

SMEX03 Little Washita Micronet Soil Moisture Data: Oklahoma, Version 1

# USER GUIDE

#### How to Cite These Data

As a condition of using these data, you must include a citation:

SMEX03 Little Washita Micronet Soil Moisture Data: Oklahoma, Version 1. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. https://doi.org/10.5067/6T1X2JVKREZU. [Date Accessed].

FOR QUESTIONS ABOUT THESE DATA, CONTACT NSIDC@NSIDC.ORG

FOR CURRENT INFORMATION, VISIT https://nsidc.org/data/NSIDC-0320



# **TABLE OF CONTENTS**

| 1 | D   | ETAIL  | ED DATA DESCRIPTION2                                           |
|---|-----|--------|----------------------------------------------------------------|
|   | 1.1 | Form   | at2                                                            |
|   | 1.2 | File N | laming Convention                                              |
|   | 1.3 | Spati  | al Coverage                                                    |
|   | 1.4 | Temp   | ooral Coverage4                                                |
|   | 1.4 | 4.1    | Temporal Resolution4                                           |
|   | 1.5 | Parar  | neter or Variable4                                             |
|   | 1.5 | 5.1    | Parameter Description4                                         |
|   | 1.5 | 5.2    | Sample Data Record4                                            |
|   | 1.6 | Quali  | ty Assessment5                                                 |
| 2 | DA  | ΑΤΑ Α  | CQUISITION AND PROCESSING                                      |
|   | 2.1 | Data   | Acquisition Methods6                                           |
|   | 2.2 | Deriv  | ation Techniques and Algorithms6                               |
|   | 2.2 | 2.1    | Soil Temperature                                               |
|   | 2.2 | 2.2    | Volumetric Soil Moisture, Soil Temperature, and Soil Salinity7 |
|   | 2.2 | 2.3    | Error Sources                                                  |
|   | 2.3 | Sens   | or or Instrument Description                                   |
| 3 | R   | EFER   | ENCES AND RELATED PUBLICATIONS9                                |
|   | 3.1 | Relat  | ed Data Collections                                            |
| 4 | С   | ONTA   | CTS AND ACKNOWLEDGMENTS9                                       |
| 5 | D   | OCUN   | IENT INFORMATION10                                             |
|   | 5.1 | Publi  | cation Date10                                                  |
|   | 5.2 | Date   | Last Updated10                                                 |

# 1 DETAILED DATA DESCRIPTION

# 1.1 Format

Data are provided in tab-delimited ASCII text files. Table 1 lists the column headings and data field descriptions for the files.

| Column<br>Heading | Units              | Description                                             |  |  |  |
|-------------------|--------------------|---------------------------------------------------------|--|--|--|
| Year              | YYYY               | Year measurement was made                               |  |  |  |
| DOY               | DDD                | Numerical day of year (Julian Date)                     |  |  |  |
| HHMM              | HHMM               | Time of day in Central Standard Time (CST)              |  |  |  |
| Lat               | decimal<br>degrees | Latitude (WGS84)                                        |  |  |  |
| Lon               | decimal<br>degrees | Longitude (WGS84)                                       |  |  |  |
| Easting           | meters             | UTM Easting Zone 14 (WGS84)                             |  |  |  |
| Northing          | meters             | UTM Northing Zone 14 (WGS84)                            |  |  |  |
| AppTarT           | °C                 | Apparent Target Temperature                             |  |  |  |
| SenBodT           | °C                 | Sensor Body Temperature                                 |  |  |  |
| CCT °C            |                    | Corrected Surface Temperature                           |  |  |  |
| V1 volts          |                    | Voltage 1                                               |  |  |  |
| V2 volts          |                    | Voltage 2                                               |  |  |  |
| V3                | volts              | Voltage 3                                               |  |  |  |
| V4                | volts              | Voltage 4                                               |  |  |  |
| RECONST           | -                  | Real Dielectric Constant                                |  |  |  |
| IECONST           | -                  | Imaginary Dielectric Constant                           |  |  |  |
| TEMP              | °C                 | Soil Temperature                                        |  |  |  |
| CRECONST          | -                  | Real Dielectric Constant, Temperature Corrected to 25°C |  |  |  |

