GLAS Altimetry HDF5 Product Usage Guide

General

The final GLAS data products (Release 33) exist in two formats; the original binary format and HDF5 (Hierarchical Data Format). The HDF5 products were created from the binary products as one for one data products with the integer parameters scaled to algorithm units. In effect the HDF5 parameters should be the same as those on the binary products. A few added value features were implemented on the HDF5 products such as full UTC time for each shot instead of delta times.

The binary products were produced during the full operation years of the ICESat mission with the final version produced after GLAS took its last data. This user guide was modified from the binary product user guide to cover the usage of the HDF5 products but the guides are conceptually the same. There are two basic differences that apply to the HDF5 guide. First the parameters on the binary are in scaled integers but the parameters on the HDF5 are in converted science units that mostly are real values. The binary products have all parameters as integer and use “i_name” for the parameters (see the GLAS binary data dictionary) where the HDF5 will use “d_name” or "r_name" (see the GLAS HDF5 data dictionary) for parameters that are real. The second difference is that the packed flags on the binary were separated into individual parameters. The HDF5 data dictionary provides the names of the unpacked flags and their descriptions.

All Level-1 and higher products are time stamped with the transmit time of the pulse in Universal Coordinated Time (UTC) in J2000 (referenced from noon on 01 January 2000) as received from the Level-0 data. Additional calibration will lead to further instrument corrections to this time. Corrections applied to a product-specific time are defined in the time correction flags in each product record.

To correlate records across GLAH01-15, a unique record index is assigned to every frame (approximately one second) of data, based on the time in the Level-0 header records after conversion to J2000 UTC. Previous altimetry missions applied timing corrections to higher level products, making it difficult to align the records from different level products. The GLAS science team used the unique record index to minimize confusion from aligning products of different levels by time. The unique record indices are consistent across all products of the same release. Small differences may exist between different data releases.

The energy in the altimeter echo pulses varies widely, and some of them exceed the GLAS receiver linear dynamic range and cause distortions in the recorded pulse waveforms. This most frequently occurs with the high-amplitude echo signals from flat and bright surfaces, such as ice sheets, and those from inland water surfaces. This "saturation" effect usually causes a positive range bias, which causes a negative (lower) bias in the surface elevation estimate. Receive pulse distortion due to saturation can also occur during transitions from lower-amplitude to higher-amplitude returns that occur abruptly, exceeding the rate at which the receiver gain level is adjusted by the acquisition software’s automated gain loop.
The uncorrected biases may be up to 0.25 m for measurements to flat ice sheets and up to 1.5 m for very strong echo pulses due to specular reflection from smooth water surfaces. Corrections are provided with the Release 33 data that greatly reduce the bias. They are not applied to the ranges or elevations on the products so users must apply them as described in later section on data corrections. All corrections are added to respective parameters (range corrections are added to ranges). Expected minimum and maximum values are provided for parameters but values are not forced to these limits. Flags and invalid values should be used to determine the validity of parameters.

GLAS/ICESat Level 1A Global Altimetry Data (GLAH01)

GLAH01 Level 1A files contain reformatted and converted telemetry data. Most users will want to use the Level 1B (GLAH06) or Level 2 (GLAH12-15) files rather than GLAH01. Users who wish to access the transmitted or received waveforms, however, need the GLAH01 files.

Transmitted waveforms

The ordering of the transmitted waveform ([Data_40HZ/Waveform/TransmitWaveform: r_tx_wf(N,48)]) is preserved as it was telemetered, so it is in time order. The first sample is closest to the spacecraft in time, and the last sample is farthest from the spacecraft in time (closest to the ground).

For each transmitted waveform, the attribute array Ancillary_Data: transmit_wf_sample_location_table(N,48) gives the time in ns to each sample relative to the starting address of the transmitted pulse sample ([Data_40HZ/Waveform/TransmitWaveform: i_TxWfStart]). Thus the time relative from the start of digitization is given by

Transmit Sample time (i) [from start of digitizer] = i_TxWfStart + transmit_wf_sample_location(i)

Transmit pulse gain is recorded in the transmit gain attenuator ([Data_1HZ/Instrument_Settings: i_ADdetOutGn]), which changes only at 1-sec intervals, and was reported in the telemetry only at 4-sec intervals. The transmit gain was seldom changed.

