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Abstract	

This report reviews the theory of radiometer image formation and reconstruction.  It 
presents simulation results used to select the nominal pixel size and reconstruction 
algorithms for the Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness 
Temperature ESDR (CETB).  Two primary reconstruction algorithms are considered, the 
Backus-Gilbert Interpolation (BGI) approach and the Scatterometer Image 
Reconstruction (SIR).  These are compared to the conventional drop-in-the-bucket 
gridded image formation algorithms.  Tradeoff study results for the various algorithm 
options are presented, including the grid sizes, the number of SIR iterations, and the BGI 
gamma parameter, and recommendations for each are provided to the CETB project.  The 
sensitivity of the reconstruction to the accuracy of the measurement spatial response 
function is also explored. 

1.1 Gridding and Reconstruction 

All algorithms to transform radiometer data from swath to gridded format are 
characterized by a tradeoff between noise and spatial resolution. Our intention with the 
Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR 
(CETB) project (Brodzik and Long, 2014) is to produce both low-noise gridded data and 
enhanced-resolution data products. The low resolution gridded data has lower noise, 
while the high resolution data has potentially higher noise. This will enable product users 
to compare and choose which option better suits a particular research application.  The 
purpose of this report is to provide background into the theory of each approach with the 
goal of providing transparency into the tradeoff decisions made in defining the CETB. 

In the CETB all radiometer channels will be gridded to the coarsest resolution 
(25 km) grids using the drop-in-the-bucket method described below.  These products are 
termed ‘low resolution’ or ‘non-enhanced resolution’ and denoted as GRD or Grd 
products.  Higher resolution products are generated using one of two image 
reconstruction methods, the radiometer form of the Scatterometer Image Reconstruction 
(SIR) algorithm and the Backus-Gilbert Interpolation or Image formation (BGI) method, 
as described below.  Channels will be gridded at enhanced resolution on nested grids at 
power of 2 relationships to the base 25 km grid.  The method for determining the finest 
resolution for each channel is given below.  Unlike the approach taken for the historical 
EASE-Grid data (Armstrong, et al., 1994), the CETB will not attempt to match the 
resolution of the highest channels to the coarsest channel, but will independently 
optimize the resolution for each channel in the high resolution products. 
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The image grids for the CETB are Earth-located (in contrast to swath-based) 
using the EASE-2.0 projection (Brodzik et al., 2012). In generating gridded data, only 
measurements from a single sensor and channel are processed.  Measurements combined 
into a single grid element may have different Earth azimuth and incidence angles (though 
the incidence angle variation is small).  Measurements from multiple orbit passes over a 
narrow local time may be combined.  When multiple measurements are combined, the 
resulting images represent an average of the measurements over the averaging period. 
There is an implicit assumption that the surface characteristics remain constant over the 
imaging period and that there is no azimuth variation in the true surface brightness 
temperature (TB).  

For both non-enhanced and enhanced resolution images, the effective gridded 
image resolution depends on the number of measurements and the precise details of their 
spatial response functions, including overlap, orientation, and location.  

1.2 Theory of Reconstruction and Gridding Algorithms 

This section provides a brief summary of the algorithms used for reconstruction 
and gridding.  Gridded data are separately computed for each channel and instrument. 

1.2.1 Coarse Resolution (GRD) Gridding Algorithm 

The planned CETB coarse resolution gridding procedure is a simple, “drop-in-
the-bucket” average.  The resulting data grids are designated GRD data arrays.  For the 
drop-in-the-bucket gridding algorithm, the key information required is the location of the 
measurement.  The center of each measurement location is mapped to an output projected 
grid cell.  All measurements within the specified time period whose centers fall within 
the bounds of a particular grid cell are averaged together.  No weighting is done.  The 
measurement is the reported TB value for this pixel.  Ancillary product files contain the 
number and standard deviation of included samples. 

Note that the effective spatial resolution of the GRD product is defined by a 
combination of the pixel size and spatial extent of the 3dB antenna footprint size (Long 
and Daum, 1998) and does not require any information about the antenna pattern.  While 
the pixel size can be arbitrarily set, the effective resolution is, to first-order, the sum of 
the pixel size plus the footprint dimension.  All gridded products are produced on a 25 
km pixel grid and thus have an effective spatial resolution that is coarser than 25 km. 

Here we consider several definitions of the GRD product.  The baseline is a 
standard “drop-in-the-bucker” (DIB) where a measurement is assigned to the rectangular 
grid element (pixel) in which the measurement center falls. Multiple measurements may 
be averaged within one pixel, but each measurement is accumulated into a single pixel. In 
this section, this is referred to as a standard DIB (DIB0).  An alternate DIB definition is 
based on assigning pixels to a measurement based on the measurement being with a 
particular radius of the pixel center.   In this case, a measurement may be averaged into 
multiple pixels.  Here we consider a radius of 1/sqrt(2) of the grid dimension, which 
corresponds to a minimum sized circle that encloses a single (square) pixel.  This is 
denoted as DIB1.  Finally, the value within each pixel can be computed as the weighted 
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average of all “nearby” measurements where “nearby” is defined as measurements within 
a given radius. The weighting function is the inverse distance squared, denoted IDG1.  In 
IDG1, one measurement is included in multiple measurements. 

To simplify later analysis we present a comparison between these conventional 
gridding algorithms based on simulation results for the SSM/I 37 GHz channel with two 
passes described later.  Simulated measurements are created of a synthetic “truth” image 
at high resolution using the measurement SRF. Both noisy and noise-free simulation 
results are considered. The error between the gridded data and the true image is 
summarized in Table 0.  Figure 0 compares the GRD image with the truth image.  

Though there is not a lot of visual difference in the images, DIB0 is the visually 
the least noisy, has the smallest RMS error (see Table 0), and is subjectively sharpest of 
the three algorithms.  The IDG1 is the next best.  Since it has the lowest noise and error, 
in the following only DIB0 is used for the GRD comparison images. 

 
Table	0:	Comparison	of	the	errors	for	different	gridding	options.		To	compute	the	error	the	gridded	image	
is	pixel	replicated	to	the	same	size/resolution	and	the	true	image.			The	error	is	the	difference	between	the	
true	image	and	the	pixel‐replicated	estimated	image.	The	mean,	standard	deviation	(STD),	and	root‐mean‐

square	(RMS)	error	values	are	then	computed.		

Case Mean err (K) Err STD (K) Err RMS (K) 
DIB0	Noise‐free	 ‐0.02	 4.64	 4.64	
DIB1	Noise‐free	 ‐0.11	 5.34	 5.34	
IDG1	Noise‐free	 ‐0.09	 4.83	 4.83	
DIB0	Noisy	 ‐0.02	 4.73	 4.73	
DIB1	Noisy	 ‐0.10	 5.40	 5.40	
IDG1	Noisy	 ‐0.09	 4.98	 4.98	

 

1.2.2 Reconstruction Algorithms 

In reconstruction algorithms, the effective measurement response function (MRF) 
is used.  The MRF is determined by the antenna gain pattern (which is unique for each 
sensor and sensor channel, and may vary with scan angle), the scan geometry (notably the 
antenna scan angle), and the integration period.  The latter “smears” the antenna gain 
pattern due to antenna rotation over the measurement integration period.  The MRF 
describes how much the emissions from a particular receive direction contribute to the 
observed TB value. 

