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Abstract	

This brief report considers some details in the implementation Backus-Gilbert 
Interpolation (BGI) approach.  The Backus/Gilbert method occasionally produces 
artifacts due to poor condition numbers of the matrix that needs to be inverted. To 
illustrate this effect this report explores some numerical examples.  By averaging 
measurements that occur at the same location, the condition number of the matrix is 
greatly improve, eliminating the inversion problem. 

1 Backus/Gilbert Method 

Backus and Gilbert (1967; 1968) developed a general method for inverting 
integral equations, which can be applied to solving sampled signal reconstruction 
problems (Caccin et al., 1992).  First applied to radiometer data by Stogryn (1978) the 
Backus/Gilbert (BG) method has been used extensively for extracting vertical 
temperature profiles from radiometer data (Poe, 1990).  It has also been used for spatially 
interpolating and smoothing data to match the resolution between different channels 
(Robinson et al. 1992), and improving the spatial resolution of surface brightness 
temperature fields (Farrar and Smith, 1992; Long and Daum, 1998; Chakraborty et al., 
2008). 

In application to reconstruction, the essential idea behind the BG method is to 
write an estimate of the surface brightness temperature at a particular pixel as a weighted 
linear sum of measurements that are collected “close” to the pixel, i.e., using the notation 
developed in previous reports, the estimate at the jth pixel is  

 
Equation	9	

where i is the measurement number and the wij are weights selected so that  

 
Equation	10	

There is no unique solution for the weights; however, regularization permits a 
subjective tradeoff between the noise level in the image and in the resolution (Long and 
Daum, 1998).  Regularization and selection of the tuning parameters are described in 
detail by Caccin et al. (1992) and Robinson et al. (1992).  There are two tuning 
parameters, an arbitrary dimensional parameter and a noise-tuning parameter . The 
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dimensional parameter affects the optimum value of tuning parameter .  Following 
Robinson et al. (1992), we set the dimensional-tuning parameter to 0.001.  The noise-
tuning parameter, which can vary from 0 to /2, controls the tradeoff between the 
resolution and the noise. The value of  must be subjectively selected to “optimize” the 
resulting image and depends on the measurement noise (standard deviation, T) and the 
“penalty function” chosen. For use in the CETB, we use the constant penalty function J=1 
the reference function F=1 over the pixel of interest, and 0 elsewhere as used by Farrar 
and Smith (1992) and Long and Daum (1998).  

Using our notation, for a particular pixel j, define the squared signal 
reconstruction error term QR 

 
Equation	11	

and the noise error term 

 
Equation	12	

where E is the TB noise covariance matrix.  We assume the noise and signal are 
independent.  To provide a tradeoff between noise and resolution, a value for  is 
included to weight the reconstruction error and the noise error in the total error Q, i.e., 

 
Equation	13	

where  is the dimensional tuning parameter that is arbitrarily choosen.  Since the noise 
realization is independent from measurement, E is a diagonal matrix with diagonal 
entries (T)/2 where T is the radiometer channel noise standard deviation. 

The total error Q in Equation 3 is minimized when the weight vector for the pixel 
is selected as 

 
Equation	14	
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Figure	1.	Example	subimages	extracted	from	an	early	prototype	one	day	CETB	
Northern	Hemisphere	SSM/I	image	product.	(left	col)	GRD,	(center	col)	SIR,	
(right	col)	BG.	For	channels	(rows)	19H,	19V,	37H,	37V,	85H,	and	85V.		The	
pixel	resolution	is	6.25km	except	for	the	85	GHz	channels	which	have	pixel	
resolution	of	3.125	km.		QC	has	NOT	been	applied	to	BG	images.		Note	the	

white	spot	artifacts	on	some	of	the	BG	images.	
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where  
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Equation	15	

Note that BG formulation in our case is somewhat simplified, since the pixel grid 
elements have constant area. Varying  alters the solution for the weights between a 
(local) pure least-squares solution and a minimum noise solution.  As noted,  must be 
subjectively chosen. 

For BGI processing of CETB products, we follow Long and Daum (1998) to 
define “nearby” as regions where the MRF is within 9 dB of the peak response.  Outside 
this region the MRF is treated as zero.  We compute the solution separately for each 
output pixel using the particular measurement geometry antenna pattern at the swath 
location and Earth azimuth scan angle. This significantly increases the computational 
load, but results in the best quality images.  