Received waveforms

The ordering of the received echo ([Data_40HZ/Waveform/RecWaveform: r_rng_wf(N,544)]) is preserved as it was telemetered, so it is in time-reversed order. The first sample in the received waveform is farthest from the spacecraft in time (closest to the ground), and the last sample is closest to the spacecraft in time.

There are two types of received waveforms: long (544 valid samples) and short (200 valid samples). The number of valid elements in the waveform is specified by i_waveform_type (1 = long, 2 = short) where long is 544 samples and short is 200 samples. All waveforms on the HDF5 product
have 544 samples so the type should be used to determine the number of valid samples of each waveform. For the short waveforms sample 201 to 544 are invalid.

There are five possible compression states for the waveforms, giving five possible sample spacings. The attribute array (Ancillary_Data: rec_wf_sample_location_table(544,5)) gives the relative sample times for all five options. The variable Data_40hz/Waveform:RecWaveform: i_rec_wf_location_index(n) (values 1-5) is an index into this table that access the correct sample spacing for the current waveform(n). The starting point is relative to the start of the returned waveform, and the time of the first element in ns relative to the start of digitization is given by Data_40hz/Waveform:RecWaveform: i_RespEndTime(n). Therefore the location of sample i relative to the start of the digitizer is

Receive Sample time (i) [from start of digitizer]
\[\text{Receive Sample time (i)} = i_{\text{RespEndTime}(n)} + \text{rec_wf_sample_location}(i) \]

Both the received and transmit waveforms are given in volts. The calibration table for counts to volts (ancillary_data: volt_table_n) is in the ancillary data and contains one value for each possible waveform count value (0 to 255).

The geodetic location was calculated using a predicted orbit, assuming the laser is nadir pointing.

The received gain attenuator (Data_40HZ/Waveform/Characteristics: i_gainSet1064(N)) was controlled and provided for each laser shot (40 per second). The conversion of the raw gains to energy, including laser fluctuations, is documented in Jester and Hancock (2011)

The saturation index (on GLAH06 and 12 to 15: sat_corr_flg) quantifies the degree of saturation. It is the number of 1 ns waveform samples above a saturation threshold, which is a function of receiver gain.

For ice sheet, sea ice, and ocean products check the following flags to filter out bad data:

- **TxFlg:** if this is 1 for a specific shot, the range measurement for that shot cannot be calculated. The transmit waveform parameters may look valid, but they are not. The received waveform may still be valid.

- **txWfPk_Flag:** if this is set to indicate that the peak value is below threshold or was not found, then the range measurement for that shot cannot be calculated.

- **InstState:** if none of the lasers were enabled then no valid range measurement exists. Occasionally when the GLAS instrument team downlinked the Optical Test Source (OTS) pulse in the normal received waveform location, the received waveform may look valid, but it is not reflected from the ground.
GLAS/ICESat Level 1B Global Waveform-based Range Corrections Data (GLAH05)

This file contains information necessary to characterize the waveform. Refer to Brenner et al. (2011) for details of the algorithm. Most of the derived parameters in this file have two values: one for the standard parameterization (the parameter name ends in a "2") and one for the alternate parameterization (the parameter name ends in a "1"). The differences in these two sets of parameters are determined by the input driving the algorithms, the thresholds used to determine signal begin and end times, and the Gaussian fit constraints as detailed in Brenner et al. (2000). For the waveform parameterization process, the waveform is first converted to volts using the calibration table in the GLAH01 header records. All ranges and range offsets in this product are given in units of two-way time (ns) and must multiplied by the speed of light and divided by two to convert to a one-way distance. The oscillator calibrations were applied in calculating the ranges. The instrument internal timing delay, given in the header record, was applied in the calculation of the reference range ("d_refRng").

