THE ROLE OF MICROSTRUCTURE IN FORWARD MODELING AND DATA ASSIMILATION SCHEMES: A CASE STUDY IN THE KERN RIVER, SIERRA NEVADA, USA

MICHAEL DURAND (DURAND.8@OSU.EDU), DONGYUE LI, STEVE MARGULIS

Photo: Danielle Perrot
OBJECTIVE AND OUTLINE

How accurately can SWE be estimated from passive microwave with a data assimilation scheme?

• Why we think this might work
• Describe prototype modeling setup and highlight grain size treatment
• Show preliminary assimilation results
IN SITU ASSIMILATION SUCCESS AT CLPX - COLORADO 2003

Prior (first guess)
Posterior (estimate)
Observations

Durand et al., GRL, 2009
A Case Study of Using a Multilayered Thermodynamical Snow Model for Radiance Assimilation

Ally M. Toure, Kalifa Goïta, Alain Royer, Edward J. Kim, Michael Durand, Steven A. Margulis, and Huizhong Lu

Coupling the snow thermodynamic model SNOWPACK with the microwave emission model of layered snowpacks for subarctic and arctic snow water equivalent retrievals

A. Langlois,¹ A. Royer,¹ C. Derksen,² B. Montpetit,¹ F. Dupont,² and K. Goïta¹

Received 14 March 2012; revised 6 November 2012; accepted 7 November 2012; published 20 December 2012.

Advances in Water Resources 34 (2011) 351–364

Contents lists available at ScienceDirect

Advances in Water Resources

journal homepage: www.elsevier.com/locate/advwatres

Radiance data assimilation for operational snow and streamflow forecasting

Caleb Dechant, Hamid Moradkhani *

Department of Civil and Environmental Engineering, Portland State University, 1930 SW 4th Ave. suite 200, Portland, OR 97201, United States
Despite dramatic variability in snow depth and snow grain size, simulations indicate that mean brightness temperature (T_b) is still sensitive to mean snow depth.

Vander Jagt et al., TGRS, 2013
STUDY AREA:
KERN RIVER BASIN, SIERRA NEVADA, CALIFORNIA

- Area: 511 km²
- Minimal vegetation
- Large SWE accumulation
- Accumulation due to a few storms
STRATEGY

• Downscale NLDAS-2 meteorological data to 90 m

• Run snow physics model (SAST) at 90 m to get first guess SWE and grain size et al.

• Run MEMLS to estimate T_b at 90 m

• Use models + data assimilation to downscale information about SWE from AMSR-E to 90 m scale
SATELLITE OBSERVATIONS

- AMSR-E L2A T_b observations at 36.5 GHz, v-pol
- Elliptical footprints with long dimensions of 8.2 x 14 km
- Footprint area is 88 km2, 7x smaller than EASE grid
DOWNSCALING FORCING

- NLDAS-2 (with PRISM) forcing data used
- Topographic shading for solar radiation correction
- Longwave radiation biases removed

Girotto et al., 2013
SNOW PHYSICS MODELS

- SAST snow physics model (Sun et al., 1999)

- Grain growth following Jordan (1991):

 \[
 \frac{dD}{dt} = \alpha_1 \frac{U_v}{D}
 \]

- We calibrated \(\alpha_1 \) to match the rate of decrease of \(T_b \) as from AMSR-E: used value of 3E-7 m^4/kg
MICROWAVE MODELS

• MEMLS (Wiesmann & Mätzler, 1999) with Improved Born Approximation (Mätzler & Wiesmann (1999))

• Used relationship for relating correlation length and grain size (Wiesmann et al., 2000):

\[L = 0.16D \]

• We calibrated one soil parameter to match AMSR-E during snow-free season
A NEW WAY TO HANDLE LAYER COMBINATIONS DURING SNOWFALL

The Problem:

The Solution: after each snowfall, automatically set bottom-layer grain size to be that which gives 4-layer T_b

Li et al., in review
Modeling study

Choose precipitation to give correct SWE at snow courses (2004-2006)

Calibrate grain growth rate using between-snowfall drops in T_b (2004-2006)

Test how well this new fix allows for simulation of T_b (2003, 2007, 2008)
IMPORTANCE OF RESAMPLING FIX

Li et al., in review

Note: large snowfalls lead to increase in T_b!
Model responding to elevational gradients, aspect, etc.

But is it correct?

Li et al., in review
We scale 90 m model up to observation resolution

Li et al., in review
Overall pre-March RMSE is 3.3 K

We cannot simulate well after March, when snow becomes wet
SATURATION

Modeled results at a single pixel (UTY snow pillow) for WY2005 (maximum accumulation)
MODELING SUMMARY

• Made modifications to modeling scheme to allow 90 m runs for three-layer model

• One parameter for grain growth rate calibrated

• Achieve 3.3 K RMSE during validation years

• Can such a system be used in an assimilation scheme to estimate SWE?
ASSIMILATION SCHEME IDEA

\[y_{\text{posterior}} = y_{\text{prior}} - K[z_{\text{predicted}} - (z + v)] \]

Durand & Margulis, 2007; Durand et al. 2009
ASSIMILATION SCHEME DETAILS

• **Ensemble batch smoother**: all obs. used to update SWE at all times

• No observations used after March

• Uncertainty added to precipitation, soil roughness, grain growth rate

• No localization done: we use model spatial and temporal autocorrelations as simulated

• Temporal correlation in observation error considered to account for non-clear sky

• Assimilate October 1 - March 1 T_b observations, but update total WY SWE
MARCH 1 2005 ASSIMILATION IMPACT

Prior

Posterior

AMSR-E downscaled via model-based dynamic Tb-SWE correlations
SNOW COURSE EVALUATION

- Half the bias in the prior estimate corrected in the posterior
- Shape of the depletion after March due to model issues
- Melt-out time wrong: could be corrected with visible + NIR snow cover fraction

Legend:
- Posterior estimate
- Prior estimate
- Snow course
SIX YEAR APRIL 1 SWE EVALUATION AT THREE SNOW COURSES

Prior (red):
Bias: -0.19m, RMSE: 0.22m

Posterior (blue):
Bias: -0.01m, RMSE: 0.11m
HOW DO THE “APPLIED” MICROSTRUCTURE QUESTIONS RELATE TO THE THEORETICAL?

- Can variations in T_b be accurately linked by models to variations in SWE for deep mountain snow?
- What grain size models need to be used? Is physical really better?
- What microwave models should be used? Can we get away with empirical scattering instead of improved Born in this context?
ACKNOWLEDGMENTS

• Supported from a NASA Earth and Space Science Fellowship (NNX13AN53H) to student Dongyue Li, and a NSF Hydrologic Science Award (EAR-0943551) to Dr. Durand and Dr. Margulis, and NASA New Investigator Program award to Dr. Durand (NNX13AB63G)

• We thank The Ohio State University and UCLA Academic Technology Service for providing the necessary equipment and high-performance computing resources
EXTRA SLIDES
Li et al. *RSE*, 2012.