How to Cite These Data

As a condition of using these data, you must include a citation:

FOR QUESTIONS ABOUT THESE DATA, CONTACT NSIDC@NSIDC.ORG

FOR CURRENT INFORMATION, VISIT https://nsidc.org/data/NSIDC-0642
TABLE OF CONTENTS

1 DATA DESCRIPTION ... 2
1.1 Parameters .. 2
1.1.1 Parameter Description .. 2
1.1.2 Sample Data Record ... 3
1.2 File Information .. 4
1.2.1 Format ... 4
1.2.2 Directory Structure ... 4
1.2.3 Naming Convention ... 5
1.2.4 File Size .. 6
1.2.5 Volume .. 6
1.3 Spatial Information .. 6
1.3.1 Coverage .. 6
1.3.2 Resolution ... 6
1.3.3 Projection and Grid Description .. 6
1.4 Temporal Information .. 7
1.4.1 Coverage .. 7
1.4.2 Resolution ... 7
2 DATA ACQUISITION AND PROCESSING .. 7
2.1 Background ... 7
2.2 Acquisition ... 8
2.3 Derivation Techniques and Algorithms ... 8
2.4 Quality, Errors, and Limitations .. 8
2.5 Instrumentation .. 9
2.5.1 Description .. 9
3 SOFTWARE AND TOOLS .. 9
4 VERSION HISTORY ... 9
5 RELATED DATA SETS .. 10
6 RELATED WEBSITES ... 10
7 CONTACTS AND ACKNOWLEDGMENTS ... 10
8 REFERENCES ... 11
9 DOCUMENT INFORMATION ... 11
9.1 Publication Date ... 11
9.2 Date Last Updated ... 11
1 DATA DESCRIPTION

1.1 Parameters

Geometric ice front positions.

1.1.1 Parameter Description

Table 1. Primary Data Attributes

<table>
<thead>
<tr>
<th>Data Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GlacierID</td>
<td>Numerical ID assigned to each glacier (used consistently across all data sets)</td>
<td>0 - 238</td>
</tr>
</tbody>
</table>
| QualFlag (included beginning with 2014 data) | Quality flag indicator for digitized ice fronts of lower certainty or drawing from multiple image sources | 0 – no flag
1 – digitized terminus position is estimated or uncertain (see Section 2.4)
2 - uncertain digitized terminus position was improved or verified using Landsat imagery |
| ImgSource (included beginning with 2014 data) | Satellite source of image used to digitize terminus position | Sentinel1
Landsat |
<p>| DateRange (pre-2014 data) | Date range for images from full Greenland mosaic used to create digitized ice fronts | DDMMMYYYY - DDMMMYYYY |
| DATE (change to new format begins with 2014 data) | Date of image used to digitize terminus position | YYYYYMDD |</p>
<table>
<thead>
<tr>
<th>Data Field</th>
<th>Description</th>
<th>Values</th>
</tr>
</thead>
<tbody>
<tr>
<td>GrnlIndcNam</td>
<td>Greenlandic glacier name</td>
<td>"Values are standardized to match "New Greenlandic" attribute in database of Greenland glacier names (Bjørk et al., 2015)</td>
</tr>
<tr>
<td>Official_n</td>
<td>Officially recognized glacier name</td>
<td>Values are standardized to match "Official_n" attribute in database of Greenland glacier names (Bjørk et al., 2015)</td>
</tr>
<tr>
<td>GlacName (pre-2014 data)</td>
<td>Glacier Name</td>
<td>Glacier name (usually European glacier name)</td>
</tr>
<tr>
<td>AltName</td>
<td>Alternative glacier name</td>
<td>Includes foreign name or Old Greenlandic name (Bjørk et al., 2015), or other recognized names</td>
</tr>
</tbody>
</table>

1.1.2 Sample Data Record

Figure 1 illustrates ice front positions for three Greenland glaciers during six winters.
1.2 File Information

1.2.1 Format

ESRI ArcGIS Shapefile

- .shp – main file that stores the feature geometry
- .shx – index file that stores the index of the feature geometry
- .dbf – dBASE table that stores the attribute information of features
- .sbn and .sbx – files that store the spatial index of the features
- .prj – file that stores the coordinate system information
- .cpg – optional file to specify the code page for identifying the character set to be used

There is also a metadata file (.xml) for each shapefile.

1.2.2 Directory Structure

Data are available on the HTTPS site in https://n5eil01u.ecs.nsidc.org/MEASURES/NSIDC-0642.001/.

