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The SMAP Algorithm Theoretical Basis Documents (ATBDs) provide the physical and
mathematical descriptions of algorithms used in the generation of SMAP science data products. The
ATBDs include descriptions of variance and uncertainty estimates and considerations of calibration

and validation, exception control and diagnostics. Internal and external data flows are also
described.

The SMAP ATBDs were reviewed by a NASA Headquarters review panel in January 2012 with
initial public release later in 2012. The current version is Revision A. The ATBDs may undergo
additional version updates after SMAP launch.
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1 INTRODUCTION

This document is the Algorithm Theoretical Basis Document (ATBD) for the surface soil
moisture data product for hydrometeorology applications using combined SMAP radar and
radiometer measurements. The SMAP Level 1 Requirements and Mission Success Criteria
document specifies the SMAP baseline requirement for soil moisture as:

4.1.1 Requirement: Baseline Science Mission

a) The baseline science mission shall provide estimates of soil moisture in the top 5
cm of soil with an error of no greater than 0.04 [m’ m™] volumetric (one sigma) at
10 km spatial resolution and 3-day average intervals over the global land area
excluding regions of snow and ice, frozen ground, mountainous topography, open
water, urban areas, and vegetation with water content greater than 5 [kg m™]
(averaged over the spatial resolution scale);

In order to meet this requirement, the SMAP radar and radiometer measurements need to be
combined. This document provides the theoretical basis and error analysis on the following data
products:

1. Level 2 Soil Moisture (L2 _SM_AP) in half orbit format.

2. Level 3 Soil Moisture (L3 _SM_AP) in the form of global daily composites.

1.1 Overview and Background

The important role of surface soil moisture as a terrestrial hydrology state variable is well
recognized. Various applications like weather forecasting, climate change prediction, agricultural
production, water resources management, drought prediction, flood area mapping, and ecosystem
health monitoring require information on surface soil moisture for skillful modeling and forecasting.
The outcomes from these applications have direct impact on human society and the management of
our environment. Therefore, mapping surface soil moisture with sufficient accuracy over the
required ranges of spatial and temporal scales is imperative to fulfill the needs of these applications.

Surface soil moisture can be measured over a range of scales from point scale (in situ) to
coarse scale at various temporal resolutions. At point scale soil moisture measurements are
conducted using in situ measurement networks (e.g., SCAN sites and Oklahoma Mesonet in the
Continental United States) that can have high accuracy but are spatially very sparse. Coarse scale (>
40 km) soil moisture measurements are obtained from satellite-based footprints using L-, C- and X-
band radiometers (e.g., SMOS, AMSR-E and WindSat) [1-2]. The satellite-based C- and X-band
radiometers have shallow sensing depth (< 2 cm) and also have significantly reduced sensitivity to
soil moisture for even small amounts of vegetation, leading to high retrieval errors in soil moisture
estimates over vegetated regions [1]. Satellite-based C-band radars such as the ERS scatterometer
also have coarse resolution (~50 km) and have been used to retrieve surface soil moisture over
sparsely vegetated regions with moderate accuracy. The European Space Agency’s Soil Moisture
and Ocean Salinity (SMOS) mission launched in December, 2009 is the first wide-swath L-band
soil moisture mission, and has the potential for retrieving soil moisture over a much higher range of
vegetation conditions at a spatial resolution of ~40 km with a sensing depth of ~5 cm [2],
consequently an improvement over the C-band radiometers of AMSR-E and WindSat.



All these measurement technologies only partially satisfy the required criteria of high
spatial and temporal resolution, wide spatial coverage, optimal sensing depth and desired accuracy
in retrieved soil moisture over moderate vegetation conditions. Therefore surface soil moisture
retrieved using these approaches are not matched suitably for hydrometeorology, ecology, water
resource management, and agronomy because these applications require high spatial (< 10 km) and
temporal (< 3 days) resolution soil moisture information. Recognizing the importance of fine spatial
and temporal resolution surface soil moisture measurements with global coverage, the National
Research Council’s Committee on Earth Science and Applications from Space recommended the
implementation of the Soil Moisture Active Passive (SMAP) mission concept based on its impact
on overall societal benefits and potential scientific advances in the fields of hydrology, meteorology
and ecology [3].

