SnowEx20-21 Time Series UAVSAR L-band Interferometric SAR

Zachary Hoppinen^{*1,2} and Hans-Peter Marshall¹

¹Boise State University, Department of Geosciences, 1295 University Drive, Boise, ID, USA ²Cold Regions Research and Engineering Laboratory, Engineer Research and Development Center, United States Army, Hanover, NH 03755, USA

September 12, 2024

Contents

1	What is Synthetic Aperture Radar?			
2 What is UAVSAR?				
3	Why was UAVSAR a part of the NASA SnowEx 2020 and 2021 Western U.S Time Series campaigns3.1Why did SnowEx fly over these sites and these times?3.2Will there be more SnowEx UAVSAR flights in the future?	3 4 4		
4	When and where did UAVSAR acquire SAR images for the NASA SnowEx campaigns?	4		
5	What are the available UAVSAR data products? 5.1 Repeat Pass Interferograms naming convention 5.2 Interferogram File Types 5.3 Annotation file description	8 8 9 10		
6	What are useful software and tools for working with UAVSAR dataset?	10		
7	How do I cite UAVSAR data when I use it?			
8	8 Recent publications using UAVSAR and SnowEx			
9	9 References			

This document sets out to provide broad overviews and advice on: (1) understanding some concepts being synthetic aperture radar (SAR) (2) finding and using UAVSAR datasets, (3) what are the available UAVSAR data acquisitions in support of the NASA SnowEx campaigns, (4) some context to how and why UAVSAR was part of SnowEx, and (5) provide external references for those interested in delving deeper into UAVSAR, SnowEx, or SAR snow monitoring techniques.

1 What is Synthetic Aperture Radar?

Radar systems actively emit electromagnetic waves in the microwave frequency range (0.1-300 GHz) and measure the returning amplitude and phase of the returning waves. This phase and amplitude information can be parsed to better understand objects' locations, surface, soil, or overlying snow or vegetation characteristics, and atmospheric information, along with many other uses. A challenge of traditional radar arrays is that the spatial resolution was limited by the size of the antenna and impractically large radar antennas would have been necessary for radar measurements from space. This challenge was addressed by the introduction of synthetic aperture radar techniques.

Synthetic aperture radar (SAR) is a radar technique that uses the movement of the imaging platform (ground, air, or space based) to generate a synthetic "antenna" that is much larger than the actual physical antenna. By combining returns from multiple locations along a platform's movement (using the doppler response to determine where the responses were coming from) and integrating the returning amplitudes and phases, images of much higher spatial resolution were possible than with a real aperture radar.

A detailed description of radar and SAR is beyond the scope of this manual but interested readers are directed to the two links and relevant citations given at the bottom of this section.

NASA websites describing SAR:

https://www.earthdata.nasa.gov/learn/backgrounders/what-is-sar https://nisar.jpl.nasa.gov/mission/get-to-know-sar/overview/#:~:text=Synthetic%20aperture% 20radar%20(SAR)%20refers,of%20NISAR%2C%20orbiting%20in%20space. Example SAR processor built in python for demonstration:

https://github.com/parosen/Geo-SInC Relevant publications: Rosen et al. (2000) Flores et al. (2019) Moreira et al. (2013) Ulaby et al. (1986)

2 What is UAVSAR?

UAVSAR is an airborne platform that operates a L-band SAR instrument. It is operated and processed by the NASA Jet Propulsion Laboratory (JPL). It was designed to simulate SAR imagery from an upcoming NASA-ISRO satellite called NISAR and provide rapid response time for monitoring of natural disasters.

The sensor operates as in quad-polarized mode meaning it transmits and receives waves that have been both polarized in the horizontal (H) and vertical orientation (V). This results in 4 distinct polarization: waves that were transmitted vertically and received vertically (VV), transmitted vertically and received horizontally (VH), transmitted and received horizontally (HH).

A note on the name. While the platform is called "UAV" - SAR it is not actually uncrewed. Instead the UAV naming comes from a "precision real-time GPS and a sensor controlled flight management system" that allows the platform to "fly predefined paths with great precision (to be within a 10 m diameter tube about the desired flight track)." https://airbornescience.nasa.gov/instrument/UAVSAR.

