

SnowEx17 Radiometrics Surface-Based Radiometer Brightness Temperatures, Version 1

USER GUIDE

How to Cite These Data

As a condition of using these data, you must include a citation:

Roy, A., A. Langlois, and L. Brucker. 2019. *SnowEx17 Radiometrics Surface-Based Radiometer Brightness Temperatures, Version 1.* [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. doi: https://doi.org/10.5067/JWONK1ZTSBXX. [Date Accessed].

FOR QUESTIONS ABOUT THESE DATA, CONTACT NSIDC@NSIDC.ORG

FOR CURRENT INFORMATION, VISIT https://nsidc.org/data/SNEX17_SBR

TABLE OF CONTENTS

1	DA	TA DESCRIPTION
	1.1	Parameters2
	1.2	File Information2
	1.2.	1 Format2
	1.2.	2 File Contents
	1.2.	3 Directory Structure
	1.2.	4 Naming Convention
	1.2.	5 File Size
	1.3	Spatial Information
	1.3.	1 Coverage8
	1.3.	2 Resolution
	1.3.	3 Geolocation
	1.4	Temporal Information9
	1.4.	1 Coverage9
	1.4.	2 Resolution
2	DA	TA ACQUISITION AND PROCESSING9
	2.1	Background9
	2.2	Acquisition
	2.3	Processing11
	2.4	Quality, Errors, and Limitations
	2.5	Instrumentation
	2.5.	1 Description
3	RE	LATED DATA SETS
4	RE	LATED WEBSITES12
5	CO	NTACTS AND ACKNOWLEDGMENTS12
6	RE	FERENCES12

1 DATA DESCRIPTION

1.1 Parameters

The main parameters for this data set are shown in Table 1.

Table 1	. Parameters	
---------	--------------	--

Parameters	Units	Measurement Device	Measurement Site
Brightness temperature (T _b)	kelvins, K	Four surface-based radiometers (SBR) at 89, 37, 19, and 11 GHz	Snow Pits, County Line parking site, MegaTrench
Snow wetness	vol./vol.	Snow Fork	Snow Pits

1.2 File Information

1.2.1 Format

Data are presented in Comma Separated Values (.csv) format. Compressed images (.jpg) are also provided. Both data files (.csv) and images (.jpg) are grouped in zip folders (.zip).

Each data file also has an associated XML file that contains metadata.

1.2.2 File Contents

Brightness temperature data files begin with a nine-line header that describes the file contents, the methods used to collect data, and missing data values. An example of this header is shown in Figure 1. Brightness temperature data are presented in 23 columns, which are described in Table 2.

#File : Name of the TBraw file (SnowEx_File_SITE_Position_View_YYYYMMDD_HHMM_MST)
#Pit : Name of the adjacent snowpit (NaN = no adjacent pit)
#Snow Depth : Snow Depth measurements were done with an avalanche probe in the footprint of the radiometer (cm) (NaN = no snow depth measured)
#UTM (12 S and 13S) : UTM coordinates of the SBR footprint (NaN = no GPS point taken during the measurements)
#TBFRP : Averaged calibrated brightness temperature (TB) (over the 2-4 minutes) at a given frequency (FR : 89 - 37 - 19 - 11) and a given polarization (P : horizontal [H] or vertical [V]) in Kelvin (K)
#stdFRP : Standard deviation of the measurements during the 2-4 minute period.
#IDPhoto : Photo ID that were taken at the SBR site (see Picture_SBRTrench directory).
#SnowFork : Identifies if snowfork measurements were taken.
#Comments : General comments on when and where the measurements were conducted.

Figure 1. Header for the brightness temperature data file, SnowEx17_SBR_Trench_TBcalibrated.

