MEaSUREs Greenland Ice Velocity: Selected Glacier Site Single-Pair Velocity Maps from Optical Images, Version 1

USER GUIDE

How to Cite These Data

As a condition of using these data, you must include a citation:

FOR QUESTIONS ABOUT THESE DATA, CONTACT NSIDC@NSIDC.ORG

FOR CURRENT INFORMATION, VISIT https://nsidc.org/data/NSIDC-0777
TABLE OF CONTENTS

1 DATA DESCRIPTION .. 2
 1.1 Parameters .. 2
 1.2 File Information ... 2
 1.2.1 Format ... 2
 1.2.2 File Contents ... 2
 1.2.3 Naming Convention .. 5
 1.3 Spatial Information .. 5
 1.3.1 Coverage ... 5
 1.3.2 Resolution ... 5
 1.3.3 Geolocation ... 6
 1.4 Temporal Information .. 6
 1.4.1 Coverage ... 6
 1.4.2 Resolution ... 6

2 DATA ACQUISITION AND PROCESSING .. 6
 2.1 Acquisition ... 6
 2.2 Processing ... 7
 2.3 Quality, Errors, and Limitations ... 8
 2.4 Instrumentation ... 8
 2.4.1 Description .. 8

3 SOFTWARE AND TOOLS .. 9

4 VERSION HISTORY ... 9

5 RELATED DATA SETS ... 9

6 CONTACTS AND ACKNOWLEDGMENTS ... 9
 6.1 Investigators .. 9

7 REFERENCES ... 10

8 DOCUMENT INFORMATION .. 10
 8.1 Publication Date ... 10
 8.2 Date Last Updated .. 10
1 DATA DESCRIPTION

1.1 Parameters

This data set contains surface ice velocities and descriptive statistics for select Greenland Ice Sheet outlet glaciers. Velocities are generated using an automated photogrammetry software package that tracks visible features in optical image pairs. Input data were acquired between 2016–2021 by the U.S. Geological Survey (USGS) Landsat 8 Operational Land Imager (OLI) and the European Space Agency (ESA) Sentinel-2A and Sentinel-2B satellites.

1.2 File Information

1.2.1 Format

Velocity data are provided as NetCDF-4 (.nc) formatted files. Glacier/ROI (region of interest) IDs are available separately as either a GeoPackage (.gpkg) or a comma-separated values (.csv) file.

A GeoPackage file (.gpkg) is a SQLite database container formatted according to the open, portable, and platform-independent GeoPackage Encoding Standard. For details about working with a GeoPackage, see the GeoPackage Implementation Guidance website.

1.2.2 File Contents

1.2.2.1 Glacier/ROI

The glacier/ROI GeoPackage and CSV file contain ID numbers, official Greenlandic (Bjork) and foreign names, and spatial bounding boxes for each glacier/ROI. Internal processing IDs are also provided to help interpret the naming convention used for the velocity data files (See 1.2.3 | Naming Convention below.). The GeoPackage additionally contains all the geolocation information needed to view and work with the glaciers/ROIs in geographic information system (GIS) software (See Figure 1.).
1.2.2.2 Velocity

Velocity data for each glacier/ROI are broken out into separate files for each year in the data record. The data are stored as 3D arrays (x,y,t), where each layer represents the spatial grid (x,y) at a different date/time (t) during the specified year. Table 1 describes the variables in the NetCDF files.

The velocity data arrays utilize zero-based indexing and have different dimensions depending on the glacier/ROI and year.

