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Abstract

This report reviews the theory of radiometer image formation and reconstruction. It
presents simulation results used to select the nominal pixel size and reconstruction
algorithms for the Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness
Temperature ESDR (CETB). Two primary reconstruction algorithms are considered, the
Backus-Gilbert Interpolation (BGI) approach and the Scatterometer Image
Reconstruction (SIR). These are compared to the conventional drop-in-the-bucket
gridded image formation algorithms. Tradeoff study results for the various algorithm
options are presented, including the grid sizes, the number of SIR iterations, and the BGI
gamma parameter, and recommendations for each are provided to the CETB project. The
sensitivity of the reconstruction to the accuracy of the measurement spatial response
function is also explored.

1.1 Gridding and Reconstruction

All algorithms to transform radiometer data from swath to gridded format are
characterized by a tradeoff between noise and spatial resolution. Our intention with the
Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR
(CETB) project (Brodzik and Long, 2014) is to produce both low-noise gridded data and
enhanced-resolution data products. The low resolution gridded data has lower noise,
while the high resolution data has potentially higher noise. This will enable product users
to compare and choose which option better suits a particular research application. The
purpose of this report is to provide background into the theory of each approach with the
goal of providing transparency into the tradeoff decisions made in defining the CETB.

In the CETB all radiometer channels will be gridded to the coarsest resolution
(25 km) grids using the drop-in-the-bucket method described below. These products are
termed ‘low resolution’ or ‘non-enhanced resolution’ and denoted as GRD or Grd
products. Higher resolution products are generated using one of two image
reconstruction methods, the radiometer form of the Scatterometer Image Reconstruction
(SIR) algorithm and the Backus-Gilbert Interpolation or Image formation (BGI) method,
as described below. Channels will be gridded at enhanced resolution on nested grids at
power of 2 relationships to the base 25 km grid. The method for determining the finest
resolution for each channel is given below. Unlike the approach taken for the historical
EASE-Grid data (Armstrong, et al., 1994), the CETB will not attempt to match the
resolution of the highest channels to the coarsest channel, but will independently
optimize the resolution for each channel in the high resolution products.



The image grids for the CETB are Earth-located (in contrast to swath-based)
using the EASE-2.0 projection (Brodzik et al., 2012). In generating gridded data, only
measurements from a single sensor and channel are processed. Measurements combined
into a single grid element may have different Earth azimuth and incidence angles (though
the incidence angle variation is small). Measurements from multiple orbit passes over a
narrow local time may be combined. When multiple measurements are combined, the
resulting images represent an average of the measurements over the averaging period.
There is an implicit assumption that the surface characteristics remain constant over the
imaging period and that there is no azimuth variation in the true surface brightness
temperature (Ts).

For both non-enhanced and enhanced resolution images, the effective gridded
image resolution depends on the number of measurements and the precise details of their
spatial response functions, including overlap, orientation, and location.

1.2 Theory of Reconstruction and Gridding Algorithms

This section provides a brief summary of the algorithms used for reconstruction
and gridding. Gridded data are separately computed for each channel and instrument.

1.2.1 Coarse Resolution (GRD) Gridding Algorithm

The planned CETB coarse resolution gridding procedure is a simple, “drop-in-
the-bucket” average. The resulting data grids are designated GRD data arrays. For the
drop-in-the-bucket gridding algorithm, the key information required is the location of the
measurement. The center of each measurement location is mapped to an output projected
grid cell. All measurements within the specified time period whose centers fall within
the bounds of a particular grid cell are averaged together. No weighting is done. The
measurement is the reported T value for this pixel. Ancillary product files contain the
number and standard deviation of included samples.

Note that the effective spatial resolution of the GRD product is defined by a
combination of the pixel size and spatial extent of the 3dB antenna footprint size (Long
and Daum, 1998) and does not require any information about the antenna pattern. While
the pixel size can be arbitrarily set, the effective resolution is, to first-order, the sum of
the pixel size plus the footprint dimension. All gridded products are produced on a 25
km pixel grid and thus have an effective spatial resolution that is coarser than 25 km.

Here we consider several definitions of the GRD product. The baseline is a
standard “drop-in-the-bucker” (DIB) where a measurement is assigned to the rectangular
grid element (pixel) in which the measurement center falls. Multiple measurements may
be averaged within one pixel, but each measurement is accumulated into a single pixel. In
this section, this is referred to as a standard DIB (DIBO0). An alternate DIB definition is
based on assigning pixels to a measurement based on the measurement being with a
particular radius of the pixel center. In this case, a measurement may be averaged into
multiple pixels. Here we consider a radius of 1/sqrt(2) of the grid dimension, which
corresponds to a minimum sized circle that encloses a single (square) pixel. This is
denoted as DIB1. Finally, the value within each pixel can be computed as the weighted
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average of all “nearby” measurements where “nearby” is defined as measurements within
a given radius. The weighting function is the inverse distance squared, denoted IDG1. In
IDG1, one measurement is included in multiple measurements.

To simplify later analysis we present a comparison between these conventional
gridding algorithms based on simulation results for the SSM/I 37 GHz channel with two
passes described later. Simulated measurements are created of a synthetic “truth” image
at high resolution using the measurement SRF. Both noisy and noise-free simulation
results are considered. The error between the gridded data and the true image is
summarized in Table 0. Figure 0 compares the GRD image with the truth image.

Though there is not a lot of visual difference in the images, DIBO is the visually
the least noisy, has the smallest RMS error (see Table 0), and is subjectively sharpest of
the three algorithms. The IDGI is the next best. Since it has the lowest noise and error,
in the following only DIBO is used for the GRD comparison images.

Table 0: Comparison of the errors for different gridding options. To compute the error the gridded image
is pixel replicated to the same size/resolution and the true image. The error is the difference between the
true image and the pixel-replicated estimated image. The mean, standard deviation (STD), and root-mean-

square (RMS) error values are then computed.

Case Mean err (K) | Err STD (K) | Err RMS (K)
DIBO Noise-free -0.02 4.64 4.64
DIB1 Noise-free -0.11 5.34 5.34
IDG1 Noise-free -0.09 4.83 4.83
DIBO Noisy -0.02 4.73 4.73
DIB1 Noisy -0.10 5.40 5.40
IDG1 Noisy -0.09 498 498

1.2.2 Reconstruction Algorithms

In reconstruction algorithms, the effective measurement response function (MRF)
is used. The MREF is determined by the antenna gain pattern (which is unique for each
sensor and sensor channel, and may vary with scan angle), the scan geometry (notably the
antenna scan angle), and the integration period. The latter “smears” the antenna gain
pattern due to antenna rotation over the measurement integration period. The MRF
describes how much the emissions from a particular receive direction contribute to the
observed TB value.