Column Header	Description
File_SITE_Position_View_ YYYYMMDD_HHMM_MST	Includes the file name for the raw brightness temperature data from which row values were calculated; raw files not archived at NSIDC
PITID	Name of the most adjacent snowpit to the SBR measurements
Snow Depth	Depth of snow at the site of the measurement, in cm; snow depth was measured with an avalanche probe
UTM	Coordinate system
ТВ <i>тг</i> Р(К)	Brightness temperature in kelvins (K) at frequency <i>rr</i> and polarization P: rr = 89, 37, 19, or 11 P = H (horizontal) or V (vertical)
std <i>rr</i> P(K)	The standard deviation for the brightness temperature reading in kelvins (K) at frequency <i>rr</i> and polarization P: rr = 89, 37, 19, or 11 P = H (horizontal) or V (vertical)
IDPhoto	Identifies the browse images associated with the SBR measurement site
Comments	General comments on where and how the SBR readings were taken

	Table 2. Brightness	Temperature	Data File	Content Description	s
--	---------------------	-------------	-----------	---------------------	---

Continuous data files contain 16 columns of data, described in more detail in Table 3. Figure

2 shows 10 lines of data from the

file: SnowEx17_SBR_Corrected_SnowEx_GM_84N_20170217_1221.

Column Header	Description
Frequency	Frequency at which SBR measurements were collected (GHz)
Year	Year of data acquisition
Month	Month of data acquisition
Day	Day of data acquisition
Hour	Hour of data acquisition
Minute	Minute of data acquisition
Seconde	Second of data acquisition
Vload ₁	Internal load observations
VloadND1	Internal load noise diode
Tload₁	Radiometer temperature
Tcase ₁	Case temperature
V (V-Pol) (V)	Voltage at V-pol

Column Header	Description						
V (H-Pol) (V)	Voltage at H-pol						
Incidence Angle (∞)	Angle at which SBR measurements were collected (measured from the horizontal)						
Tb (V-Pol) (K)	Brightness temperature at the vertical polarization (K)						
Tb (H-Pol) (K)	Brightness temperature at the horizontal polarization (K)						
1Raw values taken directly from the instrument, see the Technical References tab for more details							

#Site ID : 84N															
# Tb (V-pol) (K) : cal	ibrated	d brightn	less t	emper	ature (TB)	at V-pol									
# Tb (H-pol (K) : cali	orated	brightne	ess te	mpera	ture (TB)	at H-pol									
# Note: The values b	etwee	n Secon	de an	d Tb (V-pol) (K)	are radiom	eter raw d	lata (see rea	adme for	more in	formation).				
#Frequency (GHz)	Year	Month	Day	Hour	Minute	Seconde	Vload	VloadND	Tload	Tcase	V (V-Pol) (V)	V (H-Pol) (V)	Incidence Angle (∞)	Tb (V-Pol) (K)	Tb (H-Pol) (K)
11	2017	2	17	12	21	38	1.52135	2.01073	40.015	7.67	1.45626	1.42725	-37.789	239.994	206.57
11	2017	2	17	12	21	42	1.52133	2.01077	40.016	7.654	1.45638	1.42756	-37.77	240.172	206.97
11	2017	2	17	12	21	46	1.52113	2.011	40.012	7.678	1.45573	1.42762	-37.765	239.7	207.37
11	2017	2	17	12	21	49	1.52122	2.01094	40.011	7.671	1.45613	1.42717	-37.768	240.044	206.70
11	2017	2	17	12	21	53	1.52157	2.01091	40.004	7.671	1.45638	1.42738	-37.771	239.858	206.44
11	2017	2	17	12	21	57	1.52178	2.01102	40.008	7.679	1.45639	1.42757	-37.777	239.607	206.40
11	2017	2	17	12	21	60	1.52159	2.01124	40.01	7.673	1.4565	1.42731	-37.786	240.031	206.41
11	2017	2	17	12	22	4	1.52133	2.01099	40.006	7.647	1.45652	1.42761	-37.783	240.364	207.07
11	2017	2	17	12	22	7	1.52161	2.01085	40.008	7.674	1.45641	1.42759	-37.772	239.834	206.62
11	2017	2	17	12	22	11	1.5217	2.01094	40.003	7.672	1.45624	1.42806	-37.762	239.52	207.0

Figure 2. Continuous SBR Data Sample File

Snow fork data files begin with a four-row header that specifies the date and time of acquisition, the snowpit ID where measurements were collected, and descriptions of the data columns. Table 4 contains a more detailed description of each data column, and Figure 3 shows sample data from file SnowEx17_SBR_Snow_Fork_21S_16Feb.csv.

