlap are not coherent and effectively act 
as noise when creating an interferogram or speckle tracking. To overcome this limitation, 
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the Gamma MSP processor was modified so that each image in an interferometric pair is 
processed with knowledge of the Doppler history of the other image so that only the 
overlapping portions of the Doppler spectra are retained. A linear function was used to 
represent the along-track variation of the Doppler centroid for each image, but a higher 
order polynomials could be substituted where needed. This additional filtering is typically 
taken care of during interferogram generation, but we included it in the RADARSAT 
processing since the data are also used for speckle tracking.  This processor has been used 
to produce viable interferograms from data with as little as 20% spectral overlap.  

4.2 Speckle	Tracking	
Speckle tracking takes advantage of the fact that SAR speckle, which for most 

applications is a source of noise, is coherent from image to image under the same 
conditions that produce interferometric phase coherence. Because the speckle is nearly 
independent from pixel to pixel, its sharply peaked correlation function allows matching 
through cross-correlation, which allows velocity estimate to be derived even in areas of 
the ice sheet that are otherwise featureless. 

The cross-correlation matching operation to estimate the range and azimuth 
offsets can be performed using the complex or detected-amplitude images, with each 
method providing different advantages. For low correlation regions, the complex cross-
correlation function is more strongly peaked. Reasonable matches can be achieved with 
complex correlation down to about 0.2 with a relatively small patch size (e.g., 24-by-24 
pixels). A larger box size is needed to achieve a match with low-correlation amplitude 
data. The disadvantage to complex matching is that phase gradients (i.e., the 
interferometric phase) across the patches being matched can reduce or even eliminate the 
correlation peak, making it difficult to achieve matches in regions with high shear or 
steep topography. Amplitude matches are unaffected by the phase and can provide good 
matches in such regions.  

To retain the advantages of both types of matches, we apply a matcher that uses a 
hierarchal approach. At each point, a complex match is attempted first. To reduce the 
impact of phase gradients, the local phase gradient is estimated using the interferogram 
and removed from one of the patches. Although the patch size used for the matches is 48-
by-48 pixels, a Hanning window function is applied to the data, which reduces the size to 
approximately 24-by-24 pixels. The use of a small patch size helps minimize the effects 
of phase gradients. The algorithm decides whether to accept or reject the match based on 
an empirically determined correlation threshold of 0.18 and a limit on the range of 
acceptable offset values.  

When a complex match fails, an amplitude match is attempted using 64-by- 64 
pixel patches. A correlation threshold of 0.07 is used to accept these matches. If the 
match fails, then a third attempt is made using amplitude cross-correlation, but with a 
patch size of 192-by-192 pixels. If this fails, the matcher gives up and records a no-match 
value.  

Before matching, any Doppler carrier on the data is estimated and removed for 
each patch and the data are oversampled by a factor of two. These steps avoid aliasing 
that can lead to biases in the estimates. After each cross-correlation, the peak is 
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oversampled by a factor of 10. The effect of the combined oversampling operations leads 
to a match resolution of 0.05 pixels. The matches are performed every 24-by-24 pixels 
intervals in the single-look images.  

Once the matches have been completed, they are run through a program to cull 
out bad matches. At each point, the median for a surrounding 9-by-9 box is computed. 
Points that differ from the median by some threshold are discarded. The data are then 
smoothed with a moving average filter with dimensions selected by the user based on the 
quality of the data and resolution requirements. For fine-beam RADARSAT data, typical 
filter dimensions are 4-range-by-6-azimuth offset pixels, which yields a resolution of 
roughly 700 m. Averaging can reduce noise and quantization error in many cases to 
below 0.01 pixels. Once the culling is complete, small holes are filled via interpolation.  

In the culling process the offset sample variance is estimated for a box sur-
rounding each pixel. To remove the effects of trends in the data, a plane is fit to the data 
in each box and then subtracted from the data. The variance estimate is then reduced to 
account for the smoothing by the moving average filter. This is straightforward for the 
24-by-24 complex matches computed on a 24-by-24 pixel grid, because the estimates are 
independent and the variance is reduced by one over the number of samples averaged. 
Since amplitude matches overlap each other on the 24-by-24 pixel grid, the effective 
number of samples averaged, , is less than the actual number averaged, . To 
account for this difference, the effective number averaged is computed as  

(4.1) , 

where  is the size in points of the box used for the match. A minimum of at least one 
effective look is assumed. If all the pixels are complex matches, then .  

The offset variance estimates described yield local error estimates, but fail to 
resolve longer wavelength errors. This is a reasonable characterization of the range-offset 
errors. For the azimuth offsets, however, there are longer wavelength errors that appear as 
streaks across the azimuth offset estimates with along-track variability of several 
kilometers. These “streaks” are related to ionospheric effects [Gray et al., 2000]. Locally 
these errors can be significantly larger (e.g., 0.1 to 0.2 pixels at C-band) than the image- 
wide estimate (0.02 to 0.04 pixels). It is difficult, however, to reliably estimate the spatial 
pattern of the errors. As a result, these errors are accounted for by using an estimate of 
the streak variance for the entire image, which is added to the sample variance estimate. 
This value is larger than most other errors so that the weighting will tend to de-emphasize 
azimuth-offset data in areas where more reliable range-offset or phase data are available.  

4.3 Fast	Tracking	
In fast moving regions, our speckle tracking procedure can fail for one of 3 

reasons. First, the extreme motion produces offsets that exceed the search window of our 
normal speckle tracker. Second, large strain rates produce strong variation that our 
culling procedure interprets as noise, and as a result, records a no-data value. Finally, 
poor interferometric correlation fails to yield a match. In the latter case, there may be 
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features in the images (e.g. crevasses) that could provide a match, in which case, the 
poorly correlated speckle may act as a source of noise.   

For fast moving regions, we apply a special fast-tracking procedure. First, we 
match over a larger window, which can accommodate large displacements. Second, we 
increase the tolerance in the culler, so that a larger range of motion can be 
accommodated, at the expense of greater noise.  Finally, in addition to tracking the 
speckle, we also match on the amplitudes after smoothing with a 3-by-3 boxcar filter to 
reduce the speckle and improve matches from features. The two separate (unsmoothed 
and smoothed image) matches are the compared and the best match is selected. At the 
completion of this fast matching procedure, the results are merged with those from the 
normal procedure.   

4.4 Interferogram	Generation	
Interferograms are produced with the Gamma software [Werner et al., 2000] with 

minor modifications to accommodate the along-track variation in Doppler. Because 
displacements of several pixels can occur over 24-days, additional modifications were 
made to co-register the images using offsets on a 1-km grid rather than parameterizing 
each component of the offset field as a plane.  

To remove the 2 -ambiguities in the interferometric phase, the data are 
unwrapped with a variation [Joughin, 1995] on the branch-cut algorithm [Goldstein et al., 
1988]. Many fast-moving areas in 24-day data cannot be unwrapped. Furthermore, the 
interferogram can be broken into several unwrapped but isolated regions. These 
disconnected regions all have relative phase offsets with respect to each other, which 
must be resolved. These ambiguities can be removed in many cases using the speckle-
tracked range offsets, which are an absolute but noisier and lower-resolution estimate of 
the same range difference as the phase. This method is used in regions where there are 
sufficient data to overcome the errors in the range-offset data. Areas where an accurate 
estimate of the ambiguity cannot be obtained are discarded. Tests reveal that this method 
occasionally misses the true ambiguity by 1 to 2 multiples of 2 . For 24-day data, 
however, the error is relatively small (i.e., 1 to 2 m a-1) and is often reduced further 
during baseline estimation.  

After the unwrapping procedure, there may be several holes in the data. 
Interpolation is used to reduce smaller holes. This procedure begins by locating all the 
pixels in a given hole. A decision is then made whether to fill the hole based on a user 
selected threshold for the area of the hole. Holes are filled using the weighted sum of 
pixels on the hole border. The weights are determined as the inverse of the squared 
distance between the point being filled and each border point. Large holes are left 
unfilled.  

The final step in preparing the interferograms consists of baseline estimation. 
Baseline parameters are determined using a least-squares fit to several control points of 
known velocity and height in each interferogram [Joughin et al., 1996].  
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4.5 Velocity	Mosaicking	
Once the interferograms and speckle-tracked offset fields are computed, they are 

used to estimate velocity. The velocity map is made by combining the phase information 
from overlapping ascending and descending pairs [Joughin et al., 1998], by combining 
phase with azimuth shift data [Joughin, 1999], and finally by combining range and 
azimuth offset data to yield velocity [Gray et al., 1998]. The mosaicking process begins 
by setting up output buffers for each of the velocity components. A polar stereographic 
projection with 45o rotation and standard latitude of 70o is used for the output grid. Data 
are posted at 0.5 km resolution. At any point in the output there may be data from three 
potential sources: phase/phase, phase/offset and offset/offset. For most of the annual 
maps, we have only descending RADARSAT data, so phase/phase estimates are not 
computed. In contrast, ALOS data are collected along ascending orbit tracks. If we 
acquire these data, then we will produce at least some phase/phase estimates in a 
composite product that averages results from all years.  

The program begins by estimating the velocity using the phase/phase data. For 
each ascending image, the program loops through the descending images to find the areas 
of overlap. The velocity in these regions is estimated using the method described by 
Joughin and others [1998]. Each component of the result is then weighted and added to 
the output buffer. The weighting factors for the two velocity components, which are 
described below, are accumulated in separate buffers.  

