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1.0  Introduction

The ICESat (Ice, Cloud, and Land Elevation Satellite) mission will be launched July 2001.  This
mission will use the GLAS (Geoscience Laser Altimeter System) instrument to determine the
topography of the polar ice sheets.  To accurately measure the ranges it is necessary to correct for
the atmospheric delay of the laser pulses.  Atmospheric delay depends on the refractive index
along the path that the laser pulse takes through the atmosphere.  The refractive index of air at
optical wavelengths is a function of density.  For ray paths near zenith the atmospheric delay can
be shown to be almost directly related to surface pressure and total column precipitable water
vapor, the deviation being due to variations of gravity with respect to height and the effects of
non-hydrostatic forces in the atmosphere.  For ray paths off zenith a mapping function relates the
delay to the zenith delay.

Values for surface pressure and precipitable water vapor will be calculated from global atmo-
spheric analyses.  We use the NCEP Global Analyses, a 1 by 1 degree gridded data set with sam-
pling every 6 hours. Variables included are temperature, geopotential height and relative humidity
at standard upper atmospheric pressure levels.  These atmospheric fields are interpolated to the
location and time tag of the laser footprints.

Note that all units used in the following text are SI unless otherwise stated.

2.0  Algorithm Description

2.1  Atmospheric Range Correction Model
The one-way correction to the GLAS range measurement, ∆L, due the refractive effects of the
Earth’s atmosphere is defined as

(1.1)

where n(s) is the refractive index of the atmosphere along the ray path, Satm is the curved path
followed by the laser pulse from the space craft to the ground, and Svac is the straight line path
from the space craft to the ground.  Evaluation of the second integral only requires the spa
and laser footprint coordinates.  Evaluation of the first integral also requires knowledge 
refractive index along the ray path and is most accurately calculated using ray tracing or n
cal integration methods.  Direct ray tracing is not practical for large amounts of data, ho
semi-analytical models can provide results that deviate near zenith from ray tracing by <
Models that relate the total delay to the zenith delay by a mapping function are commonl
such that

(1.2)

where  is a mapping function that depends on elevation angle, , and a parameter

∆L n s( )d
Satm
∫ s sd

Svac
∫–=

∆L m ε P,( ) n z( ) 1–( ) zd
Z

∞

∫=

m ε P,( ) ε
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,

P.  The integral is evaluated along a zenith path from ground point, Z, to the space craft.  The map-
ping function will be described in section 2.2.

The argument of the integral,  is the refractivity and is normally given in parts-per-million

i.e., .  For optical frequencies, the refractivity, N, is given by [Owens, 1967]

(1.3)

where k1(λ) and k2(λ) are experimentally determined functions of the laser wavelength, λ, which
relate the refractivity to the molecular density of the dry-air constituents of the atmosphere and to
the density of water vapor.  Pd and Pw are the partial pressures of dry-air and water vapor, T is tem-
perature, and Zd and Zw are the compressibilities of dry-air and water vapor.  The compressibilities
enter through the non-ideal gas law in the form

(1.4)

where ρi is the density of gas i (dry air or water vapor in the case of the atmosphere) with molecu-
lar weight Mi and compressibility Zi, at pressure Pi and temperature T; and R is the Universal gas
constant. For reasons that will become clearly shortly, Equation (1.3) is often combined with
Equation (1.4) and written such that the total density of gas, , appears.  In this

form Equation (1.3) becomes

(1.5)

where we have dropped the dependence of k1 and k2 on wavelength for simplicity.  The reason for
this choice of form for refractivity is that the first term is the largest term and with the assump-
tions that the atmosphere is in hydrostatic equilibrium and gravity is constant through the atmo-
spheric column, the integral in Equation (1.2) for the range correction can be solved exactly. To
obtain this form, we use the hydrostatic equation