Table 1: Column Headings and Data Field Descriptions

| Column<br>Heading | Units                          | Description                                                            |
|-------------------|--------------------------------|------------------------------------------------------------------------|
| CIECONST          | -                              | Imaginary Dielectric Constant, Temperature Corrected to 25°C           |
| WATERFV           | m <sup>3</sup> /m <sup>3</sup> | Water Fraction Volume (Volumetric Soil Moisture)                       |
| NACL              | g<br>NaCl/liter                | Soil Salinity (grams of sodium chloride per liter)                     |
| SCOND             | S/m                            | Soil Conductivity in Siemen/meter                                      |
| TSCOND            | S/m                            | Temperature corrected (25°C) Soil Conductivity (Siemen/meter)          |
| TSWCOND           | S/m                            | Temperature corrected (25°C) Soil Water<br>Conductivity (Siemen/meter) |

# 1.2 File Naming Convention

Files are named according to the following convention.

LW\_Micronet\_HPA\_###.txt

where #### identifies the Micronet Station ID. See Spatial Coverage for a list of station IDs and locations.

## 1.3 Spatial Coverage

Southernmost Latitude: 34.8° N

Northernmost Latitude: 35.1° N

Westernmost Longitude: 98.2° W

Easternmost Longitude: 97.9° W

Table 2 lists the geographic locations of the 12 Micronet stations.

| Station ID | Latitude<br>(decimal degrees) | Longitude<br>(decimal degrees) | Easting<br>(meters) | Northing<br>(meters) |
|------------|-------------------------------|--------------------------------|---------------------|----------------------|
| 111        | 35.0159                       | -97.9518                       | 595633              | 3875308              |

#### Table 2 Micronet Station Locations

| 133  | 34,9491 | -98.1281 | 579612 | 3867745 |
|------|---------|----------|--------|---------|
| 134  | 34.9366 | -98.0753 | 584446 | 3866402 |
|      |         |          |        |         |
| 136  | 34.9277 | -97.9656 | 594475 | 3865513 |
| 144  | 34.8790 | -97.9171 | 598963 | 3860159 |
| 146  | 34.8854 | -98.0231 | 589269 | 3860769 |
| 149  | 34.8984 | -98.1809 | 574837 | 3862082 |
| 154  | 34.8552 | -98.1370 | 578889 | 3857325 |
| 159  | 34.7966 | -97.9932 | 592100 | 3850948 |
| 162  | 34.8133 | -98.1417 | 578499 | 3852674 |
| Berg | 35.0456 | -97.9167 | 598800 | 3878636 |
| NOAA | 34.9614 | -97.9720 | 593852 | 3869245 |

## 1.4 Temporal Coverage

Data were collected from 1 June 2003 through 31 August 2003.

### 1.4.1 Temporal Resolution

Hydra Probe and Apogee data were recorded every 30 minutes.

## 1.5 Parameter or Variable

### 1.5.1 Parameter Description

Parameters in this data set are volumetric soil moisture (m3/m3), soil temperature (°C), soil conductivity (S/m), soil salinity (g NaCl/liter), and surface temperature (°C).

### 1.5.2 Sample Data Record

The following sample shows the first four columns and the last four columns for the first five rows of the LW\_Micronet\_HPA\_111.txt file.

| Year | DOY | ннмм | Lat     | <br>NACL   | SCOND  | TSCOND | TSWCOND |
|------|-----|------|---------|------------|--------|--------|---------|
| 2003 | 152 | 0    | 35.0159 | <br>0.25   | 0.0148 | 0.0149 | 0.3199  |
| 2003 | 152 | 30   | 35.0159 | <br>0.2422 | 0.0145 | 0.0146 | 0.304   |

| Year | DOY | ннмм | Lat     | <br>NACL   | SCOND  | TSCOND | TSWCOND |
|------|-----|------|---------|------------|--------|--------|---------|
| 2003 | 152 | 100  | 35.0159 | <br>0.2431 | 0.0145 | 0.0147 | 0.3053  |
| 2003 | 152 | 130  | 35.0159 | <br>0.2492 | 0.0146 | 0.0148 | 0.3198  |

# 1.6 Quality Assessment

These data have been quality controlled and suspect or missing data have been removed. Consequently, the data are not continuous.