The phase/offset estimates are determined next, with velocity determined using 
the interferogram and accompanying azimuth-offset data. The range component is 
computed using the phase along with the slope, which is used to compensate for the 
vertical component of motion [Joughin et al., 1996]. There are geometric effects in the 
azimuth data that are unrelated to surface motion. A 3-parameter model (similar to a 
plane fit) for the along-track variation of the non-surface-motion-related azimuth offsets 

 
Figure 4.1. Ice sheet velocity estimates from a) speckle tracking b) interferometric phase in interior 
regions where phase can be unwrapped, c) Landsat 8, and d) and error weighted combination of all 
three. 
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is solved using a least-squares fit to the control data. The result is used to correct the 
azimuth-offset data so that only a simple scale factor is needed to solve for the azimuth 
velocity component. The resulting velocity estimate is still in the radar coordinates, so a 
rotation is applied to transform the data to the output grid. The results are then weighted 
and summed in the output buffers.  

Finally, the velocity is determined using both the range and azimuth offset data 
(offset/offset). This procedure is similar to the phase/offset estimate, except that the range 
difference is determined using offsets rather than phase. A separate baseline fit is used for 
the range-offset data. This fit uses a slightly different baseline model since the constant to 
determine absolute values is different for the range offsets and phase. This separate 
baseline fit also helps mitigate against any small systematic differences that may exist 
between the offset and phase estimates of the range difference.  

As mentioned above, individual estimates are weighted and summed in an output 
buffer. As a result, for the component the data are summed as 

(4.2) . 

If the data are all statistically independent, then a minimum variance estimate is obtained 
by using weights, , that are proportional to the inverse variance, . Thus, with 
modifications described below, equation (4.2) is used to determine the weights. First, the 
variances for each velocity component are determined in the radar coordinates. These 
results are used to determine the variances and weighting factors for the data in the output 
coordinates. The weights are accumulated in separate buffers so the results can be used to 
renormalize the final results, forcing the final weights to sum to one.  

The variances for the offset data are estimated by the culling program as 
described above. In the absence of other sources of error, the phase variance is 
determined by the interferometric correlation. Other sources of error such as tropospheric 
water vapor [Goldstein, 1995] are more difficult to characterize and are often larger than 
phase noise due to decorrelation. As a result, a nominal value of  radians is used for 
the phase variance, which in most cases overstates the error.  

The minimum variance estimate assumes that the averaged samples are 
independent. When phase/phase and phase/offset estimates are summed, the data are not 
independent. The same is true for phase/offset combined with offset/offset. To account 
for the possibility of double averaging, the variances of the phase estimates are doubled 
for the phase/phase estimates, since in most cases, the corresponding phase/offset data 
will also be estimated. Similarly, during the phase/offset estimation, the program checks 
whether a velocity estimate has already been made for the current estimate. If so, it 
assumes it was a phase/phase estimate and doubles the variance estimate. Doubling the 
variances in this fashion does not perfectly account for double averaging since the 
program does not keep track of the full history of what data have been summed at each 
point. When the program errs, it is more likely to assume that double averaging takes 
place so that the error tends to be over- rather than under-estimated. A similar procedure 
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is used to avoid double averaging the phase/offset and offset/offset combinations. There 
are cases where the phase/phase estimates can result in double averaging (e.g., one 
ascending pair with two overlapping descending images). Avoiding these errors would 
require an additional buffer to track the history of each image used in the velocity 
estimate. For the present, this feature has not been incorporated as such cases are 
reasonably rare with the amount of data typically available.  

While the weighting method described above is designed to achieve a minimum 
variance estimate, it may be sub-optimal with respect to other factors. In particular, a 
discontinuity at a data-take boundary is a non-physical result and can lead to problems 
when attempting model inversions. As a result, additional weighting is employed to 
“feather” the data and redistribute local errors over a wider range. As the velocity is 
estimated for a data- take or data-take pair, the result and initial weights are saved in a 
temporary buffer. An additional weighting function is used to apply a linear taper from 
the edge of the data to some distance from the edge. For example, if the feather length is 
20, then pixels on the edge are weighted by 0, pixels within 20 pixels of the edge are 
weighted linearly from 0 to 1, and interior pixels by 1. The feathering weights are used to 
update the initial weights in the temporary buffers, and the results are added to the weight 
buffers.  

All SAR-only mosaics (NSIDC-0478) are produced as just described. The 
selected glacier velocities (NSIDC-0481) are produced in the same way except that in 
most cases a single TerraSAR-X image is used, so there is no averaging. 

4.6 Landsat	for	Full	Ice	Sheet	Mapping	
The methods we apply to Landsat data for outlet glaciers are described below. 

Here we describe a simpler set of Landsat-8 algorithms we use to augment our SAR-
derived all ice sheet mosaics. We computed velocities by applying a simple cross 
correlation procedure to high-pass filtered Landsat 8 data [Ahn and Howat, 2011; 
Fahnestock et al., 2016]. Unlike the SAR data, the Landsat images are reprojected to the 
output coordinate system prior to matching. We scale the displacements by the 
appropriate latitude dependent length-scale correction factor for the NSIDC polar 
stereographic projection. After this rescaling, the matching procedure ideally should 
provide absolute displacements directly from the offsets, but the uncertainties in the 
image registration are too large to produce sufficiently accurate results. Thus, we use a 
least-squares procedure to fit a plane to each scalar offset field, using the control points 
described below. After applying this correction, the offsets only need to be scaled by the 
time interval between images to produce an estimate of the velocity.   

For the Landsat 8 data we use a similar procedure as that for the SAR data to 
estimate the matching error from neighborhood statistics. When we examined the data 
more closely, however, we found there were longer wavelength errors of comparable or 
greater magnitude to those detected by the neighborhood statistics, which are likely 
related to sensor errors or atmospheric effects. Since we use the radar data as control 
points (see below), we have a well sampled set of control points that generally sample the 
full scene. As a result, the residual errors from the parameter fits provide a good estimate 
for the average error for the full scene averaged over all length scales, but with no detail 
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on the spatial variability. On the other hand, while the neighborhood statistics do not 
estimate all sources of error, they do at least provide information on the spatial 
distribution of the errors related to the matching procedure. Thus, we used the following 
procedure to combine these error estimates. First, we compute the scene-wide average 
variance from the neighborhood statistics and subtract this value from the variance for 
residual error from the parameter fit. This difference provides a scene-wide estimate of 
the longer-wavelength errors.  Then at each point, we add this long wavelength error to 
the spatially varying neighborhood statistics. The average variance of this result is 
identical to the scene-wide residual, but it conveys more information about the spatial 
variability of the error. Finally, we add to this error the uncertainty associated with the 
fitted parameters, which as for the baseline error model is derived from the covariance 
matrix from the least-squares fitting procedure. 

In the mosaicker, we combine the Landsat 8 velocity as part of an error-weighted 
average. Figure 5.1c shows the Landsat 8 mosaic and Figure 5.1d, shows the final 
composite of radar and optical data for our multi-year composite product (NSIDC-0670). 

5 Velocity	Time	Series	from	Optical	Data	
Frequent observations from optical sensors during periods with sufficient daylight 

provide data for measuring velocity on glacier surfaces with visible features.  Our suite of 
algorithms produce ice-surface-velocity maps of major outlet glaciers of the Greenland 
Ice Sheet using optical (i.e. radiance) images from a combination of freely available 
satellite imagery. Since a primary motivation for the creation of this dataset is the 
detection and measurement of sub-seasonal variations in ice dynamics and discharge to 
complement InSAR-derived maps, we focus on obtaining the highest possible temporal 
resolution over the sensor era (1999 to present). Here we describe the data sources and 
feature-tracking algorithm used in this project. 

5.1 Source	Data	
We used data from Landsat 7 Enhanced Thematic Mapper-Plus (ETM+) (1999-

present), Landsat 8 Optical Land Imager (OLI, 2013-present), The Advanced Spaceborne 
Thermal Emission and Reflection Radiometer (ASTER) aboard NASA’s Terra satellite 
(1999-present).  In addition, we used SPOT5 ortho-imagery collected between 2006 and 
2012 and released by the French Space Agency (CNES) under the IPY Spirit program. 

5.1.1 ASTER	
Launched in 1999, the ASTER instrument acquires 15-m images in the visible to 

near-infrared (VNIR) bands at latitudes below 84 degrees North, with a 16-day repeat 
interval. Raw radiance image granules are calibrated and orthorectified by the Land 
Processes Distributed Active Archive Center (LP DAAC) as the AST14OTH product 
[Abrams et al., 2002]. The horizontal accuracy of 15-m AST14OTH products is cited as 
+/- 60 m. The LP DAAC distributes the AST14OTH products as geotifs in UTM/WGS 
84 projection. 

For GIMP, we obtained all available cloudless AST14OTH products over marine-
terminating Greenland outlet glaciers using the USGS GLOVIS and WIST ordering 
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systems. Each image was re-projected to the GIMP project Polar Stereographic 
projection. 

5.1.2 Landsat	ETM+	and	OLI	
Launched in 1999, the Enhanced Thematic Mapper Plus (ETM+) aboard the 

LANDSAT 7 sattelite, collects 15-m resolution panchromatic (Band 8) radiance images 
with a 16-day repeat cycle. The USGS made the entire EMT+ image database freely 
available in January 2009. The USGS orthorectifies the raw data using a standard terrain 
correction (Level 1T) that provides systematic radiometric and geometric accuracy by 
incorporating ground control points while employing a Digital Elevation Model (DEM) 
for topographic accuracy. Geodetic accuracy of the product depends on the accuracy of 
the ground-control points and the resolution of the DEM used. Ground-control points 
used for Level 1Terrain correction come from the GLS2005 data set. DEM data used for 
terrain correction include SRTM, NED, CDAD, DTED, and GTOPO 30. The data are 
distributed by the USGS as geotifs in UTM/WGS 84 projection. 