This implementation Backus/Gilbert method occasionally produces artifacts due 
to poor condition numbers of the matrix Z that needs to be inverted. To illustrate this 
effect this report explores some numerical examples.  The data values are pulled from the 
37 GHz intermediate “setup” files used in prototype CETB processing over the Northern 
Hemisphere EASE-Grid V2 projection.  Figure 1 shows a comparison of subimages for 
this area for SIR, AVE, and BG using default parameters.  In computing these images, 
the BG computation result is presented unmodified. 

We consider two cases in the following for the 85 GHz channel.  Particular pixels 
are arbitrarily selected, one that has a poor result, and a nearby pixel with a normal result, 
for further study.  Following the BG processing, all the measurements that have MRF 
gain greater than the threshold gain (-9 dB=0.125) at the particular ω is set to 0.01 instead 
of 0.001 to better show the tradeoff curve.  However, the general results are independent 
of ω.  Note that Z is a regularized version of G, where the regularization term is a 
diagonal matrix E weighted by a function of γ.  Thus Z is effectively G with a small 
diagonal term added. 

1.1 Case 1 

This case represents a nominal result.  Figure 2 shows the locations of the Tb 
measurements relative to the pixel of interest, which is at the center of the image.  Note 
that the measurements are irregularly spaced over the area (the area of the plot is the 
minimum enclosing area of the measurement centers). 
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Figure 3 is in the same format as Fig. 2, but shows the MRF gain of the 
measurement where the MRF is evaluated at the pixel of interest.  It is these gain values 
that are used in computing the AVE pixel value. 

Figure 4 shows the MRF for each of the measurements.  Their displacement is 
shown relative to the pixel of interest, which is at the center of the plot area.  The plot 
area is the minimum sized area completely enclosing the non-zero MRFs of the 
measurements.  Note that gain values in Fig. 3 are from these patterns, at the center 
location.  The centers of the MRFs (the “measurement locations”) in Fig. 4 correspond to 
those shown in Fig. 2. 

Using the gains in Fig. 4, the BG Z matrix can be computed.  The BG G matrix is 
illustrated in Fig. 5.  This matrix has a condition number of 288, which is easily handled. 
Figure 6 shows the inverse of the BG Z matrix, where particular values of γ and ω are 
used.  With these values of γ and ω, the BG Z matrix has a condition number of 266, also 
easily handled. 

Figure 7 shows a plot of the condition number versus gamma.  We see that the 
condition number is largest for small γ, and falls off to a small value for γ=π/2.  The 
corresponding estimate of Tb is shown in Fig. 8. 

Figure	2.	Measurement	center	locations	(red	+) relative	to	pixel	of	interest	
denoted	with	blue	asterisk	for	case	1.	
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Figure	3.	AVE	algorithm	gains	located	at	measurement	centers	for	pixel	at	
center	of	grid,	see	Fig.	2.	

Figure	4.	AVE	algorithm	gains	located	at	measurement	centers	for	pixel	at	
center	of	grid,	see	Fig.	2.	
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Figure	5.	Visualization	of	Gmatrix.

Figure	6.	Visualization	of	inverse	Z matrix.
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Figure	7.	Condition	number	of	Z matrix	versus	gamma	value.	
Figure	7.	Condition	number	of	Z matrix	versus	gamma	value.	

Figure	8.	(blue	line)	BG	Tb	estimate	versus	gamma	value. 	(red	line)	AVE	value	
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1.2 Case 2 

This case represents a case when the matrix Z is poorly conditioned, which 
produces a spurious estimate of Tb.  Figure 9 shows the locations of the Tb 
measurements relative to the pixel of interest, which is at the center of the image.  Note 
that the measurements are irregularly spaced over the area (the area of the plot is the 
minimum enclosing area of the measurement centers). 

Figure 10 is in the same format as Fig. 9, but shows the MRF gain of the 
measurement where the MRF is evaluated at the pixel of interest.  It is these gain values 
that are used in computing the AVE pixel value. 