1.2 The Soil Moisture Active Passive (SMAP) Mission
1.2.1 Science Objectives

The National Research Council’s (NRC) Decadal Survey, Earth Science and Applications
from Space: National Imperatives for the Next Decade and Beyond, was released in 2007 after a
two year study commissioned by NASA, NOAA, and USGS to provide them with prioritization
recommendations for space-based Earth observation programs [3]. Factors including scientific
value, societal benefit and technical maturity of mission concepts were considered as criteria. The
NRC recommended SMAP data products that have high science value and provide data towards
improving many natural hazards applications. Furthermore SMAP draws on the significant design
and risk-reduction heritage of the Hydrosphere State (Hydros) mission [4]. For these reasons, the
NRC report placed SMAP in the first tier of missions in its survey. In 2008 NASA announced the
formation of the SMAP project as a joint effort of NASA’s Jet Propulsion Laboratory (JPL) and
Goddard Space Flight Center (GSFC), with project management responsibilities at JPL. The target
launch date is late 2014 [5].

The SMAP science and applications objectives are to:

. Understand processes that link the terrestrial water, energy and carbon cycles;
. Estimate global water and energy fluxes at the land surface;

. Quantify net carbon flux in boreal landscapes;

. Enhance weather and climate forecast skill;

. Develop improved flood prediction and drought monitoring capability.

1.2.2 Measurement Approach

Table 1 is a summary of the SMAP instrument functional requirements derived from its
science measurement needs. The goal is to combine the attributes of the radar and radiometer
observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness,
and vegetation) to estimate soil moisture at a resolution of 10 km, and freeze-thaw state at a
resolution of 1-3 km.

The SMAP instrument incorporates an L-band radar and an L-band radiometer that share a
single feedhorn and parabolic mesh reflector. As shown in Figure 1, the reflector is offset from
nadir and rotates about the nadir axis at 14.6 rpm (nominal), providing a conically scanning antenna



beam with a surface incidence angle of approximately 40°. The provision of constant incidence
angle across the swath simplifies the data processing and enables accurate repeat-pass estimation of
soil moisture and freeze/thaw change. The reflector has a diameter of 6 m, providing a radiometer 3
dB antenna footprint of 40 km (root-ellipsoidal-area). The real-aperture radar footprint is 30 km,
defined by the two-way antenna beamwidth. The real-aperture radar and radiometer data will be
collected globally during both ascending and descending passes.

To obtain the desired high spatial resolution the radar employs range and Doppler
discrimination. The radar data can be processed to yield resolution enhancement to 1-3 km spatial
resolution over the 70% outer parts of the 1000 km swath. Data volume prohibits the downlink of
the entire radar data acquisition. Radar measurements that allow high-resolution processing will be
collected during the morning overpass over all land regions and extending one swath width over the
surrounding oceans. During the evening overpass data poleward of 45° N will be collected and
processed as well to support robust detection of landscape freeze/thaw transitions.

The baseline orbit parameters are:
= Orbit Altitude: 685 km (2-3 days average revisit and 8-days exact repeat)
= Inclination: 98 degrees, sun-synchronous
= Local Time of Ascending Node: 6 pm

Table 1. SMAP Mission Requirements
Scientific Measurement Requirements Instrument Functional Requirements
Soil Moisture: L-Band Radiometer (1.41 GHz):
~+0.04 m’m” volumetric accuracy(l-sigma) in | Polarization: V, H, T5 and T4
the top 5 cm for vegetation water content < 5 kg | Resolution: 40 km

m?; Radiometric Uncertainty*: 1.3 K
Hydrometeorology at ~10 km resolution; L-Band Radar (1.26 and 1.29 GHz):
Hydroclimatology at ~40 km resolution Polarization: VV, HH, HV (or VH)

Resolution: 10 km

Relative accuracy*: 0.5 dB (VV and HH)
Constant incidence angle** between 35° and
50°

Freeze/Thaw State: L-Band Radar (1.26 GHz and 1.29 GHz):
Capture freeze/thaw state transitions in integrated | Polarization: HH

vegetation-soil continuum with two-day precision, | Resolution: 3 km

at the spatial scale of land-scape variability (~3 | Relative accuracy*: 0.7 dB (1 dB per channel
km). if 2 channels are used)

Constant incidence angle** between 35° and
50°

Sample diurnal cycle at consistent time of day | Swath Width: ~1000 km
(6am/6pm Equator crossing);
Global, ~3 day (or better) revisit; Minimize Faraday rotation (degradation factor
Boreal, ~2 day (or better) revisit at L-band)

Observation over minimum of three annual cycles | Baseline three-year mission life

* Includes precision and calibration stability
** Defined without regard to local topographic variation

The SMAP radiometer measures the four Stokes parameters, V, H and Ts, and Tsat 1.41
GHz. The Ts-channel measurement can be used to correct for possible Faraday rotation caused by




the ionosphere, although such Faraday rotation is minimized by the selection of the 6am/6pm sun-
synchronous SMAP orbit.