Additional technical specifications are provided below and come from Rosen et al. (2006):

Additional information on the UAVSAR platform can be found at:

Frequency	1.26 GHz		
Free air wavelength	0.2379 meters		
Antenna Size	0.5 x 1.6 m		
Nominal spatial resolution	0.6 m azimuth, 1.6 m range		
Bandwidth	80 MHz		
Pulse Duration	30μ seconds		
Leads to an azimuth spatial resolution of 0.6 m			
Polarizations	VV, VH, HV, HH		
Called Quad Polarization			
Range Swath	16 km		
Ground distance covered by a single pulse			
Look angles	25-60°		
Transmit Power	2.0 kW		
Altitude Range	2000-18000 m		
Usually capture at 12.5 km			
Ground speed	100 - 250 m/s		
Platform	Gulfstream III		

Table 1: UAVSAR System Specifications

Links:

```
https://airbornescience.nasa.gov/instrument/UAVSAR
https://www.jpl.nasa.gov/missions/uninhabited-aerial-vehicle-synthetic-aperture-radar-uavsar
https://uavsar.jpl.nasa.gov/education/what-is-uavsar.html
```

Citations relevant to UAVSAR system design are: Initial system design: Rosen et al. (2006) Preliminary system review: Hensley et al. (2008) Polarimetric calibration: Fore et al. (2015)

3 Why was UAVSAR a part of the NASA SnowEx 2020 and 2021 Western U.S Time Series campaigns

The NASA SnowEx campaigns were a: "a multi-year field experiment, which includes extensive surface-based observations to evaluate how to best combine different remote sensing technologies to accurately observe snow throughout the season in various landscapes."(https://snow.nasa.gov/campaigns/snowex, Durand et al. 2019). UAVSAR fights were sponsored by NASA's Terrestrial Hydrology Program (THP) for data collection during the NASA SnowEx 2020 and 2021 Western U.S Time Series Field Campaigns.

One exciting technique to study snow uses the change in radar waves travel times as a result of snow accumulation and UAVSAR was employed during the NASA SnowEx campaigns to study whether the snow retrievals from changes in SAR travel time between UAVSAR acquisitions could be used to retrieve snow depth and snow water equivalent (SWE) changes.

A tutorial walking through UAVSAR SWE retrievals was presented as part of the 2022 SnowEx hackweek: https://snowex-2022.hackweek.io/tutorials/uavsar/1_accessing_imagery.html.

Additional information about the experimental plans is available at:

2020:

https://snow.nasa.gov/campaigns/snowex-2020-time-series-ts-and-intensive-observation-period-iop

2021: https://snow.nasa.gov/campaigns/snowex-2021-time-series-western-us

3.1 Why did SnowEx fly over these sites and these times?

The sites were selected as part of SnowEx to represent different snow climates, vegetation, and topography types. The flights were done at approximately 12-day intervals to match the expected repeat interval of the upcoming NISAR satellite. Weather, mechanical issues, and other UAVSAR priorities affected the timings as well.

3.2 Will there be more SnowEx UAVSAR flights in the future?

No future SnowEx UAVSAR collaborations are planned as of 2024-07-19. SnowEx field activities ended Fall 2023.

4 When and where did UAVSAR acquire SAR images for the NASA SnowEx campaigns?

UAVSAR captured imagery for the 2017, 2020 and 2021 NASA SnowEx campaigns (Figure 1). Note that a site in Montana called the Central Agricultural Research Center (CARC) is missing from Figure 1. The sites captured are illustrated in the figure below. Since the UAVSAR imagery is named according to the JPL convention (nearest city) the UAVSAR campaign names differ from the SnowEx site names. The two names and the number of acquisitions (available as of 2024-07-19) in 2020 and 2021 are shown in table 2. Since only Grand Mesa, CO was acquired in 2017 (5 images; 2/06, 2/22, 2/25, 3/08, 3/31) it is not included in table 2. Also note that although the "Boise River Basin" SnowEx site is in Idaho it has the wrong state (CO) in the JPL campaign name.