Denote the MRF for a particular channel by R(,; ) where  and  are 
particular azimuth and elevation angles relative to the antenna boresite at a scan angle  
( is sometimes referred to as the antenna azimuth angle).  Note that for a given antenna 
azimuth scan angle the integral of the MRF R over all azimuth and elevation angles is 1.   
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Figure 0. Comparison of DIB gridding algorithm results.  Top 4 panels are noisy, 
while bottom 4 are noise-free.  (Truth is noise-free.) 
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Generally, for the Fundamental Climate Data Record (FCDR) data sets that are 
input to the CETB, the MRF can be treated as zero everywhere but in the direction of the 
surface.  With this assumption, we can write R(,; ) as R(x,y; ) where x and y are the 
location (which we will express in map coordinates) on the surface corresponding to the 
azimuth and elevation angles.  Note that: 

 
Equation	1	

Then, a particular measurement Ti can be written as 

 
Equation	2	

where the scan angle i corresponds to the scan angle at the center (or start) of the 
integration period and TB(x,y; i) is the nominal brightness temperature in the direction of 
point x,y on the surface as observed from the scan angle position.  Note that if there is no 
significant difference in the atmospheric contribution as seen from different scan angles, 
we can treat TB(x,y; i) as independent of i so that TB(x,y; i)=TB(x,y).  For convenience 
TB(x,y) is referred to as the surface brightness temperature. 

With this approximation, we can write Equation 2 as, 

 
Equation	3	

Each measurement is seen to be the MRF-weighted average of TB.  The goal of 
the reconstruction algorithm is to estimate TB(x,y) from the measurements Ti. 

In the following, two approaches (Long and Daum, 1998) to inferring the surface 
brightness temperature are presented.  The first is based on signal processing, and treats 
the surface brightness temperature as a two-dimensional signal to be estimated from 
irregular samples (the measurements).  The second is a least-squares approach to signal 
estimation based on the Backus and Gilbert (1967) approach. 

Both approaches enable estimation of the surface brightness on a finer grid than 
possible with the gridded approach, i.e., the resulting brightness temperature estimate has 
a finer effective spatial resolution than the gridded approach.  As a result, the results are 
often called “enhanced resolution,” though in fact, reconstruction algorithms merely 
exploit the available information to reconstruct the original signal at higher resolution 
than gridding under the assumption of a bandlimited signal (Early and Long, 2001).  The 
resolution enhancement possible compared to a gridded product depends on the sampling 
density and the MRF; however, improvements in the effective resolution of 25% to 
1000% have been demonstrated in practice for particular applications.  For radiometer 
enhancement, the effective improvement in resolution tends to be limited, and in practice 
is typically less than 100% improvement.  Note that in order to meet Nyquist 

R(x,y;i)dxdy 1
surface



Ti  R(x, y;i)TB (x,y;i)dxdy
surface



Ti  R(x, y;i)TB (x,y)dxdy
surface


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requirements for the signal processing, the pixel resolution of the images must be finer 
than the effective resolution by at least a factor of two. 

For comparison, note that the effective resolution for drop-in-the bucket gridding 
is defined as the grid size plus the spatial dimension of the measurement, which is 
typically defined by the half-power or the 3 dB beamwidth.  Based on Nyquist 
considerations, the highest representable frequency for drop-in-the bucket gridding is 
twice the grid spacing. 

In the polar regions, multiple passes over the same area are frequently averaged 
together.  Reconstruction algorithms intrinsically exploit the resulting oversampling of 
the surface to improve the effective spatial resolution in the final image. 

1.3 Signal Reconstruction 

In the reconstruction/signal processing approach, TB(x,y) is treated as a noisy two-
dimensional signal to be estimated from the measurements Ti.  For practical reasons, 
TB(x,y) is treated as a discrete signal sampled at the map pixel spacing.  This spacing 
must be set sufficiently fine so that the generalized sampling requirements (Gröchenig, 
1992) are met for the signal and the measurements (Early and Long, 2001).  Typically, 
this is one-fourth to one-tenth the size of antenna footprint size.  The CETB product is 
produced at this fine resolution even though the effective resolution of the enhanced 
resolution images is coarser than the pixel dimension.  

Let TB[x,y] be the discretely sampled surface brightness temperature we are 
attempting to estimate.  To briefly describe the theory, for convenience we vectorize this 
two-dimensional signal over an Nx by Ny pixel grid into a single dimensional variable aj 
where 

 
Equation	4	

with j=l+Nx k  The measurement equation, Equation 3, becomes 

 
Equation	5	

where hij= R(xl,yk; i) is the discrete MRF for the ith measurement evaluated at the jth 
pixel center and the summation is over the image. We require that the discrete MRF be 
normalized so that  

 
Equation	6	

In practice, the MRF is negligible some distance from the measurement so this 
sum need only be computed over an area local to the measurement position.  Some care 
has to be taken near image boundaries. 

a j  TB[xl ,yk ]

Ti  hija j
jimage



1 hij
jimage


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For the collection of available measurements, Equation 5 can be written as the 
matrix equation 

 
Equation	7	

where H contains the sampled MRF for each measurement. Note that H is (very) large, 
sparse, and may be overdetermined or underdetermined. 

Estimating the brightness temperature at high resolution is equivalent to inverting 
Equation 7.  While a variety of approaches to this have been proposed, in practice, due to 
the large size of H, iterative methods are used.  One advantage of an iterative method is 
that regularization can be easily implemented by prematurely terminating the iteration; 
otherwise an explicit regularization method can be used. 

The radiometer form of the Scatterometer Image Reconstruction (SIR) is a 
particular implementation of an iterative solution to Equation 7 that has proven effective 
in generating high resolution brightness temperature images (Long and Daum, 1998). The 
SIR estimate approximates a maximum-entropy solution to an underdetermined equation 
and least-squares to an overdetermined system.  SIR can provide results similar to the 
Backus/Gilbert method described below, but with significantly less computation.  The 
first iteration of SIR is termed AVE, and can be a useful estimate of the surface TB of its 
own.  The AVE estimate of the jth pixel is given by 

௝ܽ ൌ
∑௛೔ೕ்೔
∑௛೔ೕ

	  
Equation	8	

where the sums are over all measurements that have non-negligible MRF at the pixel.   

For implementation in the CETB, fine map grid resolutions were selected for each 
channel according to Table 1.  Details of how these grid factors were determined are 
given below. 

 
Table	1:	CETB	fine	resolution	grid	definitions	

Channel Frequency Fine Grid Scale Factor Fine Grid Resolution
6.6*	 2	 12.5	km	
10.7*	 4	 6.25	km	
18*,	19,	21,	22	 8	 3.125	km	
37	 8	 3.125	km	
85**,	91***	 8	 3.125	km	

*SMMR	only,		**SSM/I	only,		***SSMIS	only	
	


T H


a 
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1.3.1 Backus/Gilbert Method 

Backus and Gilbert (1967; 1968) developed a general method for inverting 
integral equations, which can be applied to solving sampled signal reconstruction 
problems (Caccin et al., 1992).  First applied to radiometer data by Stogryn (1978) the 
Backus/Gilbert method has been used extensively for extracting vertical temperature 
profiles from radiometer data (Poe, 1990).  It has also been used for spatially 
interpolating and smoothing data to match the resolution between different channels 
(Robinson et al. 1992), and improving the spatial resolution of surface brightness 
temperature fields (Farrar and Smith, 1992; Long and Daum, 1998; Chakraborty et al., 
2008).  Antenna pattern deconvolution approaches have been also done (Sethmann et al., 
1994; Swith et al., 1990). 