Column Header	Description	Units
Depth	Depth at which the snow fork measurement was taken (v = vertically inserted)	cm
Snow Wetness	Snow fork measurement	vol./vol.
Snow Density	Density of snow	kg / cm₃

```
# Date (MM/DD/YY): 02/16/17
# Mountain Standard Time (HHhMM): 14h15
# Site ID: 21S
# depth(top=0, v=inserted vertically),SnowWetness (vol./vol.),SnowDensity (kg cm-3)
v,0.367,0.2904
5,0.558,0.1292
10,0.877,0.2429
15,1.678,0.2476
20,1.414,0.253
25,0.491,0.2353
30,0.38,0.2756
35,0.873,0.2382
40,0.508,0.2721
45,1.1251,0.2303
50,0.638,0.2748
55,0.624,0.2479
60,0.768,0.2737
65,0.878,0.2447
70,0.745,0.2373
```

Figure 3. Snow Fork Sample File

1.2.3 Directory Structure

Data files and images are provided in zip folders, labeled by measurement site, as shown in Figure 1. See the "File Naming Convention" of this user guide for more details on the files stored within these zip folders.

Figure 4. File Directory Structure

1.2.4 Naming Convention

The brightness temperature data files are named according to the following convention and as described in Table 5:

SnowEx17_SBR_<measurement site>_Tbcalibrated.csv

Example:

SnowEx17_SBR_CountyLine_TBcalibrated.csv

Parameters	Measurement Site
SnowEx17_SBR	Abbreviation for SnowEx17 Radiometrics Surface-Based Radiometer Brightness Temperatures
<measurement site></measurement 	Where the data were collected (County Line, Snowpits, Trench)

Table 5. Brightness Temperature File Naming Convention

The snow fork data files are named according to the following convention and as described in Table 6:

SnowEx17_SBR_Snow_Fork_<site ID>_##Feb.csv

Example:

SnowEx17_SBR_Snow_Fork_24E_15Feb.csv

SnowEx17_SBR_Snow_Fork_21S_16Feb.csv

Table 6. Snow Fork File Naming Convention

Parameters	Measurement Site
SnowEx17_SBR	Abbreviation for SnowEx17 Radiometrics Surface-Based Radiometer Brightness Temperatures
Snow_Fork	Indicates that this file contains snow fork measurements
<side id=""></side>	Snow pit ID
##Feb	Date of measurement

The continuous data files (where measurements were recorded continuously over approximately 20 minutes) are named according to the following convention and as described in Table 7: SnowEx17_SBR_Corrected_SnowEx_GM_<site ID>_YYYYMMDD_hhmm.ext

Example:

SnowEx17_SBR_Corrected_SnowEx_GM_32S_20170216_1158.csv SnowEx17_SBR_Corrected_SnowEx_GM_84N_20170217_1221.csv

Parameters	Measurement Site
SnowEx17_SBR	Abbreviation for SnowEx17 Radiometrics Surface-Based Radiometer Brightness Temperatures
Corrected_SnowEx_GM	Indicates that the file contains corrected, continuous SBR measurements collected in Grand Mesa, CO
<side id=""></side>	Snow pit ID
YYYYMMDD	Date of measurement, in four-digit year, 2-digit month, 2-digit day format
hhmm	Start time of measure

Table 7.	Continuous	Data	File	Naming	Convention

Images are named according to the following convention and as described in Table 8:

SnowEx17_SBR_<measurement site>_TB_image_####.jpg

Example:

SnowEx17_SBR_Snowpits_TB_image_0899.jpg

SnowEx17_SBR_Snowpits_TB_image_0900.jpg

Parameters	Measurement Site
SnowEx17_SBR	Abbreviation for SnowEx17 Radiometrics Surface-Based Radiometer Brightness Temperatures
<measurement site></measurement 	Where the data were collected (County Line, Snowpits, Trench)
image_####	Image ID (e.g. image 0899, image 0900)

1.2.5 File Size

Zip folders range in size from approximately 1.5 to 3.2 KB.