Denote the MRF for a particular channel by R(¢p, 6; ¢) where ¢ and G are
particular azimuth and elevation angles relative to the antenna boresite at a scan angle ¢
(¢ is sometimes referred to as the antenna azimuth angle). Note that for a given antenna
azimuth scan angle the integral of the MRF R over all azimuth and elevation angles is 1.
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Figure 0. Comparison of DIB gridding algorithm results. Top 4 panels are noisy,
while bottom 4 are noise-free. (Truth is noise-free.)
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Generally, for the Fundamental Climate Data Record (FCDR) data sets that are
input to the CETB, the MRF can be treated as zero everywhere but in the direction of the
surface. With this assumption, we can write R(¢, 6; @) as R(x,y, ¢) where x and y are the
location (which we will express in map coordinates) on the surface corresponding to the
azimuth and elevation angles. Note that:

.” R(x,y;¢.)dxdy =1

surface
Equation 1

Then, a particular measurement 7; can be written as

T = )| Rx.:0)T,(x,:8,)dxdy

surface

Equation 2

where the scan angle ¢ corresponds to the scan angle at the center (or start) of the
integration period and 75(x,y, @) is the nominal brightness temperature in the direction of
point X,y on the surface as observed from the scan angle position. Note that if there is no
significant difference in the atmospheric contribution as seen from different scan angles,
we can treat 7s(x,y, ¢) as independent of ¢ so that 7s(x,y, ¢)=Ts(x,y). For convenience
Ts(x,y) is referred to as the surface brightness temperature.

With this approximation, we can write Equation 2 as,

T, = )| R0, (x,)dxdy

surface

Equation 3

Each measurement is seen to be the MRF-weighted average of 7B. The goal of
the reconstruction algorithm is to estimate 75(x,y) from the measurements 7.

In the following, two approaches (Long and Daum, 1998) to inferring the surface
brightness temperature are presented. The first is based on signal processing, and treats
the surface brightness temperature as a two-dimensional signal to be estimated from
irregular samples (the measurements). The second is a least-squares approach to signal
estimation based on the Backus and Gilbert (1967) approach.

Both approaches enable estimation of the surface brightness on a finer grid than
possible with the gridded approach, i.e., the resulting brightness temperature estimate has
a finer effective spatial resolution than the gridded approach. As a result, the results are
often called “enhanced resolution,” though in fact, reconstruction algorithms merely
exploit the available information to reconstruct the original signal at higher resolution
than gridding under the assumption of a bandlimited signal (Early and Long, 2001). The
resolution enhancement possible compared to a gridded product depends on the sampling
density and the MRF; however, improvements in the effective resolution of 25% to
1000% have been demonstrated in practice for particular applications. For radiometer
enhancement, the effective improvement in resolution tends to be limited, and in practice
is typically less than 100% improvement. Note that in order to meet Nyquist
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requirements for the signal processing, the pixel resolution of the images must be finer
than the effective resolution by at least a factor of two.

For comparison, note that the effective resolution for drop-in-the bucket gridding
is defined as the grid size plus the spatial dimension of the measurement, which is
typically defined by the half-power or the 3 dB beamwidth. Based on Nyquist
considerations, the highest representable frequency for drop-in-the bucket gridding is
twice the grid spacing.

In the polar regions, multiple passes over the same area are frequently averaged
together. Reconstruction algorithms intrinsically exploit the resulting oversampling of
the surface to improve the effective spatial resolution in the final image.

1.3 Signal Reconstruction

In the reconstruction/signal processing approach, 75(x,y) is treated as a noisy two-
dimensional signal to be estimated from the measurements 7;. For practical reasons,
Tr(x,p) is treated as a discrete signal sampled at the map pixel spacing. This spacing
must be set sufficiently fine so that the generalized sampling requirements (Grochenig,
1992) are met for the signal and the measurements (Early and Long, 2001). Typically,
this is one-fourth to one-tenth the size of antenna footprint size. The CETB product is
produced at this fine resolution even though the effective resolution of the enhanced
resolution images is coarser than the pixel dimension.

Let T5[x,y] be the discretely sampled surface brightness temperature we are
attempting to estimate. To briefly describe the theory, for convenience we vectorize this
two-dimensional signal over an Nx by N, pixel grid into a single dimensional variable a;
where

a; =Ty[x,y,]

Equation 4

with j=/+N: k The measurement equation, Equation 3, becomes

I = Zhijaj

Jjeimage
Equation 5

where hi= R(xi,yx, ¢i) 1s the discrete MRF for the ith measurement evaluated at the jth
pixel center and the summation is over the image. We require that the discrete MRF be
normalized so that

1= Db,

J€image
Equation 6

In practice, the MRF is negligible some distance from the measurement so this
sum need only be computed over an area local to the measurement position. Some care
has to be taken near image boundaries.
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For the collection of available measurements, Equation 5 can be written as the
matrix equation

T'=Ha
Equation 7

where H contains the sampled MRF for each measurement. Note that H is (very) large,
sparse, and may be overdetermined or underdetermined.

Estimating the brightness temperature at high resolution is equivalent to inverting
Equation 7. While a variety of approaches to this have been proposed, in practice, due to
the large size of H, iterative methods are used. One advantage of an iterative method is
that regularization can be easily implemented by prematurely terminating the iteration;
otherwise an explicit regularization method can be used.

The radiometer form of the Scatterometer Image Reconstruction (SIR) is a
particular implementation of an iterative solution to Equation 7 that has proven effective
in generating high resolution brightness temperature images (Long and Daum, 1998). The
SIR estimate approximates a maximum-entropy solution to an underdetermined equation
and least-squares to an overdetermined system. SIR can provide results similar to the
Backus/Gilbert method described below, but with significantly less computation. The
first iteration of SIR is termed AVE, and can be a useful estimate of the surface 75 of its
own. The AVE estimate of the jth pixel is given by

2 hi;Ti
X hij
Equation 8

where the sums are over all measurements that have non-negligible MRF at the pixel.

For implementation in the CETB, fine map grid resolutions were selected for each
channel according to Table 1. Details of how these grid factors were determined are
given below.

Table 1: CETB fine resolution grid definitions

Channel Frequency | Fine Grid Scale Factor | Fine Grid Resolution
6.6* 2 12.5 km
10.7* 4 6.25 km
18% 19, 21, 22 8 3.125 km
37 8 3.125 km
85%*, 9%+ 8 3.125 km

*SMMR only, **SSM/I only, ***SSMIS only
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1.3.1 Backus/Gilbert Method

Backus and Gilbert (1967; 1968) developed a general method for inverting
integral equations, which can be applied to solving sampled signal reconstruction
problems (Caccin et al., 1992). First applied to radiometer data by Stogryn (1978) the
Backus/Gilbert method has been used extensively for extracting vertical temperature
profiles from radiometer data (Poe, 1990). It has also been used for spatially
interpolating and smoothing data to match the resolution between different channels
(Robinson et al. 1992), and improving the spatial resolution of surface brightness
temperature fields (Farrar and Smith, 1992; Long and Daum, 1998; Chakraborty et al.,
2008). Antenna pattern deconvolution approaches have been also done (Sethmann et al.,
1994; Swith et al., 1990).

