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1 Executive Summary 
The NASA Soil Moisture Active Passive (SMAP) mission has recently completed its first 
decade of continuous, global measurements of Earth’s L-band (1.4 GHz) microwave 
emission (or brightness temperature), which began on 31 March 2015. Starting even 
before launch, periodic calibration and validation activities have been performed with the 
objectives: 1) To calibrate, verify, and improve the performance of the science 
algorithms; and 2) To validate the accuracy of the science data products as specified in 
the SMAP Level 1 mission science requirements.  

This report provides an assessment of Version 8 (V8) of the SMAP Level 4 Carbon 
(L4_C) product, which was released in 2025. Since the initial L4_C release in 2015, the 
L4_C operational algorithm underwent eight major updates, with each update including a 
full reprocessing of the entire SMAP mission record. These updates include various 
algorithm refinements and calibration adjustments to account for similar refinements to 
upstream SMAP brightness temperature observations, the GEOS land model assimilation 
system, and the SMAP Level 4 Soil Moisture (L4_SM) inputs used for L4_C processing. 
In addition, the L4_C V8 update includes major changes to the L4_C calibration process, 
the soil organic carbon (SOC) model logic, and the soil heterotrophic respiration (𝑅!) 
sub-model. 

The L4_C algorithm estimates a global, daily terrestrial carbon budget, informed by 
daily surface and root-zone soil moisture information from the L4_SM product, along 
with optical remote sensing-based land cover from the Moderate Resolution Imaging 
Spectroradiometer (MODIS) and canopy fraction of absorbed photosynthetically active 
radiation (fPAR) from the Visible Infrared Imaging Radiometer Suite (VIIRS), along 
with other ancillary biophysical data. The L4_C product provides estimates of global, 
daily net ecosystem CO" exchange (NEE) and component carbon fluxes, including 
vegetation gross primary production (GPP) and soil 𝑅!. Other L4_C product elements 
include surface (ca. 0-5 cm depth) SOC stocks and associated environmental constraints 
to the carbon fluxes, including soil moisture-related controls on GPP and ecosystem 
respiration (RECO) (Kimball et al. 2014; Jones et al. 2017).  

The L4_C product addresses SMAP carbon cycle science objectives by: 1) 
Providing a direct link between terrestrial carbon fluxes and underlying freeze/thaw and 
soil moisture-related constraints to these processes; 2) Documenting primary connections 
between terrestrial water, energy and carbon cycles; and 3) Improving understanding of 
terrestrial carbon sink activity. 

L4_C is calibrated against eddy covariance (EC) tower CO" flux measurements, 
which are a proxy for terrestrial ecosystem NEE. The L4_C product has self-imposed 
performance requirements related to NEE, the primary product element for validation, 
although the other L4_C product elements (namely GPP, 𝑅!, and SOC) have 
demonstrated utility for carbon science applications (Liu et al. 2019; Endsley et al. 2020; 
Wurster et al. 2021; Xia et al. 2025). The L4_C targeted accuracy requirement is a mean 
unbiased root-mean-square error (ubRMSE, or standard deviation of the error) for NEE 
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of no more than 1.6 g C m#"d#$ or 30 g C m#" yr#$, emphasizing northern (≥ 45°N) 
boreal and arctic ecosystems; this accuracy is similar to that of EC tower flux 
measurements (Baldocchi 2008). The methods used for L4_C performance and validation 
assessment have been established in the SMAP Calibration and Validation Plan 
(Colliander et al. 2014) and previous studies (Jones et al. 2017; Endsley et al. 2020), and 
are applied here for L4_C V8. 

Our primary validation of L4_C V8 compares L4_C estimates of NEE, GPP, and 
RECO to tower flux measurements at 26, globally distributed Core Validation Sites. We 
also compared the L4_C V8 mean annual fluxes, interannual variability, and short-term 
trends to the recent literature and to independent reference datasets, including: solar-
induced fluorescence (SIF) data from the Orbiting Carbon Observatory-2 (OCO-2) 
mission; global, up-scaled EC tower fluxes from an ensemble of machine-learning 
models; global soil carbon inventory records; and an ensemble of dynamic global 
vegetation models. 
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2 L4_C Algorithm Updates in Version 8 
As with previous reprocessing of upstream SMAP products, Version 8 (V8) of the SMAP 
Level 4 Carbon (L4_C) product incorporates changes made to its inputs, especially data 
from the SMAP Level 4 Soil Moisture (L4_SM) product. The L4_SM V8 upgrade 
improved the L4_SM precipitation inputs, land surface model, and L-band microwave 
radiative transfer model which, in turn, impact the L4_SM estimates of root-zone soil 
moisture, surface soil moisture, and surface soil temperature that are used to generate the 
L4_C V8 product. To accommodate these changes, L4_C V8 was recalibrated using 
L4_SM Nature Run version 11.4 (NRv11.4), a multi-decadal, model-only representation 
of L4_SM V8 that is not informed by SMAP brightness temperature retrievals but is 
climatologically consistent with the L4_SM V8 product.  