For those hoping to find and download a specific campaign we suggest either using uavsar_pytools mentioned above or using the JPL UAVSAR data search tool (Figure 2.

Figure 1: Study sites in the 2020, 2021 SnowEx Campaigns. Note the Central Agrciultural Research Center (CARC) is missing from this figure. Figure credit: Chris Hiemstra

SnowEx Site Name	UAVSAR Campaign Name	2020 UAVSAR Acquisitions	2021 UAVSAR Acquisitions				
	(abbreviation)						
Colorado							
Grand Mesa	Grand Mesa, CO (grmesa)	2020-03-12, 2020-02-26, 2020-	2021-03-22, 2021-03-16, 2021-				
		02-19, 2020-02-12, 2020-02-01	03-10, 2021-03-03, 2021-02-10, 2021-02-03, 2021-01-27				
Senator Beck Basin	Ironton, CO (irnton)	2020-02-12, 2020-02-19, 2020-	2021-01-15, 2021-01-21, 2021-				
		02-26, 2020-03-12	01-28, 2021-02-04, 2021-02-11,				
			2021-02-23, 2021-03-03, 2021-				
			03-10, 2021-03-16, 2021-03-22				
East River	Peeler Peak, CO (peeler)	2019-12-20, 2020-02-12, 2020-					
		02-19, 2020-02-26, 2020-03-12					
Fraser Experimental Forest	Fraser, CO (fraser)	2020-02-12, 2020-02-19, 2020-	2021-01-15, 2021-01-20, 2021-				
		02-26, 2020-03-12	01-27, 2021-02-03, 2021-02-23,				
			2021-03-05, 2021-05-10, 2021-03-16, 2021-03-22				
Cameron Pass	Rocky Mountains NP. CO	2020-02-12, 2020-02-19, 2020-	2021-01-15, 2021-01-20, 2021-				
	(rockmt)	02-26, 2020-03-12	01-27, 2021-02-03, 2021-02-23,				
			2021-03-03, 2021-03-10, 2021-				
			03-16, 2021-03-22				
	Id	aho	·				
Boise River Basin	Lowman, ID (lowman)	2019-12-20, 2020-01-31, 2020-	2021-01-15, 2021-01-20, 2021-				
		02-13, 2020-02-21, 2020-03-11	01-27, 2021-02-03, 2021-02-10,				
			2021-02-23, 2021-03-03, 2021-				
D 11_C1		2020 01 21 2020 02 12 2020	03-10, 2021-03-16, 2021-03-22				
Reynold Creek	Silver City, ID (silver)	2020-01-31, 2020-02-13, 2020-02-21, 2020-03-11					
	U	tah					
Little Cottonwood Canyon	Salt Lake City, UT (stlake)	2020-01-31, 2020-02-13, 2020-	2021-01-15, 2021-01-21, 2021-				
		02-21, 2020-03-12	01-28, 2021-02-03, 2021-02-10,				
			2021-02-23, 2021-03-03, 2021-				
			03-10, 2021-03-16, 2021-03-22				
	Mor	ntana					
Central Agricultural Research	Utica, MT (uticam)		2021-01-15, 2021-01-20, 2021-				
Venier (CARC) 02-23							
I demer River L os Alamos NM (alamos) 2020-02-12 2020-02-19 2020-							
Somez River		02-26					
California							
American River Basin	Eldorado National Forest, CA	2020-01-31, 2020-02-12, 2020-					
	(dorado)	02-19, 2020-02-26, 2020-03-11					
Sagehen Creek	Donner Memorial State Park,	2019-12-20, 2020-01-31, 2020-					
	CA (donner)	02-12, 2020-02-19, 2020-02-26,					
		2020-03-11					
Lakes Basin	Sierra National Forest, CA	2020-01-31, 2020-02-12, 2020-					
	(sierra)	02-19, 2020-02-20, 2020-03-11					

ruore 21 or 11 or 11 outinpurght requisitions for show 21 or of

Figure 2: Screen capture of the JPL UAVSAR datasearch being used to find UAVSAR images from the Utica, MT SnowEx site from Table 2.