At L-band anthropogenic Radio Frequency Interference (RFI), principally from ground-
based surveillance radars, can contaminate both radar and radiometer measurements. Early
measurements and results from the SMOS mission indicate that in some regions RFI is present and
detectable. The SMAP radar and radiometer electronics and algorithms have been designed to
include features to mitigate the effects of RFI. To combat this, the SMAP radar utilizes selective
filters and an adjustable carrier frequency in order to tune to pre-determined RFI-free portions of the
spectrum while on orbit. The SMAP radiometer will implement a combination of time and
frequency diversity, kurtosis detection, and use of T4 thresholds to detect and where possible
mitigate RFI.

The SMAP planned data products are listed in Table 2. Level 1B and 1C data products are
calibrated and geolocated instrument measurements of surface radar backscatter cross-section and
brightness temperatures derived from antenna temperatures. Level 2 products are geophysical
retrievals of soil moisture on a fixed Earth grid based on Level 1 products and ancillary
information; the Level 2 products are output on half-orbit basis. Level 3 products are daily
composites of Level 2 surface soil moisture and freeze/thaw state data. Level 4 products are model-
derived value-added data products that support key SMAP applications and more directly address
the driving science questions.

Figure 1: The SMAP observatory is a dedicated spacecraft with a rotating 6-m light-weight
deployable mesh reflector. The radar and radiometer share a common feed.
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Table 2. SMAP Data Products Table.

1.3 Product Objectives

SMAP radiometer measurements in the L-band frequency range are sensitive to surface
(~0-5 cm) soil moisture, but with the SMAP 6 m reflector antenna, the effective ground resolution
is about 40 km. Using the same antenna system but with synthetic aperture radar (SAR) processing,
the SMAP L-band radar provides higher resolution (~3 km) backscatter measurements. The high
resolution advantage of radar is diminished for soil moisture sensing by the higher sensitivity of
radar to surface roughness and vegetation scattering.

Soil moisture variations lead to a dynamic range in brightness temperature that can be tens
of degrees Kelvin [6]. The SMAP radiometer can map the surface to within a few degrees of
Kelvin accuracy. Soil moisture variations cause only about 5 to 10 dB range in the SMAP radar
backscatter cross-section [7]. With a typical instrument sensitivity of about 1 dB, this leads to
relatively less soil moisture sensitivity for the instrument. Furthermore the presence of a vegetation
canopy reduces the dynamic range of radar backscatter cross-section faster than radiometer
brightness temperature.

For the above reasons, neither the SMAP radiometer nor the radar can individually meet the
SMAP Level 1 requirements for soil moisture spatial resolution (10 km) and accuracy (0.04
cm’/cm’). This ATBD proposes baseline and option algorithms that overcome these limitations by
merging the active (radar) and passive (radiometer) measurements to derive a 9 km soil moisture
product L2 SM_ AP that meets the SMAP Level 1 requirements.
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Relative to one another, the SMAP radiometer brightness temperature measurements are
coarser resolution but with higher sensitivity to soil moisture and the SMAP radar backscatter cross-
section measurements are higher resolution but with somewhat reduced sensitivity to soil moisture
especially over densely vegetated land surfaces. The L2 SM_ AP soil moisture product merges the
two measurements to produce soil moisture retrieval with intermediate resolution that meets the
Level 1 requirements.

The baseline suite of products from the SMAP mission is shown in Table 2. The Level 2
radiometer-only soil moisture product (L2 SM_P) is derived principally from the brightness
temperature product (L1B_TB). This data product L2 SM_P is posted on a 36 km Earth fixed grid.
The L2 SM_P product also includes a land brightness temperature estimate that is corrected for
water bodies within the 36 km. This brightness temperature is available through a ‘pipe-bend’
during the production of the L2 SM P processing. This water-body corrected brightness
temperature is an input for the L2 SM_AP data processing.

The radar-only soil moisture (L2 _SM_A) is a fine-resolution (3 km) soil moisture estimate
derived from the Hi-Res radar backscatter data (L1C SO HiRes). The L2 SM_A data product is
unlikely to meet the L1 accuracy requirements, although soil moisture information is expected to be
achieved at a reduced accuracy, but at higher resolution. The L2 SM_ A produces radar backscatter
cross-section values aggregated to 3 km during the early stages of its processing. Through another
‘pipe-bend’ this data set along with water body and freeze/thaw flags are made available to the
L2 SM_AP data processing as input.

The data product L2 SM_ AP is posted on a 9 km EASE grid that is nested consistently
with the 36 km brightness temperature and 3 km radar backscatter cross-section data sets (see
Figure 2 and its discussion in Section 3.1).

