Algorithm Theoretical Basis Document (ATBD) for Mean Inland Surface Water Data ATL22 Release 004

January 31, 2025

by

Michael Jasinski, PI	NASA GSFC
Jeremy Stoll	SSAI
David Hancock	SSAI
John Robbins	Craig Technologies, Inc.
Jyothi Nattala	SSAI

SSAI

Claudia Carabajal

This document may be cited as:

M. Jasinski, J. Stoll, D. Hancock, J. Robbins, J. Nattala, C. Carabajal (January 31, 2025) *Algorithm Theoretical Basis Document (ATBD) for Mean Inland Surface Water Data, ATL22, Release 4*, NASA Goddard Space Flight Center, Greenbelt, MD, 48 pp. https://doi.org/10.5067/ONG3H30DUFEL

Goddard Space Flight Center Greenbelt, Maryland

Abstract

This document describes the theoretical basis of the algorithms employed in the derivation and processing of the ATL22 Mean Inland Surface Water Data products for ICESat-2, Version 4. These level L3B data products are reported at the mean transect rate for each ICESat-2 water body crossing, using output from the L3A ATL13 Ver 7 Along Track Inland Water Body Data products. The ATL22 ATBD includes descriptions of the input and output data products and product parameters, detailed algorithm steps required for computing the mean of those products, a summary of other ancillary ICESat-2 products required in the processing, and a calibration and validation plan.

In addition to these mean ATL22 Level 3B products described herein, also co-produced as a separate product is the Level 3A along track ATL13 crossing tracked reported at the short segment rate, on which the ATL22 products are based. The ATL13 ATBD is entitled ATL13 Along Track Inland Surface Water Data products for ICESat-2, Release 7.

Citation for this ATL22 ATBD Version 004:

M. Jasinski, J. Stoll, D. Hancock, J. Robbins, J. Nattala and C. Carabajal (January 2025) Algorithm Theoretical Basis Document (ATBD) for Mean Inland Surface Water Data, ATL22, Release 4, NASA Goddard Space Flight Center, Greenbelt, MD, 48 pp.

https://doi.org/10.5067/ONG3H30DUFEL

Citation when using ATL22 Inland Water data products from NSIDC:

M. Jasinski, J. Stoll, D. Hancock, J. Robbins, J. Nattala and C Carabajal (January 2025). *ATLAS/ICESat-2 L3B Mean Inland Surface Water Data, Release 4*. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.*

https://doi.org/10.5067/ATLAS/ATL22.004

*Note:

The companion continuous ATL13 Level 3A <u>along track</u> products are published as a separate product as described in Chapter 1 below. See References for specific ATL13 citations and links.

Acknowledgements

Support for the ATL13 Inland Water product was provided by the following NASA Headquarters Earth Science Division programs: ICESat-2 Project Science Office at Goddard Space Flight Center, Cryospheric Sciences, Terrestrial Hydrology, Ecological Forecasting, and Physical Oceanography.

We gratefully acknowledge the individuals who made important contributions at various levels toward the development of the ATL22 Inland Water Data Products:

Tom Wagner, NASA Headquarters Thorsten Marcus, NASA Headquarters Jared Entin, NASA Headquarters Woody Turner, NASA Headquarters Nadya Vinogradova Shiffer, NASA HO Tom Neumann, NASA GSFC Lisa Callahan. NASA Jeffrey Lee, SGT, Inc. Anthony Martino, NASA GSFC Kelly Brunt, University of Maryland Kaitlin Harbeck, SGT, Inc. Steve Palm. SSAI Sinead Farrell, *University of Maryland* Ron Kwok, NASA JPL Ben Smith, University of Washington Christopher Hiemstra, CRREL Bill Cook. NASA GSFC Christopher Arp, University of Alaska Sabrina Delgado-Arias, SSAI Bea Csatho, University of Buffalo Helen Fricker, Scripps Institution of Oceanography Jeffrey Gerber, SGT, Inc. Jack Eggleston, USGS

Huilin Gao, University of Texas A&M Molly Brown, University of Maryland Yao Li, *University of Texas A&M* Jeffrey Danielson, USGS Anita Brenner, SGT, Inc. Rodolphe Devillers, Institut de Recherche pour le Développement, France Eric Stengel, NOAA STAR David Harding, NASA GSFC Steven Kuo-Hsin Tseng, National Central University, Taiwan Hsiao-Jou Hsu, National Central U., Taiwan Steven Fassnacht Colorado State *University* Jennifer Wozencraft, JALBTCX Lori Magruder, University of Texas ARL Charon Birkett, NASA GSFC Bernhard Lehner, McGill University Jeremy Kasper, University of Alaska Krista Bartz, US National Parks Service Mark Carroll, NASA GSFC Yongwei Sheng, UCLA Richard Kelly, University of Waterloo Christine Sadlik, KBRwyle

CM Foreword

This document is an Ice, Cloud, and Land Elevation (ICESat-2) Project Science Office controlled document. Changes to this document require prior approval of the Science Team ATBD Lead or designee. Proposed changes shall be submitted in the ICESat-2 Management Information System (MIS) via a Signature Controlled Request (SCoRe), along with supportive material justifying the proposed change.

In this document, a requirement is identified by "shall," a good practice by "should," permission by "may" or "can," expectation by "will," and descriptive material by "is."

Questions or comments concerning this document should be addressed to:

ICESat-2 Project Science Office Mail Stop 615 Goddard Space Flight Center Greenbelt, Maryland 20771

Preface

This document is the Release 4 of Level 3B Algorithm Theoretical Basis Document (ATBD) for the ICESat-2 ATL22 Mean Inland Surface Water Data products processing implemented at the ICESat-2 Science Investigator-led Processing System (SIPS). It supersedes all previous ATL22 versions. Incremental updates to all previous ATL22 versions are described in the Change History Log section of the preliminary pages. ATL22 L3B is a companion product built upon the continuous along track ICESat-2 ATL13 Level 3A data produced separately and that are described in the ATL13 ATBD.

SIPS supports the ATLAS (Advance Topographic Laser Altimeter System) instrument on the ICESat-2 spacecraft and encompasses the ATLAS Science Algorithm Software (ASAS) and the Scheduling and Data Management System (SDMS). The science algorithm software produces Level 0 through Level 3A&B standard data products as well as the associated product quality assessments and metadata information.

The ICESat-2 Science Team, in support of the ICESat-2 Project Science Office (PSO), assumes responsibility for this document and updates it, as required, as algorithms are refined or to meet the needs of the ICESat-2 SIPS. Reviews of this document are performed when appropriate and as needed updates to this document are made. Changes to this document will be made by complete revision.

Changes to this document require prior approval of the Change Authority listed on the signature page. Proposed changes shall be submitted to the ICESat-2 PSO, along with supportive material justifying the proposed change.

Questions or comments concerning this document should be addressed to:

Thomas Neumann, ICESat-2 Project Scientist Mail Stop 615 Goddard Space Flight Center Greenbelt, Maryland 20771

Review/Approval Page

Prepared by:

Michael F. Jasinski
ICESat-2 Science Team Lead for ATL22 Inland Surface
Water Products
Hydrological Sciences Laboratory, Code 617
NASA Goddard Space Flight Center
Greenbelt, MD 20771

Reviewed by:

Helen A. Fricker

ICESat-2 Science Team Lead

ICESat-2 Project Scientist

Institute of Geophysics and Planetary
Physics

Cryospheric Sciences Lab, Code 615

NASA Goddard Space Flight Center
Scripps Institution of Oceanography,
San Diego, CA

Tom Neumann

ICESat-2 Project Scientist

Cryospheric Sciences Lab, Code 615

NASA Goddard Space Flight Center

Greenbelt, MD

Change History Log

Revision	Description of Change	SCoRe	Date
Level		No.	Approved
1.0	ATL22 Version 001 (Not published)		August 31 2021
	Derived from ATL13 ATBD Ver 4		
2.0	ATL22 Version 002		
	Derived from ATL13 ATBD Ver 5		
3.0	ATL22 Version 003		March 10 2023
	Derived from ATL13 ATBD Ver 6		2023
	Mean values were improved from original ATL22 Ver 002 release by additional filtering of ATL13 input heights using histogram analysis to exclude outliers (E.g., land).		
4.0	ATL22 Version 004		April 24 2023
	Added calculation and output of transect mean maximum likelihood alpha.		
	Added sseg_dist_from_eq to output.		June 28 2023
	Calculated the along-track observed linear slope and accompanying root mean squared error.		July 14 2023
	Defined process for fitting heights during along-track slope calculation.		July 20 2023
	Added detrend-based along-track mean slope and ATL13 orthometric height distribution skew and kurtosis to output.		September 01 2023