5 What are the available UAVSAR data products?

Data products are available from two sources: the Jet Propulsion Laboratory UAVSAR data search (https://uavsar.jpl.nasa.gov/cgi-bin/data.pl) or the Alaska Satellite Facility's Data Search Vertex (https://search.asf.alaska.edu/#/).

There are three general classes of UAVSAR data products:

- Repeat Pass Interferograms (RPI or InSAR) these files contain the wrapped, unwrapped phase changes, and
 resulting coherence rasters between two UAVSAR image acquisitions. These are the primary scientific focus
 of the NASA SnowEx campaign and will be explored in detail below. https://uavsar.jpl.nasa.gov/
 science/documents/rpi-format.html
- Polarimetric SAR (PolSAR) these are the power (linear not dB) of cross-products between the different polarizations. For example the S_HHS_HV is the cross product of the phase of HH multiplied by the complex conjugate of the phase of HV. The six combinations of cross products are available (HHHV, HHVV, HVVV, HHHH, HVHV, VVVV) with an assumption that the two cross product HV and VH contain the identical information. These cross products can then be used to generate polarimetric decomposition that describe the scattering characteristics of ground targets. Polarimetric decompositions are beyond the scope of this document but users interested in decompositions are directed to:

https://uavsar.jpl.nasa.gov/science/documents/polsar-format.html
https://appliedsciences.nasa.gov/sites/default/files/Session3-SAR-English.pdf
https://dges.carleton.ca/courses/IntroSAR/Winter2019/SECTION%203%20-%20Carleton%20SAR%
20Training%20-%20SAR%20Polarimetry%20%20-%20Final.pdf

• Single Look Complex (SLC) Stacks - These are coregistered stacks of SLC images for different campaigns. These can be useful for users interested in processing their own interferograms or other more advanced time series techniques. Single-look means these images have not been spatially averaged through a process called multi-looking, complex means these have both a real and an imaginary value for each pixel.

Some of the other ancillary data files include: height files (.hgt) used in the processing, incidence angle files (.inc), look vectors showing the vector between a ground point and the zero-doppler point for UAVSAR in the scene (.lkv), files containing the latitudes, longitudes, and heights for each pixel of the radar scene (.llh), and slope files (.slope).

These files will generally have one more extension (.grd). This represents that this file has been "ground projected" or orthorectified to match a DEM. When SAR images are first processed they are in slant range which represents the distance from the platform to varying ground locations either along the direction of travel (azimuth) or in the direction the sensor is transmitting and receiving (range). These slant range files need additional processing so the pixels correspond to latitudes and longitudes on the ground surface and will not have this .grd extension. Generally, new users of UAVSAR will want to use ground projected files.

5.1 Repeat Pass Interferograms naming convention

UAVSAR repeat pass interferometry uses two images of the same place but separated in time. Phase changes between the two acquisitions are calculated, creating an interferogram. This calculation involves multiplying the first sar image by the complex conjugate of the second sar image. These phase changes are due to either the wave traveling a longer distance (ground movement or refraction) or change wave speeds (atmospheric water vapor and snow).

We will now explore the data files and naming conventions of the UAVSAR repeat pass interferograms. First, we will walk through an example file name to demonstrate the general naming conventions. Note that this information is expanded from: https://uavsar.jpl.nasa.gov/science/documents/rpi-format.html. The file names will be similar for all files in a single InSAR directory until the final polarization, version, file type (HH_01.cor.grd in our example below). Also since these repeat pass interferograms are the difference between two UAVSAR acquisitions we will highlight which of the naming sections is the same for both acquisitions and which is unique to flight 1 or two. We begin by splitting the underscores to parse the individual meanings.

lowman_23205_21019-018_21021-006_0006d_s01_L090HH_01.cor.grd

lowman: This is the UAVSAR designated campaign name. Usually it will correspond to a city or town near the survey location.