1.4 Historical Perspective

In the past, numerous studies [8, 9, 10, 11] have attempted to obtain high resolution soil
moisture by downscaling coarse resolution (~50 km) soil moisture products from satellite-based
microwave radiometers. These studies used fine scale ancillary geophysical information like
topography, vegetation, soil type, and precipitation that exert physical control over the evolution of
soil moisture. High resolution thermal infra red data from MODIS and soil parameters were utilized
in a deterministic approach to disaggregate SMOS ~40 km soil moisture product to ~10 km soil
moisture estimate [12]. From all these approaches, one common aspect is the use of static and
dynamic ancillary geophysical data in the downscaling/disaggregation approaches. The ancillary
geophysical data come from different sources with inherent systematic and unsystematic errors, as
well as registration mismatches that affect the accuracy of the downscaled soil moisture estimates.
Also, the physics of interactions between soil moisture and some geophysical parameters at
different scales is not well understood.

Few studies have been conducted to merge high resolution radar and coarse resolution
radiometer measurements in order to obtain an intermediate resolution product. Change detection
techniques have demonstrated potential to monitor temporal evolution of soil moisture by taking
advantage of the approximately linear dependence of radar backscatter and brightness temperature
change on soil moisture change. The feasibility of a change detection approach using the Passive
and Active L-band System airborne sensor (PALS) radar and radiometer data obtained during the
SGP99 campaign is presented in [13]; a similar approach is used to downscale PALS data using

11



AIRSAR data from the SMEX02 campaign. The limitation of this technique is the estimation of soil
moisture relative change and not the absolute value of soil moisture; errors also accumulate over
time. A totally different approach is presented in [14], where a Bayesian method is used to
downscale radiometer observations using radar measurements. Kim et al [15] developed a time-
series algorithm based on a linear model of backscatter and soil moisture. For estimating soil
moisture at intermediate resolution (9 km), they determine the two unknowns of the linear model
for each pixel within the coarse radiometer pixel. Piles et al. [16] presented a change detection
scheme within an SMAP-like context that uses the approximately linear dependence of change in
radar backscatter to soil moisture change at radiometer resolution, temporal change in backscatter at
radar resolution and previous day soil moisture data to estimate soil moisture at ~9 km. Like [13]
this approach also suffers from accumulation of errors over time. A spatial variability technique
developed by [17] to blend SMAP radar measurement and radiometer-based soil moisture data also
takes advantage of approximately linear dependence of backscatter change to soil moisture change
at the radiometer resolution which constraints the relative backscatter difference within the coarse
radiometer footprint to estimate soil moisture at ~9 km resolution. Unlike [13] and [15], the spatial
variability technique used in [17] does not require the previous satellite overpass observations to
estimate the current soil moisture value. A new active-passive algorithm is developed by [18] that
draws from all the above algorithms and techniques ([13], [15], [16], and [17]). The new active-
passive algorithm [18] downscales the coarse-scale radiometer-based gridded brightness
temperature using the fine resolution radar backscatter, and then near surface soil moisture is
retrieved from the downscaled brightness temperature. The algorithm presented by [18] is the
current baseline L2 _SM_ AP algorithm, and is discussed in Section 3 in detail.

1.5 Product Characteristics

The L2 SM_AP product is based on the merger of the SMAP radiometer and radar
instrument products at two discrete grid resolutions i.e., 36 km and 3 km, respectively. The Equal-
Area-Scalable-Earth (EASE) grid cells of the radiometer and radar products nest perfectly (refer
L2 SM P ATBD), and therefore L2 SM_ AP 9 km soil moisture product have 16:1 and 1:9
correspondence with the radiometer and radar products, respectively. The grid definition used in the
algorithms is illustrated in Fig. 2. The baseline and optional algorithms disaggregate the coarse
resolution radiometer brightness temperature product based on the spatial variation in high
resolution radar backscatter. In addition, the algorithms require static and dynamic ancillary data.
These ancillary data are resampled to the same EASE grid prior to ingestion in the L2 SM_AP
processing. The dynamic ancillary data used to retrieve soil moisture for a particular 9 km grid cell
at a specific point in time will be listed in the SMAP L2 SM_AP and L3 SM_AP output files for
the benefit of end users.

1.6 Document OQutline

This document contains the following sections: Section 2 describes the basic physics of
combining passive microwave and active microwave remote sensing at L-band; Section 3 provides
description and formulation of the L2 SM_AP baseline and option retrieval algorithms; Section 4
presents the results from the tests conducted and the error budget for the L2 SM_AP baseline
algorithm; Section 5 discusses the practical consideration for implementing the baseline algorithm
and generating the L2 SM_ AP product; Section 6 provides the product specifications table; Section

12



7 provides a list of references; Section 8 is the glossary (under development). This ATBD will be
updated as additional work is completed during the pre- and post-launch periods.