In application to reconstruction, the essential idea is to write an estimate of the 
surface brightness temperature at a particular pixel as a weighted linear sum of 
measurements that are collected “close” to the pixel, i.e., using the notation developed in 
the previous section, the estimate at the jth pixel is  

 
Equation	9	

where the wij are weights selected so that  

 
Equation	10	

There is no unique solution for the weights; however, regularization permits a 
subjective tradeoff between the noise level in the image and in the resolution (Long and 
Daum, 1998).  Regularization and selection of the tuning parameters are described in 
detail by Caccin et al. (1992) and Robinson et al. (1992).  There are two tuning 
parameters, an arbitrary dimensional parameter and a noise-tuning parameter . The 
dimensional parameter affects the optimum value of tuning parameter .  Following 
Robinson et al. (1992), we set the dimensional-tuning parameter to 0.001.  The noise-
tuning parameter, which can vary from 0 to /2, controls the tradeoff between the 
resolution and the noise. The value of  must be subjectively selected to “optimize” the 
resulting image and depends on the measurement noise (standard deviation, T) and the 
“penalty function” chosen. For use in the CETB, we use the constant penalty function J=1 
the reference function F=1 over the pixel of interest, and 0 elsewhere as used by Farrar 
and Smith (1992) and Long and Daum (1998).  

Using our notation, for a particular pixel j, define the squared signal 
reconstruction error term QR 

 
Equation	11	

ˆ a j  wijTi
inearby



1 wij
i

 j

QR  wijhij 1
inearby












2
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and the noise error term 

 
Equation	12	

where E is the TB noise covariance matrix.  We assume the noise and signal are 
independent.  To provide a tradeoff between noise and resolution, a value for  is 
included to weight the reconstruction error and the noise error in the total error Q, i.e., 

 
Equation	13	

where  is the dimensional tuning parameter.  Since the noise realization is independent 
from measurement, E is a diagonal matrix with diagonal entries (T)/2 where T is the 
radiometer channel noise standard deviation. 

The total error Q in Equation 3 is minimized when the weight vector for the pixel 
is selected as 

 
Equation	14	

where  

 
Equation	95	

Note that formulation in our case is somewhat simplified, since the grid cells have 
constant area. Varying  alters the solution for the weights between a (local) pure least-
squares solution and a minimum noise solution.  As noted,  must be subjectively chosen.  
The dimensions and measurements included in the equations are those deemed “local” 
according to the criteria. 

In previous applications of Backus/Gilbert to measurement interpolation, 
(including the heritage SSM/I Pathfinder data, Armstrong et al. 1994), the measurement 
layout and MRF were limited to small local areas and fixed geometries to reduce 
computation and enable precomputation of the coefficients (Robinson et al., 1992; 
Galantowicz and England, 1991; Galantowicz, 1995).  Azimuthally averaged antenna 
gain patterns have also been used (Farrar and Smith, 1992).  Previous investigators (e.g., 
Stephens and Jones, 2002) processed the measurements on a swath-based grid.  The fixed 
geometry yields only relatively small number of possible matrices, which can yield 
computational saving by permitting pre-computation of the matrices.  Unfortunately, for 
the Earth-based grids used in this project have more variable geometries, making this 
approach less viable.  Previous investigators (Robinson et al., 1992) have used BGI to 
optimally degrade the resolution of high frequency channels to “match” that of lower 

QN 

w TE


w 

Q QR cos QN sin


w  Z1 cosvi 

1 cosu TZ1v 

u TZ1u 












u i  hij 


v i

Z  cosG  sinE

G  hijhkj 
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frequency channels.  Rather than do this, we attempt to optimize the resolution of each 
channel independently. 

For BGI processing of CETB products, we follow Long and Daum (1998) to 
define “nearby” as regions where the MRF is within 9 dB of the peak response.  Outside 
this region the MRF is treated as zero.  We compute the solution separately for each 
output pixel using the particular measurement geometry antenna pattern at the swath 
location and Earth azimuth scan angle. This significantly increases the computational 
load, but results in the best quality images.  

The value of  is subjectively selected for each channel, but held constant for each 
channel (on rows of Table 1).  As described in more detail later we have found that the 
Backus/Gilbert method occasionally produces artifacts due to poor condition numbers of 
the matrix that needs to be inverted. To eliminate these, a median-threshold filter is 
defined that examines a 3x3 pixel window area around each pixel.  The filter purpose is 
to detect “spikes” defined to be more than (TBD) 10K above the median of the pixels 
within the window.  TB spikes above this threshold are replaced with the median value 
within the window. 

The gridding and reconstruction methods can be applied to all of the CETB 
sensors with similar performance. In this report, however, we concentrate on describing 
the methods as applied to a particular sensor, the Special Sensor Microwave/Imager 
(SSM/I). 

2 Special Sensor Microwave/Imager (SSM/I) 

The SSM/I is a total-power radiometer with seven operating channels, see Table 1. These 
channels cover four different frequencies with horizontal and vertical polarizations 
channels at 19.35, 37.0, and 85.5 GHz and a vertical polarization channel at 22.235 GHz 
(Hollinger et al., 1990). An integrate-and-dump filter is used to make radiometric 
brightness temperature measurements as the antenna scans the ground track via antenna 
rotation (Hollinger, 1989). As specified by Hollinger et al. (1987) the 3 dB elliptical 
antenna footprints range from about 15-70 km in the cross-scan direction and 13-43 km 
in the along-scan direction depending on frequency. First launched in 1987, SSM/I 
instruments have flown on multiple spacecraft continuously until the present on the 
Defense Meteorological Satellite Program (DMSP) (F) satellite series.   
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Table	1:		SSM/I	Channel	Characteristics	(Hollinger,	1987)	

Channel 
Name 

Polarization Center 
Frequency 

(GHz) 

Bandwidth 
(MHz) 

3 dB 
Footprint 
Size (km) 

Channel 
T* 
(K) 

19H  H  19.35 		125 43	×	69  0.42	
19V  V  19.35 	125 43	×	69  0.45	

						22		  V  22.23 		300 40	×	60  0.74	
37H  H  37			 		750 28	×	37  0.38	
37V  V  37 		750 20	×	37  0.37	
85H  H  85.5 2000 13	×	15  0.73	
85V  V  85.5 2000 13	×	15  0.69	

   * Estimated instrument noise for the F08 SSM/I.  Actual varies between sensors.	

The SSM/I scanning concept is illustrated in Figure 1. The antenna spin rate is 
31.6 rpm with an along-track spacing of approximately 12.5 km.  The measurements 
were collected at a nominal incidence angle of approximately 53°. The scanning 
geometry produces a swath coverage diagram as shown in Fig. 2.  A close-in view of the 
arrangements of the antenna footprints on the surface for different antenna azimuth 
angles is shown in Fig. 3.  The integrate and dump filters are 3.89 ms long for the 85 GHz 
channels and 7.95 ms long for the other channels.  The time between samples is 4.22 ms 
long for the 85 GHz channels and 8.44 ms long for the other channels.   

	
Figure	1.	Illustration	of	the	SSM/I	scanning	concept.	The	antenna	and	feed	are	spun	about	the	vertical	
axis.		Due	to	the	along‐track	translation	of	the	nadir	point	resulting	from	spacecraft	motion	in	its	orbit,	
the	resulting	scan	pattern	on	the	surface	is	an	overlapping	helix.		Due	to	interference	from	the	spacecraft	

structure,	only	part	of	the	rotation	is	useful	for	measuring	the	surface	TB,	see	Fig,	2.		The	rest	of	the	
rotation	time	is	used	for	calibration.	The	observation	incidence	angle	is	essentially	constant	as	the	

antenna	scans	the	surface.	(Long,	2008)	
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Figure	2.	SSM/I	coverage	swath.		The	dark	ellipse	schematically	illustrates	the	antenna	3dB	response	
mainlobe	on	the	surface	for	a	particular	channel	at	a	particular	antenna	scan	angle	as	illustrated	by	the	
light	dashed	line.	The	orientation	of	the	ellipse	varies	relative	to	the	ground	track	due	to	the	rotation	of	
the	antenna,	which	is	centered	at	the	top	of	the	diagram.		The	observation	swath	is	defined	the	rotation	
of	the	antenna	through	a	total	scan	angle	range	of	102°.		The	dark	dashed	line	represents	the	spacecraft	
nadir	ground	track.		The	measurement	incidence	angle	remains	essentially	constant	during	the	scan.		
This	diagram	is	for	the	aft‐looking	F08	SSM/I.		Later	SSM/Is	looked	forward	but	had	the	same	swath	

width.	