23205: This corresponds to both flight 1 and 2 of this pair of SAR images. this is split into the first three characters (232) which represent the flight heading (the plane flew with a heading of 232°) then the last two characters (05) are an numeric counter assigned to this campaign and flight direction.

21019: This corresponds to flight 1 of this pair. this is again split with the first two characters (21) representing the flight year (2021) and the following three characters (019) representing the flight number for that year (this is the 19th time this heading and survey location was imaged).

-018: this represents which flight line of the flight this acquisition was starting from zero. UAVSAR will often acquire imagery for multiple campaigns or sites on a single flight. So this was the 19th flight observed on the particular flight of UAVSAR.

21021: This corresponds to flight 2 of this pair. It again shows the year (21 i.e. 2021) and which acquisition of this flight line this was this year (21st acquisition of the "lowman" line in 2021).

-006: This corresponds to flight 2 of this pair. This was the 7th (since we start from zero) acquisition of this flight of UAVSAR.

0006d: 6 days separated flight 1 and flight 2.

s01: three character id. Usually s01.

L090HH: L represents L-band. UAVSAR can also operate at different frequencies. 090 represents that the sensors was transmitted and receiving perpendicular to the flight direction (as opposed to pointing slightly forwards or backwards), and for this particular image the polarization is HH. The energy was transmitted horizontally and received on the horizontally polarized antenna.

01: This is the version number if multiple rounds of processing were done.

.cor: represents the file type. In this case coherence. The different inteferogram file types will be outlined more below.

.grd: ground projected. This was discussed above but represents that the radar phase is processed to relate to specific latitudes and longitudes on the ground.

As mentioned above most of these will be the same for a single interferogram pair except for the polarization (HH in this case) which can be any combination of HH, HV, VH, VV and file type (.cor in this case) which we will now discuss the file types available for the interferogram file type. Again some of this information comes from: https://uavsar.jpl.nasa.gov/science/documents/rpi-format.html.

5.2 Interferogram File Types

The file types available with each interferogram are shown below in a table. Note that the extensions shown will often have a .grd after them for ground projected files.

File Type	Extension	Description
Annotation	.ann	Provides important information about the images and flight including:
		flight dates for flight 1 and 2, number of rows and columns, approximate
		geographic coordinates, byte number and type, degree of multi-looking,
		units, headings, processing parameters.
Wrapped interferogram	.int	This represents the interferogram. It is the cross product of SAR image 1
		with the complex conjugate of SAR image 2.
Unwrapped phase	.unw	Unwrapped phases from the .int SAR file showing the phase changes be-
		tween flight 1 and 2. The exact unwrapping method (ICU or SNAPHU) is
		specified in the .ann file.
Coherence	.cor	These are the coherence files showing the similarity of phase changes in a
		spatial neighborhood. A measure of the noise for the phase change.
DEM	.hgt	The DEM used in the processing.
Amplitude 1	.amp1	Calibrated multi-looked amplitude of SAR image 1. Not included in all
		interferogram directories.
Amplitude 2	.amp2	Calibrated multi-looked amplitude of SAR image 2. Not included in all
		interferogram directories.

Table 3: Description of interferogram files

5.3 Annotation file description

The annotation (.ann) file contains all the necessary information to read and parse the data files it relates to. We now present an annotated and shortened .ann file. We have removed large sections of text intended for advanced SAR users to highlight the critical components for a new user of UAVSAR.

6 What are useful software and tools for working with UAVSAR dataset?

Figure 3: Annotated .ann file showing critical components of the file for new users.

For working with UAVSAR we recommend using uavsar_pytools (Hoppinen et al., 2022). An open-source python software package for searching, downloading, and processing the binary UAVSAR data files into GIS-ready geoTIFFs. This software was developed by the SnowEx community to better work with UAVSAR datasets. It also contains functions for UAVSAR polarimetric decompositions, georeferencing SLC stacks, and SWE and snow depth retrievals from UAVSAR phase.

