

MEaSURES Greenland Ice Velocity: Selected Glacier Site Velocity Maps from Optical Images, Version 1

USER GUIDE

How to Cite These Data

As a condition of using these data, you must include a citation:

Howat, I. 2016. *MEaSURES Greenland Ice Velocity: Selected Glacier Site Velocity Maps from Optical Images, Version 1.* [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/EYV1IP7MUNSV. [Date Accessed].

FOR QUESTIONS ABOUT THESE DATA, CONTACT NSIDC@NSIDC.ORG

FOR CURRENT INFORMATION, VISIT https://nsidc.org/data/nsidc-0646

TABLE OF CONTENTS

1	D	DATA DESCRIPTION			
	1.1	Parar	neters2		
	1	.1.1	Parameter Description		
	1.2	File Iı	nformation2		
	1.	.2.1	Format2		
	1.	.2.2	Directory Structure		
	1.	.2.3	Naming Convention		
	1.3	Size.			
	1.4	Volur	ne4		
	1.5	Spati	al Information4		
	1	.5.1	Coverage4		
	1.	.5.2	Resolution		
	1	.5.3	Geolocation4		
	1.6	Temp	oral Information8		
	1.	.6.1	Coverage		
	1.	.6.2	Resolution		
2	D	ATA A	CQUISITION AND PROCESSING8		
	2.1	Acqu	sition8		
	2.2	Deriv	ation Techniques and Algorithms9		
	2	.2.1	Processing Steps		
	2.3	Quali	ty, Errors, and Limitations9		
	2	.3.1	Error Sources		
	2.4	Instru	mentation10		
	2	.4.1	Description		
3	SOFTWARE AND TOOLS				
4	RELATED DATA SETS				
5	RELATED WEBSITES11				
6	CONTACTS AND ACKNOWLEDGMENTS11				
7	REFERENCES 11				
8	П		IENT INFORMATION 11		
Ŭ	8 1	Publi	cation Date 11		
	8.2	Date	l ast Updated 12		
	0.2	Duio			

1 DATA DESCRIPTION

1.1 Parameters

1.1.1 Parameter Description

This data set reports the following parameters:

- Ice velocities (x- and y-components)
- Error estimates (x- and y-components)

Corresponding ASCII text metadata files (.meta) are also provided that contain geographical information plus dates and codes that reveal the sensor combinations of the images used to create the monthly mean. The sensor combination key is provided in Table 1:

Table 1. Sensor Key for Metadata Files

Sensor	Code
Landsat 8 OLI	LC8
Landsat 7 ETM+	LE7
ASTER	AST

The following sensor combinations are possible: LE7/LE7, LE7/LC8, AST/AST, LC8/LC8.

1.2 File Information

1.2.1 Format

This data set is organized into 49 study sites. The following files are provided for each site:

- velocity browse image (PNG)
- component velocity in the x-direction (GeoTIFF)
- component velocity in the y-direction (GeoTIFF)
- error estimates in the x-direction (GeoTIFF)
- error estimates in the y-direction (GeoTIFF)
- metadata file (ASCII text)

1.2.2 Directory Structure

Study sites in this data set correspond to geographical sub-regions of Greenland. The name of each sub-region reflects its center latitude. Table 3 under the Spatial Coverage section of this document lists the name (center latitude) of each sub-region, the latitude and longitude of its lower

left corner, and the geographical features it contains. Data are available via HTTPS in the following directories:

https://daacdata.apps.nsidc.org/pub/DATASETS/nsidc0646_MEASURES_greenland
_vel_optical_v1

These directories are divided into folders for each study site. Data files are stored in subfolders labeled by date of acquisition.

1.2.3 Naming Convention

This section explains the file naming convention used for this data.

Example File Names:

- OPT_E61.10N_1999-09.png
- OPT_E61.10N_1999-09.vx.tif
- OPT_E61.10N_1999-09.vy.tif
- OPT_E61.10N_1999-09.ex.tif
- OPT E61.10N 1999-09.ex.tif
- OPT_E61.10N_1999-09.meta

Naming Convention:

• OPT_[sub-region]_[date].[datum].[ext]

The following table describes the variables used in this data set's file naming convention:

Variable	Description			
OPT	Velocities derived from optical image pairs acquired by Landsat 8 OLI, Landsat 7 ETM+, ASTER, or a combination.			
sub-	Sub-region is defined as follows:			
region	E, W, or S: East, West, or South Coast			
	Center latitude in degrees, minutes			
datum	Component velocity or component error estimate:			
	vx: x component of velocity			
	vy: y component of velocity			
	ex: x component of error			
	ey: y component of error			

Table 2. File Name Variables and Descriptions

Variable	Description	
ext	File extension:	
	png: Portable Network Graphic file	
	tif: GeoTIFF-formatted file	
	 meta: ASCII text file. Contains image dates, production date, sensor 	
	combinations, and geographical information	

1.3 Size

GeoTIFF files are approximately 1.5 MB each. Browse images and metadata files are less than 50 KB each.