	 3/17/15	 Page	13	of	51	

	

	

	
Figure	3.	Illustration	of	the	individual	footprints	of	the	various	channels	shown	at	two	different	scan	
angles.		Only	footprints	for	the	V	pol	channels	are	shown.		Note	the	change	in	orientation	of	the	

footprints	with	respect	to	the	Earth‐fixed	underlying	grid.	(Long	and	Daum,	1998)	

	
	

2.1  Approximating the Spatial Response Function  

This section describes how the radiometer spatial measurement response function 
(MRF) is modeled.  Let TA’ be the antenna brightness temperature measurement corrected 
to the surface.  The observed brightness can be modelled as an ideal noise-free TA’ value 
pulse “noise” that is due to the intrinsic variability of a brightness temperature 
measurement. 

The implicit assumption employed in image reconstruction is that a given 
radiometer measurement TA’ can be modelled as  

TA’ =  ∫ ∫  MRF(x,y) TB(x,y) dx dy + noise 
Equation	16	
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where the noise term is the result of the intrinsic variability of a brightness temperature 
measurement.  The measurements TA’ are the integral of the product of the MRF (which 
may be different for each measurement) and the surface brightness temperature.  The 
“nominal” resolution of the TA’ measurements is typically considered to be the size of the 
3dB or half-power response pattern of the MRF.  The goal is to estimate TB(x,y) for each 
channel at the highest resolution possible from the measurements TA’ at the various 
sample locations collected by the sensor.  Note that images are separately created for 
each channel. 

The reconstruction algorithm requires a model (i.e., a description) of the MRF in 
order to generate enhanced-resolution images.  Ideally, the model requires knowledge of 
the sensor antenna pattern for the channel.  Given the antenna pattern, and information 
about the rotation rate, the “smeared” antenna pattern can be computed, from which the 
MRF is derived (CETB ATBD, 2014).  However, the amount of information about the 
detailed antenna pattern is often limited.  In some cases (e.g., SMMR), all that is known 
is the approximate size of the 3 dB or half-power footprint.   These elliptical footprints 
have their semi-major axis along the boresite direction, while the semi-minor axis is in 
the along-rotation direction.  The orientation of the footprint semi-major axis varies with 
the antenna rotation angle, see Figures 1-3. 

To describe the antenna patterns for each sensor, we adopt an approximate model 
for the MRF based on a rotated, two-dimensional Gaussian function aligned with the 
footprint orientation where the half-power points of the Gaussian correspond to the 
footprint sizes reported for each sensor.  The Earth azimuth angle of each measurement 
with respect to north, see Figure 4, is either provided in the data set or derived.  This is 
the angle (on the ground) from true North to the vector from the sensor to the 
measurement center location; it describes the rotation angle of the elliptical footprint 
relative to north.  An illustrative example of the result is shown in Figure 5.  As discussed 
in Section 4, based on the sensitivity of the reconstruction when regularization is 
employed, this model is adequate for our purposes. 



	 3/17/15	 Page	15	of	51	

 

The algorithm for computing the MRF is given here.  A grid of pixels centered at 
the measurement center is defined.  The grid is chosen large enough so that MRF gain at 
the edges of the grid is no more than a small threshold, e.g. -30 dB of the MRF peak.  
Then, using the map projection, the relative vector distance from the measurement center 
to the center of each pixel is computed as the vector Xrel=[xr,yr]T.   This vector is rotated 
by the azimuth angle φ (relative to north) of the ellipse.  The rotated system is  

X=[x,y] T =R(φ) Xrel 

where 

 R(φ)=[cos(φ)  -sin(φ)] 

  [sin(φ)   cos(φ)] 

Define the length of the semi-major axis in km as Lj and the semi-minor axis as Ln.  The 
MRF gain G at the center of the pixel is then 

 G=ln(1/2) exp[ (2x/Lj)2 + (2y/Ln)2 ] 
Equation	107	

 

Figure	4	An	illustration	of	the	geometry	of	the	a	general	Gaussian	model	for	
the	MRF	for	a	radiometer.			The	figure	is	not	to	scale.		All	vectors	here	are	in	
the	same	plane	with	the		“Nadir	Point”	being	the	Spacecraft	Nadir	Point.	
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An illustrative example of the result for several values of φ is shown in Figure 5. 
Note that half-power point of G corresponds to the specified ellipse semi-major and semi-
minor axes. 

While this simplified model for the MRF may not exactly model the true MRF, as 
discussed in Section 4, based on the sensitivity of the reconstruction when regularization 
is employed, this model is adequate for our purposes. 

2.2 SSM/I Reconstruction Simulation 

Reconstruction algorithms that generate 2D gridded images from raw 
measurements are characterized by a tradeoff between noise and spatial resolution. Our 
goal is to estimate an image of the surface TB(x,y) from the sensor TB measurements.  
The “nominal” resolution of the TB measurements is typically considered to be the size of 
the 3dB response pattern of the MRF.  With “drop-in-the-bucket” imaging, the effective 
resolution can be no finer than the effective resolution of the measurements.  However, 
reconstruction techniques can yield higher effective resolution if spatial sampling 
requirements are met. 

Figure	5.	An	illustration	of	a	general	Gaussian	model	for	the	MRF	for	a	
particular	radiometer.		Shown	is	the	MRF	in	linear	space	for	several	antenna	
rotation	angles.		The	figure	is	not	to	scale.		The	color	scale	is	unit‐less	gain	

which	varies	from	0	to	1.	
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Based on the description of the SSM/I measurement geometry given previously, 
the ideal locations of antenna boresite at the center of the integration period can be 
computed.  Simulated locations are plotted for a particular channel in Figure 9.  These 
define the “measurement locations”. 

Images calculated in the polar regions combine measurements from multiple 
passes of the spacecraft over the same area.  While the sampling for a single pass is on a 
regular grid, the sampling from multiple overlapping passes tends to be less regular.  For 
example Figure 10 illustrates the sampling resulting from two overlapping passes.  A 
zoomed view of the sampling compared to a 25 km grid is shown in Figure 11.  The 
variation in sample locations with each 25 km grid element is apparent in the zoomed 
image. 

Given these sample locations, and their corresponding spatial response functions, 
the goal is to use signal reconstruction techniques to estimate the surface brightness 
temperature from the measurements. 

Figure	9	Illustrations	of	the	measurement	locations	(boresight	location	of	the	antenna	pattern	at	
the	center	of	each	measurements	integration	period)	for	the	simulated	SSM/I	measurements.		Only	
part	of	the	coverage	swath	is	shown.		Note	that	the	axes	have	different	scales	and	that	the	nominal	

spacing	is	approximately	25	km	in	both	directions.	
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Fortunately, there is a well-defined theory of signal reconstruction based on 
irregular sampling which can be applied to our problem.  The three primary techniques 
applicable to our problem are Backus-Gilbert (BG) inversion (Backus and Gilbert, 1967; 
1968), the iterative Scatterometer Image Reconstruction (SIR) technique (Early and 
Long, 2001; Long and Daum, 1998), and the weighted measurement approached termed 
AVE (Long et al., 1993).  As shown in these papers, there is a tradeoff between signal 
reconstruction accuracy and noise enhancement.  Regularization can reduce noise 
enhancement and signal artifacts, at the expense of resolution. A comparison of Backus-
Gilbert and the iterative Scatterometer Image Reconstruction (SIR) technique for 
radiometer image reconstruction is given in Long and Daum (1998), where SIR is found 
to provide similar performance with significantly less computation required. 