Within this directory are the following folders:
Table 2. Top-Level Directory Structure

<table>
<thead>
<tr>
<th>Folder Name</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000.09.30</td>
<td>Winter 2000–2001 glacier terminus position data and glacier IDs</td>
</tr>
<tr>
<td>2007.11.22</td>
<td>Winter 2007–2008 glacier terminus position data</td>
</tr>
<tr>
<td>2009.01.04</td>
<td>Winter 2008–2009 glacier terminus position data</td>
</tr>
<tr>
<td>2013.01.15</td>
<td>Winter 2012–2013 glacier terminus position data</td>
</tr>
<tr>
<td>2015.01.21</td>
<td>Winter 2014–2015 glacier terminus position data</td>
</tr>
<tr>
<td>2016.02.02</td>
<td>Winter 2015–2016 glacier terminus position data</td>
</tr>
<tr>
<td>2017.02.01</td>
<td>Winter 2016–2017 glacier terminus position data</td>
</tr>
</tbody>
</table>

The 2000.09.30 folder contains 18 files: 9 files for the glacier identifiers and 9 for the terminus position data. All other folders contain 9 files each for the terminus position data.

1.2.3 Naming Convention

This section explains the shapefile file naming convention for this data set.

Example File Names:

termini_0809_v01.2.cpg
termini_0809_v01.2.dbf
termini_0809_v01.2.prj
termini_0809_v01.2.sbn
termini_0809_v01.2.sbx
termini_0809_v01.2.shp
termini_0809_v01.2.shx
termini_0809_v01.2.xml

Convention:

termini_XXYY_v01.2.ext
GlacierIDs.ext

Table 3. Naming Convention for Shapfiles

<table>
<thead>
<tr>
<th>String</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>termini</td>
<td>Glacier terminus position file</td>
</tr>
<tr>
<td>GlacierIDs</td>
<td>GlacierID denotes a reference file with glacier points and consistent glacier identification number.</td>
</tr>
<tr>
<td>XXYY</td>
<td>Winter season. For example, 0809 is the winter of 2008–2009.</td>
</tr>
<tr>
<td>vxx.x</td>
<td>Current version number</td>
</tr>
</tbody>
</table>
1.2.4 File Size

Character set code (.cpg), spatial index (.sbx), and projection (.prj) files average 1 KB.
Spatial index files (.sbn) range from 2 KB to 3 KB.
Feature geometry index files (.shx) average approximately 2 KB.
Database files (.dbf) range from 25 to 68 KB.
Shapefiles (.shp) range from 6 KB to 100 KB.
Metadata files (.xml) average approximately 7 KB.

1.2.5 Volume

The complete data volume is approximately 1153 KB.

1.3 Spatial Information

1.3.1 Coverage

Southernmost Latitude: 60° N
Northernmost Latitude: 83° N
Westernmost Longitude: 75° W
Easternmost Longitude: 14° W

1.3.2 Resolution

The nominal uncertainty in digitized position is 50 m but could be larger in regions where there is poor contrast at the terminus (e.g., melange). Nominal ground resolution for the source SAR mosaics and Landsat ranges between 15 m to 50 m.

1.3.3 Projection and Grid Description

GeoTIFFs are provided in a WGS 84 polar stereographic grid with a standard latitude of 70° N and rotation angle of -45° (sometimes specified as a longitude of 45° W). With this convention, the y-axis extends south from the North Pole along the 45° W meridian (EPSG:3413).
1.4 Temporal Information

1.4.1 Coverage

Data are available for the following winters.

- 2000–2001
- 2005–2006
- 2006–2007
- 2007–2008
- 2008–2009
- 2012–2013
- 2014–2015
- 2015–2016
- 2016–2017

Table 4 lists the exact date ranges for each winter.

<table>
<thead>
<tr>
<th>Data Year</th>
<th>Date Range</th>
</tr>
</thead>
<tbody>
<tr>
<td>2008/09</td>
<td>10 Jan 2009 – 05 Feb 2009</td>
</tr>
<tr>
<td>2015/16</td>
<td>02 Feb 2016 – 02 Apr 2016</td>
</tr>
<tr>
<td>2016/17</td>
<td>01 Feb 2017 – 06 Apr 2017</td>
</tr>
</tbody>
</table>

1.4.2 Resolution

One set of ice front positions per year.

2 DATA ACQUISITION AND PROCESSING

2.1 Background

From 2000 through 2013, the terminus positions were created using 20 m resolution SAR Mosaics of Greenland. As of 2014, the positions were created using the SAR imagery from the Copernicus Sentinel-1 satellite and Landsat 8 panchromatic imagery.
2.2 Acquisition

See MEaSUREs Greenland Ice Sheet Mosaics from SAR Data and MEaSUREs Greenland Image Mosaics from Sentinel-1A and -1B, Version 2 for information on the base maps used to create this data set.

2.3 Derivation Techniques and Algorithms

Terminus positions were digitized using mosaics created from RADARSAT satellite data through 2013, and as of 2014, they were created from Sentinel-1 and Landsat 8 satellite data. Positions were digitized for Greenland Ice Sheet outlet glaciers with terminus widths of roughly 1.5 km or greater. All glaciers that appear in each year's mosaic were digitized with few exceptions. For users of the data set, image quality varies and should be considered on a per-glacier basis. In cases where the terminus was highly fractured, the terminus position does not include fully detached (fractured) areas. For some glaciers, this determination is not clearly objective.