Table 1. Variable Names and Descriptions

<table>
<thead>
<tr>
<th>Variable Name</th>
<th>Description</th>
<th>Dimensions</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>id</td>
<td>Velocity field ID: [glacier ID][datetime1][datetime2]_[satellite]</td>
<td>string</td>
<td>n/a</td>
</tr>
<tr>
<td>vx, vy</td>
<td>Velocity component in x, y direction</td>
<td>(t \times y \times x)</td>
<td>m/day</td>
</tr>
<tr>
<td>x</td>
<td>x coordinate at center of grid cell</td>
<td>(x \times 1)</td>
<td>m (from origin)</td>
</tr>
<tr>
<td>y</td>
<td>y coordinate at center of grid cell</td>
<td>(y \times 1)</td>
<td>m (from origin)</td>
</tr>
<tr>
<td>Variable Name</td>
<td>Description</td>
<td>Dimensions</td>
<td>Units</td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td>------------</td>
<td>-----------</td>
</tr>
<tr>
<td>error_dx_mean</td>
<td>Mean off-ice(^1) velocity in x, y direction</td>
<td>(t × 1)</td>
<td>m/day</td>
</tr>
<tr>
<td>error_dy_mean</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>error_dx_sd</td>
<td>Off-ice velocity standard deviation in x, y direction</td>
<td>(t × 1)</td>
<td>m/day</td>
</tr>
<tr>
<td>error_dy_sd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>error_mag_rmse</td>
<td>Magnitude of off-ice velocity root mean square error</td>
<td>(t × 1)</td>
<td>m/day</td>
</tr>
<tr>
<td>percent_ice_area_notnull</td>
<td>Percentage of GrIMP ice mask region that contains valid data</td>
<td>(t × 1)</td>
<td>percent</td>
</tr>
<tr>
<td>scene_1_datetime</td>
<td>Scene 1, scene 2 acquisition date/time</td>
<td>(t × 1)</td>
<td>seconds</td>
</tr>
<tr>
<td>scene_2_datetime</td>
<td></td>
<td></td>
<td>since 1970-01-01</td>
</tr>
<tr>
<td>midpoint_datetime</td>
<td>Midpoint between scene 1 and scene 2 acquisition time</td>
<td>(t × 1)</td>
<td>seconds</td>
</tr>
<tr>
<td>baseline_days(^2)</td>
<td>Temporal baseline between scene 1 and scene 2</td>
<td>(t × 1)</td>
<td>days</td>
</tr>
<tr>
<td>scene_1_satellite</td>
<td>Scene source satellite</td>
<td>string</td>
<td>n/a</td>
</tr>
<tr>
<td>scene_2_satellite</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scene_1_orbit</td>
<td>Sentinel-2 relative orbit number. E.g., 125 = Relative Orbit R125.</td>
<td>string</td>
<td>n/a</td>
</tr>
<tr>
<td>scene_2_orbit</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>scene_1_processing_version</td>
<td>Sentinel-2 processing baseline version. E.g., '301' = processing baseline 03.01.</td>
<td>string</td>
<td>n/a</td>
</tr>
<tr>
<td>scene_2_processing_version</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

NetCDF Dimensions

| index, string4, string6, string11, string49 | NetCDF dimension, not a NetCDF variable dimension scale | n/a |

\(^1\)The off-ice area is defined using the GrIMP land mask (Howat et al., 2014). As land is assumed to be stable (velocity = 0), any observed 'off-ice velocity' is assumed to be error and used as an error estimate for the velocity fields.

\(^2\)As a rough rule of thumb, as the temporal baseline between the two scenes increases, the impact of error components (e.g., orthorectification error) decreases. As such, longer, velocity estimates with longer temporal baselines are expected to have lower relative error. Users may wish to filter small baselines from their analyses. However, at fast-moving, rapidly-changing locations, users may prefer shorter baselines to properly capture the change. For example, where a summer termination occurs within the span of a week, scenes separated by 30 days are unlikely to be helpful.
1.2.3 Naming Convention

The GeoPackage (.gpkg) and CSV files are named:

 glacier_roi_names_v01.0.gpkg
 glacier_roi_names_v01.0.csv

NetCDF data files utilize the following naming convention:

 [ID]_[name]_[year]_v[nn].[r].nc

 Example:
 001_Alison_2016_v01.0.nc

The “ID” and “name” variables, when combined (e.g., 001_Alison), correspond to the “ID” field and column in the GeoPackage and CSV file, respectively. Each file thus contains all the velocity data for the specified glacier/ROI ID and year. v[nn].[r] specifies the two-digit version and release number* (e.g., v01.0).

*Occasionally, some or all of the files within a major version (e.g., v01) may need to be updated or replaced. When this happens, the release number is incremented by 1 (e.g., v01.1).