Regularization in SIR is implemented by terminating the iterative reconstruction 
early, i.e., prior to final convergence.  As shown below, this allows us to minimize noise 

Figure	10	Illustrations	of	the	measurement	locations	(boresight	location	of	the	antenna	pattern	at	
the	center	of	each	measurements	integration	period)	for	two	overlapping	passes.		Only	part	of	the	

coverage	swath	is	shown.	See	caption	for	Figure	9.	
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enhancement while improving the signal reconstruction.  Note that AVE is the first 
iteration of SIR. 

Figure	11	Illustrations	of	the	measurement	locations	within	the	coverage	swath	for	the	SSM/I	37	
GHz	channel	for	(top)	one	pass	and	(bottom)	two	passes.			Plots	of	the	average	density	of	

measurements	as	function	of	cross	track	distance	are	also	shown.		For	clarity,	only	one	side	of	the	
nadir	line	is	shown.		Nominal	measurement	spacing	for	a	single	pass	is	approximately	25	km.	
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To demonstrate and compare the performance of the various reconstruction 
techniques, it is helpful to use simulation.  The results of these simulations inform the 
tradeoffs needed to select processing algorithm parameters.  A simple (but realistic) 
simulation of the SSM/I geometry and spatial response function is used to generate 
simulated measurements of a synthetic image.  From both noisy and noise-free 
measurements, non-enhanced (GRD or Grd), AVE (or Ave), and SIR images are created, 
with error (mean, and root-mean-square [RMS]) determined for each case.  This is 
repeated separately for each channel.  Since the footprint sizes of the 19 and 22 GHz 
channels are similar (see Appendix Table 2.2-1), and the footprint sizes for the different 
polarizations at a given frequency are essentially the same, only the 19, 37, and 85 GHz 
H-pol channels are considered. While there is some sensitivity in the results to the 
assumed noise level, it is not large and so for convenience the noise is assumed to have a 
standard deviation of 1 K for all channels. 

Two different pass cases are considered: the single pass case and the case with 
two overlapping passes.  The general conclusions are the same for both cases, so the two 
pass case is emphasized.  Finally, we need to determine the scale factor for the pixels for 
each channel.  Note that the product pixel size is restricted to fractional powers of two of 
25 km, i.e. the pixel size Ps in km is given by 

௦ܲ ൌ
25
2ሺேೞሻ

 

where Ns is the pixel size scale factor which is limited to values of 2, 3, or 4. The set of 
potential values of Ps are 6.25, 3.125, and 1.5625 km.  For the simulation, pixels are 
square. 

 An arbitrary band-limited “truth” image is generated with some “spots” of 
varying sizes, some smooth areas of constant TB and some gradient area to help visualize 
the error, see Fig. 12.  The choice of a truth image has some effect on the results, but for 
expedience we use only a single true image. 

Figure	12.		Example	synthetic	“truth”	image	for	Ps=3.125	km.		Units	are	K.		Image	has	been	
bandpass	filtered	to	10	km	effective	resolution,	which	accounts	for	the	Gibbs	phenomena	at	
boundaries.		Features	where	were	arbitrarily	selected	to	illustrate	different	target	sizes.	
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 As described earlier, the MRF is modeled with a Gaussian whose 3dB (half-
power) point matches the footprint size given in Table 1.  The orientation of the ellipse 
varies over the swath according to the look direction as suggest in Figs. 4 and 5.   To 
apply the MRF in the processing the MRF is centered at center of the nearest neighbor 
pixel to the measurement location. The values of the discrete MRF are computed at the 
center of each pixel in a box surrounding the pixel center.  The size of the box is defined 
to be the smallest enclosing box for which the sampled antenna pattern is larger than a 
minimum gain threshold of -30 dB relative to the peak gain. A second threshold 
(typically -9 dB) defines the gain cutoff used with in the SIR and BGI processing.  The 
latter threshold defines the so-called Nsize parameter used by Long and Daum (1998).  

The image pixel size defines how well the MRF can be represented in the 
reconstruction processing and the simulation.  Since in this simulation we want to 
evaluate different pixel sizes, a representative plot of the MRF sampling for each channel 
for each pixel size under consideration is shown in Fig. 13.  Note that footprint sizes for 
each channel are the same, but the pixel sizes vary. 

GRD images are created by collecting and averaging all measurements whose 
center falls within each 25 km grid element.  The resulting GRD image is then pixel-
replicated to match the number of pixels of the AVE and SIR images.  We define the 
pixel-replicated image as the NON (sometimes written as Non) image.  Separate images 
are created for both noisy and noise-free measurements. Error statistics (mean, standard 
deviation, and RMS) are computed from the difference between the “truth” and estimated 
images.  The noise-only RMS statistic is created by taking the square root of the 
difference between the squared noisy RMS and the squared noise-free RMS. 
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Figure	13.		Illustrative	sampled	MRF	for	channels	(top	row)	19	GHz,	(middle	row)	37	GHz,	(bottom	
row)	85	GHz	and	pixels	sizes	(left	column)	6.25	km,	(middle	column)	3.125	km,	(right	column)	

1.5625	km.		The	MRF	size	in	km	is	the	same	for	a	given	channel	(row).		The	pixel	sizes	are	the	same	
in	each	column,	though	the	area	covered	by	the	image	varies.	The	axes	are	in	km	and	vary	by	image.	
The	color	scale	is	unit‐less	gain.		In	the	plots	shown	here,	the	MRF	is	normalized	to	one	at	the	peak.		
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Figure 14 illustrates a typical SIR simulation result.  It shows the true image, and 
both noise-free and noisy NON, AVE, and SIR images.  The error statistics for this case 
are given in Table 3.  For this pixel size, the image size is 448 x 224.  In all cases the 
error is effectively zero mean.  The non-enhanced results have the larger errors, with the 
Ave results slightly less.  The RMS error is the smallest for the SIR results.  Visually, 
NON and AVE are similar, though SIR images better define edges.  The spots are much 
more visible in the SIR images than in the NON images, though the SIR image has a 
higher apparent noise “texture”. 

 
Table	3.		Two	pass	simulation	results	statistics	for	37	GHz,	Ps=3.125	(in	K),	with	20	SIR	iterations.	

Case Mean STD RMS 

N-F Non 0.00 4.34 4.34 

N-F Ave 0.00 4.33 4.33 

N-F SIR 0.00 3.62 3.62 

Noisy Non   0.01 4.38 4.38 

Noisy Ave   0.01 4.34 4.34 

Noisy SIR   0.01 3.69 3.69 

 

Theoretically, SIR should be iterated to convergence to ensure full signal 
reconstruction.  This can require hundreds of iterations (Early and Long, 2001).  
However, continued SIR iteration also tends to amplify the noise in the measurements.  
By truncating the iteration we can trade off signal reconstruction accuracy and noise 
enhancement.  Truncated iteration results in the signal being incompletely reconstructed, 
though the reconstruction error declines with further iteration. 

To understand the tradeoff between number of iterations and signal and noise, 
Figure 15 shows noisy and noise-free SIR images for several different iteration numbers.  
(Recall that AVE is the first iteration of SIR.)  Note that the number of iterations is 
increased, the edges are sharpened and the spots become more evident.  Figure 16 plots 
the mean, standard deviation, and RMS errors versus iteration.  Also shown in this figure 
are the errors for the NON and AVE (first iteration of SIR) images.  The noise texturing 
also increases.  We thus conclude that while iteration improves the signal, the iteration 
cannot be too long to avoid over-enhancing the noise.    
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Plotting the signal reconstruction error versus noise power enhancement as a 
function of iteration number in Fig. 17 can help make a choice for the number of 
iterations that balances signal and noise performance.  Note that the NON result is much 
noisier than AVE, and that the signal error improves with each iteration of SIR.  Noting 
that we can stop the SIR iteration at any point, we somewhat arbitrarily choose a value 
that provides good signal performance and only slightly degraded noise performance, 20 
iterations in this case.  This is the value used in Table 3, where we see that the overall 
error performance is still better than the NON result. 