2 PHYSICS OF THE PROBLEM

The L2 SM_AP baseline algorithm is essentially focused on the disaggregation of the
radiometer brightness temperature using the radar backscatter spatial patterns within the radiometer
footprint that are inferred from the radar measurements. The spatial patterns need to account for the
different levels of radar backscatter cross-section sensitivity to soil moisture owing to the variability
in the density of vegetation cover. For this reason the radar measurements within the radiometer
footprint are scaled by parameters that are derived from the temporal fluctuations in the radar and
radiometer measurements. Because SMAP makes coincident and constant look-angle radar and
radiometer measurements, the co-variations over specified (short relative to plant phenology)
periods of time are mostly related to surface soil moisture changes rather than contributions of
vegetation and surface roughness. The latter two factors change gradually over long time-periods
such as monthly/seasonally.

Once the disaggregated brightness temperature at 9 km is produced, the brightness
temperature inverse algorithms developed for the L2 SM_P product are then applied with ancillary
information at 9 km to produce the L2 SM_AP product.

The basis for the brightness temperature disaggregation based on radar measurements
begins with relating the radiometer measurements with the radar backscatter cross-section
measurements in a simple conceptual framework outlined in this section. This analysis is meant to
simply demonstrate the dependencies and it is not directly (i.e., algebraically) part of the baseline
L2 SM_AP algorithm formulation.

The brightness temperature at polarization p and its dependency on surface characteristics
may be demonstrated using the 7 — w model (refer to the SMAP ATBD: L2 & L3 Radiometer Soil
Moisture (Passive) Products. SMAP Project, JPL D-66480, Jet Propulsion Laboratory):

Tp, =Ts. e /0 ey + T (1= w) - (1—e /%) (141, e /) (1

where T is the soil effective temperature, 7, is the vegetation temperature, 7, is the nadir vegetation
opacity, w, is the vegetation single scattering albedo, and r, is the soil reflectivity [6].

At the morning nodal crossing overpass isothermal near subsurface-to-surface-canopy
thermal conditions are expected so that Ty = T, = T. Under low vegetation cover conditions the
single-scattering albedo can be neglected so that w <« 1. The polarized emissivity and reflectivity
are related by e, = 1 — 7,,. Using these assumptions and identities, (1) becomes simply:

Tp, = T(1 — 1, - e 27/c050) )

The surface reflectivity can be decomposed into a component for smooth surfaces Ts, corrected for

—hcos?6

roughness as in 1, = Ts,€ where £ is roughness parameter related to the root-mean-square

(RMS) of surface roughness. Now (2) becomes:
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TBp =T- (1 _ Tsp _e—hcosze _e—Z‘rp/cose) 3)

The radar backscatter cross-section for co-polarization pp is:

t _ _surf_ -—21,/cosf vol int
Opp = Opp. € 7P + opp + opp 4
The first term is the surface backscatter, Gggrf , modified by the two-way attenuation through a
vegetation layer of nadir opacity 7,. The second term represents the backscatter from the vegetation

volume, app L. The third term represents interactions between vegetation and the soil surface, ag,ﬁt.

From the empirical models presented in [19] and [20], the surface contribution O';er is

. . . . 2
conceptualized as the product of polarization magnitude |app| and surface roughness
characteristics as captured in a function f; (roughness) as in:

2
;;rf = f,(roughness) - |0:pp| (%)

The polarization magnitude |app |2 is a function of soil dielectric properties and incidence angle. It
is related to the soil reflectivity Ts, in the horizontal co-polarization if the center-frequency of the
radar and radiometer are close. In the vertical co-polarization, the polarization magnitude and soil
reflectivity are near-linearly proportional but not equivalent. Given the proportionality |app |2 X 75,

through conservation of energy, the linear coefficients of the relationship may be absorbed in the
empirical function f; (roughness) so that:

;;rf = f, (roughness) T, 6)

The interaction term U;;?,t is a complex function of vegetation properties, soil roughness
characteristics as well as surface reflectivity. The interaction term may be written as:

opyt = f>(roughness, vegetation) "Ts, @)

using a function f, (roughness, vegetation) that depends on surface roughness and vegetation in

complex ways. The vegetation volume scattering J;,’;,’l is a complex function of vegetation alone

through a third function f;(vegetation) as in:
J;,’;,’l = f3(vegetation) ®)
Now the radar backscatter cross-section for co-polarization pp is:

t _
Opp =

fi(roughness) - 7, - e ~2p/cosb

+f,(roughness, vegetation) - sy
+f3(vegetation)

Solve for Tsy:
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1

— . t _
Tsp = fo7mieostyy, (Opp ~ f3) )

The dependencies of the functions f;, f, and f3 are not carried forward in order to simplify the
notation in (9). They depend on surface roughness, vegetation characteristics and incidence angle
in complex ways. Owing to the conical scan strategy adopted by SMAP, they are, however, not
dependent on incidence angle which is usually a confounding factor in radar backscatter modeling
and retrievals.