This file is an intermediate product used in conjunction with GLAH01 to create the Level-1B (GLAH06) and Level-2 elevation products (GLAH12-15). This file is not intended for end users. The Level-1B and Level-2 products should contain all the information necessary for the end user; however, algorithm developers can use GLAH05 in conjunction with GLAH01 to test the science ground-processing algorithms.

Geolocation and Elevation Calculation

The geolocation and elevation in GLAH05 are calculated using precision attitude, precision orbits, and the range as defined in Schutz (2012). To obtain more information on how geolocations are derived from the raw GLAS data, the user can reference the Geoscience Laser Altimeter System (GLAS) Algorithm Theoretical Basis Document Version 3.0 Laser Footprint Location (Geolocation) and Surface Profiles document. When there is no signal found in the return waveform, as indicated by "Received Echo Quality Flag," then the range is not defined and the geolocation on the record is from the predicted orbit assuming nadir-pointing. This predicted geolocation is only calculated at the 1 Hz rate, so it will remain the same for all shots in the frame that have no signal.

The range used to calculate the geolocation and elevation in GLAH05 is calculated from the centroid of the transmit pulse to the first signal above the threshold (closest to ground) using the standard parameterization and accounting for instrument delays. This file also contains variables from which the user could recalculate the range using different criteria: the threshold crossing locations of the received pulse, the centroid, or Gaussian fit parameters.

How to use the range offsets and Gaussian parameterizations

GLAH05 contains a set of offsets that are added to the reference range (d_refRng) to determine the range to any user-specified location on the received waveform. The reference range is measured from the centroid of the transmit pulse to the last received echo digitizer gate telemetered (furthest from the spacecraft) plus a ground calibration correction to the defined zero range point for GLAS.

\[\text{refRng} = \text{i_RespEndTime} - \text{i_TxWfStart} - \text{locTr} - \text{d_rDelay_digtzr} \]
where:

\(i_{\text{RespEndTime}} \) and \(i_{\text{TxWfStart}} \) both are from GLAH01

\(\text{locTr} \) is the Centroid of Transmitted Pulse in time relative to the starting address of the transmit pulse

\(d_{\text{rDelay_digtzr}} = 9.556 \text{ meters converted to one way range in nanoseconds} \)

The range used in the GLAH05 elevation calculation is \(d_{\text{preRngOff2}} \), which is the offset added to \(d_{\text{refRng}} \) to give the two-way range in time to the location on the received echo, calculated as the end of signal (farthest from the spacecraft) using standard parameters.

\[
Rangedef(n) = \frac{(d_{\text{refRng}}(n) + d_{\text{preRngOff2}}(n)) \cdot c}{2}
\]

Where:

\(n = \) shot number within the frame (1 to 40)

\(c = \) speed of light (units to match range)

To calculate a new range, add to \(d_{\text{refRng}} \) the range offset applicable to the preferred algorithm. For example, to calculate the new range to the centroid of the received return, use the following equation:

\[
Rangenew(n) = \frac{(d_{\text{refRng}}(n) + d_{\text{centroid2}}(n)) \cdot c}{2}
\]

Replacing the orbit and recalculating geolocation

Some advanced users may want to replace the orbit on the products. The precision orbit vector and unit vectors of the attitude vectors are in the inertial celestial reference frame (ICRF). Schutz (2012) gives equations for calculating the geodetic latitude and longitude using range, orbit, attitude, and the quaternion to rotate from ICRF to the inertial terrestrial reference frame (ITRF). These quaternions are not provided in the data, but they are in daily ancillary files (ANC04), available upon special request from NSIDC.