 

 

 

Figure	14.		37	GHz,	dual‐pass,	Ns=3	simulation	results	for	(upper	two	rows)	noise‐free	
measurements	and	(lower	two	rows)	noisy	measurements.		SIR	uses	20	iterations.		The	numbers	on	

the	top	show	the	mean,	std,	and	RMS	error	values	compared	to	the	true.	
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Figure	15.		37	GHz,	dual‐pass,	Ns=3	SIR	images	for	different	iterations	for	(left	column)	noisy	
measurements	and	(right	column)	noise‐free	measurements.	



	 3/17/15	 Page	26	of	51	

 

Figure	16.		37	GHz,	dual‐pass,	Ns=3	SIR	image	error	versus	iteration	number.	(left)	mean	error.		
(right)	RMS	error.		The	red	line	is	the	noisy	measurement	case,	while	the	blue	line	is	the	noise‐free	
measurement	case.		Green	is	the	noise	power,	computed	from	the	difference	between	the	noisy	and	
noise‐free	cases.		The	cyan	star	is	the	error	for	the	NON	image,	while	the	black	star	is	for	AVE	(which	
may	be	under	the	cyan	star).		The	“optimum”	(minimum	error)	number	of	iterations	occurs	at	the	

minimum	of	the	red	curve.		For	reference,	the	dashed	vertical	line	is	shown	at	20	iterations.	

Figure	17.		37	GHz,	dual‐pass,	Ns=3	Change	in	SIR	image	error	with	increasing	versus	iteration	
number.			RMS	noise	power	versus	RMS	signal	error	for	each	iteration,	which	extends	from	right	to	
left.		The	black	star	in	the	NON	result,	while	the	green	star	is	the	AVE	result.		The	red	star	is	SIR	at	20	

iterations.	
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 Figure	18.		19	GHz,	dual‐pass,	image	error	versus	iteration	number	for	(top)	Ns=2,	(middle)	N=3,	
(bottom)	Ns=4.	RMS	noise	power	versus	RMS	signal	error	for	each	iteration,	which	extends	from	
right	to	left.		The	black	star	in	the	NON	result,	while	the	green	star	is	the	AVE	result.		The	red	star	is	

SIR	at	20	iterations.	
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 Figure	19.		37	GHz,	dual‐pass,	image	error	versus	iteration	number	for	(top)	Ns=2,	(middle)	N=3,	
(bottom)	Ns=4.	RMS	noise	power	versus	RMS	signal	error	for	each	iteration,	which	extends	from	
right	to	left.		The	black	star	in	the	NON	result,	while	the	green	star	is	the	AVE	result.		The	red	star	is	

SIR	at	20	iterations.	
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 Figure	20.		85	GHz,	dual‐pass,	image	error	versus	iteration	number	for	(top)	Ns=2,	(middle)	N=3,	
(bottom)	Ns=4.	RMS	noise	power	versus	RMS	signal	error	for	each	iteration,	which	extends	from	
right	to	left.		The	black	star	in	the	NON	result,	while	the	green	star	is	the	AVE	result.		The	red	star	is	

SIR	at	20	iterations.	
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We can repeat this analysis for different values of Ns, the number of passes, and 
the channel number.  While the numerical values of the RMS error changes, the overall 
ranking and relative spacing of the NON, AVE and SIR values are unchanged.  Figures 
18-20 shows the noise versus signal error for different values of Ns for the different 
channels.  

Based on Figs. 18-20 the following observations can be made: 

1. AVE always has somewhat better noise performance than NON. 

2. AVE has slightly better signal performance than NON 37 and 85 GHz, but is 
worse for 19 GHz. 

3. As expected, SIR always has worse noise performance than AVE, but has 
better signal performance 

4. Depending on the number of iterations selected, SIR can always have better 
signal performance than both AVE and NON. 

5. SIR has better signal performance than NON. 

6. Iterating SIR too long causes it to have worse noise performance than NON, 
though the signal performance improves for longer iterations. 

Since SIR is always better than AVE, but requires only a little more effort to 
compute, we prefer SIR to AVE.  Thus the baseline for processing the highest resolution 
is SIR. 

In general, we want to use a small Ns, to minimize computation, as well as 
minimize the number of iterations.  Based on Nyquist criteria for sampling the response 
pattern, Ns=2 is the minimum useable value.  With idea that we want to keep the same 
values for all channels, if possible, for consistency it appears that Ns=3 (i.e. Ps=3.125) 
will work for all channels, and that 5-20 iterations provide a reasonable tradeoff between 
signal and noise.  Using Ns=3, Table 4 provides a performance comparison for the RMS 
errors of NON, AVE, and SIR for the different channels using 20 iterations.  Figure 21 
compares the resulting noisy simulation results.  Note that although the pixel size is 
3.125, the effective spatial resolution of the images is, of course, coarser than this.  Recall 
that at least some of the extra pixel resolution is required to properly process the signal to 
meet the Nyquist signal representation requirements and represent the higher frequency 
content of the high resolution images.  Table 5 gives the approximate number of SIR 
iterations for each case that results in the minimum total simulation error.  It should be 
noted the precise minimum value depends on the exact noise realization, so this value 
should be considered to be a general guideline only. 
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Table	4.	Total	RMS	error	for	noisy	two	pass	simulation	using	Ns=3	(Ps=3.125)	and	20	SIR	
iterations.	

Case NON (K) AVE (K) SIR (K) 

19 GHz 4.91 5.21 4.47 

37 GHz 4.38 4.34 3.69 

85 GHz 4.12 3.07 2.42 

 

 

 

Figure	21.		Comparison	of	(left	column)	NON,	(center	column)	AVE,	and	(right	column)	SIR	images	
for	the	(top	full	row)	19,	(center	full	row)	37	and	(bottom	row)	85	GHz	channels	for	Ns	=3,	20	SIR	

iterations,	and	two	passes.		The	top	row	image	shows	the	true	synthetic	image.	
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Table	5:		Recommended	SSM/I	SIR	processing	parameters	by	channel.		

Channel Pixel scale 
factor Ns and 
grid size Ps 

SIR 
number of 
Iterations 

19  (2)		6.2500	km 50*
19  (3)		3.1250	km 30*
19  (4)		1.5625	km 30*
37  (2)		6.2500	km 50*
37  (3)		3.1250	km 20*
37	 (4)		1.5625	km	 20	
85  (2)		6.2500	km 18
85	 (3)	3.1250	km	 18	
85  (4)		1.5625	km 15
* minimum not visible plot, so a subjective choice is made 

2.3 SIR Number of Iterations and Pixel Sizes Conclusions 

We find that SIR provides better spatial resolution than conventionally gridded 
(NON) products.  SIR does enhance the noise, but this can be controlled by the number of 
iterations to tradeoff noise and resolution.  Based on the simulation results the 
recommended pixel size and number of SIR iterations for each channel are given in Table 
6.  For reference, the SIR results for each image pixel size considered are shown in Fig. 
22. 

 
Table	6:		Recommend	SSM/I	SIR	processing	parameters	by	channel.		Ns=3.	