Substituting (9) into (3) yields:

—h —er/cose

TB,,=T(1 W (opp — fg))
or:
T8y

—h —er/cose f] [ —h —er/cose
3

= [1 t 700 fi e—zrp/c059+f] ' Gpp (10)

fie —er/cose

which suggests a linear functional dependence of brightness temperature and radar backscatter
e—he—zrp/cose

cross-section in the presence of vegetation canopy. The slope [ﬁ = - e Tl
‘e

and intercept

—h —er/cose

a_[1+

viewing angle.

W* f3] are dependent on vegetation, surface roughness characteristics, and

3 RETRIEVAL ALGORITHM

3.1 Grid Definition

Figure 2 shows the nested grid topology of the EASE grid radiometer brightness
temperature (36 km), EASE grid radar backscatter cross-section (3 km), and desired merged active-
passive L2 SM_AP (9 km) products. For convenience in mathematical formulation, the naming
convention of ‘C’ (coarse), ‘F” (fine), and ‘M’ (medium) for the LIB TB/L2 SM P,
L1C SO HiRes, and L2 SM_AP grid scales, respectively, is used throughout the following sections.
It is evident from the grid topology (Fig. 2) that within a single (nc = 1) 36 km x 36 km grid cell of
C there are nm = 16 grid cells of M and nf'= 144 grid cells of F. Radar backscatter cross-section at
coarse resolutions (M and C) are obtained by aggregating fine resolution radar backscatter cross-
section in power.
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Figure 2: Grid definition of radiometer, radar, and merge product where nf and nm are the number
of area pixels of radar and merged product, respectively, within one radiometer area pixel nc.
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3.2 Formulation of Baseline L2 SM_AP Algorithm

The SMAP L-band radiometer will measure the natural microwave emission in the form of
the brightness temperature (TBp) of the land surface, while the L-band radar will measure the energy

backscattered (0p,p) from the land surface after transmission of an electromagnetic pulse. With
concurrent SMAP radiometer and radar data and the SMAP constant look angle measurement
approach over a particular region on the Earth, the influence of azimuthal and viewing-angle
dependent factors are minimized. Over a short period of time, the increase of surface soil moisture
or soil dielectric constant will lead to a decrease in radiometer 7 [6] and an increase in radar o [7]
measurements, and vice-versa. During this short time period T and o are negatively correlated due
to soil moisture variations in time. The time period is generally shorter than seasonal phenology of
vegetation.

The land surface vegetation and surface roughness factors vary on time scales longer that
those associated with soil moisture. It should be noted that in some agricultural landuse regions the
vegetation can grow and change attributes rapidly over a few days that may be a source of error.
Also, precipitation and associated surface disturbances can change the soil roughness characteristics
that may introduce another source of error. Despite these sources of uncertainty, within this region
of interest over a short period of time the SMAP measured Tg, and oy, are expected to have a

functional relationship, which based on (10) is likely a linear functional relationship:
TB,, =a+ B oy (11)

The unknown parameters a and £ are dependent on the dominant vegetation and soil roughness
characteristics (see discussion following Equation 10). Energy conservation that yields the linear
dependence in (11) is based on units of power for the radar backscatter cross-section. However, the
linear functional relationship also holds when oy, is expressed in decibel (dB), and is shown using
the PALS data in upcoming sections. The T polarization can either be v or 4 and the o polarization
is either vv or 4h. Equation (1) evaluated at scale C (36 km) is:

Tp,(C) = a(C) + B(C) - opp(C) (12)

Here 0,,,(C) = % Z?Il 0pp (F;), where F' = 3 km grid resolution and nf is the number of F grid cell

within C (Fig. 2). The parameter S(C) can be statistically estimated based on the time-series
regression in (12), i.e. pairs of SMAP radiometer Tp, (C) and spatially-averaged radar data g,,,,(C)

from successive overpasses over the same Earth grid are used in the statistical linear time-series
regression Tp (C) = intercept + slope - 0y, (C). Clearly these parameters are effective across

scale C.

As a test of robustness of the assumption of linear functional relationship (12) between
brightness temperature and radar backscatter cross-section, data from PALS taken during the Soil
Moisture Experiment 2002 (SMEXO02) are used to show the strength of linear functional
dependence (i.e., R’) between the time-series of TBp K (4 km) and 0, dB (4 km) specific to a
particular location or coarse radiometer pixel (Fig. 3). The lower panel of Fig. 3 shows that the
explained variance (high R’) of the linear approximation Tg, = a+ B.0y, is between 65% and

93% for the SMEX02 PALS observations. There were only 8 days of PALS flights during SMEX02
and in some locations within the larger flight domain inadequate soil moisture changes occurred.
The R’ are slightly lower for the middle region of the PALS domain (Fig. 3) because this region
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does not experience enough transition or dynamic range in surface soil moisture conditions as
compared to the remainder of the PALS domain.