Timing

The shot time, defined as the time associated with the transmit pulses, is calculated after applying all oscillator and instrument corrections. This value should be accurate enough for all applications except for users who want to replace the orbit. To calculate the time to interpolate a new orbit, add the one-way transit time \(d_{\text{transtime}} \) to obtain ground-bounce time and the high frequency Global Positioning System (GPS) time correction \(d_{\text{deltagpstmcor}} \). The ground bounce time, "\(\text{time}_{gb} \)," in J2000 seconds, is calculated as:

\[
\text{time}_{gb} = d_{\text{UTCTime}} + d_{\text{deltagpstmcor}} + d_{\text{transtime}}
\]
Both \texttt{d_transtime} and \texttt{d_deltagpstmcor} are given at 1/sec. The \texttt{d_deltagpstmcor} value is constant for each specific GPS latched time. The GPS time changes at a maximum rate of once every 10 seconds, or if the GPS is resetting, it could be the same for 10 to 30 minutes. The change is implemented on the frame boundary so the 1/sec rate fully characterizes the correction.

The transit time on the record is calculated from the transmit time to the end of signal (latest in time) of the received return for the first shot with a valid value for \texttt{d_preRngOff2}. For more accuracy, calculate the transit time for each of the individual shots as follows:

\[
\text{transit_time (n)} = \text{d_transtime} + ((\text{d_preRngOff2}(n) - \text{d_preRngOff2}(\text{ivalid})) \times c) / 2
\]

Where:

\text{ivalid} = \text{first shot number within the record for which \texttt{d_preRngOff2} is defined.}

\(c\) = \text{speed of light (in unit to match range and time units)}

Check the following flags to filter out bad data.

\textbf{Frame Quality Flag}: if frame quality flag \texttt{altfrm_corr_flg} is set then some of the data in the frame have problems. Check "Elev_use_Flg" to see what shots can be used in the frame.

\textbf{Elev_use_Flg}: edit all data for which the corresponding bit is set.

\textbf{Received Echo quality flag}: if \texttt{wfq1_fit2_flg}, \texttt{wfq2_fit2_flg}, \texttt{wfq_thres_flg} and/or \texttt{wf_amp_flg} are set, this indicates the received return may be saturated or have significant forward scattering. You should use discretion in with these returns, since they do not represent the surface characteristics, and they will give less accurate elevations.

\textbf{i_satNdx}: The count of the number of gates in a waveform which have an amplitude greater than or equal to satNdxTh (set in \texttt{anc07_0004}). The value 126 means 126 or more gates are above the saturation index threshold (i_satNdxth).

GLAH06 and GLAH12-15

The Level-1B elevation data (GLAH06) and the regional Level-2 products (GLAH12 - GLAH15) are at full 40-per-second resolution. Data granules contain approximately 23 minutes (1/4 orbit) of data for GLAH06 and 14 orbits for GLAH12 - GLAH15. These products include surface elevation and geodetic and atmospheric corrections for the range. These data are geolocated to the center of the laser footprint. GLAH06 is used with GLAH05 to create GLAH12 - GLAH15.

GLAH06 is a global product equivalent to the geodetic data records (GDR) distributed for most radar altimetry missions. Elevation is calculated using the range associated with the standard parameterization (the ice sheet algorithm). Additional information allows the user to calculate an
elevation based on the land, sea ice, or ocean algorithms. All ranges are given in one-way distance units. The geodetic corrections, which are applied to the range used to calculate the elevation, are provided with GLAH06 so users can remove the existing correction and apply a different one. The geodetic corrections, geoid, and tidal values are not all given at the 40/sec shot rate because some corrections vary slowly. Corrections are given at least twice per record so that users can interpolate for the value at the individual shot time using only the values in the given record.

GLAH12-15 are regional products. A record is placed on these products if any of the 40 measurements in the frame fall within the corresponding regional mask.

Correction flags and data corrections:

1. Saturation effects on elevations

sat_corr_flg: It is important on release 28 and later products to check the saturation correction flag for elevations. If the value is less than 3, the elevation data can be used but the user needs to add the d_satElevCorr to the elevations.

NOTE THAT THE SATURATION ELEVATION CORRECTION NEEDS TO BE ADDED TO THE ELEVATIONS BY THE USER. The corrections are recommended for the icesheets but the correction is not generally recommended for non-ice land surfaces (GLAH14). Based on laboratory measurements used to calibrate range bias as a function of receiver gain and observed receive energy, an estimate of elevation bias due to saturation is reported for each received waveform in d_satElevCorr.