The Scan-Line Corrector (SLC) within the ETM+ instrument failed in May 2003. 
As a result, all images after that time have offset scans, appearing as strips of zero 
radiance that widen toward the edge of the image. Our feature tracing algorithm can 
utilize this corrupted imagery with minimal degradation to the quality of the derived 
velocity products. 

Launched in 2013, the Optical Land Imager (OLI) aboard Landsat 8 is a 
substantial upgrade from the ETM+, featuring 12-bit, as opposed to 8-bit, radiometric 
precision and a higher signal-to-noise ratio. These qualities enable velocity extraction at 
both low-light levels, extending the collection season, and over the low-contrast interior 
of the ice sheet. We document these abilities in Jeong and Howat [Jeong and Howat, 
2015]. The OLI data is geometrically processed using the same procedure as ETM+. 

 

Figure 5.1. Reference and search chip in area-based matching. Dashed box in search chip 
illustrates overlay of reference chip toward reference chip to compute correlation 
coefficient. 
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For GIMP, we obtained all available cloudless Landsat products over marine-
terminating Greenland outlet glaciers using the USGS GLOVIS ordering system. Each 
image was re-projected to Polar Stereographic projection used by GIMP. 

5.1.3 SPIRIT	
Orthorectified SPOT5 imagery over Greenland were produced from images 

acquired in 2007 and 2008 as part of the SPOT 5 Stereoscopic Survey of Polar Ice: 
Reference Images and Topographies (SPIRIT) program by CNES. A description of 
dataset production and validation is given in [Korona et al., 2009]. The SPIRIT image 
data is distributed in UTM projection, WGS84 datum and posted at 5 m pixels. We 
obtained all available SPIRIT products over Greenland, which we re-projected to Polar 
Stereographic coordinates. 

5.2 Automated	Repeat-Image	Feature	Tracking	Overview 
We produce velocity estimates using a suite of Automated Repeat-Image Feature 

Tracking (RIFT) algorithms applied to the optical data just described. All automated 
RIFT algorithms employ image-to-image matching based on cross-correlation of spatial 
variations in image intensity values, a procedure for which there is abundant existing 
literature and is similar in many regards to the speckle tracking procedures. We briefly 
summarize the process here. The two-dimensional (horizontal) velocity of the glacier 
surface is measured by tracking the displacement of visible features that move with the 
ice flow (i.e. crevasses, rock debris, melt features, etc.) between two, precisely 
geolocated images. The glacier velocity is calculated by multiplying the x-y image pixel 
offset of features between images by the image resolution over the time separation of the 
images.  

The same basic workflow is used to measure displacement using automated 
procedures for locating the same features within two images. First, images are co-
registered and cropped so that they have the same dimensions and overlap in space. Next, 
a square subset of pixels from the first image (the reference chip; see Figure 5.1) is 
extracted and compared sequentially to all subsets of pixels within a larger region of the 
second image (the search chip; see Figure 5.1). As the reference chip moves within 
search chip, the algorithm calculates the correlation coefficient at each position, 
producing a map of correlation intensity. The coordinates of the peak in correlation gives 
the conjugate point of the center of the reference chip in the search chip, and its 2-
dimensional offset between the images. 

The correlation coefficient is defined as: 

 

  



	 21	

 

 

where, subscript R and S indicate reference and search chip. The pixel value is denonted 
as, g(i,j), at position i,j and gR and gS represent the mean of the reference and search chip 
values, respectively. The values n and m provide the dimensions of the reference chip. 

To determine the location of the peak in correlation within the search chip, a 
quadratic surface is fitted to the grid of correlation values, yielding a position as a 

 

 

 

Figure 5.2. Original (a) and enhanced images:  (b) principle component intensity image, (c) 0° 
edge enhanced, (d) 90° edge enhanced, (e) 0° edge+high pass filtered (e) (f) and 90° 
edge+high pass filtered (f).  
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fraction of the pixel. For example, the equation for fitting a surface to a 3x3 grid of 
correlation values would be: 

 

where, r is correlation coefficient, (x,y) is row and column positions in 3x3 chip, r is the 
residual, and a-f are the coefficients of the quadratic surface.  

Calculating the correlation coefficients and finding the peak correlation is a 
relatively straightforward procedure. Several factors, however, make the practical 
application of this procedure much more complicated. First, there is a trade-off between 
the reference chip size in the uniqueness of the match and the impact of errors in image 
co-registration. Also, the appropriateness of the chip sizes will depend on the speed of the 
glacier, so that the feature does not reside outside the search chip, and the spatial scale of 
the feature being tracked. These effects make the appropriate chip sizes spatially 
dependent, impeding the general applicability of the correlation parameters. In addition, 
images typically must be enhanced using spatial filtering to bring out trackable features 
and to suppress shadows. Again, this filtering is often site and/or image specific. In 
addition, some minimum threshold for acceptable peak correlation must be specified, 
below which the match is rejected. This number also is specific to a particular image pair 
or location, and so care must be taken to choose the correlation threshold that filters the 
maximum number of spurious matches, without rejecting correct matches. Finally, 
spurious matches must be culled.  Typically, a-priori information, such as the direction 
and maximum velocity of glacier flow, are used to eliminate spurious matches. Nearest-
neighbor and non-local mean filters are employed, which assume some level of 
smoothness in the velocity field. Prior to Landsat 8, RIFT was only successful in the 
bare-ice or crevassed regions of ice sheets where there was adequate feature definition. 
However, the 12-bit precision of OLI is able to resolve matches in the texture of the ice 
sheet surface, allowing successful RIFT application to the ice sheet interiors. 

5.3 The	Multiple	image/Multiple	Chip	(MIMC)	Algorithm		
Here we describe our method (Multiple Image/Multiple Chip, MIMC) for 

efficiently tracking the displacement of glacier surface features between a large number 
of coregistered image pairs, minimizing manual, empirical and local metrics. Successful 
application of MIMC requires that: A) images are cloud-free or masked; B) image pairs 
are precisely co-registered or that that ice-free or otherwise stationary features are visible; 
and C) crevasses and other surface features are visible in each image. In general RIFT 
can only be applied to bare-ice zone or regions of high surface strain rates (e.g. where 
crevasses are present), such as outlet glaciers.  MIMC is documented in detail in Ahn and 
Howat [2011]and Jeong and Howat [2017]. Here we provide the basic components of the 
algorithm. 

5.3.1 Image	Enhancement	
For each image pair, the MIMC algorithm calculates the pixel displacement field 

between five sets of sequentially filtered images, where each filter enhances a particular 
aspect of the image to improve matching (see Figure 5.2). First, matching is carried out 
between the raw grayscale intensity images.  For multi-band imagery, MIMC generates a 

 

ri = a × xi
2 + b × yi

2 + c × xiyi + d × xi + e × yi + f - ri
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grayscale intensity image from a forward principle component rotation (PCR) of the 
bands, also known as dimension reduction transformation [Gonzales and Woods, 2002].  
The PCR reduces saturation and the visibility of fog/thin clouds and maximizes the 
intensity information from each band into a single value. Matching is then performed 
again on the intensity images following the application of 3x3 0° and 90° directional edge 
(Prewitt) filters. This filter enhances crevasse edges. Finally, each directionally filtered 
image is high-passed filtered to enhance smaller-scale features (such as crevasses) and 
suppress larger-scale variations induced by shadowing, topography, surface melt and fog. 
Examples of these filters are provided in Figure 5.2.  

5.3.2 Quadramatching	and	Dynamic	Linear	Constraint	Algorithms	
Our algorithm builds upon the redundant solution approach of Multi-Image Multi-

Chip (MIMC) RIFT method presented in Ahn and Howat [2011] with the addition of 
iterative forward and reverse matching that we term Quadramatching (QM). Scambos et 
al. [Scambos et al., 1992] proposed adding a redundancy to the match solution by 
swapping the reference and search chips from the initial, “forward” match and using 
these to solve for an additional “reverse” match. In the study, the closer the solutions of 
the forward and reverse matches, the greater the confidence of the displacement solution. 

For the QM approach, we obtain further redundancy in the match solution by 
iteratively reversing both the direction of the search and the order of the image pair (pair 
swapping), resulting in four solutions that are combined to provide the match location 
and confidence. The QM procedure is illustrated in 5.3 Initially, point A on the first 
image (I0) is matched to point B on the second image (I1). A new reference chip is the 
extracted around point B on I1, and the search is repeated on I0, giving the backwards 
match to point A’. This location is referred to as the “original pairing” result. Next, the 
order of images I0 and I1 are reversed and the forward-backward search procedure is 
repeated, giving the “swapped pairing” match at location A’’. 