Turned on calculation of along-track slope for lakes and reservoirs; added language for exclusion of invalid values in mean slope calculation.	September 08 2023
Added transect_mean_azimuth calculation and output; Reversed 0/1 on/off assignments used for along_trk_slope_calc array to match convention used for previous parameters.	September 15 2023
For skewness and kurtosis calculations, added minimum filtered short segment requirements, controls based on water body type, and clarification to use bias-corrected results.	September 22 2023
Turned on calculation of linear fit along-track slope for rivers.	September 29 2023
Updated: Table 5.2 Input Variables for ATL22 Table 5.3 Parameters Needed to Drive Algorithm Table 5.4 Intermediate Variables, and Table 5 5 Output Parameters for ATL22	Nov, Dec 2024
Edited Release 4 document. Re-numbered tables to: Table 5.1 Input Variables for ATL22 Table 5.2 Parameters Needed to Drive Algorithm Table 5.3 Intermediate Variables, and Table 5 4 Output Parameters for ATL22	Jan 2025
Updated footers Updated lake and river links in Section 4.3.2.1	Aug 18 2025

List of TBDs/TBRs

Item No.	Location	Summary	Ind./Org.	Due Date

Table of Contents

			<u>Page</u>
Abs	tract		ii
Ack	nowle	edgements	iii
CM	Forev	vord	iv
Pref	ace		v
Rev	iew/A	pproval Page	vi
Cha	nge H	listory Log	vii
List	of TE	BDs/TBRs	ix
Tab	le of C	Contents	X
List	of Fig	gures	xii
List	of Ta	bles	xiii
1.0	INT	RODUCTION	1
	1.1	ATL22 Product Summary	1
	1.2	Applications of ATL22 Mean Inland Surface Water Products	2
	1.3	Evolution of the ATL13 and ATL22 Inland Surface Water Data Products	3
2.0	BAG	CKGROUND	4
	2.1	ICESat-2 ATLAS Instrument	4
	2.2	ICESat-2 Orbit Configuration	5
3.0	INL	AND WATER PRODUCTS	6
	3.1	Conceptualization of ATLAS observed inland water altimetry	
	3.2	Definition of ATL13/22 Inland Water Body	7
	3.3	Definition of ATL13/22 Inland Surface Water Body Transect	7
	3.4	ATL13/22 Inland Water Body Mask	7
	3.5	The ATL03 Inland Water Mask (Flag)	
4.0	ALC	GORITHM THEORY	10
	4.1	Conceptualization of ATLAS observed inland water altimetry	10
	4.2	Computation of Mean Products	10
	4.3	Data Product Precision and Evaluation	11
		4.3.1 ICESat-2 Precision	11

ICESat-2 Algorithm Theoretical Basis Document for Mean Inland Surface Water Data ATL22 Release 004

		4.3.2	Data Product Evaluation	12
5.0	ALC	GORITI	HM IMPLEMENTATION	18
	5.1	Outlin	ne of Procedure	18
	5.2	ATL2	2 Input Variables and Parameters	18
	5.3	PROC	CESSING PROCEDURE	23
		5.3.1	Input ATTRIBUTES	23
		5.3.2	TRANSECT DEFINITION	23
		5.3.3	ALONG-TRACK PROCESSING	24
	5.4	Mean	Transect and Associated Output Products	26
6.0	ATI	L22 San	nple PRODUCT RESULTS	30
	6.1	Typic	al ATL22 Version 1 example for single water body	30
	6.2	Typic 31	al daily global summary of ATL22 transect length and mean orthometr	ic height
7.0	REF	EREN	CES	33

List of Figures

<u>Figure</u> <u>Page</u>
Figure 1-1. Schematic comparison of ATL13 and ATL22 data products. a) ATL13 short-segment, Along Track Inland Surface Water Data products are reported at variable segment lengths of 75-100 signal photons based on water body type, or about 30-150m, b) ATL22 Mean Inland Surface Water Data products report a single mean located at the center of each observed transect (red dots). Estimated vertical error is < 5-10 cm per transect and is dependent on transect length. (ATL13 Rel 3, Jasinski et al., 2021; ATL22 Rel 1, Jasinski et al. 2021)
Figure 2-1 ICESat-2 ATLAS six-beam configuration oriented backward. Strong beams have about 4 times the pulse energy as weak beams
Figure 2-2 ICESat-2 off-pointing sampling scheme over land and impact on inland water observations, E.g. Impact of 6-month off-pointing on ICESat-2 crossings over Lake Erie, U.S. (Jasinski, Stoll, Gao & Parrish, AGU, 2019a; Jasinski, Stoll, Hancock, Robbins, Nattala, et al., AGU 2019b)
Figure 3-1 ATL13/22 Inland Surface Water Mask for North America Shape file (Jasinski, Stoll, AGU, 2019)
Figure 3-2 ATL03 Inland Water Mask (gridded, non-contiguous)9
Figure 6-1 Typical example of ATL22 product (red dots) identifying two ICESat-2 transects over Eagle Lake on October 19, 2018. Yellow surface represents ATL13 short segment products (See Fig 4-8 in ATL13 ATBD Rel 7)
Figure 6-2 Typical ATL22 daily browse summary of transect mean orthometric height (EGM2008) for all global ICESat-2 crossings on October 18, 2019
Figure 6-3 Typical ATL22 daily summary of transect length (m) for all North America ICESat-2

List of Tables

<u>Table</u>	<u>Page</u>
Table 1-1 Evolution of principal features of ATL13 and ATL22 Inland Surface Water Pro Releases	
Table 5-1 Input Variables for ATL22 Mean Inland Surface Water Algorithm	18
Table 5-2 Parameters Needed to Drive the Algorithm	21
Table 5-3 Intermediate Variables	22
Table 5-4 Output Parameters for ATL22 Mean Inland Surface Water Algorithm	26

1.0 INTRODUCTION

1.1 ATL22 Product Summary

This document describes the theoretical basis of the algorithms employed in deriving and processing the ICESat-2 ATL22 Mean Inland Surface Water Data product Level 3B products Version 4 (or Release 4). Its principal products include, for each of the ICESat-2's six beams over a water body transect, the mean surface water height, mean surface height standard deviation, and mean ATLAS 532nm attenuation coefficient, reported at the center of the beam transect. Additional products including the beginning and end of the transect, transect length, and center of transect are also reported in Table 5.4.

The complete suite of documentation of the ATL22 product including this most recent version of this ATL22 Algorithm Theoretical Basis Document (ATBD), Data Product Known Issues, and data acquisition, is available at https://nsidc.org/data/atl22.

ATL22 Ver 4 is a derivative of the continuous L3A ATL13 Ver 7 Along Track Inland Surface Water Data product which has been published since May 2019 and continues to be published as a separate ATBD (E.g. Jasinski et al, 2021a; 2021b). ATL13 contains the high resolution, along track inland water surface profiles derived from analysis of the geolocated photon clouds from the ATL03 product (Markus et al., 2017; Martino et al., 2019; Neumann et al., 2022). ATL13 products are reported at a short segment rate defined by approximately 100 along track ATL03 signal photons. By contrast, ATL22 computes the mean surface water quantities directly from the entire water body transect of ATL13 short-segment products. The two data products, ATL22 and ATL13, can be used in conjunction as they include the same orbit and water body nomenclature independent of the version. Both sets of ATL13 Rel 7 and ATL22 Rel 4 products represent the most accurate and complete version of the Inland Water products. For this release as is in previous releases, the entire time series is reprocessed over the full record of ICESat-2 observations from the beginning of acquisition in October 2018 to present.

The frequency of water body crossings depends on the intersection of the ATL13/22 water body mask and ICESat-2's orbital pattern that is characterized by the latitude-dependent observation scenario. For high latitude polar regions, mission science requirements dictated that ICESat-2 repeats observations along the precisely established reference tracks, similar to ICESat-1. However, for all lower latitudes over land, ICESat-2 implements a systematic off-pointing mapping scenario. The frequency of observing a specific water body therefore depends on its size and geographic location.