Table 1 indicates criteria that define the six conditions that govern use of the saturation correction, and provides the corresponding values for the elevation correction (d_satElevCorr) and an associated flag (sat_corr_flg). Saturation correction is not computable means the correction is undefined for that returns combination of receiver gain and observed receive energy. %Sat criteria is set to near-zero (2% for Standard and Alternate) based on extensive assessment by Claudia Carabajal that showed saturation correction can be large even when %Sat is very small.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Definition</th>
<th>satElevCorr</th>
<th>satCorrFlg</th>
</tr>
</thead>
<tbody>
<tr>
<td>Not Saturated</td>
<td>Sat_index < 2</td>
<td>0.0</td>
<td>0</td>
</tr>
<tr>
<td>Sat Correction is Inconsequential</td>
<td>Sat_index ≥ 2 & %Sat < 2</td>
<td>0.0</td>
<td>1</td>
</tr>
<tr>
<td>Sat Correction is Applicable</td>
<td>Sat_index ≥ 2 & %Sat ≥ 2 & Full Width < 100 nsec</td>
<td>Computed Value</td>
<td>2</td>
</tr>
<tr>
<td>Sat Correction is Not Computable</td>
<td>Computation Fails</td>
<td>Invalid</td>
<td>3</td>
</tr>
<tr>
<td>Sat Correction is Not Applicable</td>
<td>Sat_index ≥ 2 & %Sat ≥ 2 & Full Width ≥ 100 nsec</td>
<td>Invalid</td>
<td>4</td>
</tr>
<tr>
<td>No Signal Detected</td>
<td>No Signal above Threshold</td>
<td>Invalid</td>
<td>0</td>
</tr>
</tbody>
</table>

Table 1 Elevation Saturation Correction Decision Table

The elevation correction for saturation is not applied in the geolocation processing computation of latitude, longitude and elevation. Because the range corrections are small and data is acquired within 5° of nadir, effects on latitude and longitude are negligible and can be ignored. This effect is provided as a correction (addition) to the elevation estimates, therefore to apply the saturation elevation
correction (d_satElevCorr) to RANGE it must be subtracted. Reported elevations for returns with invalid d_satElevCorr values and sat_corr_flg values of 3 or 4 are likely to have large, uncorrectable errors and should be excluded from analyses.

2. Saturation effects on energy related measurements

NOTE THAT THE SATURATION ENERGY CORRECTION NEEDS TO BE ADDED TO THE ECHO ENERGIES BY THE USER, but the correction is not generally recommended for land surfaces (GLAH14). Based on laboratory measurements used to calibrate energy bias as a function of receiver gain and observed receive energy, an estimate of energy bias due to saturation is reported for each received waveform in d_satNrgCorr for values of correction.

3. Saturation effects on estimated echo pulsewidth.

Pulsewidth cannot be corrected for saturation effects. Lab calibrations cannot be used to correct width errors (it is an under-constrained problem because the amount of saturation broadening depends on the slope magnitude)

4. Use flags that may be of interest to users

Elev_use_flg indicating whether the elevations on this record should be used or not (1 bit set/shot).

Range Offset Quality/Use Flag for the range offsets on this record. Please see data dictionary for more details.

I_satNdx: The count of the number of gates in a waveform which have an amplitude greater than or equal to I_satNdxTh (set in anc07_0004). The value 126 means 126 or more gates are above the saturation index threshold (i_satNdxth).

att_offnadir_flg: At 1/sec denotes large off-nadir angle, ocn sweep, target of opportunity, steering to reference track.

att_pad_use_flg: Denotes at 40/sec rate whether precision attitude was used to determine spot location, and if problems with LPA, etc.

Range Correction Flag: Denotes which geophysical or instrument corrections have been applied to the range in the calculation of the elevation on this record. Please see data dictionary for more details.

txWfPk_Flag on GLA01: Transmit_Peak_Status Word value = 0 normal, value =1 then internal software failure. Value = 2 then peak is below threshold. Value = 4 then peak was not found. Note: once set to true, Value 4 is latched and is only cleared by a DSP board reset or by a ground command.
Altimeter Frame Quality Flag: Denotes all bad data (no signal in whole frame), or all data good and all science team recommended corrections applied.