 	
	 	 	 	  

Figure 5.3. (left) Schematic	 illustration	 of	 quadramatching,	 (a):	 Original	 forward,	 (b):	 Original	
backward,	 (c):	 Swapped	 original,	 (d):	 Swapped	 backward.	 (right)	 Normalized	 cross	 correlation	
peak	searching	algorithm	using	dynamic	linear	constraint,	(a):	Initial	pivots	lie	under	the	extent	of	
flow	vector,	(b):	iterative	searching	for	the	cross	correlation	peak. 
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Although those four sets of measurements are from the same image pair, they are 
not identical measurements. The differences between the solutions can be identified by 
first defining the initial match (forward matching from the original pairing) as: 

 

original forward := f I A0, I1( ) =
!
B  (5.1) 

where the first and the second arguments on the left side are the reference chip and the 
search window (i.e. image to find the matching point). The superscript indicates the 
coordinates of the image chip and the subscript is the source of the image chip or the 
search window (0 is the earlier, 1 is the latter). Thus, Equation (5.1) states that the 
original forward solution, point B in I1, is determined from a reference chip around point 
A in I0 and a search chip in I1. In the same convention, the three other matches are 
described as: 

original backward := f I B1, I0( ) =
!
A'  (5.2) 

swapped forward := f I A1, I0( ) =
!
C  (5.3) 

swapped backward := f I C0, I1( ) =
!
A''  (5.4) 

Since each match solution has a different reference chip (I0
A, I0

B, I1
A, and I0

C), 
they yield displacement vectors with different origins. Respectively, their displacements 
are: 

!
dOF := AB

" !""
 (5.5) 

!
dOB := BA

'
" !""

 (5.6) 

!
dSF := AC

" !""
 (5.7) 

!
dSB :=CA

''
" !"""

 (5.8) 

with subscripts O, S, F, and B for original pair, swapped pair, forward match, and 
backwards match, respectively. This procedure is applied to each set of chip size and 
filter combinations in MIMC, thus increasing the number of displacement solutions by a 
factor of four. 

Glacier speed can change abruptly in response to stress perturbations caused by, 
for example, calving front retreat and variations in basal water pressure. Measurement of 
these speed variations is a typical objective for RIFT applications. The direction of flow, 
however, tends to remain relatively constant through time; since direction is primarily 
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determined by the surface slope and large variations in flow direction that would require 
large changes in the ice thickness field. Therefore, if the direction of flow is known from 
an existing velocity map, or can be estimated from a digital elevation model or numerical 
ice flow model, it can be used to both constrain the area of NCC matching and to prevent 
spurious matches without biasing the measurement result. Examples of this approach 
include Scambos et al. [Scambos et al., 1992] and Fallourd et al [2010] that made use of 
existing ice flow measurements as a priori information to limit the location of the 
matching solution to within a defined rectangular boundary. Another major advantage of 
using such a directional constraint on the match solution is the large reduction in the 
number of NCC computations per match area. This is especially important when utilizing 
redundant match approaches such as MIMC and QM. 

A concern in the use of an existing velocity field as a priori information for 
constraining the matching procedure is that errors in that velocity field, or change in 
surface flow between the times when the a priori field was constructed and the imagery to 
be used for RIFT was obtained, could influence the result, reducing the accuracy of the 
solution. To mitigate this effect, we use a non-deterministic approach, illustrated in Fig. 
5.3, to constrain the search for the NCC peak within the matching procedure. First, the a 
priori displacement vector, starting at the reference origin, is projected onto the search 
image and the pixels that intersect this vector are chosen as initial “pivots” from where 
the NCC peak search begins. For each initial pivot pixel, the NCC field is calculated for 
the search image chip centered on the pivot and the 8 surrounding pixels. The location of 
the maximum NCC value among these 9 solutions is chosen as the new “intermediate” 
pivot point for the next iteration. The NCC fields for this intermediate pivot and the 
surrounding pixels are calculated so that the pivot at the next stage is the location of the 
maximum NCC among the series. The procedure is then repeated until the point of 
maximum NCC is the intermediate pivot itself (the center of the 3-by-3 cell) so that there 
is no update in the pivot location. This iteration is then repeated for all initial pivots. 

 

(a)      (b) 

Figure 5.4. Displacement (a) without registration and (b) after registration.   
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This procedure ensures that each iteration, starting from initial pivot, will 
converge to a local maximum in NCC space only within or near the known direction of 
flow. Moreover, by constraining the search area to approximate a vector, the number of 
NCC calculations is drastically reduced. The length of the vector of initial pivot points is 
bounded by the magnitude of the expected maximum displacement and the coregistration 
error. Here, the extent of each search grid (Li,j) was determined by: 

 
!
Li, j = s ⋅

!vi, j
r ⋅ t

⋅365
⎛

⎝
⎜

⎞

⎠
⎟+ c  (5.9) 

where s is a scale factor (chosen to 1.8 in this study based on the maximum expected 
fluctuation of the flow speed for the test glaciers), vi,j is velocity (unit: m/yr), r is spatial 
resolution of the image, t is the length of temporal baseline of a pair (unit: day) and c is 
the maximum expected image coregistration error. Increasing s and/or c reduces the 
linear constraint, allowing for more deviation in flow direction but increasing the 
processing time. 

5.3.3 Image	Co-registration	
Once the displacement field has been generated and spurious matches filtered by 

the clustering method, the MIMC technique improves image co-registration by selection 
of displacement vectors that are over off-ice regions, either manually or by specifying an 
off-ice mask.   

Figure 5.4 shows the registration approach we apply. Apparent displacement 
shows (Figure 5.4a) errors in land areas that are not moving. A calculated correction 
offset in x-y direction that remove displacement in land area is applied to calibrate the 
displacement results (Figure 5.4b). Note that registration error might not be resolved by a 
single x-y shift. If land area is distributed well, different transformations can be applied 
such as conformal or affine transformations. Visual inspection of velocity in land area is 
used to validate the registration results.  

5.4 Postprocessing	
A critical postprocessing step of any redundant match approach such as MIMC 

and QM is the selection of the best single displacement from the population of redundant 
matches that will nearly always contain spurious single solutions (Figure 5.5).  We have 
developed a novel post-processing method, termed pseudosmoothing, which determines 
the most probable displacement from a population of redundant matches. Similar to the 
“voting cell” method in MIMC version1, pseudosmoothing is applied to clusters of 
multiple matching results (i.e. reference chip size, image filter, and QM) in each of the 
single grid. We apply a connectivity-based clustering algorithm rather than clustering the 
displacements into discrete cells as in the voting cell method. If the minimum Euclidian 
difference between the displacement di and elements in a cluster Ck is less than a 
threshold value, ρmin, the displacement di is considered as a member of Ck. This criterion 
for the cluster Ck can be formularized as: 
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Ck :=
!
di
!
di,Ck ≤ ρmin{ }  (5.10) 

where the distance between the displacement and clusters are: 
!
di,Ck :=min

!
di,
!
dj( ),

!
dj ∈Ck  (5.11) 

therefore, for any clusters Ck and Cl, 

Ck,Cl > ρmin, k ≠ l  (5.12) 

where 

Ck,Cl :=min
!
di,
!
dj( ), di ∈Ck, dj ∈Cl  (5.13) 

 

(a)      (b) 

 

(c) 

Figure 5.5. Neighboring filtering. (a) MIMC displacement results, (b) 5x5 mean and standard 
deviation grid for x-y direction (c) Neighbor filtered displacement results. 
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We use Ck of equation 5.10 and a ρmin of 1 pixel. Next, clusters of displacements 
are defined. A cluster is considered prominent if its number of samples is more than 60% 

of the total population. The mean displacement of the prominent cluster is considered the 
prominent displacement (d0) in the corresponding grid. However, due to the possibility of 
increased spurious matching, not all grid points have a prominent cluster and 
corresponding d0s. For those locations, an intermediate displacement (d1) is estimated 
instead. 

The estimation of an intermediate displacement starts from finding the expected 
displacements (de) based on the given a priori velocity information. The expected 
displacement is obtained from: 

!
de, i, j( ) =

!vi, j
r ⋅365

⋅ t  (5.14) 

with the same variables as Equation (5.9). The difference in definitions of coordinate 
system between a priori and the image may require reversing the coordinate axes. When 
using a priori values for this calculation, seasonal and annual variability in flow speed 
should be considered. Therefore, a scale factor needs to be applied to de to compensate 
the variability. This factor is calculated by comparing de with the neighboring prominent 
displacements (d0) or d1 in the earlier iterations. When there are a sufficient number of d0 
or d1 values around the location (i, j), d1 in the current iteration is calculated as 

!
d1, i, j( ) =

!̂
d0!̂
de, i, j( )

⋅
!
de, i. j( )  (5.15) 

 

(a)       (b) 

Figure	 5.6.	 Gap	 filling	 procedure.	 (a)	 Neighbor	 filtering	 results	 with	 points	 that	 are	
removed	from	previous	filtering.	(b)	Re-found	displacements	by	comparing	with	mean	
grids	(x-y	direction).		
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where the hat denotes the averaged values in the neighbor of (i, j). This iteration is 
repeated until all grids are filled with either d0 or d1. 

Equations (5.14) and (5.15) imply that d1 at point (i, j) is not determined from the 
clustered displacements of the grid point, but from the neighboring d0 or d1 and the a 
priori displacement. The mean value of the closest cluster to d1 for each grid point, 
therefore, is chosen as the initial displacement (d2). In this way, the displacement at each 
grid point is determined from the mean values of grid clusters, which are either d0 or d2. 

The resulting d2 is then adjusted through iterative and anisotropic weighted 
quadratic fitting. For a location (i, j), the displacements (d2) of the neighboring grid 
points are weighted using a negative exponential function with respect to distance and 
flow direction. To accommodate large lateral gradients (i.e. shear strains) in glacier flow, 
the neighboring displacements along the flow direction are given a greater weight than 
those in the across-flow direction. We term this postprocessing method 
"pseudosmoothing" because it finds a cluster’s displacement close to the smooth value, 
but the resultant displacement is neither interpolated nor an average. 