Figure 11 shows the MRF for each of the measurements.  Their displacement is 
shown relative to the pixel of interest, which is at the center of the plot area.  The plot 
area is the minimum sized area completely enclosing the non-zero MRFs of the 
measurements.  Note that gain values in Fig. 3 are from these patterns, at the center 
location.  The centers of the MRFs (the “measurement locations”) in Fig. 11 correspond 
to those shown in Fig. 9. 

Using the gains in Fig. 11, the BG Z matrix can be computed.  The BG G matrix 
is illustrated in Fig. 12.  This matrix has a condition number of 12917, which is large 

Figure	9.	Measurement	center	locations	(red	+)	relative	to	pixel	of	interest	
denoted	with	blue	asterisk	for	case	2.		Note	that	two	asterisks	overlap	at	0,1.	
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enough to produce numerical error in the rest of the BG computation.  Figure 13 shows 
the inverse of the BG Z matrix, where particular values of γ and ω are used.  It is 
illustrated in Fig. 12 where particular values of gamma and omega are used.  Figure 12 
shows the inverse of the BG Z matrix.  Note that the inverse is dominated by 4 values 
(which correspond to two particular measurements).  As a result, the estimate is very 
sensitive to noise in the Tb values.  With these particular values of γ and ω, the BG Z 
matrix has a condition number of 3895, which is large. 

Figure 13 shows a plot of the condition number versus γ.  As before, we see that 
the condition number is largest for small γ, and falls off to a small value for γ =π/2.  The 
corresponding estimate of Tb is shown in Fig. 14.  Note that the variation in the estimate 
with gamma is fairly large, whereas in the previous case it was quite small. 
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Figure	10.	AVE	algorithm	gains	located	at	measurement	centers	for	pixel	at	
center	of	grid,	see	Fig.	9.		Note	that	8	and	9	overlap	at	0,1.	

Figure	11.	AVE	algorithm	gains	located	at	measurement	centers	for	pixel	at	
center	of	grid,	see	Fig.	9.		Note	that	8	and	9	are	very	similar	in	appearance	

(but	are	not	identical)	and	are	centered	at	the	same	location.	
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Figure	12.	Visualization	of	Gmatrix.

Figure	13.	Visualization	of	inverse	Z matrix.
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Figure	7.	Condition	number	of	Z matrix	versus	gamma	value.	
Figure	14.	Condition	number	of	Z matrix	versus	gamma	value.	

Figure	15.	(blue	line)	BG Tb	estimate	versus	gamma	value.		(red	line)	AVE	value	
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2 Dealing with redundant measurements 

The problem with case two shown above is that two measurements occur at very nearly 
the same locations.  Since the original setup file included multiple passes over the area 
within a short time, measurements can be very closely spaced.  When the MRF is 
quantized, the quantized locations of multiple measurements may be at the same location.  
Quantization or no, the close proximity of the measurements produces a G (and therefore, 
Z) matrix that is poorly conditioned, as evidenced by a large condition number.   
 

Fortunately, this situation can be remedied by averaging measurements quantized 
to the same location.  In doing this averaging, both the measured Tb values and the MRFs 
are averaged.  The averaging for the latter is done in linear space, not in dB.  This 
resolves the problem poor conditioning of the Z matrix resulting from the proximity of 
multiple measurements.  To illustrate this, case 2 is reconsidered using averaging of 
multiple measurements at the same location.  

Figure 16 shows the MRF gain of the measurements where the pre-averaged MRF 
is evaluated at the pixel of interest.  There is now only a single measurement at each 
point.  Figure 17 shows the MRF for each of the measurements.  Measurement 8 is the 
averaged MRF. 

Using the gains in Fig. 17, the BG Z matrix can be computed.  The BG G matrix 
is illustrated in Fig. 18.  With the pre-averaged MRFs, the matrix condition is reduced to 
241.  Figure 19 shows the inverse of the BG Z matrix, where particular values of γ and ω 
are used.  Figure 20 shows a plot of the condition number versus γ.  The corresponding 
estimate of Tb is shown in Fig. 21.  Note that the result now resembles the first case with 
the issues of the matrix inversion are resolved.  The new Tb estimate is much closer to 
the AVE estimate. 
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Figure	16.	AVE	algorithm	gains	located	at	measurement	centers	for	pixel	at	
center	of	grid,	see	Fig.	9.	