Sigma_att_flg quality indicator: Values: 0=good; 50=warning; 100=bad. Comments: This indicator currently has only 3 values: 0, 50, and 100, leaving open the opportunity to use numbers in between for further resolution of the degradation as our knowledge improves.

Region Type: Describes the region type or types associated with each shot Ice Sheet, ocean, sea ice, or Land.

5. Atmosphere information from GLAS instrument

The parameters on the altimeter data products from the atmosphere products are:

atm_char_flag: Flag to characterize cloud and blowing snow state of the atmosphere 0 clear 1 high cloud (> 5 km) low optical depth 2 high cloud (> 5 km), high optical depth 3 mid cloud (>2, <=5 km) low optical depth 4 mid cloud (>2, <=5 km) high optical depth 5 low cloud (> 500 m, <=2 km), low optical depth 6 low cloud (> 500 m, <=2 km), high optical depth 7 blowing snow or fog (< 500 m), low optical depth 8 blowing snow or fog (< 500 m), high optical depth 9 not tested 10 data quality insufficient to assign flag.

atm_char_conf_flg: Confidence level ascribed to the atmosphere characterization flag. 0 Not applicable (for contamination flag values of 9 or 10) 1 low confidence 2 reasonable confidence 3 high confidence.

d_FRir_intsig: Though called 'integrated signal' this is actually an average of all bins in the above-ground portion of the 1064 40 Hz profile with values above the threshold of 1.0e-7 (1/(m-sr) units). This parameter is for a 1 second record. This parameter is extracted from the equivalent parameter on GLAH09.

FRir_qa_flg: obsolete in R33 with the introduction of the atm_char_flag.

Parameters not on this list that may be on some releases of the data products are considered useful or valid.

Geolocation and Elevation Calculation

The geolocation and elevation values in GLAH06 are calculated using precision attitude, precision orbits, and the range as defined in Schutz (2012). To obtain more information on how geolocations are derived from the raw GLAS data, the user can reference the Geoscience Laser Altimeter System (GLAS) Algorithm Theoretical Basis Document Version 3.0 Laser Footprint Location (Geolocation) and Surface Profiles document. The range used to calculate the geolocation and elevation in GLAH06 is calculated using the ice sheet range offset some instrument corrections and atmospheric delays have been accounted for. The range used to calculate the elevation for each shot (rangeelv(n)) is calculated with the following equation.
\begin{align*}
\text{range}_{\text{elv}}(n) & = d_{\text{refRng}}(n) + d_{\text{isRngOff}}(n) + d_{\text{dTrop}}(n) + d_{\text{wTrop}} \\
\end{align*}

Where:

- \(d_{\text{refRng}} \) = reference range
- \(d_{\text{isRngOff}} \) = ice sheet range offset
- \(d_{\text{dTrop}} \) = dry troposphere delay for shot \(n \)
- \(d_{\text{wTrop}} \) = interpolated value of the wet troposphere delay, linearly interpolated from the two values for first shot and last shot

The tides are then applied to the elevation.

\begin{align*}
\text{Elev} & = \text{elev} - d_{\text{erElv}} - d_{\text{ldElv}} - d_{\text{ocElv}} - d_{\text{poTide}} \\
\text{Elev}_{\text{wtide}} & = \text{elevation calculated using rangeelv} \\
\end{align*}

Where:

- \(\text{Elev} \) = final elevation after tides have been accounted for
- \(\text{Elev}_{\text{wtide}} \) = elevation calculated using rangeelv
- \(d_{\text{erElv}} \) = interpolated value of the solid earth tide, linearly interpolated from the two values for the first and last shots
- \(d_{\text{ldElv}} \) = interpolated value of the load time, linearly interpolated or extrapolated from the two closest values for shots 1, 11, 21, and 31
- \(d_{\text{ocElv}} \) = value of the ocean tide on the record at 40Hz
- \(d_{\text{poTide}} \) = value of the pole tide at 1Hz