Channel GRD 
pixel size 

SIR pixel size 
Ps 

SIR 
number of 
iterations 

19H  25	km 3.125	km 25 
19V  25	km 3.125	km 25 
22  25	km 3.125	km 20 
37H  25	km 3.125	km 15 
37V  25	km 3.125	km 15 
85H  25	km 3.125	km 15 
85V  25	km 3.125	km 15 
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Figure	22.		Comparison	of	SIR	image	results	(20	iterations)	for	different	pixel	sizes	and	channels.	
Pixel	sizes:	(left	column)	6.25	km,	(center	column)	3.125	km,	and	(right	column)	1.526	km	(top	

row).		Channels:		(second	row)	19,	(third	row)	37,	and	(bottom	row)	85.		The	top	row	image	shows	
the	true	synthetic	images	for	each	pixel	size.	The	true	images	vary	with	image	pixel	size	due	to	the	

way	they	are	constructed.	
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3 Backus‐Gilbert Processing 

In this section we consider the Backus-Gilbert Inversion (BGI) processing 
approach.  The BGI approach requires significantly more computation than does SIR.  
Previous investigators worked on swath-based grids and were able to coarsely quantize 
the possible measurement positions to restrict the number of matrix inversions required.  
This enabled them to generate pre-computed approximate solutions (Robinson et al., 
1992). 

However this situation is different when working with Earth-based grids.  Note 
from Fig. 11 that the measurement centers are irregularly arranged with respect to the 
Earth-located pixel grid.  This limits our ability to using “preprocessing” techniques to 
speed the BGI computation.  Further, to avoid the approximations used with fixed 
geometries, we prefer to use the approach developed by Long and Daum (1998) that uses 
the actual measurement positions and a general pixel grid so that reconstruction can be 
done on the Earth-located pixel grid.  Note that applying BGI requires creating and 
inverting a matrix for each image pixel.  While computationally more intense, it can yield 
higher effective resolution and more accurate results than the limited-area, swath grid-
based techniques previously used. 

Long and Daum (1998) noted that SIR and BGI produce similar results, but SIR 
processing is much faster than BGI.  Our simulations for SSM/I confirm this conclusion.  
In the BGI simulations below we use the same simulated measurements as those used in 
the SIR experiments previously described. 

As noted, BGI includes one parameter (γ) that must be subjectively selected.  It 
controls the regularization and relative weighting between signal reconstruction and noise 
enhancement, see Eq. (13).  The value of γ can range from 0 to π/2.  Note that for 
simplicity in the captions and plots below, the symbols γ’ or g are sometimes used that 
are related to γ by γ= (π/2) γ’ and γ=πg. 

Figure 23 shows BGI images for various values of γ’ for the 37 GHz channel with 
Ns=3.  Note that for small values of γ’, the noise is the most enhanced but the features are 
the most sharp.  For larger values of γ’ the noise texturing is reduced, but features are 
smoothed.  A plot of the RMS error versus γ’ is shown in Figure 24.  Note that noise-free 
and noisy results are shown both for BGI and BGI after median filtering.  Due to poorly 
conditioned matrices in the BGI inversion, some estimated pixels have extreme values. 
These can be suppressed by applying a 3x3 median filter after the BGI processing.  This 
significantly reduces the RMS noise and artifacts in the image without significantly 
degrading the image quality. The median filter is edge preserving and so has minimal 
effect on the image quality, though some smoothing occurs. 
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Table	7.		Two	pass	simulation	results	statistics	for	37	GHz	and	Ns=3	(Ps=3.125	km).		BGI	
γ’=0.45.	

Case Mean (K) STD (K) RMS (K) 

Noisy Non   0.01 4.38 4.38 

Noisy Ave   0.01 4.34 4.34 

Noisy SIR   0.01 3.69 3.69 

Noisy BGI 0.01 3.71 3.71 

Noisy BGI – 
median filtered 

0.01 3.70 3.70 

 

Similar to the analysis of number of iterations for SIR, it is useful to compute the 
noise and signal RMS error, which varies with the value of γ’. An example for the 37 
GHz channel with Ns=3 is shown in Figure 25.  Finally a comparison of the BGI result 
(γ’) and NON and SIR (20 iterations) is shown Fig. 26.  A numerical comparison of the 
results is shown in Table 7.  Note that even with median filtering, in this case BGI is 
always noisier than SIR, though the numerical differences are small. 
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Figure	23.		BGI	images	(no	median	filtering)	for	different	values	of	g	(γ=πg) for	the	37	GHz	channel	
with	Ns=3.			These	can	be	compared	with	SIR	for	different	iterations	in	Fig.		15.	
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Figure	25.		RMS	noise	versus	signal	for	different	γ’	for	the	37	GHz channel	with Ns=3.		The	red	line	is	
noisy	BGI,	while	the	green	line	is	noisy	BGI	after	median	filtering.		γ’	increases	from	left	to	right	for	.	

The	optimum	(i.e.,	the	minimum	RMS	error)	values	are	indicated	with	asterisks.	

Figure	24.		RMS	error	versus	γ’	for	the	37	GHz channel	with	Ns=3.	
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Other examples of BGI images versus different gamma parameters are shown in 
Figs. 27-29.  Not all Ns cases are included for every channel due to excessive (and 
impractical) run times.  All cases have a minimum total RMS error near either g=0.85 or 
g=0.5, so for consistency we adopt a single value γ=0.85π, for all channels and all values 
of Ns.  This results in similar RMS performance in all cases. 

As has been noted, BGI requires at least an order of magnitude more CPU than 
SIR.  For larger values of Ns it can be several orders of magnitude more computation 
time; hence the desire for small values of Ns. The choice of gamma does not affect the 
computation, but changing the antenna gain cutoff from -9 dB to larger values can reduce 
the number of local measurements included in the matrix inversion, and thus the required 
CPU time.  This is not considered here. 

 

 

 

Figure	26.	Comparison	of	true,	Non	(Grd),	Ave,	SIR,	and	BGI	images	with	γ’=0.45	and	BGI	with	
median	filter	for	the	37	GHz	channel	with	Ns=3.				Note	the	reduction	in	RMS	error	in	BGI	after	

median	filtering.	
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Figure	27.		RMS	noise	power	versus	RMS	signal	error	for	19	GHz,	dual‐pass,	BGI	image	error	versus	
gamma	for	(top)	Ns=2,	(bottom)	Ns=3.	
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Figure	28.		RMS	noise	power	versus	RMS	signal	error		for	37	GHz,	dual‐pass,	BGI	image	error	versus	
gamma	for	(top)	(middle)	Ns=3,	(bottom)	Ns=4.		Computational	noise	produces	the	spike	observed	

in	the	lower	right	panel.	
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Figure	29.		RMS	noise	power	versus	RMS	signal	error	for	85	GHz,	dual‐pass,	BGI	image	error	versus	
gamma	for	(top)	Ns=2,	(middle)	Ns=3,	(bottom)	Ns=4.	
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3.1 BGI Gamma and Pixel Sizes Considerations 

We find that BGI provides better spatial resolution than conventionally gridded 
(NON) products, and similar performance to SIR.   However, it requires much more 
computation.  To minimize the computation, we recommend a smaller value of Ns for 
BGI images than the SIR recommendations.  Based on the simulation results the 
recommended pixel size and BGI tuning parameter for each channel are given in Table 7. 

 
Table	7:		Recommend	SSM/I	BGI	processing	parameters	by	channel.		

Channel GRD 
pixel size 

Pixel scale 
factor Ns and 
grid size Ps 

BGI 
g=γ/π 

19H  25	km (2)	6.250	km 0.85 
19V  25	km (2)	6.250	km 0.85 
22  25	km (2)	6.250	km 0.85 
37H  25	km (2)	6.250	km 0.85 
37V  25	km (2)	6.250	km 0.85 
85H  25	km (3)	3.125	km 0.85 
85V  25	km (3)	3.125	km 0.85 

 

4 Reconstruction Sensitivity to Inaccuracy in the 
Description of the MRF 

In this section we study the sensitivity of the reconstruction results to errors in the 
description of the MRF.  It has been previously noted that the MRF for some sensors is 
not known well.  Even for those for which it is known well, there are uncertainties 
(errors) in the description of the MRF.  This leads to the question, how sensitive is the 
reconstruction to the accuracy of the MRF? 