The url is available at: https://github.com/SnowEx/uavsar_pytools along with a ReadMe for installation (pip installable) and usage. A selection of the code (Figure 4) for downloading all images of a SnowEx campaign (Table 2) is presented below to show some basic usage. There are also several example notebooks available in the GitHub repository.

```
from uavsar_pytools import UavsarCollection
## Collection name from the campaign list
col_name = 'Grand Mesa, CO'
## Working directory to save files into
work_d = '~/Documents/collection_ex/'
## Optional dates to check between
dates = ('2019-11-01','2020-04-01')
collection = UavsarCollection(collection = col_name, work_dir = work_d, dates = dates)
# Optional keywords: to keep binary files use `clean = False`, to download incidence angles
# with each image use `inc = True`, for only certain pols use `pols = ['VV','HV']`.
# See docstring of class for full list.
collection.collection_to_tiffs()
```

ŋ

Figure 4: Example selection of code showing the process to download all UAVSAR images from a specific UAVSAR collection. See table 2 for all campaign names.

7 How do I cite UAVSAR data when I use it?

From the JPL website: "When publishing or presenting UAVSAR data, we request the following acknowledgement: UAVSAR data courtesy NASA/JPL-Caltech. For more information regarding JPL's image use policy, please refer to this document: https://www.jpl.nasa.gov/imagepolicy/"

If using the SnowEx UAVSAR imagery please acknowledge SnowEx and consider citing the experimental plans given below:

2017:

```
https://snow.nasa.gov/campaigns/snowex-2017-intensive-observation-period-iop 2020:
```

```
https://snow.nasa.gov/campaigns/snowex-2020-time-series-ts-and-intensive-observation-period-iop
https://nsidc.org/sites/default/files/documents/technical-reference/nasa_snowex_experiment_
plan_2020_draft.pdf
```

2021:

https://snow.nasa.gov/campaigns/snowex-2021-time-series-western-us

8 Recent publications using UAVSAR and SnowEx

A description of the retrieval technique from UAVSAR interferograms is beyond the scope of this document but interested parties are directed to the following list of recent publications describing the SWE retrieval techniques and using UAVSAR and SnowEx datasets to retrieve snow depth and SWE:

Study	SnowEx Site	Title
Marshall et al. (2021)	Grand Mesa, CO	L-Band InSAR Depth Retrieval Dur-
		ing the NASA SnowEx 2020 Cam-
		paign: Grand Mesa, Colorado
Tarricone et al. (2023)	Jemez River, NM	Estimating snow accumulation and
		ablation with L-band interferometric
		synthetic aperture radar (InSAR)
Palomaki and Sproles (2023)	Central Agricultural Research Center, MT	Assessment of L-band InSAR snow
		estimation techniques over a shallow,
		heterogeneous prairie snowpack
Hoppinen et al. (2023)	Boise River Basin, ID	Snow water equivalent retrieval over
		Idaho – Part 2: Using L-band
		UAVSAR repeat-pass interferometry
Bonnell et al. (2024)	Cameron Pass, CO	Evaluating L-band InSAR Snow Wa-
		ter Equivalent Retrievals with Re-
		peat Ground-Penetrating Radar and
		Terrestrial Lidar Surveys in Northern
		Colorado

Table 4: Studies on UAVSAR InSAR Snow Estimation at NASA SnowEx Sites.