(1.6)

where  is the height derivative of pressure as a function of height z and  is the gravita-

tional acceleration.  Substituting Equation (1.6) into the first term of Equation (1.5) and then sub-
stituting into Equation (1.2) yields the “hydrostatic” component of the range correction, 

which can be written as

n 1–( )

n 1–( ) 10
6–
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N k1 λ( )
Pd
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.

now be
(1.7)

where gm is the mean value of gravity in the column of the atmosphere.  Since gravity decreases
slowly with height and can be closely approximated with a simple function of latitude, this value
can be expressed accurately in terms of the height, Z, and latitude, , of the ground point to which
the altimeter measurement is made [Saastamoinen, 1972]

(1.8)

Equation (1.7) can be further reduced because the integral is simply the surface pressure at height
Z, and therefore the largest part of the atmospheric range correction in the zenith direction is given
by

(1.9)

where PSURF is the surface pressure. 

The remaining part of the zenith atmosphere range correction is due to the residual part of the
water vapor not included in the hydrostatic term, sometimes called the “wet” component, 

Substituting the second term of Equation (1.5) into equation (1.2) gives

(1.10)

where .  The integral is simply the total column precipitable water vapor, PW,

an atmospheric variable often reported in atmospheric models.  The zenith wet delay can 
written as

(1.11)

The empirical functions in the refractivity equation are given by Owens [1967] as

(1.12)
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(1.13)

where  is in µm.  For the GLAS laser wavelength of 1.064 µm,  and

.  Given molecular weights of dry air and water vapor of Md = 28.9644 kg

kmol-1 and Mw = 18.0152 kg kmol-1, respectively, .  Combining these values

into Equations (1.9) and (1.11) gives the final zenith delay equations

(1.14)

(1.15)

for 

(1.16)

Given an average surface pressure value of 105 Pa, the zenith hydrostatic delay is approximately
2.35 m and is the major component of total delay.  Zenith wet delay is much more variable, given
precipitable water vapor values of less than 10 mm in the polar regions to 50 mm in the tropics,
the corresponding zenith wet delay varies from 1 to 4 mm.

2.2  Mapping Function
The mapping function relates the total atmospheric delay at an arbitrary elevation angle to the
zenith delay such that

(2.1)

When it is assumed that the refractivity of the troposphere is spherically symmetric, Marini
[1972] showed that the continued fraction form of the mapping function is

(2.2)

where a, b, c, ... are parameters that may be approximated using climatic data.  The very simplest
form of this equation is 

k2 0.648731 0.0174174λ 2–
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(2.3)

A number of different forms of the mapping function have been published, we will compare
Equation (2.3) to two different but widely using mapping functions.  One is by Davis, et al [1985],
named CfA-2.2, which depends on surface pressure and surface temperature.  The other by Niell
[1996] which depends on latitude and day of year.  The different climatic variables used are due to
the different climatologies and functional forms of the parameters used.  We compared the simple
mapping function to the test functions by subtracting the test function from the simple mapping
function and multiplying by 2.3 m, which is a typical value for zenith delay.  This comparison
gives estimates of how much the total delay will change when different mapping functions are
used.

Figure 1.  Change in delay of the simple mapping function compared to CfA-2.2 mapping func-

m ε( ) 1
εsin

-----------=
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Figure 2.  Change in delay of the simple function compared to Niell mapping function.  Left plot
is for maximum day of year phase, right plot is for minimum day of year phase.

For both of the comparisons, using the simple form of the mapping functions compares very
closely to the other forms.  We don’t expect that the GLAS space craft will point beyond 1o off
nadir, the differences in this region are less than 0.5 mm for CfA-2.2 and 0.1 mm for Nie
should be noted that these other mapping functions are optimized for low elevation angles
fact we expect the Niell mapping function to be more accurate at higher elevation angles du
functional form.  So we will use the simple  form of the mapping functio

Another concern for off-nadir pointing of the space craft is the change in footprint location d
bending of the ray in the atmosphere.  This effect will not significantly change the atmos
delay calculation but should be considered for space craft pointing calibrations where the lo