1.4 Volume

The total data volume is approximately 21 GB.

1.5 Spatial Information

1.5.1 Coverage

This data set contains velocity maps for most of the outlet glaciers on the Greenland Ice Sheet.

The study area lies within the following bounding box:

- Southernmost Latitude: 60° N
- Northernmost Latitude: 82° N
- Easternmost Longitude: 20° W
- Westernmost Longitude: 70° W

1.5.2 Resolution

100 m

1.5.3 Geolocation

Data are organized into 49 sub-regions of a polar stereographic grid with a standard latitude of 70° N and rotation angle of -45° (sometimes specified as a longitude of 45° W). With this convention, the y-axis extends south from the North Pole along the 45° W meridian. Table 3 lists the name (center latitude) of each sub-region, the latitude and longitude of its lower left corner, and the glaciers it contains.

Sub-Region Name	Geographical Features in Grid
Latitude, Longitude (lower left corner)	
E61.10N	Unnamed glacier near Danell Fjord
• 60.8004, -43.9589	Danells
	Kanderdluluk Fjord
	Cape Herluf Trolle
	Cape Tordenskjold
E61.70N	Anorituup Kangerlua Fjord
• 61.3903, -43.7671	Napasorsuaq Fjord
E62.10N	Puisortoq Glacier (north)
• 61.801, -43.2149	Puisortoq Fjord (south)
E62.55N	Mogens Heinesen Fjord
• 62.2422, -43.6371	Timmiarmiut Fjord
E63.00N	Heimdal Glacier
• 62.7212, -43.5332	
E63.35N	Thrym Glacier
• 63.0911, -42.5656	Sehested Fjord
	Skinfaxe Glacier
E63.85N	Bernstorffs Fjord
• 63.5620, -42.4419	
E64.35N	Gyldenlove Fjord
 64.0768, -42.2688 	
E64.65N	Fridtjof Nansens Peninsula
• 64.3291, -41.7539	
E65.10N	Koge Bay
• 64.7987, -41.8569	
E65.55N	Ikertivaq Sound
• 65.2242, -40.5156	Pamiatig
E66.50N	Fenris Glacier
• 66.1973, -39.1116	Helheim Glacier
E66.60N	Midgard Glacier
• 66.3305, -37.4428	Midgard North
E66.90N	Kruuse Fjord
• 66.5045, -36.2923	Steenstrup Glacier
	Tasiilaq Fjord
E67.55N	Norde Parallel Glacier
• 67.2762, -34.9643	Nordre

Table 3.	Sub-Region	Names,	Locations,	and	Geographical Features	3

Sub-Region Name	Geographical Features in Grid
Latitude, Longitude (lower left corner)	
E68.05N	Hutchinson Glacier
• 67.9148, -33.9170	
E68.50N	Courtauld Glacier
• 68.3044, -31.1040	Frederiksborg Glacier
	Christian IV Glacier
	Sorgenfri Glacier
E68.52N	Schjelderup Glacier
• 68.3044, -31.1040	Sorgenfri Glacier
E68.80N	Kangerdlussuaq Glacier
• 68.4663, -34.3672	Nordfjord Glacier
E69.90N	unnamed glaciers
• 69.8224, -29.5537	
E70.10N	Syd Glacier
• 70.0023, -26.7390	
E70.40N	Rolige Glacier
• 70.0488, -30.6613	
E71.75N	Daugaard-Jensen Glacier
• 71.4887, -30.9758	
E71.95N	Daugard-Jensen Glacier
• 71.7410, -29.9742	
E78.95N	Gammel Hellerup Glacier
• 78.7851, -22.2120	
W61.70N	Sermiligarssuk Fjord
• 61.4746, -48.4912	
W62.10N	Nigerdlikasik Glacier
• 61.8077, -49.0172	Avangnardleq Glacier
	Ukassorssuaq
W64.25N	Kangiata Nunata Sermia Glacier
• 63.9263, -49.8721	Quamanarssup Glacier
W64.75N	Ujarassuit Paauat Fjord
• 64.4610, -50.1732	Narsap Sermia Glacier
W69.10N	Alangordliup Sermia Glacier
• 68.7418, -50.4126	Jakobshavn Isbræ Glacier
	Torsukattak Glacier
W69.95N	Kangilerngata Sermia Glacier
• 69.6356, -50.6122	Kujatdleq Glacier
	Torsukattak Fjord