In application to reconstruction, the essential idea is to write an estimate of the
surface brightness temperature at a particular pixel as a weighted linear sum of
measurements that are collected “close” to the pixel, i.e., using the notation developed in
the previous section, the estimate at the jth pixel is

a; = ZW;‘/Ti

ienearby
Equation 9

where the w; are weights selected so that

= Zw” i
i
Equation 10

There is no unique solution for the weights; however, regularization permits a
subjective tradeoff between the noise level in the image and in the resolution (Long and
Daum, 1998). Regularization and selection of the tuning parameters are described in
detail by Caccin et al. (1992) and Robinson et al. (1992). There are two tuning
parameters, an arbitrary dimensional parameter and a noise-tuning parameter y. The
dimensional parameter affects the optimum value of tuning parameter y. Following
Robinson et al. (1992), we set the dimensional-tuning parameter to 0.001. The noise-
tuning parameter, which can vary from 0 to 7/2, controls the tradeoff between the
resolution and the noise. The value of y must be subjectively selected to “optimize” the
resulting image and depends on the measurement noise (standard deviation, AT) and the
“penalty function” chosen. For use in the CETB, we use the constant penalty function J=1
the reference function F=1 over the pixel of interest, and 0 elsewhere as used by Farrar
and Smith (1992) and Long and Daum (1998).

Using our notation, for a particular pixel j, define the squared signal
reconstruction error term QOr

QR :( Zwijhij _IJ

ienearby

Equation 11
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and the noise error term

— Ty =,
Oy =wEw
Equation 12

where E is the Ts noise covariance matrix. We assume the noise and signal are
independent. To provide a tradeoff between noise and resolution, a value for y is
included to weight the reconstruction error and the noise error in the total error Q, i.e.,

0 =0, cosy+wQ, siny

Equation 13

where @ is the dimensional tuning parameter. Since the noise realization is independent
from measurement, E is a diagonal matrix with diagonal entries (AT)/2 where AT is the
radiometer channel noise standard deviation.

The total error Q in Equation 3 is minimized when the weight vector for the pixel
is selected as

- _ l—cosni'Zv
=2 cosp, + -
ul u
Equation 14
where
U, = Zhij =V,
Z. = cos )G + wsin K
G= [hi/hk/‘]
Equation 95

Note that formulation in our case is somewhat simplified, since the grid cells have
constant area. Varying yalters the solution for the weights between a (local) pure least-
squares solution and a minimum noise solution. As noted, ¥ must be subjectively chosen.
The dimensions and measurements included in the equations are those deemed “local”
according to the criteria.

In previous applications of Backus/Gilbert to measurement interpolation,
(including the heritage SSM/I Pathfinder data, Armstrong et al. 1994), the measurement
layout and MRF were limited to small local areas and fixed geometries to reduce
computation and enable precomputation of the coefficients (Robinson et al., 1992;
Galantowicz and England, 1991; Galantowicz, 1995). Azimuthally averaged antenna
gain patterns have also been used (Farrar and Smith, 1992). Previous investigators (e.g.,
Stephens and Jones, 2002) processed the measurements on a swath-based grid. The fixed
geometry yields only relatively small number of possible matrices, which can yield
computational saving by permitting pre-computation of the matrices. Unfortunately, for
the Earth-based grids used in this project have more variable geometries, making this
approach less viable. Previous investigators (Robinson et al., 1992) have used BGI to
optimally degrade the resolution of high frequency channels to “match” that of lower
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frequency channels. Rather than do this, we attempt to optimize the resolution of each
channel independently.

For BGI processing of CETB products, we follow Long and Daum (1998) to
define “nearby” as regions where the MRF is within 9 dB of the peak response. Outside
this region the MRF is treated as zero. We compute the solution separately for each
output pixel using the particular measurement geometry antenna pattern at the swath
location and Earth azimuth scan angle. This significantly increases the computational
load, but results in the best quality images.

The value of yis subjectively selected for each channel, but held constant for each
channel (on rows of Table 1). As described in more detail later we have found that the
Backus/Gilbert method occasionally produces artifacts due to poor condition numbers of
the matrix that needs to be inverted. To eliminate these, a median-threshold filter is
defined that examines a 3x3 pixel window area around each pixel. The filter purpose is
to detect “spikes” defined to be more than (TBD) 10K above the median of the pixels
within the window. Ts spikes above this threshold are replaced with the median value
within the window.

The gridding and reconstruction methods can be applied to all of the CETB
sensors with similar performance. In this report, however, we concentrate on describing
the methods as applied to a particular sensor, the Special Sensor Microwave/Imager
(SSM/D).

2 Special Sensor Microwave/Imager (SSM/1)

The SSM/I is a total-power radiometer with seven operating channels, see Table 1. These
channels cover four different frequencies with horizontal and vertical polarizations
channels at 19.35, 37.0, and 85.5 GHz and a vertical polarization channel at 22.235 GHz
(Hollinger et al., 1990). An integrate-and-dump filter is used to make radiometric
brightness temperature measurements as the antenna scans the ground track via antenna
rotation (Hollinger, 1989). As specified by Hollinger et al. (1987) the 3 dB elliptical
antenna footprints range from about 15-70 km in the cross-scan direction and 13-43 km
in the along-scan direction depending on frequency. First launched in 1987, SSM/I
instruments have flown on multiple spacecraft continuously until the present on the
Defense Meteorological Satellite Program (DMSP) (F) satellite series.
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Table 1: SSM/I Channel Characteristics (Hollinger, 1987)

Channel | Polarization Center Bandwidth 3dB Channel

Name Frequency (MHz) Footprint AT*
(GHz) Size (km) (K)

19H H 19.35 125 43 x 69 0.42
19V \ 19.35 125 43 x 69 0.45
22 Vv 22.23 300 40 x 60 0.74
37H H 37 750 28 x 37 0.38
37V V 37 750 20 x 37 0.37
85H H 85.5 2000 13 x 15 0.73
85V Vv 85.5 2000 13 x 15 0.69

* Estimated instrument noise for the FO8 SSM/I. Actual varies between sensors.

The SSM/I scanning concept is illustrated in Figure 1. The antenna spin rate is
31.6 rpm with an along-track spacing of approximately 12.5 km. The measurements
were collected at a nominal incidence angle of approximately 53°. The scanning
geometry produces a swath coverage diagram as shown in Fig. 2. A close-in view of the
arrangements of the antenna footprints on the surface for different antenna azimuth
angles is shown in Fig. 3. The integrate and dump filters are 3.89 ms long for the 85 GHz
channels and 7.95 ms long for the other channels. The time between samples is 4.22 ms
long for the 85 GHz channels and 8.44 ms long for the other channels.