Figure	17.	AVE	algorithm	gains	located	at	measurement	centers	for	pixel	at	
center	of	grid,	see	Fig.	16.	
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Figure	18.	Visualization	of	Gmatrix.

Figure	19.	Visualization	of	inverse	Z matrix.
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Figure	7.	Condition	number	of	Z matrix	versus	gamma	value.	
Figure	20.	Condition	number	of	Z matrix	versus	gamma	value.	

Figure	21.	(blue	line)	BG	Tb	estimate	versus	gamma	value.		(red	line)	AVE	value	
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3 Conclusion 

Based on the analysis presented in this report, it is recommended that multiple 
measurements at one quantized grid location be averaged prior to applying the BG 
algorithm.  Figure 22 shows the results with the corrected BG algorithm. 

4 References 

Backus,	G.E.,	and	J.	F.	Gilbert,	1967.	Numerical	applications	of	a	formalism	for	
geophysical	inverse	problems,	Geophys.	J.	R.	Astron.	Soc.,	vol.	13,	pp.	247–276.	
	
Backus,	G.E.,	and	J.	F.	Gilbert,	1968.	Resolving	power	of	gross	Earth	data,	Geophys.	J.	
R.	Astron.	Soc.,	vol.	16,	pp.	169–205.	
	
Caccin,	B.,	C.	Roberti,	P.	Russo,	and	A.	Smaldone,	1992.	The	Backus–Gilbert	inversion	
method	and	the	processing	of	sampled	data,	IEEE	Trans.	Signal	Processing,	vol.	40,	
pp.	2823–2825.	
	
Chakraborty,	P.,	A.	Misra,	T.	Misra,	and	S.S.	Rana,	2008.	Brightness	Temperature	
Reconstruction	Using	BGI,	IEEE	Trans.	Geosci.	Remote	Sensing,	vol.	46,	no.	6,	pp.	
1768–1773.	
	
Farrar,	M.R.,	and	E.	A.	Smith,	1992.	Spatial	resolution	enhancement	of	terrestrial	
features	using	deconvolved	SSM/I	brightness	temperatures,	IEEE	Trans.	Geosci.	
Remote	Sensing,	vol.	30,	pp.	349–355.	
	
Long,	D.G.,	and	D.L.	Daum,	1998.	Spatial	Resolution	Enhancement	of	SSM/I	Data,”	
IEEE	Transactions	on	Geoscience	and	Remote	Sensing,	Vol.	36,	No.	2,	pp.	407‐417.	
 
Long,	D.G.,	P.	Hardin,	and	P.	Whiting,	1993.	Resolution	Enhancement	of	Spaceborne	
Scatterometer	Data,	IEEE	Transactions	on	Geoscience	and	Remote	Sensing,	Vol.	31,	
No.	3,	pp.	700‐715.	
 
Poe,	G.A.,	1990.	Optimum	interpolation	of	imaging	microwave	radiometer	data,	IEEE	
Trans.	Geosci.	Remote	Sensing,	vol.	28,	pp.	800–810.	
 
Robinson,	W.D.,	C.	Kummerow,	and	W.	S.	Olson,	1992.	A	technique	for	enhancing	and	
matching	the	resolution	of	microwave	measurements	from	the	SSM/I	instrument,	
IEEE	Trans.	Geosci.	Remote	Sensing,	vol.	30,	pp.	419–429.	
	
Sethmann,	R.,	B.	A.	Burns,	and	G.	C.	Heygster,	1994.	Spatial	resolution	improvement	
of	SSM/I	data	with	image	restoration	techniques,	IEEE	Trans.	Geosci.	Remote	Sensing,	
vol.	32,	pp.	1144‐1151.	
	



	 8/20/15	 Page	19	of	19	

Stephens,	P.J.,	and	A.S.	Jones.	2002.	A	computationally	efficient	discrete	Backus‐
Gilbert	footprint‐matching	algorithm.	IEEE	Trans.	Geosci.	Remote	Sensing,	vol.	40,	no.	
8,	pp.	1865‐1878.	
	
Stogryn,	A.,	1978.	Estimates	of	brightness	temperatures	from	scanning	radiometer	
data,	IEEE	Trans.	Antennas	Propagat.,	vol.	AP‐26,	pp.	720–726.	

Figure	22.	Same	as	Fig.	1	but	with	the	BG	algorithm recommendations	
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