5.5 Gap	filling,	Interpolation	and	Smoothing		
Filtering of spurious results leaves holes in the displacement grid. In this stage, 

MIMC displacements that have been removed from MIMC clustering and neighbor 
filtering are checked against x-y directional mean grids to fill gaps. Figure 5.6 illustrates 
points removed in the initial culling removed that this subsequent gap-filling procedure 
determined were actually valid. The closest MIMC displacement to x-y mean grids from 
15 matches is searched and filled. 

The gaps left up to this stage are filled using inverse distanced weighted 
interpolation (3x3 window) and moving average (3x3 window) (Figure 5.7). The 
weighting used is  , where D is Euclidian distance between grid pixels 
[Shepherd, 1968]. 

 

(D-2) / (D-2)å
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5.6 Example	Applications	and	Analysis	
Here we present results from application of MIMC to AST14OTH image pairs for 

5 outlet glaciers along Greenland’s west coast: Alison glacier (07/02/2002-/08/01/2002, 
30-day image separation), Igdlulik (07/02/02-08/01/02, 30-day image separation), Kong 
Oscar (07/08/2004-07/26/2004, 18-day image separation), and Upernavik North and 
South (06/12/2003-07/28/2003, 46-day image separation). We use ASTER 
(AST14DMO) orthorectified image products generated by the LPDAAC.  

 

(a)       (b) 

Figure	5.	7.	(a)	Inverse	distance	weighted	interpolation	and	(b)	moving	average	
 

 

                               (a)       (b) 

Figure 5.8(a) List of ASTER pair for velocity calculation in Alison Gl. Date, orbit and time 
separation are listed. (b) Grid posts (red points) generated within boundary (green line) 
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For each glacier, a region of interest (ROI) polygon is defined and appropriate 
pairs for velocity computation are automatically selected based on overlap with the ROI 
and the separation measured in days.  

Figure 5.8a shows a pair list for Alison glacier (10~120 day separation). Once an 
image pair is on display, screen digitizing extracts boundary. Figure F5.8b illustrates grid 
posts generated. The post interval is 20 pixels (300 meter) and total number of posts is 
1251. Land area is included for analysis on registration accuracy.   

Comparison	with	conventional	correlation	matching	
To gauge MIMC’s performance, the results are compared with conventional 

DEFINE correlation matching results. Three bands (RGB) and three chip sizes (30x30, 
40x40 and 50x50) are used, which totals 9 pairs of matches. Figure 5.9 shows 
displacement results with conventional correlation matching (30x30 Red band) and 
MIMC results for four glaciers.  

5.7 Error	Budget	
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Two major sources of uncertainty in displacement calculations are: 1) image 
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matching ambiguity and 2) registration error. Dietrich et al [2007]analyzed the 
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uncertainty in matching based on steepness of parabola fitting into correlation, estimating 
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less than 0.1 pixel for stationary reference targets and 0.1-0.3 pixel for glacier features. 
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Skvarca et al. [2003] conservatively estimates 0.5 pixels for correlation matching and 1.5 

 

 

 

 

Figure 5.9 Red band 30x30 reference chip size displacement result and MIMC displacement 
results without any filtering for Alison (a, b), Igdlulik (c d), KongOscar (e, f), Upernavik (g, h) 
Glaciers.  
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pixel uncertainty in the registration process. The correlation matching uncertainty is 
difficult to quantify, since quadratic surface fitting uses solely values around peaks in 
correlation (3x3 or 5x5 neighbor). However, based on comparisons with off-ice targets, 
0.3 pixels uncertainty can be considered as conservative estimate.  Registration error 
results from the distribution of control points and the transformation model that is used. 
In this study, control points are measured on ice-free areas near the glacier channel and a 
simple x-y offset transformation model is used to remove registration error. Following 
this offset correction, off-ice displacements are typically less than 1 pixel. Matching 
ambiguity and registration errors therefore account for 1 pixel of displacement error. This 
error gives a speed uncertainty of about 1 m/day for a 15-m pixel resolution and the 
nominal ASTER repeat interval of 16 days.  

Since errors in registration are typically much greater than the matching error, the 
registration method used in this study is applicable for almost all glaciers when even a 
small amount of ice-free land is visible and individual image pairs are only a few 10’s of 

 

 

  

Figure 5.10. Final displacement results for (a) Alison, (b) Igdlulik, (c) KongOscar and (d) 
Upernavik glacier 
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km across. If the image pair covers a large area, however, the x-y offset approach used 
here might not provide a global registration. Higher order registration correction may 
need to be implemented considering the area of interest and the distribution of land areas. 

5.8 ETM+	Scan	Line	Corrector	Off	Mode	(SLC-off)	Feature	Tracking	
For this project, we introduce a method of feature tracking using Landsat SLC-off 

data. For this method, we use a similar MIMC procedure as described above but apply 
the cross-correlation in the spatial rather that FFT domain. In this method, 5 pixels on 
either side of each stripe are masked and all striped regions are set to 0 value. We also 
use a ~50% larger search/reference chip size than for the FFT method. 

The performance of the SLC-off feature tracking is assessed by comparing SLC-
on estimates with displacements estimates from the same with simulated SLC-off striping 
applied to the same images. First, we applied our normal MIMC algorithms to an SLC-on 
pair from Kangerdlussuaq glacier (April 5th and 14th, 2001; Figure 5.11). Using these 

 

 
Figure 5.11. (top) Test SLC-on image from April 5th and 14th, 2001.  (middle) 
SLC-off image pair with from the same path/row from July 7, 2003 and August 1, 
2003. (bottow) 2001 test pair with SLC-off striping applied. 
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same images, we created a synthetic SLC-off pair to which we applied our SLC-off 
algorithm. To simulate the SLC-off striping, we extracted and applied the stripe masks to 
the data for an SLC-off pair from the same path/row and the test images (July 7, 2003 and 
August 1, 2003). 

The results of the SLC-on and simulated SLC-off tests are compared in Figure 
5.12. Overall, the difference between the results is small, with most of the glacier 
exhibiting little or no difference in velocity magnitude or direction between test cases. 
Differences tend to occur at shear margins, where large spatial gradients in velocity 
produce aliasing of the striped data. These results suggest that spatial-domain feature 
tracking using the MIMC procedure is able to resolve glacier displacement from SLC-off 
imagery at a similar accuracy and coverage as SLC-on data.  Spatial domain processing is 
much more computationally expensive than FFT processing, but still practical for typical 
multi-processor computers. 

6 Landsat	7	ETM+/RADARSAT-1	Image	Mosaic	
Our first objective is to assemble an ice-sheet wide imagery mosaic to be used for 

mapping and land surface classification at the highest possible spatial resolution and 
within as narrow a time window as possible to enable change detection. South of 
~81.2°N, we use Landsat 7 ETM+ imagery orthorectified and distributed by the U.S. 
Geological Survey (http://glovis.usgs.gov/). Using 1 August 2000 as a target date, we 
selected imagery from July and August, as close in time as possible to 1 August for the 
years, in preferential order, of 2000, 1999, 2001, and 2002. All imagery were 
automatically filtered for clouds using the algorithm presented in Luo et al. [2008], 
adapted to Landsat by Oreopoulos et al. [2011], and visually inspected for quality. In 
some cases additional manual cloud masking was required. In order to increase the 
consistency of the grayscale between images, each digital number image was converted 

 

Figure 5.12. (left)(blue arrows) Simulated SLC-off velocity solutions for the test pair plotted 
with (red arrows) the SLC-on solutions. (right) Difference map of x and y displacements and 
correlations between simulated SLC-off and SLC-on runs. 
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to reflectance, including corrections for sun angle and distance using the parameters 
provided in the metadata. Multi-spectral bands 1 through 4 were pan-sharpened to 15-m 
posting using band 8 and a simple and fast additive method in which the band 8 image 
was down-sampled to 30 m and differenced from each multispectral band. The difference 
image was then up-sampled to 15-m using bilinear interpolation and added to the band 8 
image.  

The pan sharpened reflectance images were then re-gridded via cubic convolution 
and mosaiced to the reference grid. Where images overlapped, the pixel that was closest 
in time to the target date of 1 August 2000, was selected. No edge feathering was applied. 
The mosaiced images were then converted back to a byte precision digital number by 
linearly scaling the reflectance values to the global minimum and maximum for each 
band. 

The USGS employs two levels of geo-registration processing for their imagery 
(see http://edcsns17.cr.usgs.gov/helpdocs/landsat/product_descriptions.html#nlaps_lpgs). 
First, Standard Terrain Correction (Level 1T) incorporates both ground control points and 
a DEM for terrain corrections. Geodetic accuracy depends on the accuracy of the ground 
control and the quality of the DEM and is better than 90 m. Imagery covering the 
periphery and margin of the ice sheet, where features are visible on the surface, are 
processed to L1T. For L1T imagery, the root-mean-square of the residual between the 
geo-location model and the ground control are provided in the imagery metadata and are 
typically on the order of several meters. Second, Systematic Correction (Level 1G) uses 
only the satellite ephemeris for geo-location, providing a 1σ geometric accuracy within 
250 meters. Scenes over the featureless interior of the ice sheet are typically processed to 
L1G. 