\D/
N
/Fligm

Electronics
Direction

Figure 1. Illustration of the SSM/I scanning concept. The antenna and feed are spun about the vertical
axis. Due to the along-track translation of the nadir point resulting from spacecraft motion in its orbit,
the resulting scan pattern on the surface is an overlapping helix. Due to interference from the spacecraft
structure, only part of the rotation is useful for measuring the surface Ts, see Fig, 2. The rest of the
rotation time is used for calibration. The observation incidence angle is essentially constant as the
antenna scans the surface. (Long, 2008)
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Figure 2. SSM/I coverage swath. The dark ellipse schematically illustrates the antenna 3dB response
mainlobe on the surface for a particular channel at a particular antenna scan angle as illustrated by the
light dashed line. The orientation of the ellipse varies relative to the ground track due to the rotation of
the antenna, which is centered at the top of the diagram. The observation swath is defined the rotation
of the antenna through a total scan angle range of 102°. The dark dashed line represents the spacecraft

nadir ground track. The measurement incidence angle remains essentially constant during the scan.

This diagram is for the aft-looking FO8 SSM/I. Later SSM/Is looked forward but had the same swath
width.
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Figure 3. Illustration of the individual footprints of the various channels shown at two different scan
angles. Only footprints for the V pol channels are shown. Note the change in orientation of the
footprints with respect to the Earth-fixed underlying grid. (Long and Daum, 1998)

2.1 Approximating the Spatial Response Function

This section describes how the radiometer spatial measurement response function
(MRF) is modeled. Let Ta’be the antenna brightness temperature measurement corrected
to the surface. The observed brightness can be modelled as an ideal noise-free Ta’ value
pulse “noise” that is due to the intrinsic variability of a brightness temperature
measurement.

The implicit assumption employed in image reconstruction is that a given
radiometer measurement Ta’ can be modelled as

Ta = || MRF(x,y) Ts(x,y) dx dy + noise
Equation 16
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where the noise term is the result of the intrinsic variability of a brightness temperature
measurement. The measurements Ta- are the integral of the product of the MRF (which
may be different for each measurement) and the surface brightness temperature. The
“nominal” resolution of the Ta’ measurements is typically considered to be the size of the
3dB or half-power response pattern of the MRF. The goal is to estimate Ts(X,y) for each
channel at the highest resolution possible from the measurements Ta- at the various
sample locations collected by the sensor. Note that images are separately created for
each channel.

The reconstruction algorithm requires a model (i.e., a description) of the MRF in
order to generate enhanced-resolution images. Ideally, the model requires knowledge of
the sensor antenna pattern for the channel. Given the antenna pattern, and information
about the rotation rate, the “smeared” antenna pattern can be computed, from which the
MREF is derived (CETB ATBD, 2014). However, the amount of information about the
detailed antenna pattern is often limited. In some cases (e.g., SMMR), all that is known
is the approximate size of the 3 dB or half-power footprint. These elliptical footprints
have their semi-major axis along the boresite direction, while the semi-minor axis is in
the along-rotation direction. The orientation of the footprint semi-major axis varies with
the antenna rotation angle, see Figures 1-3.

To describe the antenna patterns for each sensor, we adopt an approximate model
for the MRF based on a rotated, two-dimensional Gaussian function aligned with the
footprint orientation where the half-power points of the Gaussian correspond to the
footprint sizes reported for each sensor. The Earth azimuth angle of each measurement
with respect to north, see Figure 4, is either provided in the data set or derived. This is
the angle (on the ground) from true North to the vector from the sensor to the
measurement center location; it describes the rotation angle of the elliptical footprint
relative to north. An illustrative example of the result is shown in Figure 5. As discussed
in Section 4, based on the sensitivity of the reconstruction when regularization is
employed, this model is adequate for our purposes.
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Figure 4 An illustration of the geometry of the a general Gaussian model for
the MREF for a radiometer. The figure is not to scale. All vectors here are in
the same plane with the “Nadir Point” being the Spacecraft Nadir Point.

The algorithm for computing the MRF is given here. A grid of pixels centered at
the measurement center is defined. The grid is chosen large enough so that MRF gain at
the edges of the grid is no more than a small threshold, e.g. -30 dB of the MRF peak.
Then, using the map projection, the relative vector distance from the measurement center
to the center of each pixel is computed as the vector Xre=[xr,y:]". This vector is rotated
by the azimuth angle ¢ (relative to north) of the ellipse. The rotated system is

X=[x,y] " =R(¢) Xret
where
R(p)=[cos(¢) -sin(g)]
[sin(¢) cos()]

Define the length of the semi-major axis in km as Lj and the semi-minor axis as La. The
MREF gain G at the center of the pixel is then

G=In(1/2) exp[ (2x/Lj)*+ (2y/Ln)*]
Equation 107
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Figure 5. An illustration of a general Gaussian model for the MRF for a
particular radiometer. Shown is the MRF in linear space for several antenna
rotation angles. The figure is not to scale. The color scale is unit-less gain
which varies from 0 to 1.

An illustrative example of the result for several values of ¢ is shown in Figure 5.
Note that half-power point of G corresponds to the specified ellipse semi-major and semi-
minor axes.

While this simplified model for the MRF may not exactly model the true MRF, as
discussed in Section 4, based on the sensitivity of the reconstruction when regularization
is employed, this model is adequate for our purposes.

2.2 SSM/I Reconstruction Simulation

Reconstruction algorithms that generate 2D gridded images from raw
measurements are characterized by a tradeoff between noise and spatial resolution. Our
goal is to estimate an image of the surface Ts(x,y) from the sensor Ts measurements.

The “nominal” resolution of the Ts measurements is typically considered to be the size of
the 3dB response pattern of the MRF. With “drop-in-the-bucket” imaging, the effective
resolution can be no finer than the effective resolution of the measurements. However,
reconstruction techniques can yield higher effective resolution if spatial sampling
requirements are met.
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enhancement while improving the signal reconstruction. Note that AVE is the first

iteration of SIR.

Measurement density in 25 km X 25 km area
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Figure 11 Illustrations of the measurement locations within the coverage swath for the SSM/I1 37
GHz channel for (top) one pass and (bottom) two passes. Plots of the average density of
measurements as function of cross track distance are also shown. For clarity, only one side of the
nadir line is shown. Nominal measurement spacing for a single pass is approximately 25 km.
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To demonstrate and compare the performance of the various reconstruction
techniques, it is helpful to use simulation. The results of these simulations inform the
tradeoffs needed to select processing algorithm parameters. A simple (but realistic)
simulation of the SSM/I geometry and spatial response function is used to generate
simulated measurements of a synthetic image. From both noisy and noise-free
measurements, non-enhanced (GRD or Grd), AVE (or Ave), and SIR images are created,
with error (mean, and root-mean-square [RMS]) determined for each case. This is
repeated separately for each channel. Since the footprint sizes of the 19 and 22 GHz
channels are similar (see Appendix Table 2.2-1), and the footprint sizes for the different
polarizations at a given frequency are essentially the same, only the 19, 37, and 85 GHz
H-pol channels are considered. While there is some sensitivity in the results to the
assumed noise level, it is not large and so for convenience the noise is assumed to have a
standard deviation of 1 K for all channels.