In addition to the aforementioned updates of the L4_C algorithm inputs, major 
changes were made to the L4_C calibration process, SOC model logic, and the 𝑅! sub-
model. L4_C calibration now utilizes both constrained non-linear optimization and 
Markov Chain Monte Carlo (MCMC) methods, where the latter is used to incorporate 
prior data on model parameters into the calibration process (Endsley et al. 2023b). The 
motivation for this change was specifically to improve the plant carbon use efficiency 
(CUE) parameter in L4_C, which determines the (fixed) fraction of autotrophic 
respiration (𝑅%) which, added to 𝑅!, makes up RECO and can be calibrated against tower 
observations. In previous versions of L4_C, plant CUE was fairly high (between 0.65 and 
0.80 for most PFTs in V7), leading to a compensatory over-estimation of 𝑅! and net 
primary productivity (NPP). A comprehensive meta-analysis by Collalti and Prentice 
(2019) suggests that the valid range for CUE spans 0.22-0.79, with a cross-biome average 
of 0.46±0.12 (standard deviation). Hence, we used their data as a prior for CUE during 
calibration, and the V8 CUE values are now lower (between 0.50 and 0.58). 

In the SOC model, we substantially changed the allocation of litterfall to the soil in 
order to address an outstanding model bias. It has been shown that in earlier versions of 
L4_C, as in similar global ecosystem models, the seasonal cycles of RECO and NEE 
exhibit a bias towards earlier peak (maximum) RECO and delayed peak (minimum) 
NEE, when compared to EC tower data (Byrne et al. 2018; Endsley et al. 2022). This 
phase shift in the modeled seasonal cycles of RECO and NEE can be corrected by 
suppressing early season respiration or by prolonging respiration throughout the growing 
season. There are a few mechanisms that can effect these changes in terrestrial 
ecosystems, e.g., the suppression of 𝑅% in the light and the slow diffusion of heat and 
moisture in soils. In Endsley et al. (2022), it was demonstrated that a more realistic 
litterfall phenology could also correct this seasonal bias. In previous versions of L4_C, 
litterfall was prescribed as a constant, daily fraction of annual NPP, allocated equally 
throughout the year. This may have been the primary cause of the observed seasonal bias 
in respiratory carbon fluxes. In L4_C V8, we have adopted the leaf-loss function of the 
Carnegie-Ames-Stanford Approach (CASA) model, using a climatology of VIIRS 
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VNP15 leaf-area index (LAI), which determines how much litterfall to allocate for each 
8-day period in the calendar year. 

In addition to the change in litterfall, new ground data on SOC content from the 
International Soil Carbon Network (ISCN) were used to calibrate the SOC decay 
coefficients. Calibration of these coefficients remains subjective, as we would not expect 
a good fit between L4_C predictions and the full domain of field-measured SOC. There 
are two main reasons why we, instead, fit a line through the lower-magnitude field 
samples: 1) L4_C does not represent important SOC protection mechanisms that help to 
prevent SOC decomposition; 2) The SOC decomposition and 𝑅! sub-model is driven by 
near-surface temperature and moisture conditions, which are highly dynamic and, 
consequently, lead to rapid SOC decay. The new ISCN data, nonetheless, represent a 
much larger spatial domain and are expected to be of higher quality than the previous 
SOC calibration data. 

As with previous re-processing events, we also recalibrated the L4_C model Biome 
Properties Look-up Table (BPLUT) by optimizing L4_C predicted GPP and RECO 
fluxes against observed GPP and RECO fluxes from a global network of eddy covariance 
flux towers (Pastorello et al. 2020; Ukkola et al. 2021). For L4_C V8, we have developed 
a new calibration dataset consisting of 410 globally distributed EC towers (compared to 
356 in V7), because the previously used FLUXNET2015 dataset has become outdated 
(Pastorello et al. 2020). We also had our own concerns about excessive smoothing in 
FLUXNET2015. The new calibration data were obtained individually, for each tower, 
and span multiple tower networks including: FLUXNET and AmeriFlux (Pastorello et al. 
2020), the Arctic Data Center (Euskirchen et al. 2016a, 2016b, 2016c), the Global 
Environmental Database from Japan’s National Institute for Environmental Studies 
(NIES-GED) (Takagi 2014; Takahashi 2021; Hirata 2021), OzFlux (Leuning et al. 2005; 
Woodgate 2013; Beringer et al. 2016; Wardlaw and Phillips 2021), the European Fluxes 
Database Cluster (Papale et al. 2006), and select towers in Brazil from the Large Scale 
Biosphere-Atmosphere Experiment (LBA-ECO) (Restrepo-Coupe et al. 2021). 