Another test is shown in Fig. 4 to emphasize the linear functional relationship between TBp
800 m and 0}, 800 m using the SMEX02 PALS data. Pairs of TBp and gy, are binned based on

Radar-Vegetation-Index (RVI') for the entire PALS data of the SMEX02 campaign. Irrespective of
spatial context, the scatter plots of Fig. 4 illustrate near linear trend between TBp and gy, for all the

range of RVI except for heavily vegetated regions (RVI: 0.8 — 1). The parameter § that indicates
backscatter change sensitivity to brightness temperature change is confirmed to be highly dependent
on vegetation characteristics. Values of f for different classes of RVI show that dense vegetation
cover masks the soil moisture sensitivity (£ approaches near zero for RVI approaching unity).
Across low vegetation cover regions (low RVI), the changes in radiometer brightness temperature
are also reflected in changes in radar backscatter, leading to large (negative) values of the
statistically-estimated }.

'The RVI is defined as

8xopy

RVI =

Oypt Oppt 2%0py

where the radar backscatter values in units of power [15]. RVI is an index that is directly
proportional to the amount of vegetation on the land surface. It can be derived directly from SMAP
radar measurements. When the vegetation cover is dense and there is complete volume scattering
from the vegetation canopy. For complete volume scattering g, = opp, = 3 .0py, therefore it
makes RVI reach the upper limit of unity. For bare smooth surfaces, the cross-pol radar backscatter
cross-section is insensitive to soil moisture and is much smaller than the co-pol values. This leads to
a near-zero RVI. Conveniently, the RVI has a dynamic range between zero and unity.
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Figure 3: Gridded SMEX02 PALS L-band radiometer Tg,at ~4 km resolution and radar oy, at
~800 m resolution for eight days are shown in the top two panels. The lower panel shows the
explained-variance or R’ between the spatially-aggregated (~4 km) T, and 0y,
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Figure 4: Scatter plots of SMEX02 Ty, K and 0, dB anomalies categorized based on range of RVI.

To further confirm the fidelity of the linear functional relationship between TBp and ay,,, for

different hydroclimatic regions and various landcovers, PALS data from multiple field campaigns
(SGP99, SMEXO02, CLASIC, and SMAPVEXO0S8) are consolidated and analyzed. During
consolidation, campaign-average values of TBp and oy, are removed to eliminate campaign-to-

campaign variations in PALS instrument and data processing calibration biases. Correlations
between different combinations of TB,, and gy, are then computed. The results are binned based on
Radar-Vegetation-Index (RVI), and are shown in Fig. 5. Given the SMAP instrument design,
various combinations of TB,, and oy, are possible for the development of the active-passive
algorithm. From Fig. 5, it is apparent that the linear functional dependence between Ty and oy,

exhibits the highest correlation, and therefore is a preferable combination considered for the
proposed active-passive algorithm. Nonetheless further testing of the polarization choices will be
carried out during prelaunch phase based on expected airborne data and simulated datasets.
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Figure 5: Correlations between different combinations of TBp and oy evaluated from PALS data

taken over four field experiments.

The slopes (f) of (11) and standard error in f are also estimated from the consolidated PALS data
(SGP99, SMEX02, CLASIC, and SMAPVEXO08) for different landcover classes (Fig. 6 and Fig 7).
The trends of f for all the landcover classes are similar, and the systematic progression in
magnitude of § with respect to RVI follows the basic understanding of relationship between TBp and
0pp- The slope between brightness temperature and radar backscatter changes over time is negative
in sign and the magnitude decreases for denser vegetation conditions. Figure 6 also highlights the
differences in f due to vegetation types and for different stages of vegetation phenology. High
standard errors are observed at RVI value of 0.1 because of low counts of TBp and 0, datasets.
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Figure 6: f estimates from consolidated PALS data taken over four field experiments (SGP99,
SMEX02, CLASIC, SMAPVEXO0S8) for different landcover.

Figure 7: Standard errors in estimated f for different landcovers with respect to RV1I.
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The statistically-estimated slope parameter S(C) in (12) (when based on SMAP
measurements) is specific for a given location. This is because S(C) is a sensitivity parameter
relating TBp (C) and 0, (C) and it is a function of surface characteristics like the local vegetation

cover and soil roughness for a particular period of time. The parameter varies seasonally as well as
geographically depending upon landcover. Therefore the time-series pairs of TBp (C) and 0, (C)

used for a location in the regression span a moving-window period over which vegetation
phenology and surface characteristics can be considered constant. The length of the temporal
window is discussed in next section.