1.2 Applications of ATL22 Mean Inland Surface Water Products

The importance and applications of the ICESat-2 Inland Surface Water Products have been aptly described in Section 1.2 of the ATL13 ATBD. Here, ATL22 has been developed as a higher level (L3B) and often more convenient alternative to ATL13 for hydrologists, water resources engineers, and other discipline scientists and applied science users who may only require the mean surface water products across the water body such as water surface height. The computation of the mean crossing products directly from the ATL13 products can be cumbersome due to the non-repeat nature of the orbits and the irregular shape of the water bodies.

The ATL22 Mean Inland Surface Water products address several useful science and water resources applications. For instance, the estimation of river discharge usually requires the overall slope or mean water elevation at the upper and lower boundaries of a river reach. Differencing the ATL22 mean heights between two ICESat-2 beams for a single overpass, as well as the channel center, provides that measure. Similarly, storage change in a lake or reservoir is usually estimated on the basis of the mean elevation difference between two crossing dates. The ATL22 mean elevation centered at the middle of a reservoir transect more accurately provides that height, compared to in situ measurements near the shore that may be affected by wind setup. An additional important ATL22 product is in improving the water body crossing length distances whose computation can be hindered by uncertainty in the exact water entry and exit locations traditional satellite observations. Finally, the ATL22 products continue to offer valuable data especially in remote areas such as high latitude boreal zones in North America and Eurasia where in situ data measurements are sparse or non-existent. They further serve as a high resolution calibration source for other radar altimeters, that generally perform poorly in ice covered lakes, and as an accurate calibration source for the current SWOT mission launched in December 2022.

The difference between the mean ATL22 products and the long-standing ATL13 products is schematically illustrated in Figure 1-1 below. In Figure 1a, the reporting scales of the ATL13 products are short segment lengths with at least a minimum number of signal photons (E.g., 100 signal photons by default). By contrast in Figure 1b, the reporting scale of ATL22 mean products is a single value for the entire uninterrupted transect.

Figure 1-1. Schematic comparison of ATL13 and ATL22 data products. a) ATL13 short-segment, Along Track Inland Surface Water Data products are reported at variable segment lengths of 75-100 signal photons based on water body type, or about 30-150m, b) ATL22 Mean Inland Surface Water Data products report a single mean located at the center of each observed transect (red dots). Estimated vertical error is < 5-10 cm per transect and is dependent on transect length. (ATL13 Rel 3, Jasinski et al., 2021; ATL22 Rel 1, Jasinski et al 2021)

1.3 Evolution of the ATL13 and ATL22 Inland Surface Water Data Products

The Inland Surface Water Data products were continually updated over the years to include new features and capability and improved accuracy. Table 1-1 summarizes the evolving features of the data product through ATL13 Version 007 and the newest ATL22 Version 4. The list of all products associated with the latest ATL22 version is provided in Table 5-4.

ATL13/22 Version	Release Date	Water Body Types (Number of unique IDs)	Description and Principal Added Features (See details in Change History Log)
ATL13v1	May 2019	Lakes & reservoirs > 10 km ² (19,634)	Continuous, along track surface water products including - subsurface attenuation and supporting data reported at short segment length - Employs GLWD (Lehner & Doll 2004)
ATL13v2	Nov 2019	Adds water bodies (count): -Lakes & reservoirs ≥ 10 km² (19,800) -Estuaries, bays, and 7m near shore buffer (~3500)	- Employs HydroLAKES (Messager & Lehner, 2016) - Adds transitional waters; Named Marine Water Bodies (ESRI) GSHHG Shoreline (Wessel et al, 1996) - Adds significant wave height, coarse bathymetry algorithm - Adds dynamic shore finding
ATL13v3	Mar 2020	Adds water bodies (count): -Lakes & reservoirs ≥ 0.1 km² (~1,400,000) -Rivers ≥ ~50-100 m wide (10,300)	 Adds river mask using GRWL (Allen and Pavelsky, 2018) Adds wind speed for all crossings Adds Ice on/off flag from multi-sensor NOAA product Corrects first photon bias error, Adds cloud confidence flag
ATL13 V4 & v5	Apr/Nov 2021	All above water bodies	- Improves photon classification - Improves accuracy of existing data products - Reports additional products
ATL22 v1&2	Dec 2021	All water bodies	- Mean surface water and supporting products including crossing length - Reported for each transect (uninterrupted water crossing)
ATL13v6	Aug 2023	All water bodies	- Improves accuracy by eliminating anomalous photons. Added "2" in Eqn 4.11 & 4.12 to accommodate 2-way attenuation. Reports additional quality flags Replaced crossing number algorithm w/winding number. Expanded Table 5-3. Improved deconvolution water profiles Eqn 4.11 & 4.12.
ATL22v3	Aug 2023	All water bodies	- Improves mean surface water product estimates removing anomalies
ATL13v7	Dec 2024	All water bodies	- Added quality flags in Sec 4.8.1.12. Implemented mirroring approach to Sects 4.5.5.2 and 5.3.C. Updated subsurf Equations 4.11/12. Added MLE 4.12b. Included plain language summary in Chap 5. Improved bathymetry calc, removed instrument effects, min number of bathy photons, density thresholds. Updated min mirror count for coastal waters.
ATL22v4	Dec 2024	All water bodies	Added along track slope and rmse, ortho hgt, skew, kurtosis for lakes & reservoirs; mean MLE; crossing slope for rivers; exclusion of invalid slope calcs.

Table 1-1 Evolution of principal features of ATL13 and ATL22 Inland Surface Water Product Releases

2.0 BACKGROUND

2.1 ICESat-2 ATLAS Instrument

NASA's Ice, Cloud, and land Elevation Satellite-2 (ICESat-2) mission launch in September 2018 is the second of the ICESat laser altimetry missions. ICESat-2 carries an improved Advanced

Topographic Laser Altimeter System (ATLAS) consisting of a low energy, micropulse, multibeam, high-resolution photon-counting laser altimeter possessing three pairs of beams. Each pair, separated by about 90 m, consists of a high energy (~100 mJ) beam and a low energy (~25 mJ) beam each with an approximately 11 m footprint. Pairs of beams are separated by about 3 km. An instrument pulse rate of 10kHz and a nominal ground speed of ~7000m/s allow observations about every 70 cm. ATLAS can be oriented forward or backward, which changes the relative position of the weak and strong beams. A schematic of the backward orientation is shown in Figure 2-1.

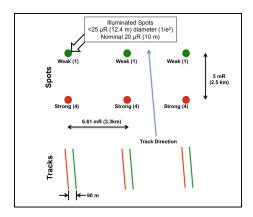


Figure 2-1 ICESat-2 ATLAS six-beam configuration oriented backward. Strong beams have about 4 times the pulse energy as weak beams.

2.2 ICESat-2 Orbit Configuration

ICESat-2's orbits at 496 km in a non-sun-sync, 92° inclination. Orbiting is configured in a 91 day repeat cycle with an approximately 30 day subcycle. An additional unique feature of ICESat-2 is its two orbit scenarios as shown in Figure 2-2 below. Above approximately +/-65 deg latitude, ATLAS operates in a repeat track mode over designated reference tracks similar to ICESat in order to obtain continuous time series of ice sheet change along those tracks. Below +/- 65 deg, however, ICESat-2 systematically off-points left or right from the reference tracks in subsequent orbits, in order to conduct a two-year global mapping of vegetation. Additional scheduled off-pointing is also available upon request to observe targets of opportunity and calibration/validation sites.

The frequency of water body crossings depends on the intersection of the ATL13/22 water body mask and ICESat-2's orbital pattern that is characterized by a dual, latitude dependent observation strategy. For high latitude polar regions, mission requirements require that ICESat-2 repeats observations along the precisely established reference tracks, similar to ICESat-1.

However, for all lower latitudes, ICESat-2 does not repeat during the first two years but rather implements the systematic off-pointing mapping. The frequency of observing a water body therefore depends also on its size and geographic location.