In all cases, we prioritized the use of half-hourly flux data partitioned by the 
tower’s principal investigator (PI) and avoided gap-filled data. Most FLUXNET and 
AmeriFlux towers provided NEE data that was quality-controlled using the Variable 
Ustar Threshold (VUT) for each year. If replicates were provided, we averaged among 
sensors at the same height above the canopy. Tower fluxes were then converted from CO" 
to carbon mass flux and aggregated to daily time steps in one of two ways: if there are no 
missing (hourly or half-hourly) measurements in a day, the daily sum is obtained; 
otherwise, a daily mean is taken and then scaled to a daily total. The updated fluxes were 
used in the calibration protocol established in the previous re-processing (Endsley et al. 
2023b), to obtain the updated BPLUT. Following recalibration of the BPLUT, the L4_C 
initial SOC pool sizes were initialized as described by Jones et al. (2017), based on 
updated L4_SM soil moisture and temperature climatologies. 

Unless noted otherwise, the L4_C V8 product examined in the present report is 
from Science Version ID Vv8040 (31 March 2015 – 30 September 2024) and Vv8041 (1 
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October 2024 – present), which were released in July 2025 as part of a minor version 
upgrade to address a transient bias discovered in the original L4_C V8 release of April 
2025 (Science Version IDs Vv8020 and Vv8021; see section 3.4).  
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3 L4_C Product Performance at SMAP Core Validation Sites 
The primary validation of the L4_C product consists of its assessment against carbon 
fluxes from the set of 26 SMAP Core Validation Site towers. The L4_C V8 product 
continues to perform within specified accuracy requirements (Jones et al. 2017), with 
unbiased root-mean squared error (ubRMSE) in mean daily NEE well below 1.6 g C m#" 
day#$ and a decrease in the ubRMSE for all fluxes relative to V7 (Figure 1). The V8 
product shows stable performance for other metrics, albeit with a slight increase in bias 
and RMSE, and a decrease in spatially-averaged time series correlations (Table 1) 
relative to V7 for NEE, GPP, and RECO. 
 
 

 
Figure 1: Unbiased root-mean squared error (ubRMSE) in NEE, GPP, and RECO for the 
L4_C V8 and V7 products, evaluated at the 26 Core Validation Sites. 
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Table 1: Mean bias, root-mean squared error (RMSE), and correlation for L4_C V7 and 
V8, evaluated at the Core Validation Sites. Bias and RMSE are in units of g C m!" 
day!#. Correlation is dimensionless. 

Flux Bias (V7) Bias (V8) 
RMSE 

(V7) 
RMSE 

(V8) 
Correlation 

(V7) 
Correlation 

(V8) 
NEE 0.27 0.30 0.98 0.96 0.62 0.55 
GPP 0.30 0.31 1.32 1.35 0.76 0.71 
RECO 0.66 0.73 1.16 1.16 0.69 0.68 

 
 
As the SMAP mission has just completed its first decade of measurements, an 

assessment of recent performance should also consider the performance of the product 
versions over the full mission period. Over the past 10 years of record, NEE ubRMSE has 
improved steadily (Figure 2), including punctuated, substantial improvements in Version 
3 and again in the most recent version. 

 
 
 
 
 

 
Figure 2: L4_C performance in estimating net ecosystem exchange (NEE) at the Core 
Validation Sites over successive product versions, in terms of unbiased root-mean 
squared error (ubRMSE), with a linear trend line shown.  The validation period for V2 is 
31 March – 31 December 2015, as reported in Jones et al. (2017). The validation period 
for V3-V8 is 31 March 2015 – 31 December 2017. 
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4 L4_C Product Comparisons Against Independent Data 
In this section, we assess the performance of the L4_C V8 product against additional 
independent reference data sets. 

4.1 Mean and Interannual Variability 
Following the approach of a recent validation of the MODIS MOD17 productivity model 
(Endsley et al. 2023a), we compared L4_C V8 mean annual productivity (2016-2024) to 
alternative assessments in the literature. Mean annual GPP and NPP in L4_C V8 compare 
well (Figure 3) with both inter-model comparisons (Anav et al. 2015) and the broader 
literature (Cramer et al. 2001).  
 

 
Figure 3: Comparison of L4_C V8 and V7 mean annual GPP and NPP (2016-2020) with 
independent estimates from model inter-comparisons (Anav et al. 2015 and the 
TRENDYv13 model ensemble) and the literature (Cramer et al. 2001). For TRENDYv13, 
we took the median annual flux for each model, for the years 2016-2023. The estimates 
of Anav et al. represent the period 1990-2009. The estimates from Cramer et al. 2001 
represent a wide range of the 20th century, as they are compiled from multiple field 
studies. The box plots show the median, interquartile range, minimum, and maximum.  
 