1.3 Spatial Information

1.3.1 Coverage

Northernmost Latitude: 82° N
Southernmost Latitude: 60° N
Easternmost Longitude: 20° W
Westernmost Longitude: 70° W

1.3.2 Resolution

Data are posted at 100 m.
1.3.3 Geolocation

Data are provided in the WGS 84 / NSIDC Sea Ice Polar Stereographic North projection. The following tables provide additional details about geolocating this data set.

<table>
<thead>
<tr>
<th>Geographic coordinate system</th>
<th>World Geodetic System 1984</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projected coordinate system</td>
<td>WGS 84 / NSIDC Sea Ice Polar Stereographic North</td>
</tr>
<tr>
<td>Longitude of true origin</td>
<td>45° W</td>
</tr>
<tr>
<td>Latitude of true origin</td>
<td>70° N</td>
</tr>
<tr>
<td>Scale factor at longitude of true origin</td>
<td>1</td>
</tr>
<tr>
<td>Datum</td>
<td>WGS 84</td>
</tr>
<tr>
<td>Ellipsoid/spheroid</td>
<td>WGS 84</td>
</tr>
<tr>
<td>Units</td>
<td>meter</td>
</tr>
<tr>
<td>False easting</td>
<td>0</td>
</tr>
<tr>
<td>False northing</td>
<td>0</td>
</tr>
<tr>
<td>EPSG code</td>
<td>3413</td>
</tr>
<tr>
<td>PROJ4 string</td>
<td>+proj=stere +lat_0=90 +lat_ts=70 +lon_0=-45 +k=1 +x_0=0 +y_0=0 +datum=WGS84 +units=m +no_defs</td>
</tr>
<tr>
<td>Reference</td>
<td>http://epsg.io/3413</td>
</tr>
</tbody>
</table>

1.4 Temporal Information

1.4.1 Coverage

11 January 2016 – 26 November 2021

1.4.2 Resolution

Varies from 2 – 50 days

2 DATA ACQUISITION AND PROCESSING

2.1 Acquisition

Sentinel source data comprise orthorectified, Sentinel-2 L2A scene pairs (both repeat-track and cross-track pairs) with a temporal baseline of between 2 and 50 days. No Sentinel-2 source data
were used after 23 August 2021, when the Sentinel-2 L1C orthorectification process adopted a new geolocation procedure and underlying DEM.

Orthorectified Landsat 8 images (panchromatic band) were obtained from Landsat standard data products (Level L1T or L1G).

2.2 Processing

Subsets of tiles were constructed for each glacier and reprojected from UTM to NSIDC Sea Ice Polar Stereographic North (EPSG:3413). Adjacent, overlapping tiles were then mosaicked and the resulting rasters were clipped using bounding polygons corresponding to each glacier's region of interest.

Velocity fields were produced using “Surface Extraction through TIN Searchspace Minimization” (SETSM), an open-source photogrammetry software package that performs cross-correlations of sequential images (see Noh and Howat, 2019).

Developed to produce high-resolution estimates of surface displacements across Antarctic Digital Elevation Models (DEMs), the original method compensated for relative sensor-model biases (i.e., minimized co-registration errors) and removed orthorectification errors due to height changes through time. For this data set, the algorithm was modified such that the relative sensor-model bias compensation module is applied directly to orthorectified images as co-registrations. Processing is fully automated with one exception: InSAR-derived velocity fields (from between 2016 to 2017) are used as an a priori, or seed velocity field to specify maximum displacements when determining the initial resolution in the coarse-to-fine processing scheme (Joughin, 2021).

To correct the significant orthorectification error in Sentinel-2 cross-track pairs, empirical estimates of systematic error were computed for each individual cross-track pair.

As a function of satellite geometry, orthorectification error should result in consistent offsets (in units of absolute displacement rather than velocity) across all velocity fields generated from the same repeat-orbit pairs. In addition, the algorithm assumes that other errors in the velocity field (e.g., image matching errors and co-registration errors) are random and do not correlate with specific ROI pairing. As such, the orthorectification error for specific orbital pairs is inferred by measuring the average offset between: the ice displacement measured from Sentinel-2 scenes; and the expected displacement from a reference velocity field, calculated as the median value of repeat-track pairs across the study period.
Once orbit-pair offsets have been constructed, uncorrected velocity fields are converted to absolute displacement, corrected using the appropriate orbit-pair displacement offset field, and then converted back to velocity.