CSV files range in size from approximately 0.3 KB to 141 KB.

JPG files range in size from approximately 1.8 MB to 5.0 MB.

The total data volume is approximately 894 MB.

1.3 Spatial Information

1.3.1 Coverage

Grand Mesa, Colorado: Northernmost Latitude: 39.1° N Southernmost Latitude: 39.0° N Easternmost Longitude: 107.8° W Westernmost Longitude: 108.2° W

1.3.2 Resolution

Brightness temperature readings taken at 89, 37, and 19 GHz had a footprint of approximately 0.6m X 0.6m.

Brightness temperature readings taken at 11 GHz had a footprint of approximately 0.8m X 0.8m.

1.3.3 Geolocation

Data falls within the projected coordinate systems WGS 84 / UTM Zone 12 North and WGS 84 / UTM Zone 13 North, details of which are presented in Table 9.

Geographic coordinate system	WGS 84	WGS 84
Projected coordinate	WGS 84 / UTM Zone 12 North	WGS 84 / UTM Zone 13 N
Longitude of true origin	-111	-105
Latitude of true origin	0	0
Scale factor at	0.9996	0.9996
longitude of true origin		
Datum	WGS 1984	WGS 1984
Ellipsoid/spheroid	WGS 84	WGS 84
Units	meters	Meters
False easting	50000	50000
False northing	0	0
EPSG code	32612	32612
PROJ4 string	+proj=utm +zone=12 +datum=WGS84 +units=m +no_Defs	+proj=utm +zone=13 +datum=WGS84 +units=m +no_defs
Reference	https://epsg.io/32612	https://epsg.io/32613

NOTE: Data files indicate that all coordinates fall within Universal Transverse Mercator (UTM) Grid Zone 12S or UTM Grid Zone 13S. These designation correspond to the intersection of latitudinal projection zone S and longitudinal projection zone 12 or 13, as shown in Figure 2.

Figure 5. UTM Grid Zone

1.4 Temporal Information

1.4.1 Coverage

Data were acquired between 14 February 2017 and 18 February 2017.

1.4.2 Resolution

N/A

2 DATA ACQUISITION AND PROCESSING

2.1 Background

Snow Water Equivalent (SWE) is often estimated from Satellite Passive Microwave (PMW) observations of brightness temperature (Tb) using algorithms which assume a linear relationship between SWE and spectral Tb. However, seasonal variability in snow grain metamorphism and vegetation can produce variabilities that are not captured in these calculations. As an improvement on PMW algorithms, Microwave Snow Emission Models (MSEM) account for multiple sources of spectral Tb measurements (e.g. water, vegetation) and adjust for inter-annual variability in snow

and vegetation quality. However, MSEM are limited by the coarseness of satellite-scale measurements, which typically have a spatial resolution greater than 10 km X 10 km.

As an alternative to satellite observations of Tb, Surface-Based Radiometers (SBR) offer a better means of isolating and measuring microwave emissions from snow-covered surfaces. SBR readings were incorporated into the 2017 SnowEx campaign in Grand Mesa, CO to quantify the relative importance of different geophysical parameters (e.g. SWE, snow grain) and identify the small-scale spatial variability in Tb measurements.

2.2 Acquisition

2.2.1 SBR Measurements

Four surface-based radiometers (SBR) attached to a sleigh and pulled behind a snow mobile collected brightness temperature (Tb) measurements of snow surfaces and vegetation around Grand Mesa, Colorado. The SBR, mounted approximately 1.5 m off the ground and at an angle of 55°, measured Tb at 89, 37, 19, and 11 GHz in both the vertical (V-pol) and horizontal (H-pol) polarizations. Measurements were taken every six seconds over two- to four-minute intervals at each site. The 89, 37, and 19 GHz SBR had a beamwidth of 6° and a footprint of 0.6 m X 0.6 m., while the 11 GHz SBR had a beamwidth of 8° and a footprint of 0.8 m X 0.8 m.