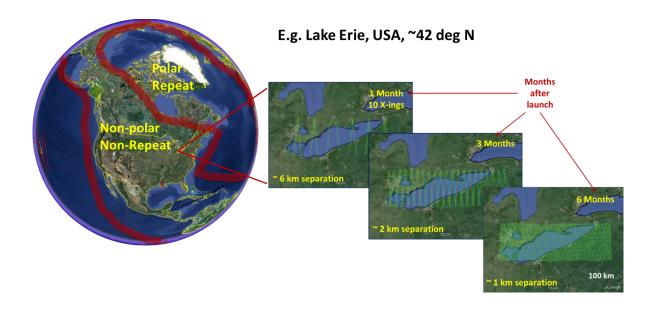


Figure 2-2 ICESat-2 off-pointing sampling scheme over land and impact on inland water observations, E.g. Impact of 6-month off-pointing on ICESat-2 crossings over Lake Erie, U.S. (Jasinski, Stoll, Gao & Parrish, AGU, 2019a; Jasinski, Stoll, Hancock, Robbins, Nattala, et al., AGU 2019b).

3.0 INLAND WATER PRODUCTS

3.1 Conceptualization of ATLAS observed inland water altimetry

The ATL22 mean crossing product is computed from the previously developed along track ATL13 surface and subsurface water products reported at the short segment rate. The ATBD of these along track products, include surface water height statistics, beam attenuation, and potential bottom elevation, among many others (Jasinski et al., ATL13 ATBD Rel 7, 2025). Mean products are computed for each uninterrupted series of short segments. Typical interruptions include the presence of islands or peninsulas in lakes, and river meanders.

3.2 Definition of ATL13/22 Inland Water Body

An ATL13/22 inland water body is defined as a contiguous continental water body of the following types: lakes and reservoirs greater than about 0.1km², rivers greater than about 50-100m wide, transitional water including estuaries and bays, and a near-shore 7km buffer. In aggregate, the number of water bodies defined above is globally about 1.5 million. In ATL13/22, each water body is defined by a unique ID using publicly available masks and datasets. The project endeavors to include the most accurate and updated mask available, which also serves the advantage of being consistent with developments within future missions such as the Surface Water Ocean Topography (SWOT) mission.

3.3 Definition of ATL13/22 Inland Surface Water Body Transect

ATL13/22 water bodies are identified by a set of polygons in shape-file format. An ICESat-2 transect is any portion of an ICESat-2 beam crossing over a single water body that is interrupted by land, say due to islands, bays, or peninsulas. An ICESat-2 crossing with no land interruptions would have a single transect. An ICESat-2 crossing with a single island would have two transects. It is possible that an island interrupting one beam is not in the path of another beam. Therefore, each of the six ICESat-2 beams may have a different number and/or location of transects on that particular crossing.

For ATL13/22 non-land portion of the coastal buffer shapes that abut the adjacent ocean or river (See for example, Figure 3-2), and for the upstream and downstream sides of the river reaches shape that abut another reach, there is no land on the sides. In these cases, the transect is defined as the distance between the shape edge and the land.

3.4 ATL13/22 Inland Water Body Mask

The ATL13/22 Inland Water Body Shape Mask shown in Figure 3.1 was created to facilitate identification of ICESat-2 crossings over individual water bodies. It delineates the shape and spatial distribution of contiguous individual water bodies. The mask consists of a composite of lakes, reservoirs, rivers, and transitional waters including estuaries and bays, and near shore coastal waters assembled by the inland water team for use in the ATL13 algorithm. The ATL13 Inland Water Body Shape Mask is employed as a shape-file based on several sources (E.g. HydroLAKES, Messager et al. (2016); Lehner and Messager (2016), Global River Width from Landsat (GRWL) (Allen and Pavelsky, 2018); Named Marine Water Bodies, ESRI). The mask

consists of polygons, each representing either an entire single lake or reservoir, 7-km wide coast segment, bay, or river segment including its tributaries. The ATL13 Inland Water Body Shape Mask includes for each shape an approximately 100m buffer extended beyond the lake over the land to facilitate the identification of the land/water interface. An example of the ATL13 Inland Water Body Mask for North America (Jasinski, Stoll et al., 2019) is shown in Figure 3-1 below.

Lakes within the ATL13/22 Inland Surface Water Mask are further categorized by large river basins and some adjacent intervening area, as shown within the global inset in Figure 3.1. Each polygon contains all the lakes and rivers within that river basin. Archiving data products in this manner eliminates the problem of having to store ATLAS inland water data products of contiguous lakes and rivers within different files. The regional basins are: 1= Northern North America; 2 = Southern North America; 3- Greenland; 4 = South America; 5 = Africa; 6 = Europe; 7 = Northern Asia; 8 = Southern Asia; 9 = Australia & Oceania; 10 = Antarctica. Details are provided in the ATL13 ATBD.

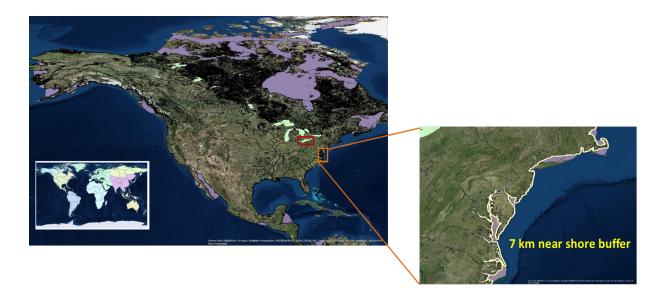


Figure 3-1 ATL13/22 Inland Surface Water Mask for North America Shape file (Jasinski, Stoll, AGU, 2019).

It is estimated that the multi-beam ATL13/22 ICESat-2 coverage contains potentially over 1.4 million water bodies, allowing the overpass of about 650 lakes \geq 100km², of which 50% are in Canada, and 25% in Eurasia. For lakes \geq 10km², the estimate is about 19,300 lakes, for lakes \geq 0.1km², the estimate is 1.4M. With 75-100 photon along-track aggregation there is the potential to record heights of the more numerous smaller impoundments (\geq 1-5 km²) which number in tens

of thousands. Height accuracy will depend on aggregation level and water state but is expected to be about 10cm for the strong beam.

3.5 The ATL03 Inland Water Mask (Flag)

In order to facilitate processing of data only over inland water bodies and near coastal regions, a gridded ATL03 Inland Water Processing Mask was further developed based on the ATL13 Water mask described above. Details are provided in the ATL13 ATBD Release 7. The gridded ATL03 inland water mask of 0.1 km² resolution initially flags if at least one ATL13 shape or partial shape exists in that grid. Grids without water bodies are not preprocessed for ATL13/22 analysis. Water bodies include lakes, reservoirs, impoundments, and all permafrost regions. The purpose of this fixed "Inland Water Mask", shown as the shaded regions in Fig 3-2, is one of efficiency. The implementation of the ATL22 algorithm draws only on ICESat-2 observations that have been flagged as falling within an AT03 Inland Water Mask.

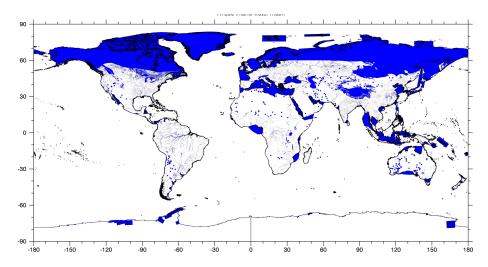


Figure 3-2 ATL03 Inland Water Mask (gridded, non-contiguous).

See further details in the ATL13 ATBD Release 7.

4.0 ALGORITHM THEORY

4.1 Conceptualization of ATLAS observed inland water altimetry

This section describes the necessary steps used to process along track ATL13 outputs into ATL22 transect mean quantities and other supporting parameters. Users interested in the derivation of the ATL13 products are referred to the ATL13 ATBD (Jasinski, Stoll et al. 2025).

4.2 Computation of Mean Products

ATL22 takes advantage of the high resolution ATL13 along-track products to produce transect-level output for utilization when the study of more granular data is unnecessary. The ATL22 transect-rate output files for each of six beams are produced on an approximate 24-hour basis, with four ATL13 granules utilized as input.