# 2 DATA ACQUISITION AND PROCESSING

The USDA Agricultural Research Service (ARS) has measured hydrologic conditions in the Little Washita Watershed in southwestern Oklahoma since 1961. In 1994, the ARS began monitoring the meteorological conditions in this watershed with an automated 42-station network called the ARS Micronet. Refer to Figure 1. For more information, visit the ARS Micronet Web site.

During the Summer of 2002, surface soil moisture and surface temperature probes were installed at select Micronet sites to provide coverage for large scale estimation of these parameters. Twelve stations were operational during SMEX03. See the Spatial Coverage section for a list of station IDs and locations.

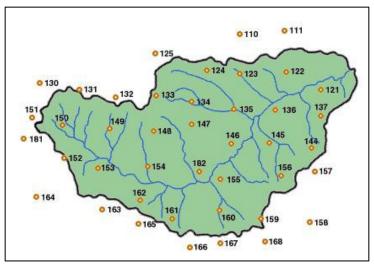



Figure 1. ARS Micronet Stations

# 2.1 Data Acquisition Methods

HP and IRT measurements were recorded every 30 minutes at 12 Micronet stations in Oklahoma. See the Spatial Coverage section for a list of station IDs and locations.

The HP has three main structural components: a multiconductor cable, a probe head, and sensing tines. The probes were installed horizontally in the soil, with the center tine at a depth of 5 cm. The HP installation techniques aimed to minimize disruption to the site as much as possible so that the probe measurement reflects the undisturbed site.

## 2.2 Derivation Techniques and Algorithms

### 2.2.1 Soil Temperature

IRTs are filtered to allow only a specific waveband, about 8 to 14 microns, to be transmitted to the IRT detector. This transmitted energy (E) is converted to temperature (T) via the Stefan-Boltzman Law which states  $E=\sigma\epsilon T4$ , where  $\epsilon$  is the emissivity of the object and  $\sigma$  is the Stefan-Boltzmann constant (5.68 x 10-8 Joules m<sup>-2</sup> s<sup>-1</sup> K<sup>-4</sup>) (Bugbee et al. 1999).

The apparent target temperature also includes an effect due to the casing temperature of the instrument or the Sensor Body (SB) temperature. A formula is provided by the instrument manufacturers to make this correction (Bugbee et al. 1999).

The basic equation to estimate target temperature for a given SB is:

Corrected Target Temperature = Apparent Target Temperature - Sensor Error Correction

and

Sensor Error Correction =  $(0.25/P)^*[(Apparent Target Temperature - H)^2 - K]$ 

where P, H, and K are related to the sensor body temperature  $T_{sb}$  as:

| $P = 26.168 + 2.8291* T_{sb} - 0.03329* T_{sb}^{2}$  | $r^2 = 0.708$         |
|------------------------------------------------------|-----------------------|
| H = $5.8075 - 0.08016^* T_{sb} + 0.00849^* T_{sb}^2$ | r <sup>2</sup> =0.674 |
| $K = -85.943 + 11.740* T_{sb} + 0.08477* T_{sb}^{2}$ | r <sup>2</sup> =0.893 |

## 2.2.2 Volumetric Soil Moisture, Soil Temperature, and Soil Salinity

The HP soil moisture probe determines soil moisture and salinity by making a high frequency (50 MHz) complex dielectric constant measurement, which simultaneously resolves the capacitive and conductive parts of a soil's electrical response. The capacitive part of the response is most indicative of soil moisture, while the conductive part reflects mostly soil salinity. Temperature is determined from a calibrated thermistor incorporated into the probe head.

The measured raw electrical parameters determined by the HP are the real and imaginary dielectric constants. These two parameters serve to fully characterize the electrical response of the soil at the frequency of operation, 50 MHz. These are both dimensionless quantities. Because both the real and imaginary dielectric constants will vary somewhat with temperature, a temperature correction using the measured soil temperature is applied to produce temperature corrected values for the real and imaginary dielectric constant. The temperature correction amounts to calculating what the dielectric constants should be at 25°C.