Sub-Region Name	Geographical Features in Grid
Latitude, Longitude (lower left corner)	
W70.55N • 70.2285, -50.9177	 Lille Glacier Sermilik Glacier Kangilleq Glacier Store Glacier
W70.90N • 70.7542, -50.9613	Perdlerfiup Sermis GlacierSilardleq
W71.65N • 71.3100, -51.8327	Kangerluarsuk GlacierRink Glacier
W72.00N • 71.6540, -52.8014	Inngia FjordUmiammakku Glacier
W72.90N • 72.5829, -54.8293	Alangorssup Sermia GlacierUpernavik Isstorm Glacier
W73.45N • 73.1520, -55.6912	 Kakivfait Sermiat Glacier Giesecke Glacier Nutarmiut Glacier Tuvssaq (populated area)
W73.75N • 73.1520, -55.6912	Cornell GlacierSugarloaf Bugt (sound)Ussing Glacier
W74.50N • 74.1506, -56.4843	Cornel GlacierAlison Bugy (bay)Illulik (populated area)
W74.95N • 74.5750, -57.6463	Hays GlacierKjer GlacierJensen Glacier
W75.50N • 75.1264, -58.5281	Dietrichson GlacierSteenstrup GlacierSverdrup Glacier
W75.85N • 75.4736, -59.2722	Nansen GlacierNordenskiold Glacier
W76.10N • 75.7205, -60.0987	Kong Oscar GlacierNordenskiold GlacierNutarmiut
W76.25N • 75.9067, -61.2365	 Balgoni Docker Smith Glacier Fisher Igssuarssuit Sermia Glacier Leven

Sub-Region Name Latitude, Longitude (lower left corner) 	Geographical Features in Grid
W76.33N • 76.1538, -64.2165	Yngvar Nielsen GlacierMohn Glacier
W76.35N • 75.7416, -63.3988	 Mohn Glacier Gade Glacier Meteor Bay Yngvar Nielson Glacier
W77.55N • 77.0728, -66.2296	 Leidy Glacier Mane Glacier Heilprin Glacier Mellville Glacier Tracy Glacier
S44.84W • 61.0923, -45.3465	Kiattuut Sermiat glacierQooroq Fjord
S45.43W • 61.2196, -45.8994	Equlorutsit KangigdlitSermia

1.6 Temporal Information

1.6.1 Coverage

Data span July 1999 through September 2015.

1.6.2 Resolution

Monthly

2 DATA ACQUISITION AND PROCESSING

2.1 Acquisition

Level 1 imagery for the Landsat 7 ETM+ and Landsat 8 OLI was obtained from the U. S. Geological Survey (USGS | Landsat Level 1 Standard Data Products). ASTER (AST14DMO) imagery was obtained from the NASA Land Processes Distributed Active Archive Center (LPDAAC).

2.2 Derivation Techniques and Algorithms

2.2.1 Processing Steps

These data were created using orthorectified Landsat Level L1T or L1G and ASTER (AST14DMO) imagery. Orthorectified images were received in UTM projection and converted to Polar Stereographic using Geographic Data Abstraction Library (GDAL) software. ASTER visible bands 1-3 were reduced to a single grayscale principle component image. The panchromatic band was used for Landsat. Velocity fields were constructed using images from the same sensor or combinations of Landsat 7, Landsat 8, and ASTER images. In the case of Landsat pairs, only images from the same path/row were used to reduce the impact of terrain-dependent errors.

Velocity fields were produced by an automated cross-correlation of sequential images using the Multi-Image Multi-Chip (MIMC) algorithm described in Ahn and Howat (2011) and updated in Jeong et al. (in revision). The MIMC utilizes a range of image filters and search window sizes as well as both backward and forward matching to generate 64 matches per sample. Neighborhood statistics and an *a priori* velocity field, consisting of radar-derived velocities closest in time to the image dates from the MEaSUREs Greenland Ice Sheet Velocity Map from InSAR Data data set, were used to select the highest confidence solution and its uncertainty.