North of the maximum extent of Landsat we include synthetic aperture radar 
amplitude imagery mosaics acquired between October and December 2000 by the 
RADARSAT-1 satellite. These data were produced by the Applied Physics Lab at the 
University of Washington as part of GIMP [Joughin et al., 2016]. The data are distributed 
at 20-m resolution and were up-sampled through bilinear interpolation to 15-m to match 
the resolution of Landsat band-8. We merged the RADARSAT and Landsat band-8 
imagery by applying a stretch to the RADARSAT image so that the histograms of both 
datasets match where they overlap. As with Landsat, the primary source of geolocation 
error in the RADARSAT imagery is error in the DEM used for terrain correction and are 
similar in magnitude to the Landsat mosaic [Moon and Joughin, 2008]. 

The final image mosaic is distributed in tiles, with one image for each band, plus 
an index image in which each pixel gives the index number of its corresponding source 
image in an accompanying metadata file. The metadata file lists each Landsat scene 
identification number (scene ID) used in the mosaic for that tile, the acquisition time, and 
the root-mean-square control point registration error where available.  The original scene 
ID, acquisition date and geo-location error for any pixel in an image can thus be obtained 
using the index image. 
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7 Land	Classification	Masks	
Land classification masks are needed for co-registration of repeat imagery and 

elevation data, as ice surfaces can change with time while areas of exposed bedrock 
provide control. Further, the accurate delineation of ice boundaries provides a benchmark 
for measuring future ice margin changes. Landsat-7 ETM+ data are commonly used for 
mapping snow and ice, either manually, by tracing the margin with a computer mouse 
directly on the imagery, or automatically, from multi-spectral classification techniques 
[Rastner et al., 2012]. Automatic methods are far more efficient and are effective for ice 
and snow that is free of surface debris. However, the drawbacks of automated, multi-
spectral classification methods are that (1) they cannot differentiate between 
seasonal/ephemeral snow cover and glacial ice, (2) they fail at marine margins when 
dense packs of icebergs and sea ice are present, (3) much of the marginal ice of the 
Greenland Ice Sheet and surrounding glaciers is debris covered and (4) Landsat does not 
cover the most northern regions of the ice sheet. For these reasons, we abandoned multi-
spectral mapping methods in favor of manual digitization of the panchromatic and pan-
sharpened multispectral image mosaic presented in Sect. 3. Even with manual methods, 
the ice margin can be difficult to locate visually in areas of abundant debris and snow 
cover. Margins of debris-covered ice were identified by breaks in surface slope, emerging 
melt water streams, color differences and the presence of small melt water ponds typical 
of debris-covered glaciers. Similarly, glaciers were differentiated from perennial 
snowfields by visible crevassing, surface moraines, and the existence of a visible toe. 
Snowfields without these features were not classified as glaciers. Using the same method, 
we also digitized the coastline to produce an ocean mask, with the null of the ice and 
ocean masks being ice-free terrain (including freshwater lakes). 

Uncertainty in these classification masks arise from three sources of error: (1) 
image pixel resolution, (2) image geo-registration and (3) erroneous selection or non-
selection of pixels (i.e. mapping error). All error sources are expected to vary randomly 
in space, although there is likely a systematic component of error source (2) over 
distances equivalent to the size of a single image (e.g. 185 km for Landsat 7) due to 
errors in the registration model used to orthorectify the image, which typically is on the 
order of ±5 m, or 1/3 of a pixel for L1T-processed imagery. 

Error source (1) contributes a random error of 1 pixel for each ice boundary pixel. 
The position of any point of the ice margin has an uncertainty of 21 m while the total 
error for a given area of ice is then (8N)½x2, where N is the number of boundary pixels 
and x is the pixel posting in meters. 

Erroneous selection or non-selection of pixels can be due to debris cover, 
shadows, and misidentification by the operator, as well as the ambiguity of delineating an 
ice boundary at glacier fronts ending in packs of icebergs.  Without ground control, 
delineation of the ice edge in areas of debris cover, terminal moraines and persistent 
snow cover is subjective. These errors are difficult to quantify. We estimated 
uncertainties due to ambiguity in the ice edge and operator error by comparing mappings 
done by three different operators over the same area. On average, each operator identified 
24.21 km (1614 pixels) of ice margin over the common area, with a 660 m (44 pixels) 
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difference between the maximum and minimum mappings, giving an estimated error of 
±3%, which is similar to other comparisons [Paul et al., 2013]. This error, however, is 
expected to vary widely by particular location and size of area considered.  

Initial versions of the GIMP classification mask have been used and analyzed in 
two studies. Rastner et al. [2012] compared the version 1.1 GIMP classification to their 
own, semi-automated delineation of peripheral glaciers and ice caps, which also utilized 
Landsat 7 data. They found an overall difference in classified area of 6%. This difference 
was mostly due to misclassification of debris-covered margin in GIMP. That study 
incorporated the GIMP classification into their dataset for far northern regions, and their 
combined map has been included in the global Randolph Glacier Inventory [Pfeffer et al., 
2014]. Citterio and Ahlstrom [2013] compared the version 1.2 GIMP classification to 
glacier outlines mapped from aerial photography in the 1980’s and were able to measure 
local changes in margin positions between the datasets. They also detected some 
classification errors. Errors detected in both of these studies have been corrected in the 
current version 2.0 of the mask, along with additional quality control by our team. Both 
the ice and ocean classification masks were used in the production of the Digital 
Elevation Model, described next. 

8 Digital	Elevation	Model	
Here we descript the GIMP version 2 DEM. For completeness, we include details 

of the version 1 DEM in an appendix. 

 
9.1 Source Data and Quality Control 

The primary data source are submeter-resolution, panchromatic stereoscopic 
imagery collected by the GeoEye-1 and WorldView 1,2 and 3 satellites operated by 
DigitalGlobe Inc. These data are distributed by the National Geospatial Intelligence 
Agency (NGA) and archived at the Polar Geospatial Center at the University of 
Minnesota through the NextView License program. Source imagery are subjected to user 
restrictions, but derived products, including Digital Elevation Models (DEMs), may be 
openly distributed. 

 
The DEMs used here were extracted solely from in-track stereoscopic imagery, in 

which both images of the stereo pair were collected minutes apart along the same orbital 
pass. Imagery are collected in strips 12 to 17-km wide (i.e. the swath width) and up to 
300 km long. The strips are segmented into scenes with ~20% overlap for distribution. 
Individual, overlapping scenes are then paired for stereo processing. We used the Surface 
Extraction from TIN-based Search-space Minimization software for producing DEMs 
(SETSM, Noh and Howat, 2015) on High Performance Computing (HPC) systems at the 
Ohio Supercomputer Center, University of California San Diego (Gordon) and the 
National Center for Supercomputing Applications (Blue Waters) using multiple OSU and 
NSF-supported allocations. Raster DEMs with a resolution of 8m were extracted and 
filtered based on the density of point matches, which is designed to remove erroneous 
surfaces due to clouds, waters, severe shadowing and other sources. The filtered scenes 
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were then mosaicked back into strips using the iterative slope regression method of Nuth 
and Kaab  [2011]. DEM strips were then visually quality-controlled and scored on a scale 
of 1 through 5, with 1 given the highest quality. DEMs scored a 4 or 5 were not used and 
those scored a three were manually masked to remove erroneous surfaces. Most 
commonly, DEM strips scored a 3 were those in which a portion was cloudy but the 
majority was clear. 

9.2 Mosaicking and Data Format 
Quality controlled strips were then mosaicked using the Nuth and Kaab [2011] 

iterative slope regression method for coregistration of DEM’s and registration to LiDAR 
altimetry, which was the same method used for the GIMP DEM v1. The GIMP DEMv2 
is distributed in two versions of mosaic: v2reg and v2fit.  

The objective of the v2reg mosaic is to provide the best estimate of elevation and 
its uncertainty at the time of data aquisition at each pixel, for the purpose of elevation 
change measurements. The edges of registered strips in the v2reg mosaics are not 
feathered or smoothed so that surface discontinuities will be present in areas of change. 
These mosaics are provided as both quarterly time series and a merged “best data” 
mosaic. The date of each pixel, given as the day since Y2K, and the 1-sigma error are 
provided as supplementary fields. 

The objective of the v2fit mosaic is to provide the single best continuous surface 
for applications that use slope information, such as for supraglacial stream flow 
modeling, and for visual displays, at the cost of a less confident elevation in areas of 
change. These mosaics are produced by selecting adjoining strips that yield the best 
alignment and by feathering edges of strips through distance-weighted averaging. The 
complete mosaic is then registered to all available Operation IceBridge data. The v2fit 
mosaic is provided as a single mosaic using all available DEM data.  

The procedure for v2reg mosaicking is as follows: All DEM strips are 
individually registered to Operation IceBridge Airborne Topographic Mapper (ATM) and 
Land, Vegetation and Ice Sensor (LVIS) LiDAR point cloud data. We use all years of 
data (beginning in 1993) for bare rock areas and data collected within 30 days of image 
acquisition for ice covered areas, as classified by the GIMP Land Classification Products. 
Strips are then indexed by quarter of the year of acquisition, using the month ranges in 
Table 1. For each quarterly mosaic, registered strips acquired during that quarter added 
to the mosaic sequentially, in order of ascending quality rank and registration error, with 
the best data remaining. Strips with 1-sigma registration errors of larger than 4 m are 
excluded and treated as unregistered strips. Registered strips are added in “underprint” 
mode, in which only empty pixels are filled, without data averaging, edge feathering or 
smoothing, so that each pixel provides the best estimate of elevation at that date.  Once 
all registered strips have been added, unregistered strips from the same quarterly 
acquisition period are added to fill gaps through co-registration to registered data in the 
mosaic. Unregistered strips are added in order of quality rank and lowest coregistration 
error. Following coregistration, the edges of unregistered strips are warped using a linear 
weighted adjustment from the edge of overlap to 500 pixels into the added strip. The 
error at pixels in the unregistered strip is the root-sum of squares of the mean error of the 
registered strips used as coregistration reference and the coregistration error. 
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Once all strips with overlap to existing, registered data have been added through 
coregistration, remaining gaps are filled with available unregistered data. The strip with 
the newest data coverage is first added and strips with overlap to that initial “anchor” 
strip are then coregistered and added using the same procedure as above. Errors for 
unregistered clusters of data are assigned “inf”. 