L4_C V8 also compares well with MODIS MOD17 (Collection 7) for the 
overlapping period of record, 2016-2021 (not shown): mean annual GPP in L4_C V8 is 
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131.6 (with interannual standard deviation of ±1.6) Pg C year#$, compared to 131.1 
(±0.9) Pg C year#$ in MOD17. For mean annual NPP, L4_C V8 predicts 58.5 (±0.7) Pg 
C year#$, which is quite close to the MOD17 estimate of 58.9 (±0.9) Pg C year#$. This 
agreement is unsurprising, as both products use very similar GPP models. However, it is 
worth noting that L4_C V8 achieves a very similar NPP estimate using a less-
sophisticated NPP model, while L4_C V8 also demonstrates higher interannual 
variability (IAV) in GPP, likely because it is sensitive to a wider range of environmental 
constraints, including soil moisture. 

We also compared L4_C V7 and V8 to a recent global extrapolation of EC tower 
data, FLUXCOM-X (Nelson et al. 2024). We obtained 0.05-degree, equirectangular 
gridded estimates for FLUXCOM-X, a machine-learning extrapolation of EC tower data. 
The FLUXCOM-X estimates were resampled onto the 9-km global EASE-Grid 2.0 
(Brodzik et al. 2012) of the L4_C product, using nearest-neighbor resampling, then 
aggregated by hemisphere and TransCom regions (Baker et al. 2006). Comparison with 
matching latitude-band summaries from FLUXCOM-X (2015-2020) indicate that L4_C 
V7 and V8 both adequately represent the IAV in RECO, GPP, and NEE in the Northern 
and Southern Hemisphere mid-latitudes and high latitudes (Figure 4). Flux IAV in the 
Tropics is so low that it makes for a difficult comparison. L4_C V8 shows clear 
improvement for RECO and mixed results for NEE in the Northern Hemisphere, where 
late-fall and winter respiration is reduced, relative to V7. Moreover, the overall amplitude 
of the northern terrestrial C sink is reduced compared to FLUXCOM-X and L4_C V7. 
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Figure 4: Mean daily RECO, GPP, and NEE from FLUXCOM-X and L4_C (V7 and V8) 
for the Global domain (90°S - 90°N latitude), the Northern Hemisphere (20-90°N 
latitude), and the Southern Hemisphere (20-90°S latitude). Note that the negative of 
GPP is plotted, for consistency with the definition NEE = RECO – GPP. 

 
Monthly NEE anomalies from L4_C (both versions) compare well with 

FLUXCOM-X in all TransCom regions and especially well in the Northern Hemisphere 
TransCom regions (Figure 5). Notably, in the Boreal and Temperate regions, L4_C V8 
shows a better match with FLUXCOM-X than does L4_C V7, apparently due to 
decreased fall respiration. In the Southern Hemisphere TransCom regions, L4_C V8 
shows less seasonal bias than L4_C V7, evaluated against FLUXCOM-X (Figure 5). In 
terms of correlation, the L4_C V8 anomalies show generally improved agreement with 
FLUXCOM-X compared to that of V7 (Table 2). 
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Figure 5: Monthly NEE anomalies for L4_C (V7 and V8) and FLUXCOM-X, for the period 
March 2015 through December 2020 and the TransCom regions. 
 
Table 2: Pearson’s correlation coefficients, expressing the degree of agreement between 
monthly NEE anomalies (2015-2020) from FLUXCOM-X and each L4_C version.  

Region L4_C V7 L4_C V8 
Australia 0.454 0.442 
Eurasia Boreal 0.923 0.989 
Eurasia Temperate 0.629 0.869 
Europe 0.903 0.986 
N. American Boreal 0.914 0.970 
N. American Temperate 0.911 0.988 
Northern Africa 0.702 0.849 
S. American Temperate 0.816 0.960 
S. American Tropical 0.419 0.590 
Southern Africa 0.416 0.672 
Tropical Asia 0.618 0.658 
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Anomalies in annual fluxes reveal a correspondence between flux IAV and climatic 
extremes (Figure 6). For example, Australia’s intense heat and drought in 2019 resulted 
in a sharp decline in both annual GPP and 𝑅! (Endsley et al. 2023a). In Northern Africa, 
rainfall deficits in late 2016 through 2017 are also associated with declines in GPP 
(iSciences 2016), while in that same period, in Europe, the most severe drought since 
1979 (García-Herrera et al. 2019) is associated with a sharp decline in GPP in 2017. To 
examine whether these anomalies may also be associated with climate oscillations, we 
compared annual flux anomalies with the outgoing long-wave radiation (OLR) index 
(Chiodi and Harrison 2013), a measure of the strength of the El Niño Southern 
Oscillation (ENSO) and its El Niño and La Niña phases (Figure 6). We find that in the 
Tropics (South American Tropical and Tropical Asia regions), 𝑅! anomalies are 
correlated with the La Niña phase, which generally brings wetter conditions to these same 
regions (Holmgren et al. 2001; Bastos et al. 2018; Zhang et al. 2019) and would, 
therefore, increase 𝑅! flux in those years. 
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Figure 6: Annual 𝑅$ and GPP anomalies for L4_C V8, shown for each TransCom region. 
For regions in the Tropics and the Southern Hemisphere, the outgoing long-wave 
radiation (OLR) index is super-imposed as a black line. 
 