75 80 85 90
0

10

20

30

40

50

60

70

80

90

Elevation Angle

La
tit

ud
e

Change in Delay (mm)

0.025

 0.05

 0
.0

5

0.075
0.075

  0.1
  0.1

0.125

 0.15

 0
.1

5

0.175

0.
17

5

  0.2

  0
.2

75 80 85 90
0

10

20

30

40

50

60

70

80

90

Elevation Angle

La
tit

ud
e

Change in Delay (mm)

0.025
0.025

 0.05
 0.05

0.075
0.075

  0.1

0.125
0.125

 0.15
 0.15

0.175
0.175

  0.2

m ε( ) 1 εsin( )⁄=
ATBD: Atmospheric delay correction 8 2/18/99



of the laser footprint is directly measured at the ground.

Figure 3. Geometry of laser ray path.

The real curved path is shown by the dashed line in Figure 3.  P1 is the expected ground location

of the laser footprint for the satellite position and pointing angle, , as measured

at the satellite.  P2 is the real ground location of the laser footprint after following the refracted
path through the atmosphere, which is shifted by a distance d towards the sub-satellite point.  If
the satellite position and real footprint location were used to calculate the apparent satellite point-
ing angle, , this would be in error by a certain amount such that

.  This correction can be approximated by a simple expression for pointing

angles of less than 75o [Astronomical Almanac, 1999] such that

(2.4)

where T is the temperature (oC) and P is the pressure (mbar) at the surface.  Using NOAA mean
values of 15oC and 1013 mbar, Equation (2.4) gives an approximate value of

(2.5)

At an altitude of 600 km and pointing angle of 10 degrees, the pointing error will be approxi-
mately 10 arcseconds and the distance the laser footprint is shifted by will be 30 m.

This correction equation may also be used to estimate whether horizontal gradients in the pressure
fields will greatly affect the path of the laser pulse.  A typical upper value of the synoptic pressure
gradient is 10 mbar per 100 km.  Near the surface the derivative of pressure with respect to height
is approximately 0.1 mbar/m.  This means that a typical slope to the pressure field is 0.05 degrees.

SATELLITE

P2

P1

ε1
ε2

d

α1 90° ε1–=

α2 90° ε2–=

α1 α2 αδ–=

αδ 0.00452°P α2tan 273 T+( )⁄=

δα 0.016° α2tan=

 57″ α2tan=
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Assuming that this gradient is constant through the atmosphere (actually, should decrease expo-
nentially) we can put this angle into Equation (2.5) to see how much the path will deviate.  For a
0.05 degree slope the deviation is 0.06 arcseconds which corresponds to a 15 cm shift in the foot-
print location.  This amount of ray deviation will have no discernable effect of the atmospheric
delay.

2.3  External Data
We require a data set that will allow us to calculate values for surface pressure and total precipita-
ble water vapor at the laser footprint locations.  The data will we use are the National Center for
Environmental Prediction (NCEP) global analyses.  These are produced by NCEP as a routine
operational analysis and can be downloaded near real time at an anonymous NOAA ftp site,
ftp.ncep.noaa.gov.  A further guide to using this ftp site can be found in an on-line reference by
Quinn [1999].  Data sources include ground stations, radiosondes, satellites, and buoys.  The glo-
bal analyses are produced on 1 degree grid uniform and complete in latitude and longitude, with a
sampling rate of 6 hours, starting at 0 GMT.  These analyses consist of many meteorological vari-
ables for a range of levels from the surface to the stratosphere. The variables that we will use for
our surface pressure model are temperature, geopotential height, and relative humidity for the tro-
pospheric pressure levels between 1000 mbar and 300 mbar.  The total precipitable water vapor is
given as a single field integrated through the entire atmospheric column.  The NCEP global anal-
yses are described in more detail in an on-line reference by Huang [1995].