Mean surface water products are computed as follows: The mean ellipsoidal height, mean orthometric height, and mean subsurface attention of a given beam transect are computed as the arithmetic mean of the respective ATL13 segment-rate output. The mean is computed over all non-anomalous ATL13 short segments in a transect and reported at a single index location for each beam in the transect based on the latitude and longitude of each segment. Transect-level representations of latitude, longitude, and time for each ATL22 transect are computed based on the short segment index photon location within the transect that is closest to the arithmetic means of the corresponding ATL13 data sets, with mean transect time also provided in UTC format. The length of a transect is defined as the distance between the start and end latitudes and longitudes of the first and last ATL13 observed segments in the ATL22 transect, respectively.

Prior to estimating the mean, short segments are filtered based on histogramming input ATL13 heights in order to exclude outliers (E.g., land) from along track calculations. The mean standard deviation of the transect water surface for each beam is calculated as the square root of the sum of the squares of the short segment standard deviations divided by the number of segments. The reporting position is the same as for the other mean products in the transect. (For ATL22 release 004, the standard deviation output for rivers is not computed and thus marked as invalid). Along-track slope, and the skew and kurtosis of the surface height are based on the ATL13 segment-rate height output distribution.

In order to allow a user to conveniently understand the lineage of ATL22 products, a number of attributes from the ATL13 source data are conveyed as ATL22 output describing the water body to which the transect belongs. Each ATL22 transect, having been derived from ATL13 output from a single water body, can be described similarly in ATL22 output and its input outlined for source tracing and higher resolution ATL13 data access. For each ATL22 transect, the ATL13

granule name is provided that was utilized as input (/metadata/lineage), as well as the unique reference identification number (atl13_gran_ndx) for the water body to which the transect belongs, the water body region, and the water body type.

In order to further facilitate the use of ATL22 output in concert with the higher resolution ATL13 data, ATL22 transect output contains indices directing a user to the start and end rows (transect_start_sseg_idx and transect_end_sseg_idx) of ATL13 input arrays upon which the ATL22 products are based. Thus, the exact set of input used to compute the output for a given transect can be traced within the lineage, reference, and transect identifying values of an ATL13 product array by considering the start and end index values provided by ATL22. The name and description of the input products including the start and end latitude and longitude locations are provided in Table 5-1. The names and descriptions of the ATL22 output products are provided in Table 5-4.

Additional information that is useful in understanding the robustness of a given transect in the ATL22 output is provided as counts of the shorter ATL13-defined segments that construct the transect. The count of non-anomalous short segments, long segments, and very long segments as defined in ATL13 processing are provided as ATL22 output.

Three examples of ATL22 output including a single lake and two global images, are provided in Section 6.

4.3 Data Product Precision and Evaluation

The Inland Water Data Product quality relies on the precision of the ATL03 georeferenced photons and associated products which are evaluated prior to their use within ATL13. The plan offered for evaluating ATL13 ATBD data products is presented in Section 4.9.2, Jasinski et al., 2023) and is also provided here.

4.3.1 ICESat-2 Precision

The precision of the ICESat-2 retrieval is estimated from root mean square of five error sources:

- i) Radial orbit error, RO_{RMS}
- ii) Tropospheric delay error, TD_{RMS}
- iii) Forward scattering error, FS_{RMS}
- iv) Geolocation Knowledge uncertainty, GK_{RMS}
- v) ATLAS ranging precision per photon, σ_{RMS} .

Actual rms error for each source are obtained from ATL03. The current default values are $RO_{RMS} = 4.0$ cm, $TD_{RMS} = 3$ cm, $FS_{RMS} = 3$ cm, $GK_{RMS} < 0.5$ cm (over water) and $\sigma_{RMS} = 24.0$ cm. For 100 photon short segments, the ranging precision is estimated as $\sigma_{RMS100} = \sigma_{RMS}/(100^{-1/2}) = 24/(100)^{1/2} = 2.4$ cm.

The overall ensemble error per 100 inland water photons is estimated as

$$\sigma_{ICESat2} = \sqrt{[RO_{RMS}^2 + TD_{RMS}^2 + FS_{RMS}^2 + GK_{RMS}^2 + \sigma_{100 \, shots}^2]}$$

$$= \sqrt{37.25} = 6.1 \text{ cm}$$
(4.1)

This precision error is updated as post-launch ATLAS data sets are evaluated.

Previously analyzed MABEL data (Jasinski et al., 2016) scale well with the anticipated ATLAS observations. Results indicate a MABEL water return rate of 0.36 to 2.90 (photon events per meter (pe/m) depending on surface and atmospheric conditions. The ranging precision for a 100 shot segment would vary from 2.0 to 5.0 cm, respectively.

4.3.2 **Data Product Evaluation**

A plan for evaluating the Inland Water Data Product was formulated during the development of ATL13 by using principally existing publicly available data from relevant U.S. agencies, university researchers, and other various organizations. Data product quality is achieved through monitoring, assessment, and validation at various levels of effort depending on available resources. The overall approach for ATL22 is i) to compare ATL22 data products with *in situ* data and satellite radar altimetry where available, ii) evaluate several components of the ATL22 algorithm through threshold monitoring with model diagnostics, and iii) conduct in situ validation and calibration when resources are available or synergistic field opportunities arise. Evaluation can be conducted over all ATL22 Inland Water Body types including lakes, reservoirs, rivers, estuaries and near shore coasts. Sites are located primarily in the US and North America, but also at several international sites. Every effort is made to be aware of other sponsored field programs by NASA and other agencies.

4.3.2.1 Monitoring Activities

Monitoring refers to active and continuous evaluation of ICESat-2 data-product parameters, primarily through data visualizations and threshold monitoring. Monitoring can occur through

comparison of ATL22 time series data plots with other independent data. Time series can be evaluated with respect to mean water surface segment heights, variances, slopes, significant wave height, subsurface attenuation, presence of ice, and identifiable bottom location, as a function of water body type, location, water clarity and prevailing meteorological conditions. For the Inland Water Data Product, monitoring occurs principally by leveraging off existing databases supported by numerous organizations in the US and internationally, including radar altimetry missions. Principal sources include:

- a) Reservoir and lake elevations based on satellite radar altimetry from Jason 3, Sentinel 3A and 3B sensors and compiled at online archives. Example online data bases include:
 - i) Center for Topographic Studies of the Ocean and Hydrosphere (CTOH) data https://www.legos.omp.eu/ctoh/ctoh-products/
 - ii) HYDROWEB (Theia, LEGOS, other international)

https://www.theia-land.fr/en/hydroweb/

iii) Global Reservoir and Dam Database (GWSP)

https://www.globaldamwatch.org/

iv) G-REALM (USDA)

https://ipad.fas.usda.gov/cropexplorer/global reservoir

v) Simple Global River Bankfull Width & Depth Database

http://gaia.geosci.unc.edu/rivers/

vi) River and Lakes (ESA) (historical data)

https://altimetry.esa.int/riverlake/shared/main.html

vii) Database for Hydrological Time Series of Inland Waters (DAHITI)

https://dahiti.dgfi.tum.de/en/

viii) Global Water Monitor

https://blueice.gsfc.nasa.gov/gwm/lake/Index

b) *In situ* water level gauges primarily at reservoirs, lakes, and other water bodies monitored by the: i) US Geological Survey (USGS), ii) National Oceanic and Atmospheric Administration (NOAA), iii) Bureau of Land Management (BLM), and iv) US Army Corps of Engineers (USACE). Although there are hundreds of available sites, the principal water bodies being

considered include Lake Fort Peck, MT; Lake Mead, NV; all Great Lakes; Lake Tahoe, CA; Chesapeake Bay; Lake Teshekpuk and Toolik Lake, AK; Lake Issyk-Kul, Kyrgyzstan; water bodies within the Mississippi, Connecticut, and Yukon River basins. All these water bodies are well gaged by the USGS, NSF, or other US agencies with accessible online data. Analyses will include evaluation mainly of root mean square error, bias, and mean absolute error. Databases include:

i) NOAA Great Lakes Environmental Research laboratory

https://www.glerl.noaa.gov/data/wlevels/#monitoringNetwork

ii) Lake Levels (GWSP)

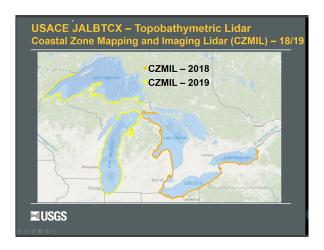
https://www.lakelevels.info/

iii) Lakes Online

http://www.lakesonline.com/

vi) USGS National Water Information System

https://waterdata.usgs.gov/nwis


4.3.2.2 Assessment and Validation Activities

Assessment refers to a single post-launch evaluation of ICESat-2 data-product accuracy and/or precision, generally against in situ data. 'Validation' refers to an aggregate of post-launch 'assessments' to determine global ICESat-2 accuracy or precision. Instruments required are those that observe water surface height statistics, wind speed and direction, and basic water quality constituents that affect optical transmission and turbidity such as mineral particles, dissolved organic carbon and chlorophyll, among others.