4.2 Seasonal Cycle of Ecosystem Respiration 
One of the major algorithm improvements to L4_C V8 is the addition of a seasonally 
varying litterfall phenology, which is expected to correct a bias in the seasonal cycle of 
RECO and NEE (Endsley et al. 2022). We also compared L4_C flux estimates to 
monthly, global and regional means from FLUXCOM-X and another product, the 
TRENDY version 13 (TRENDYv13) ensemble (Sitch et al. 2024). These ensembles are 
expected to provide a good representation of the annual RECO cycle because they pool 
multiple (physical or data-driven) model estimates together. In particular, FLUXCOM-X 
is an empirical and globally contiguous up-scaling of EC tower data. 
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TRENDYv13 is a collection of estimates from 21 dynamic global vegetation 
models. We chose to use data from the “S3” simulation, which includes varying 
atmospheric CO", climate, and land use scenarios. One of the models was excluded 
because the time coordinates could not be deciphered. We resampled each model’s 
monthly GPP and NEE estimates onto a half-degree equirectangular grid, the finest grid 
spacing of any of the models, using nearest-neighbor resampling. GPP was available for 
every model. When NEE was not available in the model’s output, it was computed either 
from net ecosystem productivity (NEP, the additive inverse of NEE) or by subtracting 
GPP from the sum of 𝑅! and 𝑅%, depending on what data were available for that model. 
Fluxes were then converted from [kg C m#"sec#$] to [g C m#"month#$]. To calculate 
regional and global totals, the half-degree estimates were resampled on an equal-area 
grid, the 36-km global EASE-Grid 2.0, using nearest-neighbor resampling. 

When we compare L4_C RECO and NEE to FLUXCOM-X or TRENDYv13 
(ensemble mean) by latitude band, we find that L4_C V8 has substantially improved the 
seasonal cycle of both fluxes (Figure 7). In the Northern Hemisphere mid- and high 
latitudes (>20°N latitude), the seasonal cycle of RECO in L4_C V8 is shifted slightly 
forward in time (relative to V7), with peak RECO occurring 1-2 weeks later in the year, 
which is more consistent with the RECO cycle depicted by both FLUXCOM-X and 
TRENDYv13. This gives rise to a seasonal cycle of NEE that is shifted backward in time, 
with peak sink activity occurring ca. 2 weeks earlier in the year. The backward shift in 
NEE is of a greater magnitude due to the differencing between GPP and RECO. It’s 
interesting that this effect is also seen in the Southern Hemisphere (<20°S), given that the 
smaller land domain and different PFT composition result in generally less pronounced 
leaf phenology. In the Tropics (between 20°S and 20°N), L4_C is less accurate in 
representing the seasonal cycle, likely because of the very low characteristic seasonality 
in tropical leaf phenology, at least in terms of satellite-observed fPAR. 
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Figure 7: Normalized seasonal cycle of NEE and RECO (2015-2020) for FLUXCOM-X, 
L4_C (V7 and V8), and the TRENDYv13 ensemble mean for the Global domain (90°S - 
90°N latitude), the Northern Hemisphere (20-90°N latitude), the Southern Hemisphere 
(20-90°S latitude), and the Tropics (20°S - 20°N latitude). 

 
The L4_C V8 seasonal cycle of NEE aligns better with FLUXCOM-X than with 

TRENDYv13 and, indeed, we would expect FLUXCOM-X to be a more faithful 
representation because it upscales tower-measured fluxes and is validated against 
atmospheric CO" data. As such, we looked in detail at the differences between the 
seasonal cycles of L4_C and FLUXCOM-X. For regions north of the Equator, a spring 
high bias and fall low bias in L4_C V7 RECO were both substantially reduced in V8 
(Figure 8), almost certainly because the new litterfall scheme shifted the seasonal 
allocation of litter to SOC pools. However, in Northern Africa, seasonal RECO bias is 
not improved although it is improved for NEE (Figure 9), suggesting that changes in GPP 
also contribute to the modified seasonal cycle of NEE in L4_C V8. 
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Figure 8: Difference in the monthly seasonal RECO cycles of L4_C and FLUXCOM-X 
(2015-2020). After computing the RECO seasonal cycle for each product, at monthly 
time steps, L4_C estimates (for V7 and V8) are subtracted from that of FLUXCOM-X. 
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Figure 9: As in Fig. 8 but for NEE. 
 