Two different pass cases are considered: the single pass case and the case with
two overlapping passes. The general conclusions are the same for both cases, so the two
pass case is emphasized. Finally, we need to determine the scale factor for the pixels for
each channel. Note that the product pixel size is restricted to fractional powers of two of
25 km, i.e. the pixel size Ps in km is given by

_ 25
RS‘ - 2(Ns)
where N is the pixel size scale factor which is limited to values of 2, 3, or 4. The set of
potential values of Ps are 6.25, 3.125, and 1.5625 km. For the simulation, pixels are
square.

An arbitrary band-limited “truth” image is generated with some “spots” of
varying sizes, some smooth areas of constant Ts and some gradient area to help visualize
the error, see Fig. 12. The choice of a truth image has some effect on the results, but for
expedience we use only a single true image.

true

260
250
240
230
220
210
200
190

Figure 12. Example synthetic “truth” image for Ps=3.125 km. Units are K. Image has been
bandpass filtered to 10 km effective resolution, which accounts for the Gibbs phenomena at
boundaries. Features where were arbitrarily selected to illustrate different target sizes.
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As described earlier, the MRF is modeled with a Gaussian whose 3dB (half-
power) point matches the footprint size given in Table 1. The orientation of the ellipse
varies over the swath according to the look direction as suggest in Figs. 4 and 5. To
apply the MRF in the processing the MRF is centered at center of the nearest neighbor
pixel to the measurement location. The values of the discrete MRF are computed at the
center of each pixel in a box surrounding the pixel center. The size of the box is defined
to be the smallest enclosing box for which the sampled antenna pattern is larger than a
minimum gain threshold of -30 dB relative to the peak gain. A second threshold
(typically -9 dB) defines the gain cutoff used with in the SIR and BGI processing. The
latter threshold defines the so-called Nsize parameter used by Long and Daum (1998).

The image pixel size defines how well the MRF can be represented in the
reconstruction processing and the simulation. Since in this simulation we want to
evaluate different pixel sizes, a representative plot of the MRF sampling for each channel
for each pixel size under consideration is shown in Fig. 13. Note that footprint sizes for
each channel are the same, but the pixel sizes vary.

GRD images are created by collecting and averaging all measurements whose
center falls within each 25 km grid element. The resulting GRD image is then pixel-
replicated to match the number of pixels of the AVE and SIR images. We define the
pixel-replicated image as the NON (sometimes written as Non) image. Separate images
are created for both noisy and noise-free measurements. Error statistics (mean, standard
deviation, and RMS) are computed from the difference between the “truth” and estimated
images. The noise-only RMS statistic is created by taking the square root of the
difference between the squared noisy RMS and the squared noise-free RMS.
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Figure 13. Illustrative sampled MRF for channels (top row) 19 GHz, (middle row) 37 GHz, (bottom
row) 85 GHz and pixels sizes (left column) 6.25 km, (middle column) 3.125 km, (right column)
1.5625 km. The MREF size in km is the same for a given channel (row). The pixel sizes are the same
in each column, though the area covered by the image varies. The axes are in km and vary by image.
The color scale is unit-less gain. In the plots shown here, the MRF is normalized to one at the peak.
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Figure 14 illustrates a typical SIR simulation result. It shows the true image, and
both noise-free and noisy NON, AVE, and SIR images. The error statistics for this case
are given in Table 3. For this pixel size, the image size is 448 x 224. In all cases the
error is effectively zero mean. The non-enhanced results have the larger errors, with the
Ave results slightly less. The RMS error is the smallest for the SIR results. Visually,
NON and AVE are similar, though SIR images better define edges. The spots are much
more visible in the SIR images than in the NON images, though the SIR image has a
higher apparent noise “texture”.

Table 3. Two pass simulation results statistics for 37 GHz, Ps=3.125 (in K), with 20 SIR iterations.

Case Mean STD RMS
N-F Non 0.00 4.34 4.34
N-F Ave 0.00 4.33 4.33
N-F SIR 0.00 3.62 3.62
Noisy Non 0.01 4.38 4.38
Noisy Ave 0.01 4.34 4.34
Noisy SIR 0.01 3.69 3.69

Theoretically, SIR should be iterated to convergence to ensure full signal
reconstruction. This can require hundreds of iterations (Early and Long, 2001).
However, continued SIR iteration also tends to amplify the noise in the measurements.
By truncating the iteration we can trade off signal reconstruction accuracy and noise
enhancement. Truncated iteration results in the signal being incompletely reconstructed,
though the reconstruction error declines with further iteration.

To understand the tradeoff between number of iterations and signal and noise,
Figure 15 shows noisy and noise-free SIR images for several different iteration numbers.
(Recall that AVE is the first iteration of SIR.) Note that the number of iterations is
increased, the edges are sharpened and the spots become more evident. Figure 16 plots
the mean, standard deviation, and RMS errors versus iteration. Also shown in this figure
are the errors for the NON and AVE (first iteration of SIR) images. The noise texturing
also increases. We thus conclude that while iteration improves the signal, the iteration
cannot be too long to avoid over-enhancing the noise.
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Plotting the signal reconstruction error versus noise power enhancement as a
function of iteration number in Fig. 17 can help make a choice for the number of
iterations that balances signal and noise performance. Note that the NON result is much
noisier than AVE, and that the signal error improves with each iteration of SIR. Noting
that we can stop the SIR iteration at any point, we somewhat arbitrarily choose a value
that provides good signal performance and only slightly degraded noise performance, 20
iterations in this case. This is the value used in Table 3, where we see that the overall
error performance is still better than the NON result.

true

| 250
200

ave N-F -0.00 4.33 4.33

250
200

true

250
200

ave noisy -0.01 3.95 3.95

250
200

non N-F -0.00 4.34 4.34

250
200

sir N-F 0.00 3.62 3.62

250
200

non noisy -0.01 3.99 3.99

i250
200

sir noisy -0.00 3.29 3.29

250
200

Figure 14. 37 GHz, dual-pass, Ns=3 simulation results for (upper two rows) noise-free
measurements and (lower two rows) noisy measurements. SIR uses 20 iterations. The numbers on
the top show the mean, std, and RMS error values compared to the true.
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Noisy iter=1 N-F iter=1

250 250

B BNy
Noisy iter=10 N-F iter=10

250 250

., B,
Noisy iter=20 N-F iter=20

250 250

B, B
Noisy iter=30 N-F iter=30

250

200

250
200
Figure 15. 37 GHz, dual-pass, Ns=3 SIR images for different iterations for (left column) noisy
measurements and (right column) noise-free measurements.
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Figure 16. 37 GHz, dual-pass, Ns=3 SIR image error versus iteration number. (left) mean error.
(right) RMS error. The red line is the noisy measurement case, while the blue line is the noise-free
measurement case. Green is the noise power, computed from the difference between the noisy and
noise-free cases. The cyan star is the error for the NON image, while the black star is for AVE (which
may be under the cyan star). The “optimum” (minimum error) number of iterations occurs at the
minimum of the red curve. For reference, the dashed vertical line is shown at 20 iterations.