To develop the satellite-based active-passive algorithm further, (11) can also be
conceptually evaluated at the scale M (9 km) within the radiometer footprint C:

Ty, (M;) = a(M;) + B(M;}) - 0 (M) (13)

nm]-
i=1

where gy, (Mj) =2._, Opp(F;) obtained from the SMAP high resolution (3 km) radar data product.

Here TBp (Mj) is the unknown brightness temperature at scale M;. This scale brightness

temperature is not available given the SMAP radiometer instrument resolution. In fact this variable
is the target of the algorithm and it is referred to as the disaggregated brightness temperature.

The first step in developing the algorithm is to subtract (12) from (13):
Ts,(M;) = Tg, () = {a(M;) = a(C) } + {[B(M;) - 0pp (M) = [B(C) - 0 (O]} (14)

Because TBp(Mj) is not available, we cannot estimate the parameters a'(Mj) and B (Mj) in the

manner that was followed at scale C. The path forward to incorporate the effects of the variations of
these parameters at scale M; with respect to the coarser scale C begins with algebraically rewriting

(14) as

Tp, (M;)
=Tp,(C) + RHS Term I
{.B(C) ’ [Gpp (M]) - Upp (C)]} RHS Term II

+{[a(M;) — a (O] + [B(M;) = B(O)] - 0 (M) } RHS Term Il (15)

The left-hand-side of (15) is the target variable of the active-passive algorithm, i.e. the
disaggregated brightness temperature at the 9 km scale M;.

The first term on the right-hand-side (RHS Term I), TBp (C), is the radiometer-measured

brightness temperature at 36 km or scale C. This is the brightness temperature corrected for water
body contributions that is produced during the L2 SM_P processing and it is primarily based on the
radiometer measurement.

The RHS Term 1I, {,B(C) . [O'pp (Mj) — opp(C)]}, can be calculated based on the regression
parameter S(C) that is estimated through the time-series of radiometer brightness temperature
measurements and radar measurements aggregated to scale C. The remainder of this second RHS
term ([O'pp (M j) — opp(C )]) is also based on the radar measurements aggregated to scales M; and C.
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The RHS Term III accounts for the deviations of the parameters o and £ within the grid
cell C. The term {[a(Mj) - a'(C)] + [,B’(Mj) — ,B(C)] . app(Mj)} is in wunits of brightness
temperature and represents subgrid scale (relative to C) heterogeneity effects. The parameters o and
J depend on vegetation and surface roughness. For a perfectly homogeneous region, the parameters
a(Mj) = a(C) and ﬁ(Mj) = B(C), and the subgrid heterogeneity term becomes zero. However, in
nature homogeneity within C rarely exists.

The SMAP radar also provides high-resolution cross-polarization radar backscatter
measurements at scale /' which are principally sensitive to vegetation and surface characteristics.
The subgrid deviation/heterogeneity patterns in vegetation and roughness as captured by the cross-
polarization backscatter at scale M; is [apq (c) — Opq (Mj)]. This indicator can be converted to
variations in co-polarization backscatter through multiplications by a sensitivity parameter
[MLW] . This sensitivity, denoted by the scale C variable I' = [ML(Mj) ,

adpq(Mj) c adpq(Mj) c
particular grid cell C and the particular season for grid cell C. It is estimated based on the collection
of co-polarization and cross-polarization radar backscatter cross-section within each grid cell C.

is specific to the

Consolidated PALS data are used to test the strength of relationship between the co-
polarization and cross-polarization backscatter. Significant correlation is observed between the co-
pol and cross-pol backscatter. The parameter I’ and standard error in I" categorized based on RVI
are illustrated in Fig. 8 and Fig 9, respectively, for different landcover classes. I' can be estimated
using high-resolution SMAP co-polarization and cross-polarization radar backscatter data within a
scale C through statistical regression. For any scale C data granule there will be a reasonable
number of scale M; radar data pairs to estimate the sensitivity parameter /.

The term I'- [qu (C) — gpq (Mj)] is the projection of the cross-polarization subgrid
deviation onto the co-polarization space. These variations are due to the heterogeneity in parameters
o and f in the radar co-polarization space. It can be converted to brightness temperature units for
use in (15) through multiplication by 8(C), the particular radiometer grid scale C conversion factor
relating co-polarization backscatter variations to brightness temperature variations. Thus the product
BC)-T- [qu (C) — gpgq (Mj)] is the contribution of subgrid (subgrid to scale C) variations in « and
f to the brightness temperature at scale M;. The SMAP active-passive brightness temperature
disaggregation algorithm is completed by substituting the term S(C) - I" - [qu (C) — gpq (Mj)] to
RHS Term I in (15),

Tp,(M;) = Tp,(C) +

{ﬁ ) 