4.3 Gross Primary Productivity and Solar-Induced Fluorescence 
The L4_C V8 seasonal cycle of GPP was compared to satellite-based, solar-induced 
chlorophyll fluorescence (SIF), which is a good proxy for photosynthetic activity. As in 
the V7 product assessment, global, spatially contiguous SIF (CSIF) data based on 
Orbiting Carbon Observatory-2 (OCO-2) retrievals, available at 0.05-degree resolution 
on 4-day intervals (Zhang et al. 2018), were resampled onto the global 9-km EASE-Grid 
2.0, summarized by TransCom region, and converted to Z-scores for the SMAP post-
launch period through the end of 2020. Throughout the Northern Hemisphere, L4_C V8 
shows strong correlations with SIF (𝑟 ≥ 0.97) and correlates well everywhere else, 
except in Northern Africa (𝑟 = −0.153) and the South American Tropics (𝑟 = 0.058) 
(Figure 10). 

The performance of L4_C V8 GPP in Australia is particularly good, given that this 
region, more than any other, demonstrates strong inter-annual variability in 
photosynthetic activity (Figure 10). L4_C V8 GPP matches the relative magnitudes of 
CSIF in each year, with dry years (2019) showing both lower GPP and CSIF than wet 
years (2017). The poor correspondence in Northern Africa is due to an apparent phase 
shift in the seasonal cycle of L4_C GPP relative to that of SIF. Seasonal variability in 
L4_C GPP is largely driven by variability in fPAR, which may not be a good signal of 
photosynthetic activity in this very dry region. In the South American Tropical region, a 
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similar phase shift is evident, with overall greater noise in the L4_C GPP seasonal cycle, 
which may reflect the saturation of fPAR in closed-canopy, tropical forests. L4_C GPP 
also does not capture the twice-annual peak in photosynthetic activity evident from the 
SIF data in the South American Tropical region, although it does demonstrate this pattern 
in Southern Africa (Figure 10). 

 
Figure 10: Standardized L4_C V8 GPP time series (i.e., converted to Z-scores) shown 
with standardized, contiguous solar-induced fluorescence (CSIF) data, for each 
TransCom region, at 4-day time steps. The Pearson’s correlation is shown in the bottom-
right corner of each plot. 

 
It is notable that L4_C GPP has slightly lower correlations with CSIF in V8 than in 

V7 [compare Figure 10 to Figure 13 of (Endsley et al. 2023b)]. In Southern Africa, the 
correlation is considerably lower (𝑟 = 0.65 in V8 versus 𝑟 = 0.84 in V7), which is 
almost certainly due to the change in VPD and Tmin parameters for the Shrubland (SHB) 
and Grassland (GRS) PFTs, perhaps leading to less sensitivity in L4_C GPP to 
environmental constraints in this region. However, L4_C V8 displays a more prominent 
semi-annual GPP cycle in Southern Africa than does V7, which is more consistent with 
CSIF data in the region (not shown). 
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Whereas the OCO-2 CSIF data used here is available only through the end of 2019, 
a new SIF proxy has recently become available (Fang et al. 2025), extending the temporal 
record of these kinds of measurements. The Long-term Continuous SIF-informed 
Photosynthesis Proxy (LCSPP) dataset provides a “SIF-informed, long-term 
photosynthesis proxy” based on remotely sensed surface reflectance data from MODIS. 
Based on this monthly record, L4_C GPP in V8 compares very well with the seasonal 
cycle of productivity, with long-term (2015-2023) correlations in most regions ≥ 0.8 
(Figure 11). 

 
Figure 11: As in Fig. 10 but  for monthly records and using the LCSPP index as a proxy 
for SIF. 
 

4.4 Mean Surface Soil Organic Carbon Stocks 
The new SOC calibration data are suggestive of a larger SOC stock than in previous 
versions. This was evident early in the V8 re-processing, when steady-state estimates 
based on the L4_SM Nature Run version 11.4 (NRv11.4) were compared to the previous, 
V7 post-calibration estimates, Nature Run version 10 (NRv10). When comparing these 
two post-calibration, steady-state SOC estimates to the SoilGrids 250m dataset (Hengl et 
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al. 2017), for multiple depths, we find that the V8 estimates are consistently larger than 
those from the previous version (Figure 12). Since Version 4, the L4_C estimates have 
been thought to represent an effective soil depth of ~5 cm (Endsley et al. 2020), 
consistent with the effective penetration depth of the L-band radiometer. But the 
comparison of L4_C V8 (based on NRv11.4) with data from the SoilGrids 250m product 
suggests that the L4_C V8 SOC estimates are representative of a deeper soil horizon, 
based on the 1:1 line seen in Figure 12. 
 