37 fp=28x37 DeltaT=1.0 Np=2 (r=SIR, g=Ave, k=grd)
1 b T T T T T
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0.7
0.6+ - 1
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RMS noise error
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0. 1 1 1 1 1 L
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Figure 17. 37 GHz, dual-pass, Ns=3 Change in SIR image error with increasing versus iteration
number. RMS noise power versus RMS signal error for each iteration, which extends from right to
left. The black star in the NON result, while the green star is the AVE result. The red star is SIR at 20
iterations.
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(bottom) Ns=4. RMS noise power versus RMS signal error for each iteration, which extends from
right to left. The black star in the NON result, while the green star is the AVE result. The red star is
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We can repeat this analysis for different values of Ns, the number of passes, and
the channel number. While the numerical values of the RMS error changes, the overall
ranking and relative spacing of the NON, AVE and SIR values are unchanged. Figures
18-20 shows the noise versus signal error for different values of N; for the different
channels.

Based on Figs. 18-20 the following observations can be made:
1. AVE always has somewhat better noise performance than NON.

2. AVE has slightly better signal performance than NON 37 and 85 GHz, but is
worse for 19 GHz.

3. As expected, SIR always has worse noise performance than AVE, but has
better signal performance

4. Depending on the number of iterations selected, SIR can always have better
signal performance than both AVE and NON.

5. SIR has better signal performance than NON.

6. Iterating SIR too long causes it to have worse noise performance than NON,
though the signal performance improves for longer iterations.

Since SIR is always better than AVE, but requires only a little more effort to
compute, we prefer SIR to AVE. Thus the baseline for processing the highest resolution
is SIR.

In general, we want to use a small Ny, to minimize computation, as well as
minimize the number of iterations. Based on Nyquist criteria for sampling the response
pattern, Ns=2 is the minimum useable value. With idea that we want to keep the same
values for all channels, if possible, for consistency it appears that N&=3 (i.e. Ps=3.125)
will work for all channels, and that 5-20 iterations provide a reasonable tradeoff between
signal and noise. Using N;=3, Table 4 provides a performance comparison for the RMS
errors of NON, AVE, and SIR for the different channels using 20 iterations. Figure 21
compares the resulting noisy simulation results. Note that although the pixel size is
3.125, the effective spatial resolution of the images is, of course, coarser than this. Recall
that at least some of the extra pixel resolution is required to properly process the signal to
meet the Nyquist signal representation requirements and represent the higher frequency
content of the high resolution images. Table 5 gives the approximate number of SIR
iterations for each case that results in the minimum total simulation error. It should be
noted the precise minimum value depends on the exact noise realization, so this value
should be considered to be a general guideline only.
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Table 4. Total RMS error for noisy two pass simulation using Ns=3 (Ps=3.125) and 20 SIR

iterations.
Case NON (K) AVE (K) SIR (K)
19 GHz 491 5.21 4.47
37 GHz 4.38 4.34 3.69
85 GHz 4.12 3.07 242
true
250
200

non noisy -0.00 4.91 4.91 ave noisy -0.01 5.21 5.21 sir noisy 0.01 4.47 4.47

non noisy 0.01 4.38 4.38 ave noisy 0.01 4.34 4.34 sir noisy 0.01 3.69 3.69

Figure 21. Comparison of (left column) NON, (center column) AVE, and (right column) SIR images
for the (top full row) 19, (center full row) 37 and (bottom row) 85 GHz channels for Ns =3, 20 SIR
iterations, and two passes. The top row image shows the true synthetic image.
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Table 5: Recommended SSM/I SIR processing parameters by channel.

Channel Pixel scale SIR
factor Nsand | number of
grid size Ps Iterations
19 (2) 6.2500 km 50*
19 (3) 3.1250 km 30*
19 (4) 1.5625 km 30*
37 (2) 6.2500 km 50*
37 (3) 3.1250 km 20*
37 (4) 1.5625 km 20
85 (2) 6.2500 km 18
85 (3) 3.1250 km 18
85 (4) 1.5625 km 15

* minimum not visible plot, so a subjective choice is made

2.3 SIR Number of Iterations and Pixel Sizes Conclusions

We find that SIR provides better spatial resolution than conventionally gridded
(NON) products. SIR does enhance the noise, but this can be controlled by the number of
iterations to tradeoff noise and resolution. Based on the simulation results the
recommended pixel size and number of SIR iterations for each channel are given in Table

6. For reference, the SIR results for each image pixel size considered are shown in Fig.
22.

Table 6: Recommend SSM/I SIR processing parameters by channel. Ns=3.

Channel GRD SIR pixel size SIR
pixel size Ps number of
iterations
19H 25 km 3.125 km 25
19V 25 km 3.125 km 25
22 25 km 3.125 km 20
37H 25 km 3.125 km 15
37V 25 km 3.125 km 15
85H 25 km 3.125 km 15
85V 25 km 3.125 km 15
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250

sir noisy 0.02 4.50 4.50 sirnoisy 0.01 4.47 4.47 sir noisy -0.01 4.47 4.47

sir noisy 0.03 3.71 3.71 sir hoisy 0.01 3.69 3.69  sir hoisy 0.01 3.68 3.68

sir noisy 0.00 2.34 2.34 sir noisy 0.01 2.42 2.42 sir noisy 0.00 2.42 2.42

85

Figure 22. Comparison of SIR image results (20 iterations) for different pixel sizes and channels.
Pixel sizes: (left column) 6.25 km, (center column) 3.125 km, and (right column) 1.526 km (top
row). Channels: (second row) 19, (third row) 37, and (bottom row) 85. The top row image shows
the true synthetic images for each pixel size. The true images vary with image pixel size due to the
way they are constructed.
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3 Backus-Gilbert Processing

In this section we consider the Backus-Gilbert Inversion (BGI) processing
approach. The BGI approach requires significantly more computation than does SIR.
Previous investigators worked on swath-based grids and were able to coarsely quantize
the possible measurement positions to restrict the number of matrix inversions required.
This enabled them to generate pre-computed approximate solutions (Robinson et al.,
1992).