Several opportunities are available with the following programs:

a) <u>United States Great Lakes and near shore transitional zones.</u> Field experiments are planned in collaboration with the Joint Airborne Lidar Bathymetry Technical Center of Expertise (JALBTCX) mission performs operations, research, and development in airborne lidar bathymetry to support the coastal mapping and charting requirements of the US Army Corps of Engineers (USACE), the US Naval Meteorology and Oceanography Command, the National Oceanic and Atmospheric Administration (NOAA), and the U.S. Geologic Survey (USGS). JALBTCX executes survey operations worldwide using the Coastal Zone Mapping and Imaging Lidar (CZMIL) system and other industry-based coastal mapping and charting systems. CZMIL

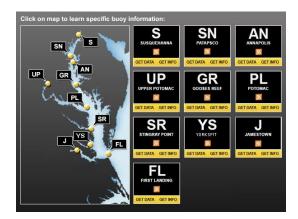
is integrated with an ITRES CASI-1500 hyperspectral imager and a true-color digital camera. CZMIL collects 10-kHz lidar data concurrent with 5-cm digital true-color and 48-band hyperspectral imagery. JALBTCX research and development supports and leverages work in government, industry, and academics to advance airborne lidar and coastal mapping and charting technology and applications. An example of planned JALBTCX coverage in 2018 and 2019 is shown below.

b) Alaska Sites

ATL13 has collaborated with researchers from the Alaska USGS, the University of Alaska, Fairbanks, and NASA GSFC, for in situ monitoring during overflights. Sites include NSF sponsored Lakes Teshekpuk and Inigot, Toolik Lake; and the Yukon River and the Mackenzie River deltas as shown below. Participation in NASA GSFC field experiments at the mouths of the Yukon River and the near-shore region off Northern Alaska to the Mackenzie River mouth are currently under consideration.

c) Mid-Latitude Lakes and Reservoirs

Assessment sites include collaboration a several sites with various groups including the Great Lakes (JALBTCX, Illinois State geological Survey), Lakes Mead (US Bureau of Reclamation), Lake Fort Peck (USACE), Lake Tahoe and the Great Lakes. For the Great Lakes, ATL13 is collaborating with efforts to measure Great Lakes surface water conditions at the locations shown below.


Great Lakes

d) Transitional Water Bodies (Estuaries, Bays, Near Shore Coasts)

Principal areas would include the Chesapeake Bay, and the estuaries of the Mississippi/Atchafalaya River deltas, Everglades, Mackenzie River, and Yukon River, together with the near shore regions surrounding the East and West coast of the continental U.S. and Northern Alaska.

e) Collaboration with personnel from NOAA STAR for in situ measurements was implemented (Jasinski et al., 2016).

4.3.2.3 Calibration Activities and Measurements

Data product calibration consists of the application of post-launch 'assessments' or 'validations' to either ICESat-2 instrument settings, or to future data releases, in an effort to improve measurement accuracy and/or precision. Necessary measurements for validation include the following:

- i) Meteorology: Wind speed and direction, optical depth, cloud cover
- ii) Water Surface Physical Properties: GPS, wave height statistics, temperature, water depth
- iii) Subsurface Radiative Properties: Upwelling and downwelling radiance, at 532 nm.
- iv) Water Inherent Optical Properties: subsurface attenuation, suspended particulate matter, CDOM, Chlorophyll, temperature, salinity, turbidity (NTU) and Secchi Depth.

5.0 ALGORITHM IMPLEMENTATION

5.1 Outline of Procedure

The overall procedure is to process global inland water body transects on a regular basis based on the ATL22 processing interval. The algorithm analyzes all transects of one water body before proceeding to the next. Mean data products are computed for all the new transects observed for that water body since the previous processing period.

5.2 ATL22 Input Variables and Parameters

Table 5-1 Input Variables for ATL22 Mean Inland Surface Water Algorithm

Name	Description	Units	ATLxx/Other Source
atl13_lineage	Names of ATL13 granules utilized as input into ATL22 granule.		ATL13/METADAT A/Lineage/ATL13/f ileName
atl13refid	Unique aggregate reference number for each shape in the ATL13 Inland Water Body Mask, where digit 1 = type, digit 2 = size, digit 3 = source, and digits 4-10 = shape id	unitless	ATL13/gtx/atl13ref id
transect_id	Transect within a water body to which the short segment rate output belongs.	unitless	ATL13/gtx/transect_id
inland_water_ body_id	Identifying signature of an individual inland water body. Each body of water is represented by a unique numeric value.	unitless	ATL13/gtx/inland_water_body_id
inland_water_ body_region	ATL13-created shapefile representing relevant bodies of water over which to implement the ATL13 water surface finding algorithm only within a region of processing interest.	unitless	ATL13/gtx/inland_ water_body_region

Name	Description	Units	ATLxx/Other Source
inland_water_ body_type	Type of Inland Water Body, where 1=Lake, 2=Known Reservoir, 3=(Reserved for future use), 4=Ephemeral Water, 5=River, 6=Estuary or Bay, 7=Coastal Water, 8=Reserved, 9=Reserved	unitless	ATL13/gtx/inland_ water_body_type
s_seg1	Short segment size, operationally used as unit length over which to identify water surface height anomalies such as islands, bridges, etc.	unitless	ATL13/ancillary_d ata/inland_water/s_ seg1
1_surf	Long segment size, operationally used as unit length over which to detrend the water surface, characterize the surface, and deconvolve the instrument pulse and subsurface effects from the water surface response.	unitless	ATL13/ancillary_d ata/inland_water/l_s urf
l_sub	Long segment size, operationally used as unit length over which to characterize the subsurface, and deconvolve the instrument pulse and subsurface effects from the water surface response.	unitless	ATL13/ancillary_d ata/inland_water/l_s ub
segment_lat	Latitude of reporting location for all short segment statistics.	degrees	ATL13/gtx/segment _lat
segment_lon	Longitude of reporting location for all short segment statistics.	degrees	ATL13/gtx/segment _lon

Name	Description	Units	ATLxx/Other Source
delta_time	Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed.	seconds	ATL13/gtx/delta_ti me
sseg_start_lat	Latitude at which the short segment begins. May be a signal or non-signal photon.	degrees	ATL13/gtx/sseg_start_lat
sseg_start_lon	Longitude at which the short segment begins. May be a signal or non-signal photon.	degrees	ATL13/gtx/sseg_start_lon
sseg_end_lat	Latitude at which the short segment ends. May be a signal or non-signal photon.	degrees	ATL13/gtx/sseg_en d_lat
sseg_end_lon	Longitude at which the short segment ends. May be a signal or non-signal photon.	degrees	ATL13/gtx/sseg_en d_lon
ht_water_surf	Water surface height, reported for each short segment (default length = approximately 100 signal photons) with reference to WGS84 ellipsoid	meters	ATL13/gtx/ht_wate r_surf
ht_ortho	Orthometric height EGM2008 converted from ellipsoidal height.	meters	ATL13/gtx/ht_orth
subsurface_att enuation	Subsurface attenuation coefficient.	unitless	ATL13/gtx/subsurf ace_attenuation

Name	Description	Units	ATLxx/Other Source
stdev_water_s urf	Standard deviation of water surface, calculated over long segments with result reported at each short segment location tag contained within.	meters	ATL13/gtx/stdev_w ater_surf
alpha_MLE	Alpha calculated by maximum likelihood analysis of the subsurface profile range.	meters ⁻¹	ATL13/gtx/alpha_ MLE
sseg_dist_fro m_eq	Along-track distance from the equator to the first photon in the short segment.	meters	ATL13/gtx/sseg_di st_from_eq
segment_slop e_trk_bdy	Along track water body surface slope, reported per short segment ID per water body.	m/m	ATL13/gtx/segment _slope_trk_bdy
segment_azim uth	The direction, eastwards from north, of the laser beam vector as seen by an observer at the laser ground spot viewing toward the spacecraft (i.e., the vector from the ground to the spacecraft). When the spacecraft is precisely at the geodetic zenith, the value will be 99999 degrees.	radians	ATL13/gtx/segment _azimuth