The NCEP analyses also have a surface pressure field, produced from unreduced station pres-
sures. This field is decidedly unsatisfactory over rapid changes in elevation. The relatively flat
surfaces adjacent to steep gradients show an artifact called Gibbs effect, which is a ripple in the
pressure field where there should be none.  This is caused by the spectral method used to interpo-
late this field, which is why we need a more reliable surface pressure model that utilizes the upper
atmospheric fields.

2.4  Surface Pressure Model
An atmospheric model of pressure with respect to height is required to reduce the upper level
NCEP fields to a surface pressure.  To simplify the physical model of the atmosphere we will
make certain assumptions.  A static atmosphere model will allow us to consider the vertical distri-
bution of atmospheric variables.  Although the atmosphere is actually a dynamic system, static
atmosphere formulas for variables like pressure and density are valid to a high degree of accuracy.
We will assume a horizontally stratified atmosphere in hydrostatic equilibrium, such that pressure
is related to height by the hydrostatic equation

(4.1)

where Z is geometric height, P is pressure, g is gravity, and ρ is density.  

To allow easier integration of this equation, we will convert geometric height into geopotential
height.  A geopotential meter is defined as the work done by lifting a unit mass one geometric
meter through a region in which gravity is uniformly 9.80665 m/s2, the value of mean sea level
gravity.  The geopotential measured with respect to mean sea level (assumed zero potential) is

Pd g Z( )ρ Z( ) Zd–=
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(4.2)

where g0 = 9.80665 m2/s2m’ [NOAA, 1976].  The derivative of this equation with respect to g
metric height is

(4.3)

This can be substituted into the hydrostatic equation to give

(4.4)

We now require an expression that will convert elevation in geometric meters to geopo
meters.  This will be related to the variation of gravity with height.  Approximating the Earth
sphere with only radial mass variations, gravity is inversely proportional to radius squared, 
will give a conversion equation of

(4.5)

where Re = 6378077m is radius of Earth, gmsl is gravity at mean sea level.  Substituting this eq
tion for gravity into Equation (4.5) gives the conversion formula

(4.6)

Mean sea level gravity depends on geodetic latitude, the formula is based on calculations
standard reference ellipsoid [Emerson & Wilkins, 1971] such that

(4.7)

where φ is latitude, geq = 9.7803184558 m/s2, k = 0.00193166338321, e = 0.00669460532856.

Many atmospheric models, such as the U.S. Standard Atmosphere [NOAA, 1976], simplify their
calculations for pressure by assuming the air to be a dry, ideal gas.  We shall include non-id
effects and water vapor partial pressure.  The equation of state for a pure non-ideal gas is

(4.8)

H
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where Z-1 is called the inverse compressibility and depends empirically on pressure and tempera-
ture [Harrison, 1965b], P is pressure, V is volume, R is the universal gas constant, T is tempera-
ture, m is mass, and M is molecular weight.

Density can be written as , and we can split mass components of water and dry air:

.  If we assume that moist air obeys Dalton’s Law of partial pressures, the 

rate masses can be evaluated by the non-ideal equation of state to give a density equation

(4.9)

where R = 8314.510 J/kmol.K, Mw = 18.01534 kg/kmol, Md = 28.9645 kg/kmol, P is the total pres-
sure and Pw is the partial pressure of the water vapor in the air.  It is implicitly assumed tha
dry air components are homogeneously mixed throughout the lower atmosphere and there
mean molecular weight of dry air is a constant [NOAA, 1976].

Equations for inverse compressibility have been experimentally determined by Owens [
these formulas are accurate to within a few parts per million

(4.10)

(4.11)

We need an equation for water vapor pressure.  Water vapor pressure is related to the sa
vapor pressure using relative humidity [Harrison, 1965a]:

(4.12)

where relative humidity is in a fractional form with values between 0 and 1.  This equation is
true for pure water vapor, not moist air.  However the equation is approximately true for moist 
The World Meteorological Organization (WMO) has adopted the practice of evaluating re
humidity with respect to liquid water at all temperatures, even those below 0 oC.