A single v2reg “best data” reference mosaic is created from the series of quarterly 
mosaics by selecting pixel with the lowest registration error. Following the creation of 
this mosaic, areas with unregistered ice-free areas in the quarterly mosaics are 
coregistered to the reference mosaic. 

The procedure for v2fit mosaicking is as follows: The mosaic is initialized by 
adding the quality level 1 strip with the most spatial coverage to the mosaic grid. The 
overlapping strip with the best coregistration fit (lowest residual after fit) is then added if 
it contributes 100 or more pixels of new data to the mosaic. A linear, inverse-distance 
feathering is applied to the overlapping region of the new and mosaicked data. Strips are 
added sequentially in this way until no additional overlapping strips with adequate new 
data remain. If additional, non-overlapping strips exist, another cluster of coregistered 
data is initialized by again adding the highest quality rank strip with the most coverage 
and then adding additional overlapping data as before. 

Once the mosaic is built, each cluster of coregistered data is registered to 
Operation IceBridge Airborne Topographic Mapper (ATM) and Land, Vegetation and Ice 
Sensor (LVIS) LiDAR point cloud data. We use all years of data (beginning in 1993) for 
bare rock areas and data collected between 2010 and 2015 for ice covered areas, as 
classified by the GIMP Land Classification Products. The error reported in 
*_v2fit_sigma.tif is the standard error of the fit to the LiDAR point cloud. If no 
registration data is available, the error value is NaN. 

Following registration, the GIMP ocean masks are applied and the DEM is 
merged with the GIMP v1 DEM to fill data gaps. The data are merged by interpolating 
the difference between the GIMP v1 and v2 DEMs at the boundaries of gaps, over the 
area of the gap and adding that difference to the v1 data. The adjusted v1 data is then 
added to the pixel with missing data values.  

9 MODIS	Mosaics	
We create high-resolution MODIS-based mosaic images using an image 

‘stacking’ technique that provides increased spatial and radiometric resolution [Scambos 
et al., 1999; 2007]. In this procedure, we combine a series of MODIS band 1 images (250 
m resolution) having similar illumination geometry (solar elevation and azimuth) 
covering the entire ice sheet, and project them onto an over-sampled grid, typically a 
polar stereographic at 100 m gridding scale. High-pass filtering at a coarse scale (160 km 
ground spatial scale) creates images with near-uniform histograms that are free from 
earth curvature effects on illumination. Clouds and other image defects are masked, and 
the edges of these masks are ‘feathered’.  A separate image stack of the number of scenes 
compiled for each final-image grid cell is also created, with fractional values applied to 
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the ‘feather edges’ of the masks. A sum of the image stack is created, and divided by the 
image ‘count’ grid, creating a smooth and uniform-contrast image of the ice sheet 
surface.  

 This image ‘super-resolution’ technique results in merged multi-scene images 
with spatial resolution generally 0.7 to 0.5 the original pixel size, for regions of the 
mosaic with 3 to 10 images [Scambos et al., 1999]. Further, image radiometric resolution 
is improved by a factor close to the square root of the number of images contributing to a 
region. Re-stretching the images can reveal subtle surface flow or other structures. We 
plan to create monthly composite images of 5 to 15 scenes. 

10 	Ice	Fronts	
Using the ortho-rectified SAR mosaics, supplemented as needed with optical 

imagery, we will hand digitize the ice fronts of the roughly 200 glaciers with greater than 
2-km. The methods for accomplishing this are described by Moon and Joughin [Moon 
and Joughin, 2008]. 

11 Apendix:	GIMP	Version	1	Digital	Elevation	Model	
The quality of data over most of the Greenland Ice Sheet in global elevation 

datasets, such as GTOPO30 and the more recent GDEM, is too poor to be of use for 
glaciological applications. The standard DEM used in glaciological studies was created 
from a combination of satellite radar altimeter and aerial Photogrammetry [Bamber et al., 
2001] with a posting of up to 1-km.  This DEM was enhanced to 625 m posting through 
photoclinometry by Scambos and Haran [2002]. While these DEMs are accurate to a few 
meters over the relatively flat interior of the ice sheet, they have poor resolution over the 
steeper margins and higher-relief periphery. 

Our objective is to enhance DEM resolution and accuracy, particularly over the 
ice sheet margin and periphery, by integrating high-quality photogrammetric topography 
data into the existing low-resolution DEM and registering the DEM to elevations 
acquired by the Geoscience Laser Altimeter System (GLAS) aboard the Ice and Cloud 
Elevation Satellite (ICESat). Our approach follows the schematic shown in Fig 3.  We 
focus on generating a continuous surface and we ignore temporal changes in ice 
elevation, which are over 100 m near the fronts of some rapidly retreating glaciers, and 
produce a DEM that approximates the mean elevation over the ICESat era (2003-2009). 
We first present each input dataset and then describe the procedure for merging them, 
followed by a description of errors and artifacts in the resulting DEM. 

11.1 ICESat	GLAS	

All data are referenced to elevations obtained from by ICESAT GLAS between 
2003 and 2009.  We use the 633 products of the GLA12 release corrected for time-
varying elevation biases, as estimated based on apparent variation of the mean-sea-
surface height [Shepherd et al., 2012]. Poor-quality returns were removed using 
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techniques developed for elevation-change estimation that identify the best-quality 
returns based on parameters that describe the shape and amplitude of the returned laser 
pulse [Shepherd et al., 2012]. Elevations were corrected for detector saturation, and the 
time-varying bias correction should remove offsets associated with campaign-to-
campaign variations in the shape of the transmitted pulse [Borsa et al., 2014].  Elevations 
calculated in this way should be accurate to better than 0.1 m, or two orders of magnitude 
smaller than the expected DEM uncertainty. 

11.2 Photo-Enhanced	Bamber	(PEB)	DEM	

The most widely used DEM for the entire ice sheet is that presented in Bamber et 
al. [2001], created from a combination of radar altimeter and stereo-photogrammetric 
data from the mid 1990’s. These data were validated against airborne altimeter data, also 
from the mid-1990’s, with a reported, ice-sheet wide 1σ error of ±7 m and errors of 
several hundred meters at the coasts. This DEM was subsequently enhanced through 
photoclinometry with AVHRR imagery [Scambos and Haran, 2002], hereafter referred to 
as the Photo-Enhanced Bamber or PEB DEM which improved the effective spatial 
resolution and accuracy of the DEM by ~30%, so that 1σ errors in the ice sheet interior, 
where slopes are  ~10-3 are ±2 m. Errors in the marginal areas were equivalent to the 
original Bamber et al. [2001] DEM. 

The PEB DEM was provided by the NSIDC in a spherical Lambert azimuthal 
projection at a posting of approximately 627 m. These data were re-gridded to EPSG 
3413 and up-sampled to 30-m posting using bilinear interpolation. The re-gridded data 
were then co-registered to the ICESat GLAS point cloud using an iterative, 3-D 
conformal transformation [Noh and Howat, 2014]. This procedure results in residuals 
between the DEM surface and ICESat point cloud with a normal distribution and a mean 
of zero. Co-registration was preformed on 25 km by 25 km tiles with 5 km of overlap. 
The co-registered tiles were then mosaiced with linear distance-weighted edge feathering. 
The root mean square (RMS) of the residuals between the PEB DEM and the ICESat 
point cloud following co-registration are given in Table 1.  The total RMS error of ±21.8 
m is nearly three times higher than reported by Bamber et al. [2001] and Scambos and 
Haran [2002], likely due to the more extensive sampling by ICESat relative to the 
airborne altimetry used in those studies, especially over ice-free terrain where errors are 
much higher. The RMS errors over the interior ice sheet are more consistent with 
reported errors. 

11.3 GDEM	V2	

The Global Digital Elevation Model (GDEM) is a global, 30-m posted DEM 
produced by the Ministry of Economy, Trade, and Industry (METI) of Japan and the 
United States National Aeronautics and Space Administration (NASA) [Slater et al., 
2011]. The GDEM is created by average-stacking individual stereo-photogrammetric 
DEM’s acquired by the Advanced Spaceborne Thermal Emission and Reflection 
Radiometer (ASTER) between 2000 and 2010. Following an initial release in 2009, 
Version 2 was released in October 2011. The GDEM is distributed in 1°x1° tiles in 
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geographic projection. The distribution includes metadata giving the number of 
individual AST14DEM granules that were stacked to obtain each posted elevation. No 
information, however, is given regarding which scenes were used, so the time period of 
elevation measurements cannot be determined directly. 