To mitigate the effect of erroneous velocity measurements, a filter is applied to remove areas within the GrIMP ice mask where flow directions deviate by >20° from the reference flow field. If no data remain after filtering (<1% of the ice area has valid velocity measurements) the field is discarded and no output data are generated.

Displacements are corrected only over ice as defined in the Greenland Ice Mapping Project ice mask (Howat et al. 2014). Vertical DEM error outside of this mask is assumed to come only from elevation measurement error and not from surface elevation change.

2.3 Quality, Errors, and Limitations

As a first-order estimate of error, the data set includes the root mean square error (RMSE) of the absolute velocity of the bedrock area (as defined by the GrIMP bedrock mask). RMSEs tend to be low, with the median RMSE consistently beneath <0.5 m/day. Additionally, the mean and standard deviation of the bedrock area vx and vy velocity fields are also provided, so users can assess systematic co-registration error within individual flow fields due to e.g., poor co-registration. Where the mean of the vy or vy velocity is greater than one standard deviation away from zero, the field likely has a systematic co-registration error and users may wish to correct or discard these fields.

Finally, due to changing ice boundaries at marine-terminating locations, areas within the GrIMP ocean mask have not been filtered or removed. However, ice velocities beyond the extent of the GrIMP ice mask should not be considered reliable.

2.4 Instrumentation

2.4.1 Description

The Multi-Spectral Instrument (MSI) on board the Sentinel-2 satellites is a push-broom, 13-band, multispectral scanning radiometer capable of providing high-resolution imaging information of the Earth’s surface. Orbiting at an altitude of 786 km, the instrument detects spectrally-filtered radiation in the visible/near-infrared (VNIR) and short wave infrared spectral range (SWIR) with a field of view of 290 km.

Individual satellite revisit times are 10 days, with two identical satellites (Sentinel-2A and Sentinel-2B) phased 180 degrees from each other on the same orbit, allowing for a 5-day revisit cycle. Swath overlap at high latitudes enhances this revisit time further. The near-infrared (NIR) band 8
has a spatial resolution of 10 m, a central wavelength of 832.8 nm, a bandwidth of 106 nm, and a radiometric resolution of 12 bits. For more information, see the ESA’s Sentinel Online | MultiSpectral Instrument (MSI) Overview web page.

The OLI aboard Landsat 8 observes Earth in the visible, near infrared, and shortwave infrared wavelengths and produces images with 15 m panchromatic and 30 m multi-spectral spatial resolutions. The satellite orbits Earth in a sun-synchronous, near-polar orbit at an altitude of 705 km. It completes one Earth orbit every 99 minutes and has a 16-day repeat cycle with a local equatorial crossing time of 10:00 a.m. (+/- 15 minutes). For more information, see the USGS Landsat 8 mission webpage.

3 SOFTWARE AND TOOLS

NetCDF-4 data files can be accessed using free, open source software like Panoply and HDFView. A GeoPackage can be accessed using Geographic Information System (GIS) software like QGIS (free, open source). For additional details about working with a GeoPackage, see the GeoPackage Implementation Guidance website.

4 VERSION HISTORY

Version 1 (July 2022)

5 RELATED DATA SETS

MEaSUREs Data at NSIDC

6 CONTACTS AND ACKNOWLEDGMENTS

6.1 Investigators

Ian M. Howat, Tom R. Chudley, and Myoung-Jong Noh
Byrd Polar Research Center
Ohio State University
Columbus, OH 43210
7 REFERENCES

https://doi.org/10.5194/tc-8-1509-2014

https://doi.org/10.5067/C2GFA20CXUI4

https://doi.org/10.1109/JSTARS.2019.2938146

8 DOCUMENT INFORMATION

8.1 Publication Date

July 2022

8.2 Date Last Updated

July 2022