This velocity field was then corrected for image re-registration errors by subtracting the average displacement over bedrock or very slow-moving ice (< 10 m/yr), which is located using the *a priori* velocity field. The residual deviation of velocities over bedrock then provides the registration error (see Error Sources). Individual velocity image pairs within each region were sampled to the same grid and stacked into monthly medians at each grid point, providing a monthly sampling. The median error was also obtained.

Note: Monthly means are calculated from images which may have acquisition dates from the preceding or succeeding month. For the naming convention, the month is determined from where the midpoint Julian dates fall. For example, September monthly means may have been generated from images that were acquired in August or in October but the midpoint Julian date between the images falls within September. The exact dates used are included in the meta file.

2.3 Quality, Errors, and Limitations

2.3.1 Error Sources

Uncertainty in the velocity solution results from uncertainty in the match solution and uncertainty in image co-registration. Match solution uncertainty is estimated at each grid point from the sample of individual velocity solutions that results from the MIMC procedure. This error is typically on the

order of one-third of a pixel. Co-registration error, the dominant source of uncertainty, is estimated from the residual velocities obtained over bedrock and very slow ice after the mean is removed. These errors vary considerably but are typically on the order of 100 m/year.

2.4 Instrumentation

2.4.1 Description

The Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) obtains highresolution (15 to 90 square meters per pixel) images of the Earth in 14 different wavelengths of the electromagnetic spectrum, ranging from visible to thermal infrared light. ASTER was launched in December 1999 onboard Terra, the flagship satellite of NASA's Earth Observing System (EOS). For more information, see Terra | ASTER.

The Enhanced Thematic Mapper Plus (ETM+) instrument on board Landsat 7 is a fixed "whiskbroom," eight-band, multispectral scanning radiometer capable of providing high-resolution imaging information of the Earth's surface. Orbiting at an altitude of 705 km, the instrument detects spectrally-filtered radiation in visible near-infrared, short-wave near-infrared, long-wave nearinfrared, and panchromatic bands from the sun-lit Earth in a 183 km wide swath. Visit NASA Landsat Science | The Enhanced Thematic Mapper Plus for more information.

The Operational Land Imager (OLI) on Landsat 8 is an enhanced version of Landsat 7's ETM+ that adds two new spectral bands: a deep blue visible channel (band 1) specifically designed for water resources and coastal zone investigation; and a new infrared channel (band 9) to detect of cirrus clouds. For more information, see USGS | Landsat 8.

3 SOFTWARE AND TOOLS

GeoTIFF files can be viewed with a variety of Geographical Information System (GIS) software packages including:

- Blue Marble Geographics Global Mapper
- QGIS
- GDAL
- Esri ArcGIS

4 RELATED DATA SETS

Greenland Ice Sheet Mapping Project (GIMP)

5 RELATED WEBSITES

MEaSUREs at NSIDC | Overview

6 CONTACTS AND ACKNOWLEDGMENTS

Dr. Ian Howat

Ohio State University Byrd Polar Research Center Scott Hall Room 108 1090 Carmack Road Columbus, Ohio 43210 USA

Acknowledgements:

These data were generated through a grant from the NASA MEaSUREs program.

7 REFERENCES

Ahn, Y. and I. Howat. 2011. Efficient Automated Glacier Surface Velocity Measurement From Repeat Images Using Multi-Image/Multichip and Null Exclusion Feature Tracking. *IEEE Transactions on Geoscience and Remote Sensing* 49(8). doi: http://dx.doi.org/10.1109/TGRS.2011.2114891.

E.M. Enderlin, I.M. Howat, S. Jeong, M.J. Noh, J.H. van Angelen, and M.R. van den Broeke. 2014. An improved mass budget for the Greenland Ice Sheet. *Geophysical Research Letters 41:866-872.* doi: http://dx.doi.org/10.1002/2013GL059010.

Howat, I.M, Y. Ahn, I. Joughin, M. van den Broeke, J. Lenaerts and B.E. Smith. 2001. Mass balance of Greenland's three largest outlet glaciers, 2000-2010. *Geophysical Research Letters* 38. Art. #L12501. doi: http://dx.doi.org/10.1029./2011GL047565.

Jeong, S and I.M. Howat. 2015. Performance of LANDSAT-8 Operational Land Imager for Mapping Ice Sheet Velocity. *Remote Sensing of Environment* 170: 90-101. doi: http://dx.doi.org/10.1016/j.rse.2015.08.023.

8 DOCUMENT INFORMATION

8.1 Publication Date

March 2016

8.2 Date Last Updated

October 2020