The surface elevation is with respect to the ellipsoid (TOPEX/Poseidon Ellipsoid) at the spot location determined by the ice-sheet specific range after instrument corrections, atmospheric delays and tides have been applied. The saturation elevation correction (\(d_{\text{satElevCorr}} \)) has not been applied and needs to be added to this elevation. This can be over a one meter correction. If it is invalid then the elevation should not be used. The saturation correction flag (\(\text{satCorrFlg} \)) is an important flag to understand the possible quality of the elevation data. The saturation index (\(i_{\text{satNdx}} \)) can be used for more understanding of concerns on data quality from saturation effects. Also no correction for pulse spreading from forward scatter has been applied. A geoid height above the reference ellipsoid (\(d_{\text{gdht}} \)) and several DEMs are provided on the products.

For GLAH12-15, the elevations are calculated using the appropriate range offset: \(d_{\text{isRngOff}} \), \(d_{\text{siRngOff}} \), \(d_{\text{ldRngOff}} \), or \(d_{\text{ocRngOff}} \); otherwise, the equations are exactly the same.

NOTE: the saturation correction to elevation and the range delay for atmosphere forward
scattering has not been applied to the elevations on GLAH06, 12 to 15.

How to use the range offsets and apply geodetic corrections or tides

GLAH06 contains range offsets used to calculate the elevations using the ice sheet, sea ice, land, and ocean algorithms. Additionally, range offsets using the threshold algorithm, centroid, and signal begin and signal end, are provided. All geodetic corrections used in the calculation of the range associated with the elevation calculation are also provided. Because the laser is not nadir pointing, to precisely calculate an elevation based on a different offset or correction, users should recalculate the range using the equation above, substituting the appropriate offset or correction. Then recalculate the geolocation and elevation using the stringent equations from Brenner et al. (2000). This requires using the precision attitude and orbit from the record, and the ICRF to ITRF transformations given in the ancillary file ANC04, available upon special request from NSIDC. For the majority of the data, the off-nadir pointing angle is small enough that users can calculate a new elevation by the difference between the range used and the new range.

\[d_{elev\text{new}} = d_{elev} + (range_{elv} - range_{new}) \]

Check the “satCorrFlg” flag to filter out data affected by saturation or it may have significant forward scattering. You should use discretion with these returns, since they do not represent the surface characteristics and will give less accurate elevations.

Slope and roughness comment:

As of release 28 values for the surface slope and roughness have not been put on the data products. It has been found that the equations for slope in the ATBD (Brenner 2011) work well for slopes above 1.5 degree but do not seem to work for low slopes. The main issue seems to be with unexplained pulse broadening variations. By recommendation of the GLAS science team slope and roughness will be removed for the data products for Release 29 and higher. For users that want to continue the study, the following documents the issues the science team incurred.

Convolved broadening is due to both within-footprint slope and roughness Both broaden received echo and are inseparable

Footprint shape and orientation affect slope calculation The footprints are not circular L3 is moderately elliptical, L2 very elliptical, L1 very elliptical with side-lobe. Thus Observed broadening depends on footprint orientation and **unknown** slope azimuth

Field-of-view shadowing affects slope calculation

FOV shadowing makes effective footprint diameter smaller than that in LPA image. Determining magnitude and azimuth of FOV offset and model effect on footprint diameter is very difficult, has not been implemented,
Waveform saturation affects slope and roughness calculations
Saturation introduces waveform broadening. Lab calibrations to correct energy and range errors caused by saturation but cannot be used to correct width errors (it is an under-constrained problem because the amount of saturation broadening depends on the slope magnitude)

Atmospheric forward scattering affects slope and roughness calculations
Scattering through near-surface clouds & aerosols introduces waveform broadening. Estimation of resulting broadening is only available for 532 nm data (L2a & L2b) and at 1 Hz. Much of the ice sheet and ocean data, for which slope and roughness is of particular interest, could be affected by atmospheric forward scattering