GDEM data quality is poor over much of the ice sheet owing to low-contrast 
surfaces on snow and ice. Additionally, artifacts due to shadows, clouds and blunders in 
the automated matching algorithm are abundant over all terrains. Following re-projection 
and gridding of the GDEM Version 2 to the GIMP grid, we applied a pyramiding 
standard deviation filter in which the DEM is smoothed to progressively finer resolutions 
and differenced from the native-resolution DEM. Pixels with differences exceeding 2.5σ	
of	the	mean	are	discarded.	Since	ice-covered	terrain	is	substantially	smoother	than	
ice-free	terrain,	we	apply	this	filter	separately	to	the	two	land	classifications,	using	
the	 land	 classification	 masks. Following automated filtering, we manually masked 
blunders visible on a hillshade image of the DEM. These procedures removed nearly all 
data from above 1600 m elevation, which is approximately the average mass balance 
equilibrium line altitude. Following filtering and masking, GDEM covers 30% of 
Greenland’s total area, and respectively 92% and 19% of it’s total ice-free and ice-
covered terrain. 

11.4 SPIRIT	DEM	

Photogrammetrically-derived DEMs over Greenland were produced from images 
acquired in 2007 and 2008 as part of the SPOT-5 Stereoscopic Survey of Polar Ice: 
Reference Images and Topographies (SPIRIT) program. A description of dataset 
production and validation is given in Korona et al. (2009). The SPIRIT DEM is 
distributed in UTM projection and referenced to the EGM96 Geoid and posted at 40 m. 
Two versions of each DEM, processed with different correlation parameters, are 
provided, along with data quality and interpolation masks. Korona et al. (2009) reports a 
slightly better precision and accuracy of SPIRIT DEM (< ±5 m) over ASTER DEM’s 
based on validation experiments with ICESat. 

For this project, we obtained all available SPIRT DEM products over Greenland. 
Each DEM was re-projected to EPSG 3413 and the WGS-84 ellipsoid and up-sampled to 
30 m. As advised in Korona et al. [2009], we use version 2 of each DEM and mask out 
all interpolated pixels. We then applied the same filtering and masking procedure as used 
for the GDEM.  

Each individual SPIRIT DEM was then co-registered to overlapping regions of 
the filtered GDEM using the 3-D conformal transformation [Noh and Howat, 2014]. This 
provided a consistent registration between the SPIRIT and GDEM datasets to facilitate 
merging. Each individual SPIRIT DEM was then stacked into a single mosaic by taking 
the median elevation at each pixel, keeping track of the number of individual 
measurements. The resulting filtered SPIRIT mosaic covers 10% of Greenland’s total 
area, and respectively 24% and 8% of its total ice-free and ice-covered terrain. The most 
continuous coverage is along the southwestern and southern coasts, with approximately 
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50% of the land and ice area covered in each tile, or most of the land and ice area below 
1500 m elevation. 

11.5 CNES	Mean	Sea	Surface	Height	

Stereo-photogrammetric methods typically cannot resolve open water surfaces 
due to the lack of features, so that these surfaces are usually interpolated from the 
shoreline. This and the presence of icebergs result in spurious sea surface heights in 
stereo-photogrammetric DEMs. To ensure correct sea surface heights, we apply the ocean 
mask to the final DEM and replace those ocean surfaces with the CLS11 mean sea 
surface height product from the Centre National d'Etudes Spatiales (CNES). The CNES 
CLS11 is the 16-year mean of TOPEX/POSEIDON, ERS 1&2, GFO, JASON-1, 
ENVISAT altimeter measurements gridded to 1/3 of a degree [Schaeffer et al., 2012]. We 
re-project these data to EPSG 3413 and up-sample them to the 30 m GIMP grid using 
bilinear interpolation. 

11.6 Data	Merging	

Following co-registration and stacking, the SPIRIT DEM mosaic was differenced 
from the GDEM and the differences were extrapolated across the grid using an inverse-
distance interpolation. The extrapolated difference map was then added to the SPIRT 
stack. The GDEM and SPIRIT DEMs were then merged under the following conditions 
at each pixel: 

(1) If	there	was	a	GDEM	value,	but	no	SPIRIT	value,	the	pixel	is	assigned	the	

GDEM	value.	

(2) 	If	there	was	a	SPIRIT	value,	but	no	GDEM	value,	the	pixel	is	assigned	the	

corrected	SPIRIT	value.	

(3) If	there	were	both	GDEM	and	SPIRIT	values,	and	the	pixel	is	over	ice-free	

terrain,	 the	 pixel	 is	 assigned	 GDEM	 value.	 This	 is	 due	 to	 the	 GDEM’s	

higher	spatial	resolution.	

(4) If	there	were	both	GDEM	and	SPIRIT	values,	and	the	pixel	is	over	ice,	the	

pixel	is	assigned	the	average	of	the	GDEM	and	SPOT	values,	weighted	by	

the	 N	 number	 of	 observations,	 where	 N	 equals	 1	 for	 GDEM	 plus	 the	

number	of	 individual	 SPIRIT	DEMs	used	 in	 the	 stack	described	 in	Sect.	

5.4.	

The merged GDEM and SPIRIT DEM (merged G&S) was then co-registered to 
the ICESat GLAS point cloud using the 3-D conformal transformation [Noh and Howat, 
2014]. The RMS validation errors of the merged G&S DEM are given in Table 1. To 
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assess the improvement in validation score provided by the higher-resolution data, Table 
1 also gives the RMS errors for the PEB DEM exclusive to areas of overlap with the 
merged G&S DEM. On average, the merged G&S DEM improves validation score by a 
factor of 8 over the ICESat-registered PEB DEM. 

To combine the merged G&S DEM and PEB DEM, the PEB DEM was first 
adjusted by differencing it from the merged G&S DEM and interpolating the differences 
across areas of no data in the merged G&S DEM. The difference was then added to the 
PEB DEM and the two DEM’s were combined using the following rules at each pixel: 

(1) If	 there	was	a	merged	G&S	DEM	value,	 the	pixel	 is	assigned	the	merged	

G&S	value.	

(2) If	there	was	no	merged	G&S	DEM	value,	the	pixel	is	assigned	the	adjusted	

PEB	DEM	value.	

An ocean mask (see Sect. 4.) is then applied and those pixels are replaced with the 
CLS11 sea surface heights, as described in Sect. 5.5. The final GIMP DEM thus provides 
an altimeter-registered, relief-enhanced version of the PEB DEM. The enhancement is 
most pronounced over regions of high relief on the margin and periphery of the ice sheet. 
Notably, whereas outlet glaciers are not clearly defined in the PEB DEM, the GIMP 
DEM resolves outlet glacier termini and fjord walls in detail. 

11.7 Errors	and	Artifacts	

The overall RMS of the differences between the GIMP DEM and ICESat 
elevation is ±9.1 m, which is less than half that of the ICESat-registered PEB. The error 
on ice-free terrain (±18.3 m) is over twice that of ice-covered terrain (±8.5 m), which is 
to be expected considering the higher relief at the ice-free margin. We note that an 
unknown amount of this error can be attributed to differences in the geometries of the 
ICESat footprint, which has a typical diameter of 70 m, and the DEM pixels. The effect 
of this difference will increase with slope. Additionally, over ice, some amount of the 
validation error can be attributed to temporal variations in surface elevation, ranging from 
decimeters over the interior to 10’s of meters over rapidly thinning outlet glaciers. 
Besides ice thinning, the advection of crevasses and other surficial expressions with ice 
flow contributes an unknown error. These validation errors should, therefore, be viewed 
as an upper bound for the true standard data error. 

The largest validation errors exist for the most northern regions, for which little 
high-resolution data exist and coverage is mostly from the PEB DEM. Higher errors, 
exceeding ±20 m, are also found in areas of extreme relief, such as the Geikie Peninsula 
(tiles 4-2 and 5-2), where gaps in high-resolution data coverage exist over steep mountain 
glaciers and icecaps. 

RMS errors are the smallest for the flattest surfaces (e.g. the interior ice sheet), 
increasing with slope to a peak of ±24 m at 2°.  RMS error then decreases to ±13m for 5° 
slopes before increasing again. The peak in RMS error at 2° slope corresponds roughly 
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with the equilibrium line of the ice sheet and, thus, the boundary between the merged 
G&S and PEB DEM. Errors in both the PEB and merged G&S DEM’s result in spurious, 
step-like transitions between the two. This effect results in the continuous zone of large 
errors running along the southeast margin, which is especially steep. A positive peak in 
mean and median errors of 2.1 m and 0.9 m, respectively, at 1.1° shows a positive bias in 
the GIMP DEM relative to ICESat over the area just inland of the snowline. Over steeper 
terrain, this bias becomes increasingly negative (i.e. the GIMP DEM reports increasingly 
lower elevations than ICESat), from -0.5 m at 5° to -1.5 at 25°. Since most of the 
coverage of surfaces with 1° slopes are from the PEB DEM, the positive bias could be 
explained by either slope-dependent errors in the PEB or thinning between the PEB and 
ICESat epochs, with neither effect completely compensated during co-registration. The 
cause of the negative bias over steeper terrains is unknown. Since these biases are 
spatially variable and are small (< 10%) relative to the random error, we do not correct 
for them. 

Where merged G&S coverage exists above the snow line, the apparent surface is 
much rougher, with pitting resulting from blunders in the surface matching procedure 
used to generate the DEMs. These roughness features typically have amplitudes of 
several meters.  

Rapid ice thinning and front retreat also cause DEM artifacts.  Many fast-moving 
outlet glaciers thinned by 10’s of meters, reaching over 100 m in some cases, during the 
data collection period. This thinning causes offsets between DEM surfaces acquired at 
different times and, when stacked, can result in spurious offsets and discontinuities in the 
surface. Additionally, ice-front retreat between date of the imagery used in construction 
of the ice cover mask and DEM data acquisition causes incomplete masking of the ocean 
boundary. For outlet glaciers, this often means that areas of dense icebergs remain in the 
DEM.  
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