9 References

References

- R. Bonnell, D. McGrath, J. Tarricone, H.-P. Marshall, E. Bump, C. Duncan, S. Kampf, Y. Lou, A. Olsen-Mikitowicz, M. Sears, K. Williams, L. Zeller, and Y. Zheng. Evaluating L-band InSAR Snow Water Equivalent Retrievals with Repeat Ground-Penetrating Radar and Terrestrial Lidar Surveys in Northern Colorado. *EGUsphere*, 2024:1–33, 2024. doi: 10.5194/egusphere-2024-236.
- A. Flores, K. Herndon, R. Thapa, and E. Cherrington. *The SAR Handbook: Comprehensive Methodologies for Forest Monitoring and Biomass Estimation*. 04 2019. doi: 10.25966/nr2c-s697.
- A. G. Fore, B. D. Chapman, B. P. Hawkins, S. Hensley, C. E. Jones, T. R. Michel, and R. J. Muellerschoen. UAVSAR Polarimetric Calibration. *IEEE Transactions on Geoscience and Remote Sensing*, 53(6):3481–3491, 2015. ISSN 0196-2892. doi: 10.1109/tgrs.2014.2377637.
- S. Hensley, K. Wheeler, G. Sadowy, C. Jones, S. Shaffer, H. Zebker, T. Miller, B. Heavey, E. Chuang, R. Chao, K. Vines, K. Nishimoto, J. Prater, B. Carrico, N. Chamberlain, J. Shimada, M. Simard, B. Chapman, R. Muellerschoen, C. Le, T. Michel, G. Hamilton, D. Robison, G. Neumann, R. Meyer, P. Smith, J. Granger, P. Rosen, D. Flower, and R. Smith. THE UAVSAR INSTRUMENT: DESCRIPTION AND FIRST RESULTS. 2008 IEEE Radar Conference, pages 1–6, 2008. doi: 10.1109/radar.2008.4720722.
- Z. Hoppinen, J. Tarricone, N. Abedisi, and H. Marshall. SnowEx/uavsar_pytools: v0.2.0, 2022. URL https://doi.org/10.5281/zenodo.6578193.
- Z. Hoppinen, S. Oveisgharan, H.-P. Marshall, R. Mower, K. Elder, and C. Vuyovich. Snow water equivalent retrieval over Idaho Part 2: Using L-band UAVSAR repeat-pass interferometry. *The Cryosphere*, 18(2):575–592, 2023. doi: 10.5194/tc-18-575-2024. URL https://tc.copernicus.org/articles/18/575/2024/.
- H. Marshall, E. Deeb, R. Forster, C. Vuyovich, K. Elder, C. Hiemstra, and J. Lund. L-Band InSAR Snow Depth Retrievals from Grand Mesa in NASA SnowEX 2020 Campaign. *Institute of Electrical and Electronics Engineers*, 2021.

- A. Moreira, P. Prats-Iraola, M. Younis, G. Krieger, I. Hajnsek, and K. P. Papathanassiou. A tutorial on synthetic aperture radar. *IEEE Geoscience and Remote Sensing Magazine*, 1(1):6–43, 2013. ISSN 2473-2397. doi: 10.1109/mgrs.2013.2248301.
- R. T. Palomaki and E. A. Sproles. Assessment of L-band InSAR snow estimation techniques over a shallow, heterogeneous prairie snowpack. *Remote Sensing of Environment*, 296:113744, 2023. ISSN 0034-4257. doi: 10.1016/j.rse.2023.113744.
- P. Rosen, S. Hensley, I. Joughin, F. Li, S. Madsen, E. Rodriguez, and R. Goldstein. Synthetic aperture radar interferometry. *Proceedings of the IEEE*, 88(3):333–382, 2000. ISSN 0018-9219. doi: 10.1109/5.838084.
- P. A. Rosen, S. Hensley, K. Wheeler, G. Sadowy, T. Miller, S. Shaffer, R. Muellerschoen, C. Jones, H. Zebker, and S. Madsen. UAVSAR: A New NASA Airbome SAR System for Science and Technology Research. 2006 IEEE Conference on Radar, pages 22–29, 2006. doi: 10.1109/radar.2006.1631770.
- J. Tarricone, R. W. Webb, H.-P. Marshall, A. W. Nolin, and F. J. Meyer. Estimating snow accumulation and ablation with L-band interferometric synthetic aperture radar (InSAR). *The Cryosphere*, 17(5):1997–2019, 2023. doi: 10.5194/tc-17-1997-2023. URL https://tc.copernicus.org/articles/17/1997/2023/.
- F. T. Ulaby, R. K. Moore, and A. K. Fung. *Microwave Remote Sensing: Active and Passive, Volume I: Fundamentals and Radiometry*. Artech House Publishers, 1986. ISBN 978-0890061909.