 

Figure 12: L4_C predicted soil organic carbon (SOC) content, at calibration sites, 
compared with the prediction of the SoilGrids 250m product. The L4_C Nature Run 
products are shown, with Nature Run version 10 (NRv10) shown as gray dots and the 
new, Nature Run version 11.4 (NRv11.4) shown in orange dots. NRv10 and NRv11.4 
are multi-decadal, model-only simulations used in the development of V7 and V8, 
respectively, of L4_SM and L4_C.  

 
However, the multiple changes to the SOC model in L4_C V8 seem to require a 

different approach to SOC spin-up, going forward. We could not obtain SOC pools in the 
quasi-equilibrium state during calibration, as in previous versions. Indeed, numerical 
spin-up performed for 1000 years (100 times longer than in previous versions) still did 
not lead to global convergence. Instead, the post-launch SOC states from 31 March 2025 
were used to re-initialize a new forward run (leading to a minor version upgrade from 
Science Version ID Vv8020 to Vv8040). The post-launch SOC pools are in the quasi-
equilibrium state and slightly smaller than the post-calibration, NRv11.4 SOC data, yet 
still indicative of a larger SOC stock than in V7 (and NRv10). A latitude-band 
comparison with SoilGrids 250m and the TRENDYv13 ensemble indicates that the new 
L4_C V8 SOC stock is more similar to a 15-cm soil horizon (Figure 13), although L4_C 
continues to under-estimate SOC storage at high latitudes and over-estimate storage in 
the southern tropics. 
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Figure 13: Soil organic carbon stocks by latitude for L4_C (V7 and V8), SoilGrids 250m, 
and TRENDYv13. The SoilGrids 250m product is vertically resolved, so the first two 
layers (0-5 cm, 5-15 cm) are shown totaled. The TRENDYv13 ensemble mean (solid 
gray line) is shown with one, inter-model standard deviation (shaded area). 
 

4.5 Variability in Surface Soil Organic Carbon 
As noted in previous assessments of L4_C, one thing that distinguishes the product from 
similar, global, gridded ecosystem-level estimates is that L4_C predicts daily SOC 
content. While SOC stocks do indeed vary on sub-annual time scales (Cagnarini et al. 
2019; Padarian et al. 2022), it is generally not possible to validate dynamic SOC 
estimates, as field-based methods are destructive. Nonetheless, SOC changes in L4_C 
essentially function as a record of the accumulated changes in NEE and may contain a 
signal of ecosystem responses to short-term climate variability (Endsley et al. 2020). 
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We computed detrended SOC residuals from a harmonic regression, removing the 
seasonal cycle from the SOC time series for each TransCom region (Figure 14). The 
patterns are largely similar to those seen in the previous assessment report (Endsley et al. 
2023b), in which we observed that SOC variability in most regions is completely 
described by a predictable annual cycle. There are, as in L4_C V7, a few notable 
exceptions, In Australia, we again observe a build-up in SOC content as the continent 
experiences the steepest drought (in 2019) since 1900 (ibid.). Starting in 2020, the 
continent experienced normal rainfall levels and even regional pluvial events in 2022 and 
2024 (Australia Bureau of Meteorology 2024), which coincide with a gradual reduction 
in SOC content. 

 

 
Figure 14: Detrended anomalies in L4_C V8 soil organic carbon (SOC) content, from 
harmonic regression, by TransCom region. The vertical axis expresses percent change 
in SOC stock since March 31, 2015, the start of the record. 
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Residual SOC dynamics are also observed in Southern Africa and the tropical 
regions. In these regions, residual SOC change is correlated with the El Niño Southern 
Oscillation (ENSO) (Figure 15), based on the outgoing long-wave radiation (OLR) index 
(Chiodi and Harrison 2013), a measure of the strength of this global climate oscillation 
and the corresponding El Niño and La Niña phases. We find that a 9-month leading OLR 
index shows moderately strong correlations (𝑟 ≥ 0.5) with residual SOC change. This 
finding is consistent with the regional climate responses to El Niño (La Niña), which is 
associated with anomalously dry (wet) conditions in these same regions (Holmgren et al. 
2001; Bastos et al. 2018; Zhang et al. 2019). Similar to the build-up of residual SOC in 
Australia in 2019, a sharp increase in residual SOC content in the South American 
Tropical region through 2024 coincides with deep drought in the Amazon basin, despite 
the mild La Niña conditions. Although La Niña conditions are generally associated with a 
stronger land C sink in tropical drylands (Ahlström et al. 2015), we should note that the 
impact of ENSO on residual SOC stocks is reversed, possibly because L4_C only 
perturbs SOC through changes in moisture and temperature, with NPP inputs to SOC 
being fixed based on the long-term average productivity of the ecosystem. Consequently, 
while these residual SOC changes illustrate the model’s sensitivity to climate (see 
Endsley et al. 2023b for a more thorough analysis), the model lacks a dynamic 
connection to productive inputs (NPP), which are known to be lower during the El Niño 
phase (Hashimoto et al. 2004; Zhu et al. 2017; Bastos et al. 2018).  
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Figure 15: Residual L4_C V8 soil organic carbon (SOC) content (detrended anomalies 
from harmonic regression) and outgoing long-wave radiation (OLR) index. The sign of 
the OLR index is flipped so that positive (negative) values correspond to the El Niño (La 
Niña) phase. The maximum Pearson’s correlation, from cross-correlation, is shown with 
the value of the corresponding lag. 
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5 Summary and Potential Future L4_C Product Updates 
The multiple assessments described here indicate that the L4_C V8 product continues to 
provide a level of performance and accuracy consistent with the product’s science 
objectives. Multiple changes were made to the product after V7, and the latest version 
(V8) demonstrates a significant increase in accuracy (reduction in ubRMSE) as well as 
much improved correlation with the seasonal RECO and NEE cycles predicted by 
independent models. These achievements make L4_C V8 a good candidate for 
integration with atmospheric modeling studies, potentially serving as a prior for 
atmospheric inversion, among other applications. 