However this situation is different when working with Earth-based grids. Note
from Fig. 11 that the measurement centers are irregularly arranged with respect to the
Earth-located pixel grid. This limits our ability to using “preprocessing” techniques to
speed the BGI computation. Further, to avoid the approximations used with fixed
geometries, we prefer to use the approach developed by Long and Daum (1998) that uses
the actual measurement positions and a general pixel grid so that reconstruction can be
done on the Earth-located pixel grid. Note that applying BGI requires creating and
inverting a matrix for each image pixel. While computationally more intense, it can yield
higher effective resolution and more accurate results than the limited-area, swath grid-
based techniques previously used.

Long and Daum (1998) noted that SIR and BGI produce similar results, but SIR
processing is much faster than BGI. Our simulations for SSM/I confirm this conclusion.
In the BGI simulations below we use the same simulated measurements as those used in
the SIR experiments previously described.

As noted, BGI includes one parameter (y) that must be subjectively selected. It
controls the regularization and relative weighting between signal reconstruction and noise
enhancement, see Eq. (13). The value of y can range from 0 to n/2. Note that for
simplicity in the captions and plots below, the symbols y’ or g are sometimes used that
are related to y by y= (n/2) y’ and y=ng.

Figure 23 shows BGI images for various values of y’ for the 37 GHz channel with
Ns=3. Note that for small values of y’, the noise is the most enhanced but the features are
the most sharp. For larger values of y’ the noise texturing is reduced, but features are
smoothed. A plot of the RMS error versus y’ is shown in Figure 24. Note that noise-free
and noisy results are shown both for BGI and BGI after median filtering. Due to poorly
conditioned matrices in the BGI inversion, some estimated pixels have extreme values.
These can be suppressed by applying a 3x3 median filter after the BGI processing. This
significantly reduces the RMS noise and artifacts in the image without significantly
degrading the image quality. The median filter is edge preserving and so has minimal
effect on the image quality, though some smoothing occurs.
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Table 7. Two pass simulation results statistics for 37 GHz and Ns=3 (Ps=3.125 km). BGI

y’=0.45.
Case Mean (K) STD (K) RMS (K)
Noisy Non 0.01 4.38 4.38
Noisy Ave 0.01 4.34 4.34
Noisy SIR 0.01 3.69 3.69
Noisy BGI 0.01 3.71 3.71
Noisy BGI — 0.01 3.70 3.70
median filtered

Similar to the analysis of number of iterations for SIR, it is useful to compute the
noise and signal RMS error, which varies with the value of y’. An example for the 37
GHz channel with Ns=3 is shown in Figure 25. Finally a comparison of the BGI result
(y’) and NON and SIR (20 iterations) is shown Fig. 26. A numerical comparison of the
results is shown in Table 7. Note that even with median filtering, in this case BGI is

always noisier than SIR, though the numerical differences are small.
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BGI g=0.000000 RMS=12.82
i250
200
BGI g=0.150000 RMS=3.69
_ S
200

BGI g=0.250000 RMS=3.69
_S

200

BGI g=0.425000 RMS=4.04
B
200

BGI g=0.495000 RMS=4.43

_
200

BGI g=0.075000 RMS=3.83
e

; 200

BGI g=0.200000 RMS=3.67
B
200

BGI g=0.325000 RMS=3.78
B
200

BGI g=0.475000 RMS=4.29
B
200

BGI g=0.500000 RMS=4.47

N
200

Figure 23. BGI images (no median filtering) for different values of g (y=mg) for the 37 GHz channel
with Ns=3. These can be compared with SIR for different iterations in Fig. 15.
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Figure 24. RMS error versus y’ for the 37 GHz channel with Ns=3.

Ch=37 Np=2 (r=N BG, g=N BG med)
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Figure 25. RMS noise versus signal for different y’ for the 37 GHz channel with N;=3. The red line is
noisy BGI, while the green line is noisy BGI after median filtering. y’increases from left to right for .
The optimum (i.e., the minimum RMS error) values are indicated with asterisks.
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Other examples of BGI images versus different gamma parameters are shown in
Figs. 27-29. Not all Ns cases are included for every channel due to excessive (and
impractical) run times. All cases have a minimum total RMS error near either g=0.85 or
2=0.5, so for consistency we adopt a single value y=0.85x, for all channels and all values
of Ns. This results in similar RMS performance in all cases.

250 250

200 200
ave hoisy 0.01 4.34 4.34 sir noisy 0.01 3.54 3.54

250 250

200 200
BGI noisy 0.01 3.71 3.71 BGM noisy 0.01 3.70 3.70

_ 250 _ 250
. 200 , 200

Figure 26. Comparison of true, Non (Grd), Ave, SIR, and BGI images with y’=0.45 and BGI with
median filter for the 37 GHz channel with Ns=3. Note the reduction in RMS error in BGI after
median filtering.

As has been noted, BGI requires at least an order of magnitude more CPU than
SIR. For larger values of N; it can be several orders of magnitude more computation
time; hence the desire for small values of Ns. The choice of gamma does not affect the
computation, but changing the antenna gain cutoff from -9 dB to larger values can reduce
the number of local measurements included in the matrix inversion, and thus the required
CPU time. This is not considered here.
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Figure 28. RMS noise power versus RMS signal error for 37 GHz, dual-pass, BGI image error versus
gamma for (top) (middle) Ns=3, (bottom) Ns=4. Computational noise produces the spike observed
in the lower right panel.
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Figure 29. RMS noise power versus RMS signal error for 85 GHz, dual-pass, BGI image error versus
gamma for (top) Ns=2, (middle) Ns=3, (bottom) Ns=4.
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3.1 BGI Gamma and Pixel Sizes Considerations

We find that BGI provides better spatial resolution than conventionally gridded
(NON) products, and similar performance to SIR. However, it requires much more
computation. To minimize the computation, we recommend a smaller value of N; for
BGI images than the SIR recommendations. Based on the simulation results the
recommended pixel size and BGI tuning parameter for each channel are given in Table 7.

Table 7: Recommend SSM/I BGI processing parameters by channel.

Channel GRD Pixel scale BGI
pixel size | factor Nsand g=y/n
grid size Ps
19H 25 km (2) 6.250 km 0.85
19V 25 km (2) 6.250 km 0.85
22 25 km (2) 6.250 km 0.85
37H 25 km (2) 6.250 km 0.85
37V 25 km (2) 6.250 km 0.85
85H 25 km (3)3.125 km 0.85
85V 25 km (3) 3.125 km 0.85

4 Reconstruction Sensitivity to Inaccuracy in the
Description of the MRF

In this section we study the sensitivity of the reconstruction results to errors in the
description of the MRF. It has been previously noted that the MRF for some sensors is
not known well. Even for those for which it is known well, there are uncertainties
(errors) in the description of the MRF. This leads to the question, how sensitive is the
reconstruction to the accuracy of the MRF?