Table 5-2 Parameters Needed to Drive the Algorithm

Name	Var Type	Description	Default*
ht_ortho_bin_ size	R*4	Bin size by which to histogram ATL13 ht_ortho values.	0.025 m
threshold_incl ude	R*4	Minimum threshold fraction bin count relative to the mode for its member short segments to be included in ATL22 mean calculations.	0.20

Name	Var Type	Description	Default*
along_trk_slo pe_calc	I*4	Water body types that are to process a mean along track slope. This parameter is a rank 1 array of extent 9, with the body type digits coinciding with the array subscripts 1 through 9. Array elements are binary values, if 0 then process body type mean slope, 1 otherwise. Water body types are described in ATL22 Table 5-1.	[1,1,1,1,0,1,1,1,1,1]
skew_kurt_bd y_calc	I*4	Water body types that are to process skewness and kurtosis. This parameter is a rank 1 array of extent 9, with the body type digits coinciding with the array subscripts 1 through 9. Array elements are binary values, if 0 then process skewness and kurtosis, 1 otherwise. Water body types are described in ATL22 Table 5-1.	[0,0,1,1,0,1,1,1,1,1]
skew_calc_mi n_cnt	I*4	Minimum number of filtered short segments that must be available on the transect to proceed with skewness calculation.	5
kurt_calc_min _cnt	I*4	Minimum number of filtered short segments that must be available on the transect to proceed with kurtosis calculation.	5
slope_ssegs_ min	I*4	Minimum number of filtered ATL13 short segments heights that must be available in order to calculate transect along-track slope.	4

Table 5-3 Intermediate Variables

Name	Units	Description	Section
H_ht_ortho		Binned histogram of ATL13 ht_ortho values on the transect.	5.2.2
ht_ortho_mod e_count	N/A	Count of ht_ortho values contained in the histogram mode.	5.2.2
include_flag	N/A	Flag indicating whether or not an ATL13 output short segment shall be included in ATL22 mean computations.	5.2.2

5.3 PROCESSING PROCEDURE

5.3.1 Input ATTRIBUTES

The ATL22 transect-rate output is produced on an approximate 24-hour basis, with four ATL13 granules utilized as input. In order to allow a user to conveniently understand the lineage of ATL22 products, a number of attributes from the ATL13 source data are conveyed as ATL22 output.

For each transect, include *atl13_gran_ndx* equal to the index value of the ATL13 granule listed in *atl13_lineage* upon which the ATL22 transect computations are based. Each transect in the ATL22 output, being derived from ATL13 products of a single water body, can be described similarly in ATL22. For each transect, include as ATL22 output *atl13refid*, *transect_id*, *inland_water_body_id*, *inland_water_body_region*, and *inland_water_body_type* of its ATL13 input.

In order to facilitate the use of ATL22 output in concert with the higher resolution ATL13 data, ATL22 contains indices directing a user to the start and end rows of ATL13 input upon which the ATL22 products are based. These output variables are *transect_start_sseg_idx* and *transect_end_sseg_idx*, defined as the first and last row in the ATL13 output variable arrays used in each ATL22 transect computation, identified by matching values of *atl13_gran_ndx*, *atl13refid* and *transect_id*.

Once the start and end of the ATL13 array for a given water body transect have been identified, it is also possible to compute as product output $transect_sseg_cnt$, the number of ATL13 short segments contributing to the ATL22 transect. The ATL22 output also includes the number of long and very long segments, as defined in ATL13. These segment counts are derived for each transect from ATL13 ancillary data, where $transect_lseg_cnt = l_surf/s_seg1$ and $transect_lseg2_cnt = l_sub/s_seg1$.

5.3.2 TRANSECT DEFINITION

Because ATL22 output is produced at the transect rate, it is necessary to compute spatial and temporal definitions for each transect based on its ATL13 source short segment input.

ATL13 short segment heights of certain body types are further tested for the likelihood that they are part of the water surface before inclusion in ATL22 mean calculations. For a given transect of *inland_water_body_type* = [1,2,5,6,7], histogram the *transect_sseg_cnt* ATL13 heights, *ht_ortho* as *H_ht_ortho*, in bins of *ht_ortho_bin_size* width. Identify the bin (or bins) in *H_ht_ortho* with the largest count, and set that count as *ht_ortho_mode_count*. Test each bin in the histogram where if the bin count equals or exceeds *threshold_include* * *ht_ortho_mode_count*, each ATL13 sseg represented in the bin receives *include_flag* = 1, and if bin count is less than *threshold_include* * *ht_ortho_mode_count*, *include_flag* = 0.

The count of short segments that pass the filtering, where *include_flag* = 1, is set as *transect sseg cnt filtered*.

Compute as output product variables *transect_mean_lat*, *transect_mean_lon*, and *transect_mean_time* by computing the mean of all short segments' *segment_lat*, *segment_lon*, and *delta_time*, respectively where *include_flag=1*. The ATL22 output also includes *transect_mean_time_utc*, a conversion of *transect_mean_time_to_UTC* time.

Of the ATL13 input segments that comprise the ATL22 transect, identify the *segment_lat*, *segment_lon*, and *delta_time* nearest *transect_mean_lat*, *transect_mean_long*, and *transect_mean_time*, respectively, and designate them on the ATL22 product as *transect_lat*, *transect_lon*, and *transect_time*.

Define the start and end locations of an ATL22 transect, where *transect_start_lat* and *transect_start_lon* are equal to *sseg_start_lat* and *sseg_start_lon* of the first ATL13 segment in the ATL22 transect where *include_flag=*1. Similarly, *transect_end_lat* and *transect_end_lon* are defined on ATL22 output by *sseg_end_lat* and *sseg_end_lon* of the final ATL13 segment in the ATL22 transect where *include_flag=*1. ATL22 transect start and end times, *transect_start_time* and *transect_end_time*, are defined by the ATL13 *delta_time* of the first and last short segment in the ATL22 transect where *include_flag=*1, respectively.

5.3.3 ALONG-TRACK PROCESSING

ATL22 takes advantage of the high resolution ATL13 along-track products to produce transect-level output for utilization when the study of more granular data is unnecessary. The length of each transect, transect_length, is computed as the distance between sseg_start_lat and sseg_start_lon of the first ATL13 segment in the ATL22 transect where include_flag=1 and sseg_end_lat and sseg_end_lon of the final segment in the transect where include_flag=1.

Transect_dist_from_eq is computed as the distance along track from the equator to the start of

the first filtered short segment in the transect, and is identical to ATL13 *sseg_dist_from_eq* of the first filtered short segment, amongst all filtered short segments used for the actual mean transect computation, on any given transect. Note: ATL22 is composed of up to four orbits (reference ground tracks) and the distance values reset to start from each orbit's equator crossing.

Ellipsoidal height, orthometric height, and subsurface attention of a given transect are the mean values of httms://mean.subsuface_attenuation, and-alpha_MLE, and segment_azimuth for all short segments of valid output where include_flag=1, and reported on ATL22 product output as transect_mean.ht_ortho, and-transect_mean.ht_wGS84, transect_mean.subsuface_transect_mean.ntmanned, and-transect_mean.ntmanned, and-transect_mean.ntmanned, and-transect_mean.ntmanned, and-transect_mean.ntmanned, and-transect_mean.ntmanned, and-transect_mean.ntmanned, and-transect_mean.ntmanned, and-transect_mean.ntmanned, and-transect_mean.ntmanned, and-transect_mean.subsuface_attenuation, and-transec

Bias-corrected skewness and kurtosis of the ATL13 orthometric heights are reported on the ATL22 output as transect_ht_skew and transect_ht_kurtosis where skew_kurt_bdy_calc(inland_water_body_type) = 0, based on ATL13 short segments with include flag = 1. If transect_sseg_cnt_filtered < skew_calc_min_cnt, set transect_ht_skew = invalid, and if transect_sseg_cnt_filtered < kurt_calc_min_cnt set transect_ht_kurtosis = invalid.