As a soil is wetted, the low dielectric constant component, air, is replaced by water with its much higher dielectric constant. Thus as a soil is wetted, the capacitive response, which depends upon the real dielectric constant, increases steadily. Through the use of appropriate calibration curves, the dielectric constant measurement can be directly related to soil moisture. The dielectric constant of moist soil has a small, but significant, dependence on soil temperature. The soil temperature measurement that the HP makes can be used to remove most of the temperature effects.

The output data from an HP consists of a time stamp and four voltages (V1-V4), which are converted to estimate the soil moisture and soil temperature through a program provided by Stevens, the HP manufacturer. Refer to the Stevens Web site for the hydra.exe or the hyd-file.exe program. The program requires the four voltages and a soil classification (sand=1, silt=2, and clay=3). Table 3 lists the soil type used for each station in the Stevens program.

| Station ID | Calculation<br>Soil Type |
|------------|--------------------------|
| 111        | Silt                     |
| 133        | Sand                     |
| 134        | Sand                     |
| 136        | Silt                     |
| 144        | Sand                     |
| 146        | Silt                     |

Table 3 Station Soil Classification

| Station ID | Calculation<br>Soil Type |
|------------|--------------------------|
| 149        | Silt                     |
| 154        | Silt                     |
| 159        | Sand                     |
| 162        | Sand                     |
| Berg       | Silt                     |
| NOAA       | Silt                     |

### 2.2.3 Error Sources

Corrupted HP voltages resulted from factors such as faulty installation, lightening strikes, and rodent impact. Erroneous samples were removed, therefore, the data are not continuous for every Hydra Probe.

# 2.3 Sensor or Instrument Description

Surface temperature was measured using an Apogee infrared thermometer. The instrument has a wavelength range of 6.5 to 14 micrometers and an accuracy of  $\pm 0.4^{\circ}$ C for targets at 5°C to 45°C and  $\pm 0.1^{\circ}$ C when the sensor body and target are at the same temperature. An infrared thermometer (IRT) is used because they are filtered to allow only a specific waveband, about 8 to 14 microns, to be transmitted to the IRT detector. Visit the Apogee Instruments Inc. Web site for more information.

Soil moisture and soil temperature were measured using Vitel Type A Hydra Probes (HP), shown in Figure 2. This version is compatible with Campbell CR-10 data loggers; the temperature output voltage never exceeds 2.5 V. Visit the Stevens Web site for more information.



Figure 2. Vitel Hydra Probe

# 3 REFERENCES AND RELATED PUBLICATIONS

Bugbee, Bruce, M. Droter, O. Monje, and B. Tanner. 1999. Evaluation and Modification of Commercial Infra-red Transducers for Leaf Temperature Measurement. Advances In Space Research 22:1425-1434.

Please see the USDA SMEX03 Web site for in depth information on the science mission and goal of the SMEX project.

## 3.1 Related Data Collections

AMSR-E/Aqua Data at NSIDC: AMSR-E standard data products available at NSIDC.

# 4 CONTACTS AND ACKNOWLEDGMENTS

#### **Thomas Jackson**

Hydrology and Remote Sensing Laboratory US Department of Agriculture (USDA) - Agricultural Research Service (ARS) Beltsville, MD 20705 USA

#### **Michael Cosh**

Hydrology and Remote Sensing Laboratory US Department of Agriculture (USDA) - Agricultural Research Service (ARS) Beltsville, MD 20705 USA

#### **Patrick Starks**

Grazinglands Research Lab US Department of Agriculture (USDA) - Agricultural Research Service (ARS) Beltsville, MD 20705 USA

#### **Gary Heathman**

Grazinglands Research Lab US Department of Agriculture (USDA) - Agricultural Research Service (ARS) Beltsville, MD 20705 USA

#### Acknowledgments:

The investigators would like to acknowledge the USDA ARS Grazinglands Research Laboratory and the many graduate students and volunteers who collected the field data.

# 5 DOCUMENT INFORMATION

### 5.1 Publication Date

October 2007

### 5.2 Date Last Updated

22 March 2021