In pursuing this question we note that we are interested only in the partial
reconstruction case, e.g., when only a relatively small number of SIR iterations are
performed. We expect the general conclusions to be similar for any partial reconstruction
algorithm such as BGI.

We perform an experimental study in which simulated measurements of a
synthetic scene are generated using the full MRF previously described. Then, different
(erroneous) MRF descriptions are used in the reconstruction process. The results from
the correct description and the erroneous descriptions are then compared. In the
following, the same measurements from the previous simulations in the two-pass, Ns=3
case are used. Each channel is processed separately. We assume the true MRF is the
two-dimensional Gaussian MRF previously described.
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Eight different MRFs are created according to the following and used for
generating images. These cases were arbitrarily chosen, but span a wide range of
possible MRF errors. We note that while in some cases changing the number of SIR
iterations can improve the error statistics, for this study the number of SIR iterations is
fixed at 20 for all cases.

MREF used for reconstruction (see Fig. 30)

Case 1: “True”. The MRF used for reconstruction is identical to that used for simulating
the noisy measurements.

Case 2: “-3dB Binary”. The MRF used for reconstruction is set to unity for the true
MREF greater than or equal to one-half the peak MRF value (-3 dB of the peak). Thus, the
MREF is a smaller elliptical “rect”-type response.

Case 3: “-6dB Binary”. The MRF used for reconstruction is set to unity for the true
MREF greater than or equal to one-quarter the peak MRF value (-6 dB of the peak). Thus,
the MREF is a slightly larger elliptical “rect”-type response than for case 2.

Case 4. “Binary”. The MRF used for reconstruction is set to unity for the true MRF
greater than -30 dB of the peak MRF value. Thus, the MRF is an excessively large
elliptical “rect”-type response.

Case 5: “Truncated 3dB”. The MRF used for reconstruction is set to zero for the true
MREF less than to one-half the peak MRF value (-3 dB of the peak), and is the same for
values larger than the threshold. Thus, the MRF is a small, rounded ellipse.

Case 6: “Truncated 6dB”. The MRF used for reconstruction is set to zero for the true
MREF less than to one-quarter the peak MRF value (-6 dB of the peak), and is the same
for values larger than the threshold. Thus, the MRF is a medium-sized, rounded ellipse.

Case 7: “Squared”. The MRF used for reconstruction is set to be the square of the true
MREF. Since the true MRF values are all less than or equal to one, squaring the MRF has
the effect of making it more steep.

Case 8: “Square root”. The MRF used for reconstruction is set to be the square root of
the true MRF. Since the true MRF values are all less than or equal to one, squaring the
MREF has the effect of flattening the response.

All the reconstruction MRFs are normalized to sum to one in the reconstruction
processing.
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Figure 30. Images of the original and modified measurement response functions used in the
simulation. Cases 2-4 are binary (0 or 1) with case 4 completely filling the enclosing square.
Though not all are realistic, these particular cases were selected to span a large range of “errors” in

the description of the MRF.
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Figure 31. (left column) mean and (right column) RMS differences between the image
reconstructed using the true (case 1) and erroneous (cases 2-8) MRF for the (top row) 19 GHz,
(middle row) 37 GHz, and (bottom row) 85 GHz channels for Ns=3.
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Figure 32. Images for each partial reconstruction case for 19 GHz.
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Figure 33. Images for each partial reconstruction case for 37 GHz.
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Figure 34. Images for each partial reconstruction case for the 85 GHz channel.

Figure 31 summarizes the mean and RMS differences between the image
reconstructed with the true MRF (case 1) and the erroneous MRF (cases 2-8) for each
channel. Corresponding images are shown in Figs. 32-34. Note from Figure 31 that the
mean error is essentially zero for all cases. The RMS and standard deviations are thus
essentially the same. The RMS error is the smallest when the true MRF is used, and is
larger for the erroneous cases. However, the RMS error is generally not much larger for
most cases, even when the MRF used for retrieval is very different than the true. The
errors are the largest when the MRF used for retrieval is spatially much smaller than it
should be, i.e., as evident in cases 2 and 5 at 85 GHz. The 6 dB cases, and the square and
square root cases, have much smaller error. It is likely that errors in the description of the
MRF will have only small rolloff errors, for which cases 7 and 8 (square and square root)
represent worst cases.

These results suggest that so long as the assumed MRF is close, the RMS error is
not particularly sensitive to the MRF used for reconstruction. To further explore this, we
consider the family of erroneous MRFs defined by compute the fractional power of the
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true MRF, i.e. the MRF used for reconstruction R ’(x,y) is computed from the true MRF
R(x,y) using

R'(x,y) = R"(x,y)

where 0<r<3. (The square root and squared MRF used previously are particular
examples with ¥=0.5 and =2.) As r is varied in the range 0.25 to 3, the 3 dB footprint
changes, and the response pattern rolloff characteristics change. Figure 35 plots the total
noisy RMS error versus r for this case. Two curves are shown. One is for a fixed number
of iterations (20 in this case). The other is the RMS error resulting when selecting the
number of SIR iterations that minimized the total RMS error. This is the optimum
number of SIR iterations. Note that in all cases the variation in the RMS error is small,
and the difference between the fixed and the optimum number of iterations is very small.

These simulation results reveal that using the correct MRF for reconstruction
minimizes the error, but modest distortions in the MRF used in the reconstruction have
very limited impact on the accuracy of the reconstruction results. The variation in total
RMS error with MRF distortion is small for all channels and cases. Thus the results of
the reconstruction are not particularly sensitive to the accuracy of the MRF, and we can
successfully use approximate MRF models. This is a fortunate result since it means that
precise antenna pattern descriptions are not required for generating high resolution
brightness temperature images. All that is needed is that the descriptions be reasonably
accurate.

So why can we get away with imprecise descriptions of the antenna pattern in the
reconstruction process? Since the noise is amplified as the signal is enhanced, there is a
tradeoff between the signal reconstruction error and the noise increase. This trade off
leads us to truncate the iterative reconstruction process before it is complete, i.e. we only
do partial reconstruction and do not fully reconstruct the signal. The simulations show
that partial reconstruction can tolerate modest errors in the MRF description and still
yield reasonable estimates of the desired signal. Not shown is that when the erroneous
MREF is used to attempt to fully reconstruct the signal, the final signal is distorted
compared to the signal resulting from the correct MRF description.

The relative insensitivity of the partially reconstructed image to the MRF
description suggests that we can get away with less than perfect descriptions of the MRF.
This is critical since, as noted earlier in Section 2.1, precise descriptions are not available
for all sensors. We can thus use a simple two-dimensional Gaussian model discussed in
Section 2.1.
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Figure 35. Plots of the noisy total RMS error versus fractional power r for (top row) 19 GHz,
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