In pursuing this question we note that we are interested only in the partial 
reconstruction case, e.g., when only a relatively small number of SIR iterations are 
performed.  We expect the general conclusions to be similar for any partial reconstruction 
algorithm such as BGI. 

We perform an experimental study in which simulated measurements of a 
synthetic scene are generated using the full MRF previously described.  Then, different 
(erroneous) MRF descriptions are used in the reconstruction process.  The results from 
the correct description and the erroneous descriptions are then compared.  In the 
following, the same measurements from the previous simulations in the two-pass, Ns=3 
case are used.  Each channel is processed separately.  We assume the true MRF is the 
two-dimensional Gaussian MRF previously described. 
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Eight different MRFs are created according to the following and used for 
generating images.  These cases were arbitrarily chosen, but span a wide range of 
possible MRF errors.  We note that while in some cases changing the number of SIR 
iterations can improve the error statistics, for this study the number of SIR iterations is 
fixed at 20 for all cases. 

MRF used for reconstruction (see Fig. 30) 

Case 1: “True”.  The MRF used for reconstruction is identical to that used for simulating 
the noisy measurements. 

Case 2: “-3dB Binary”.  The MRF used for reconstruction is set to unity for the true 
MRF greater than or equal to one-half the peak MRF value (-3 dB of the peak).  Thus, the 
MRF is a smaller elliptical “rect”-type response. 

Case 3: “-6dB Binary”.  The MRF used for reconstruction is set to unity for the true 
MRF greater than or equal to one-quarter the peak MRF value (-6 dB of the peak).  Thus, 
the MRF is a slightly larger elliptical “rect”-type response than for case 2. 

Case 4: “Binary”.  The MRF used for reconstruction is set to unity for the true MRF 
greater than -30 dB of the peak MRF value.  Thus, the MRF is an excessively large 
elliptical “rect”-type response.  

Case 5: “Truncated 3dB”.  The MRF used for reconstruction is set to zero for the true 
MRF less than to one-half the peak MRF value (-3 dB of the peak), and is the same for 
values larger than the threshold.  Thus, the MRF is a small, rounded ellipse. 

Case 6: “Truncated 6dB”.  The MRF used for reconstruction is set to zero for the true 
MRF less than to one-quarter the peak MRF value (-6 dB of the peak), and is the same 
for values larger than the threshold.  Thus, the MRF is a medium-sized, rounded ellipse. 

Case 7: “Squared”.  The MRF used for reconstruction is set to be the square of the true 
MRF.  Since the true MRF values are all less than or equal to one, squaring the MRF has 
the effect of making it more steep.  

Case 8: “Square root”.  The MRF used for reconstruction is set to be the square root of 
the true MRF.  Since the true MRF values are all less than or equal to one, squaring the 
MRF has the effect of flattening the response. 

All the reconstruction MRFs are normalized to sum to one in the reconstruction 
processing. 
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Figure	30.		Images	of	the	original	and	modified	measurement	response	functions	used	in	the	
simulation.		Cases	2‐4	are	binary	(0	or	1)	with	case	4	completely	filling	the	enclosing	square.		

Though	not	all	are	realistic,	these	particular	cases	were	selected	to	span	a	large	range	of	“errors”	in	
the	description	of	the	MRF.	
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Figure	31.		(left	column)	mean	and	(right	column)	RMS	differences	between	the	image	
reconstructed	using	the	true	(case	1)	and	erroneous	(cases	2‐8)	MRF	for	the	(top	row)	19	GHz,	

(middle	row)	37	GHz,	and	(bottom	row)		85	GHz	channels	for	Ns=3.	
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Figure	32.		Images	for	each	partial	reconstruction	case	for	19	GHz.		

Figure	33.		Images	for	each	partial	reconstruction	case	for	37	GHz.		
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Figure 31 summarizes the mean and RMS differences between the image 

reconstructed with the true MRF (case 1) and the erroneous MRF (cases 2-8) for	each 
channel.  Corresponding images are shown in Figs. 32-34. Note from Figure 31 that the 
mean error is essentially zero for all cases.  The RMS and standard deviations are thus 
essentially the same. The RMS error is the smallest when the true MRF is used, and is 
larger for the erroneous cases.  However, the RMS error is generally not much larger for 
most cases, even when the MRF used for retrieval is very different than the true.  The 
errors are the largest when the MRF used for retrieval is spatially much smaller than it 
should be, i.e., as evident in cases 2 and 5 at 85 GHz.  The 6 dB cases, and the square and 
square root cases, have much smaller error.  It is likely that errors in the description of the 
MRF will have only small rolloff errors, for which cases 7 and 8 (square and square root) 
represent worst cases. 	

These results suggest that so long as the assumed MRF is close, the RMS error is 
not particularly sensitive to the MRF used for reconstruction.  To further explore this, we 
consider the family of erroneous MRFs defined by compute the fractional power of the 

Figure	34.		Images	for	each	partial	reconstruction	case	for	the	85	GHz	channel.		
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true MRF, i.e. the MRF used for reconstruction R’(x,y) is computed from the true MRF 
R(x,y) using 

 
ܴ′ሺݔ, ሻݕ ൌ ܴ௥ሺݔ,    ሻݕ

 
where 0<r<3.  (The square root and squared MRF used previously are particular 
examples with r=0.5 and r=2.)  As r is varied in the range 0.25 to 3, the 3 dB footprint 
changes, and the response pattern rolloff characteristics change.  Figure 35 plots the total 
noisy RMS error versus r for this case.  Two curves are shown. One is for a fixed number 
of iterations (20 in this case).  The other is the RMS error resulting when selecting the 
number of SIR iterations that minimized the total RMS error.  This is the optimum 
number of SIR iterations.  Note that in all cases the variation in the RMS error is small, 
and the difference between the fixed and the optimum number of iterations is very small. 

These simulation results reveal that using the correct MRF for reconstruction 
minimizes the error, but modest distortions in the MRF used in the reconstruction have 
very limited impact on the accuracy of the reconstruction results.  The variation in total 
RMS error with MRF distortion is small for all channels and cases.  Thus the results of 
the reconstruction are not particularly sensitive to the accuracy of the MRF, and we can 
successfully use approximate MRF models.  This is a fortunate result since it means that 
precise antenna pattern descriptions are not required for generating high resolution 
brightness temperature images.  All that is needed is that the descriptions be reasonably 
accurate. 

So why can we get away with imprecise descriptions of the antenna pattern in the 
reconstruction process?   Since the noise is amplified as the signal is enhanced, there is a 
tradeoff between the signal reconstruction error and the noise increase. This trade off 
leads us to truncate the iterative reconstruction process before it is complete, i.e. we only 
do partial reconstruction and do not fully reconstruct the signal.  The simulations show 
that partial reconstruction can tolerate modest errors in the MRF description and still 
yield reasonable estimates of the desired signal.  Not shown is that when the erroneous 
MRF is used to attempt to fully reconstruct the signal, the final signal is distorted 
compared to the signal resulting from the correct MRF description. 

The relative insensitivity of the partially reconstructed image to the MRF 
description suggests that we can get away with less than perfect descriptions of the MRF. 
This is critical since, as noted earlier in Section 2.1, precise descriptions are not available 
for all sensors.  We can thus use a simple two-dimensional Gaussian model discussed in 
Section 2.1. 
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Figure	35.		Plots	of	the	noisy	total	RMS	error	versus	fractional	power	r for	(top	row)	19	GHz,
(middle	row)	37	GHz,	and	(bottom	row)	85	GHz.		The	red	curve	is	the	error	for	20	iterations.		The	
blue	is	the	RMS	error	that	minimized	the	total	RMS	versus	SIR	iteration	number,	and	thus	is	a	lower	

bound.	
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