Number of glaciers in full data set: 238

Not all glaciers appear in each year due to limits in the satellite coverage; however, as of the 2014/15 winter season, all glaciers are included.

Table 5. Number of glaciers digitized per year

<table>
<thead>
<tr>
<th>Data Year</th>
<th>Number of glaciers digitized</th>
</tr>
</thead>
<tbody>
<tr>
<td>2000/01</td>
<td>205</td>
</tr>
<tr>
<td>2005/06</td>
<td>203</td>
</tr>
<tr>
<td>2006/07</td>
<td>200</td>
</tr>
<tr>
<td>2007/08</td>
<td>208</td>
</tr>
<tr>
<td>2008/09</td>
<td>201</td>
</tr>
<tr>
<td>2012/13</td>
<td>206</td>
</tr>
<tr>
<td>2014/15</td>
<td>238</td>
</tr>
<tr>
<td>2015/16</td>
<td>238</td>
</tr>
<tr>
<td>2016/17</td>
<td>238</td>
</tr>
</tbody>
</table>

2.4 Quality, Errors, and Limitations

Errors in digitized terminus location may occur due to:

- image distortion due to local topography
- difficulty distinguishing intact glacier ice from adjacent glacier or sea ice
highly fractured terminus area
resolution limits
manual digitization error

The digitization line is meant to cover roughly the full width of the active glacier terminus and the line ends do not necessarily indicate a junction between ice and rock or any other defined measure of a glacier edge. Therefore, this data set should not be used as a measure of glacier width.

2.5 Instrumentation

2.5.1 Description

For information about the SAR systems used to construct the mosaics from which this data set is derived, see the Alaska Satellite Facility’s SAR Basics web page, the Japan Aerospace Exploration Agency (JAXA) About ALOS - PALSAR site, and the European Space Agency’s Copernicus Sentinel-1 site. Information on the Landsat-8 OLI sensor is available on the USGS web site.

3 SOFTWARE AND TOOLS

These data can be readily accessed using GIS software such as ArcGIS and QGIS.

4 VERSION HISTORY

Version 1.2 was released in October 2017. Refer to Table 6 for this data set's version history:

<table>
<thead>
<tr>
<th>Version</th>
<th>Description</th>
</tr>
</thead>
</table>
| V1.2 (October 2017) | Added glaciers to two winters:
2006/2007 – glaciers 90 and 91
2008/2009 – glaciers 1-9, 90, and 91 |
| V1.1 (August 2017) | Minor changes include:
• Added data for winters of 2014/2015, 2015/16, 2016/17
• Added new parameter attributes for the new data
• Added 29 new glaciers
• Provided a new GlacierID file with added glaciers and updated attributes |
| V1 (September 2015) | Initial release |
5 RELATED DATA SETS

Digital SAR Mosaic and Elevation Map of the Greenland Ice Sheet
RAMP AMM-1 SAR Image Mosaic of Antarctica
MEaSUREs Greenland Ice Sheet Mosaics from SAR Data
MEaSUREs Greenland Ice Sheet Velocity Map from InSAR Data
MEaSUREs Greenland Ice Velocity: Selected Glacier Site Velocity Maps from InSAR
MEaSUREs InSAR-Based Antarctica Ice Velocity Map
MEaSUREs InSAR-Based Ice Velocity Maps of Central Antarctica: 1997 and 2009
MEaSUREs InSAR-Based Ice Velocity of the Amundsen Sea Embayment, Antarctica

6 RELATED WEBSITES

MEaSUREs Data | Overview
Alaska Satellite Facility
Canadian Space Agency
Japan Aerospace Exploration Agency

7 CONTACTS AND ACKNOWLEDGMENTS

Investigator(s) Name and Title

Ian Joughin
University of Washington
Applied Physics Laboratory
1013 NE 40th Street
Box 355640
Seattle, WA 98105

Twila Moon
National Snow and Ice Data Center
CIRES, 449 UCB
University of Colorado
Boulder, CO 80309-0449 USA

Jonah Joughin
Jonahjoughin@gmail.com

Taryn Black
tebblack@uw.edu

Acknowledgements:

These data were generated through a grant from the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) Program. Digitized ice fronts were created by Dr. Twila Moon. Contains modified Copernicus Sentinel data (2014-2017), acquired by the European...
Space Agency, distributed through the Alaska Satellite Facility, and processed by Joughin, I., T. Moon, J. Joughin, and T. Black.

8 REFERENCES

9 DOCUMENT INFORMATION

9.1 Publication Date

29 September 2015

9.2 Date Last Updated

29 December 2020