On 14 Feb. 2017, SBR measurements were collected at two Local Scale Observation Site (LSOS) locations, one close to the radar (RS) and one close to the Michigan radiometers (JC).

Between 15 Feb. and 17 Feb. 2017, measurements were conducted at 29 Grand Mesa (GM) Snow Pit locations.

On 18 Feb. 2017, the SBR measured emissions from the snow surface and the forest (SBR positioned at 55°, looking at the sky and vegetation) behind two Mega Trenches (LSOS_MegaTrenchAspen and LEP_MegaTrench). Measurements were also done at the County Line parking area on a scissor lift. The scissor lift was placed at two heights, 970 cm and 1240 cm. At both heights, the SBR measured Tb from three footprints, one open area (S1) and two forested areas (S2, S3).

2.2.2 Continuous SBR Measurements

During periods of surface melt, continuous SBR measurements were collected over approximately 20 minutes at three snow pits (32S, 97S, and 84N). Continuous measurements quantify how Tb increases as the liquid water content of the snow increases.

2.2.3 Snow Fork Measurements

Between February 15 and February 18 2017, a snow fork was used to measure wetness (% vol) and snow density (kg/cm3) at 13 snow pits.

2.3 Processing

SBR were calibrated with liquid nitrogen (LN₂) and an ambient black body (BB) on 18 February 2017. Calibration coefficients, optimized using the LN₂ and ambient BB measurements, were then used to correct T_b measurements over the whole campaign.

2.4 Quality, Errors, and Limitations

During the campaign, several ambient BB measurements were recorded to quantify the radiometers' stability. The mean absolute error between the radiometers' measurements and physical measurements of the BB was around 1 K. Errors are slightly higher (~1.4 K) for the 37 GHz Tb measurements, specifically those done at LSOS-JCTruck site on 14 Feb. 2017, where a more than 5 K difference between Tb and BB temperature was noted. Caution should be taken when using those 37 GHz observations. All other Tb measurements are reliable within ±1 K.

Biases are under 1 K for all radiometers.

2.5 Instrumentation

2.5.1 Description

The SBR used for this study were all PR-Series radiometers produced by Radiometris Corporation:

- PR-1065: 10.65 GHz dual-polarization, single-channel radiometer
- PR-1900: 19 GHz dual-polarization, single-channel radiometer
- PR-3700: 36.5 GHz dual-polarization, single-channel radiometer
- PR-8900: 89 GHz dual-polarization, single-channel radiometer

Visit the Radiometris Corporation website for more details.

3 RELATED DATA SETS

Other SnowEx Data Sets

4 RELATED WEBSITES

NASA SnowEx

5 CONTACTS AND ACKNOWLEDGMENTS

Alexandre Roy

Université du Québec à Trois-Rivières Trois-Rivières, Quebec G8Z 4M3 Canada

Alexandre Langlois

Université de Sherbrooke Département de Géomatique Appliquée

Ludovic Brucker

Goddard Space Flight Center Greenbelt, MD 20771

6 REFERENCES

Langlois, A. 2015. Applications of the PR Series Radiometers for Crysopheric and Soil Moisture. Research, Technical Report. Vol. 2015. © Radiometrics Corporation, p. 40.

Roy, A., A. Royer, O. St-Jean-Rondeau, B. Montpetit, G. Picard, N. Marchand, and A. Langlois.2016. Microwave snow emission modeling uncertainties in boreal and subarctice environments.The Crysophere 10: 623-638.

Roy, A., A. Royer, J. P. Wigneron, A. Langlois, J. Bergeron, and P. Cliche. 2012. A simpler parameterization for a boreal forest radiative transfer model at microwave frequencies. Remote Sensing of the Environment 124. https://dx.doi.org/10.1016/j.rse.2012.05.020

7 DOCUMENT INFORMATION

7.1 Publication Date

05 July 2018

7.2 Date Last Updated

14 March 2019