Saturation vapor pressure is often expressed as a sum of analytical basic functions with 
cally determined weight.  One of the better forms uses Chebyshev polynomials [McGarry, 1983]
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(4.13)

where Pb = 1000 Pa, Ps is saturation vapor pressure, Es(x) are Chebyshev polynomials:

(4.14)

The coefficients as (s = 0,...,10) are as = {2794.027, 1430.604, -18.234, 7.674, -0.022, 0.263,
0.146, 0.055, 0.033, 0.015, 0.013}, Tmax = 648 K, and Tmin = 273 K [Ambrose, 1987].

We now have an expression for density that depends on temperature, relative humidity and pres-
sure.  To solve the hydrostatic equation we must express temperature and relative humidity as
functions of geopotential height, in order to get an expression for density that only depends on
geopotential height.  The NCEP global analyses have values for temperature, geopotential height
and relative humidity at standard pressure levels.  We shall assume that temperature varies lin-
early with respect to geopotential height between these levels, a relatively good assumption for
the lower atmosphere such that

(4.15)

(4.16)

where L is the temperature gradient; T0 and H0 are temperature and geopotential height at the

upper level; T1 and H1 are temperature and geopotential height at the lower level: .

We will also assume that relative humidity varies linearly with respect to geopotential height
between levels such that

(4.17)

(4.18)

where S is the relative humidity gradient, Rh0 is relative humidity at the upper level, Rh1 is relative
humidity at the lower level.  Given these expressions for temperature and relative humidity, the
hydrostatic equation becomes
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(4.19)

This differential equation is first order, non-linear and inhomogeneous, we are not able find an
analytic solution.  To obtain a numerical solution for pressure we will numerically integrate down
from the upper level geopotential height to the desired geopotential height.  Pressure varies
smoothly with geopotential height, this means that we are relatively unrestricted in our choice of
numerical method.  We will use the Bulirsch-Stoer method, which is one of the best ways to
obtain high accuracy solutions with minimal computational effort, provided the integrated func-
tion is smooth and has no singular points within the range of integration [Press et al., 1989].

2.5  Precipitable Water Vapor
The NCEP global analyses give total column precipitable water vapor as a single field evaluated
at the surface, we will use this without modification as input into the zenith wet delay equation.
The precipitable water vapor contribution to total delay is small but highly variable both spatially
and temporally and should be monitored throughout the ICESat mission.  Unfortunately, the glo-
bal analyses are less accurate in the polar regions, especially in the southern regions where there is
a scarcity of data.  The NCEP water vapor fields are particularly troublesome.

To validate the precipitable water vapor fields we will compare them to ground station data.  One
of resources we will use is the GPS global network [Quinn & Herring, 1999].  Precipitable water
vapor can be derived from estimates of GPS tropospheric delay made at each global station.  This
derivation requires the knowledge of surface pressure at the station.  There are over 35 GPS sta-
tions that report surface pressure from on site met packages, however only two of these are in the
polar regions, both in the north.  Where directly measured surface pressure is unavailable we can
use our own surface pressure model without a significant loss of accuracy.  There are currently 4
stations in Antarctica and 6 stations in the Arctic where we can make precipitable water vapor
measurements.  The major advantage of using the GPS global network is the rapid availability of
data and confidence that the data will be available over the length of the ICESat mission.

2.6  Delay Correction with Respect to Height
As can be seen in the previous sections, calculation of surface pressure and therefore delay
requires a knowledge of the height of the laser footprint location.  The atmospheric delay correc-
tion will be performed early in the GLAS processing and there may be later adjustments to the
space craft orbit and footprint location height.  We wish to have a simple correction function that
would be accurate for changes in height of ±100 m.