The new SOC model and litterfall mechanism in L4_C V8 have resulted in larger 
SOC stock sizes than those of previous versions. A comparison to the SoilGrids 250m 
product and the TRENDYv13 model ensemble indicate that L4_C V8 SOC provides a 
similar spatial pattern and is consistent with the SOC content in the top 15 cm of soil. Our 
comparison with satellite-based, solar-induced fluorescence data show that L4_C V8 
GPP continues to represent well the seasonal cycle and variability of terrestrial 
productivity. L4_C V8 also shows very good correspondence with the monthly variability 
in NEE, GPP, and RECO predicted by the FLUXCOM-X global extrapolation, which 
indicates that the mechanistic, diagnostic model framework of L4_C is capable of 
reproducing the carbon fluxes predicted by a highly parameterized, machine-learning 
framework trained on EC tower data. 

Future releases of the SMAP L4_C operational product will incorporate ongoing 
refinements and improvements to upstream inputs, including in the L4_SM algorithm. 
The recent changes (from V7 to V8) have revealed that further changes to L4_C model 
logic will be challenging, given the operational constraints and the legacy of the current 
algorithm code. We also note that we already implemented three of the four proposed 
changes from the previous L4_C product assessment. Nevertheless, the following 
changes to input datasets and model logic may be achievable: 
• The changes to the SOC model have disrupted the normal spin-up procedure used in 

previous versions. We will need to evaluate both the assumptions about SOC decay 
coefficients as well as the approach to model spin-up in the next version. To adjust 
decay coefficients, we might try scaling our SOC calibration data using the same 
empirical, depth-decay coefficients that were used to compare L4_C SOC with 
alternative assessments in Endsley et al. (2020). To improve spin-up, we might use 
the previous version’s SOC map as the initial SOC estimate rather than the analytical 
solution, which always under-estimates SOC storage. 

• L4_C currently uses the long-term mean annual NPP to determine how much C 
input to allocate to SOC pools (over the course of a year). While the recent updates 
to the litterfall representation have improved the timing of this C allocation, the 
overall amount allocated is fixed, based on the long-term mean. An alternative 
would be allocate C based on some lagged, aggregated estimate of NPP, since L4_C 
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already computes this quantity. This would add realism by representing C limitation 
in the soil community, which could potentially improve the resulting 𝑅! flux 
estimates and better represent interannual variability in carbon fluxes. 

• The V8 change in litterfall allocation altered the global, spatial distribution of SOC 
stocks and their magnitudes.  In some areas, this has resulted in less realistic SOC 
magnitudes.  This may suggest that the assumption of a constant daily fraction of 
NPP may be necessary to improve SOC stock estimation in some areas.  We should 
examine whether the pixel-wise allocation fractions should be fixed at 1/365 (i.e., 
even amount every day of the year) for some pixels. 

• Despite the recent change to the timing of litterfall allocation, the L4_C algorithm 
still prescribes different amounts of litterfall (as a fraction of the allotted NPP) for 
each PFT to the two fastest SOC pools. This assumption should be re-examined. 

• As suggested in the previous L4_C assessment, adding an upper limit on the 
response of 𝑅! to soil moisture, in the form of a limitation on O" diffusion, could 
improve model realism and RECO performance when soils are close to saturation. 
As demonstrated in Endsley et al. (2022), some form of an O" diffusion limitation 
can improve the L4_C soil decomposition and 𝑅! model. This could take the form of 
a second linear ramp function on the response of 𝑅! to increasing soil moisture, or a 
Michaelis-Menten diffusion kinetics-type model. 
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