The simplest case, case (a), would be to assume that dP/dH is a constant with respect to height,
this would imply a linear correction function such that

(6.1)

Hd
dP g0
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where P and H are the corrected pressure and geopotential height, P0 and H0 are the original pres-
sure and geopotential height.  The next simplest case, case (b), would be to assume that dP/dH is
proportional to P and temperature is constant with respect to height.  These assumptions lead to an
exponential correction function such that

(6.2)

The most accurate case, case (c), assumes that temperature is linearly dependant on height and
dP/dH is proportional to P/T.  These assumptions lead to a power law correction function such
that

(6.3)

All three case assume that water vapor is negligible and that the inverse compressibility does not
change with respect to height.

To compare these three cases, we can use average values for the variables of P0 = 105 Pa, T0 = 273
K, L = -0.0065 K/m, and g0Zd

-1Md/R = 0.034 K/m.  For a change in height of 100 m, case (a) gives
a change in pressure of -1251.4 Pa, case (b) gives -1243.6 Pa, and case (c) gives 1245.1 Pa.  We
would like to use the most accurate equation, however we must consider the storage costs of each
case.  Case (a) and (b) require that the one correction parameter, A, be saved in the geophysical
record.  Case (c) requires that three correction parameters, B, T0, and L, be saved.  The difference
between (b) and (c) is only 1.5 Pa, whereas the difference between (a) and (c) is 6.3 Pa.  For no
extra storage cost we can use the more accurate correction equation given Equation (6.2) and
recover better than 99.9% of the change in pressure for height changes of less than 100 m.

Since atmospheric delay is approximately proportional to surface pressure, again neglecting water
vapor, the correction equation may be directly applied such that

(6.4)

P P0e
A H H0–( )–( )

=

A
g0Zd

1–
Md

RT0
----------------------=

P P0
T
T0
----- 

  B–
=

B
g0Zd

1–
Md

LR
----------------------=

T T0 L H H0–( )+=

∆L ∆L0 e
A H H0–( )–( )

=

A
g0Zd

1–
Md

RT0
----------------------=
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2.7  Spatial Interpolation
The NCEP global analyses we will use are given on a 1 by 1 degree uniform latitude and longi-
tude grid.  We require an interpolation scheme that will allow us calculate the atmospheric field
values at the laser footprint locations.  This interpolation method will have to be computationally
efficient to keep up with the real time data processing requirements.  The global analyses have the
highest realistic spatial resolution by design, therefore a complicated interpolation scheme
intended for sparse data sets would not be useful nor appropriate.  The upper level fields of tem-
perature, geopotential height and relative humidity are quite smooth, a bilinear interpolation of
the grid will be sufficient.  The precipitable water vapor field is much more variable, however its
accuracy and small contribution to the total delay do not warrant anything more complicated than
bilinear interpolation as well.

Bilinear interpolation has the form

(7.1)

where f is the field value, φ is latitude, λ is longitude.  The subscripts 1 and 2 stand for south and
north latitudes and the west and east longitudes of the four known grid points directly surrounding
the unknown point.

2.8  Temporal Interpolation
Analysis of the power spectra of surface pressure changes has shown that these spectra fall off at
high frequencies with an approximate f -2 frequency dependence [Quinn, 1996].  This type of
spectral behavior is consistent with a random walk stochastic process.  For these processes, the
maximum likelihood interpolator is simply a linear interpolation between adjacent points.  The
current NCEP global analyses are sampled every 6 hours and the integrated power in the power
spectra for periods of less than 6 hours, as calculated from higher resolution ground station data,
indicates that linear interpolation should yield pressure estimates with errors less than 1 mbar.
This corresponds to total delay errors of less than 2.35 mm.

f φ λ,( ) a bX cY dXY+ + +=

a f φ1 λ1,( )=

b f φ1 λ2,( ) f φ1 λ1,( )–=

c f φ2 λ1,( ) f φ1 λ1,( )–=

d f φ1 λ1,( ) f φ2 λ2,( ) f φ1 λ2,( )– f φ2 λ1,( )–+=

X λ λ1–( ) λ2 λ1–( )⁄=

Y φ φ1–( ) φ2 φ1–( )⁄=
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