For transects where *trk_slope_bdy_calc(inland_water_body_type)* =0, the detrending-based slope of the transect is

calculated as the mean of all **segment_slope_trk_bdy** values of segments where **include_flag** = 1, and reported on the output as **transect_mean_slope_trk_bdy**. All invalid values of **segment_slope_trk_bdy** from ATL13 should be excluded from the ATL22 mean calculation, and if the transect contains no valid short segment values of **segment_slope_trk_bdy**, then **transect_mean_slope_trk_bdy** should be reported on ATL22 as invalid.

For transects where *along_trk_slope_calc*(*inland_water_body_type*) =0, calculate the observed along-track slope for the transect by fitting a straight line through all short segments with inc*lude_flag*=1. The point to be fit through for a given *qualifying* (*include_flag*=1) short segment is determined as:

X-coordinate = distance from the start of the first *qualifying* segment (sseg_start_lat, sseg_start_lon) to the reporting location (transect_lat, transect_lon) of the given *qualifying* short segment, and

Y-coordinate = ht_ortho of the given qualifying short segment, with the resulting linear slope written to the ATL22 output as transect_slope. Report root mean squared error of this linear fit as transect_slope_RMS_err_RMS_err. If transect_sseg_cnt_filtered for the transect is less than slope_ssegs_min, or along trk slope calc(inland water body type)=1, set transect slope = invalid.

The standard deviation of the transect water surface, <code>transect_mean_stdev_water_surf</code>, is calculated as sqrt[sum(<code>stdev_water_surf</code>1:transect_sseg_cnt²)/transect_sseg_cnt_filtered], including only short segments with valid <code>stdev_water_surf</code> values and <code>include_flag=1</code>. Pending further development of the product, The <code>transect_mean_stdev_water_surf</code> computation is then overwritten as <code>invalid</code> for all transects in ATL22 release 004 where <code>inland_water_body_type=5</code>.

5.4 Mean Transect and Associated Output Products

The ATL22 transect-rate output is produced on an approximate 24-hour basis, with four ATL13 granules utilized as input. In order to allow a user to conveniently understand the lineage of ATL22 products, a number of attributes from the ATL13 source data are conveyed as ATL22 output. takes advantage of the high resolution ATL13 along-track products to produce transect-level output for utilization when the study of more granular data is unnecessary.

Table 5-4 Output Parameters for ATL22 Mean Inland Surface Water Algorithm

Name	Units	Description
atl13_gran_nd x	N/A	ATL13 granule index, indicating from which ATL13 granule in /METADATA/Lineage/ATL13/fileName an ATL22 transect product was derived.
atl13refid	N/A	Unique aggregate reference number for each shape in the ATL13 Inland Water Body Mask, where digit 1 = type, digit 2 = size, digit 3 = source, and digits 4-10 = shape id
transect_mean _lat	degrees	Mean latitude of the transect, calculated as mean of all filtered sseg latitudes in the transect.
transect_mean _lon	degrees	Mean longitude of the transect, calculated as mean of all filtered sseg longitude in the transect.
transect_mean _time	sec	Mean time of the transect, calculated as mean of all filtered sseg times in the transect.
transect_mean _time_utc	N/A	Mean time of the transect in UTC format YYYY-MM-DDTHH:MM:SS.SSSSSSZ.
transect_sseg_ cnt	unitless	Number of non-anomalous short segments in the transect.

Name	Units	Description
transect_lseg_ cnt	unitless	Number of complete long segments in the transect.
transect_lseg2 _cnt	unitless	Number of complete very long segments in the transect.
transect_start_ lat	degrees	Latitude of the transect start, determined by the latitude of the first photon in the first filtered short segment in the transect.
transect_start_ lon	degrees	Longitude of the transect start, determined by the longitude of the first photon in the first filtered short segment in the transect.
transect_start_ time	seconds	Time of the transect start, determined by the time of the index photon in the first filtered short segment in the transect.
transect_end_l at	degrees	Latitude of the transect end, determined by the latitude of the last photon in the last filtered short segment in the transect.
transect_end_1 on	degrees	Longitude of the transect end, determined by the longitude of the last photon in the last filtered short segment in the transect.
transect_end_t ime	seconds	Time of the transect end, determined by the time of the index photon in the last filtered short segment in the transect.
transect_mean _ht_WGS84	meters	Mean geodetic height of the transect with respect to the WGS84 ellipsoid, determined as the mean of all filtered short segment height values in the transect.
transect_mean _ht_ortho	meters	Mean orthometric height of the transect with respect to the EGM2008 geoid, determined as the mean of all filtered short segment height values in the transect.
transect_mean _stdev_water_ surf	meters	Mean standard deviation of the transect water surface, determined based on filtered short segments. (Deferred for rivers; populated with invalid values in rel004)

Name	Units	Description
transect_mean _subsurf_atte n	m ⁻¹	Mean subsurface attenuation (alpha) of the transect, determined as the mean of all filtered alphas along the transect.
transect_lengt h	meters	Length of the transect, determined as the distance from the first filtered observed reference photon in the water body to the final filtered observed photon in the body.
transect_start_ sseg_idx	unitless	Index of first entry in ATL13 short segment rate output data contributing to transect summary.
transect_end_ sseg_idx	unitless	Index of final entry in ATL13 short segment rate output data contributing to transect summary.
transect_id	unitless	Transect within a water body to which the short segment rate output belongs.
inland_water_ body_id	unitless	Identifying signature of an individual inland water body. Each body of water is represented by a unique numeric value.
inland_water_ body_region	unitless	ATL13-created shapefile representing relevant bodies of water over which to implement the ATL13 water surface finding algorithm only within a region of processing interest.
inland_water_ body_type	unitless	Type of Inland Water Body, where 1=Lake, 2=Known Reservoir, 3=(Reserved for future use), 4=Ephemeral Water, 5=River, 6=Estuary or Bay, 7=Coastal Water, 8=Reserved, 9=Reserved
transect_lat	degrees	Reporting latitude of transect statistics.
transect_lon	degrees	Reporting longitude of transect statistics.
transect_time	seconds	Reporting time of transect statistics.
transect_sseg_ cnt_filtered	unitless	Number of filtered ATL13 non-anomalous short segments in the transect used in ATL22 mean product calculations.
transect_mean _alpha_MLE	meters ⁻¹	Mean maximum likelihood alpha of the transect, determined as the mean of all filtered short segment MLE alphas of the subsurface profile ranges across the transect.

Name	Units	Description
transect_slope	m/m	Along-track slope of the observed transect in the direction of crossing, determined by linear fit of all filtered ATL13 short segment orthometric height values in the transect.
transect_slope _RMS_err	unitless	Root mean squared error of the linear fit of filtered orthometric short segment heights along the observed transect.
transect_dist_ from_eq	meters	Along-track distance from the equator to the start of the first filtered short segment in the transect.
transect_mean _slope_trk_bd y	m/m	Mean ATL13 along track water body surface slope, as
		reported per short segment ID per water body.
transect_ht_sk ew	unitless	Bias-corrected skewness of the distribution of ATL13 orthometric heights across the transects.
transect_ht_k urtosis	unitless	Bias-correct kurtosis of the distribution of ATL13 orthometric heights across the transects.
transect_mean _azimuth	radians	Mean azimuth of the transect, determined as the mean of all filtered short segment azimuth values of the subsurface profile ranges across the transect.
err_slope_bdy	unitless	Error included in segment_slope_trk_bdy. (deferred)
err_aspect	rad	Error included in aspect reported. (deferred)

6.0 ATL22 SAMPLE PRODUCT RESULTS

6.1 Typical ATL22 Version 1 example for single water body

Three examples of ATL22 output are provided below. First, Figure 6.1 exhibits the ATL13 and ATL22 Version 1 surface height products in WGS84 datum for one beam (GTR2) of an ICESat-2 crossing over Eagle Lake, CA on October 19, 2018. Three ICESat-2 data products are plotted: i) the ATL03 georeferenced photons (green dots); ii) the ATL13 along track short segment water surface heights (yellow dashes), and iii) the ATL22 mean water heights (red dots). ATL22 results indicate that ICESat-2 crosses two transects defined by the inland water mask at this location in Eagle Lake and accurately estimates the mean water surface height between the well-defined river banks (See E.g. mean Latitudes ~40.635N and 40.672N).

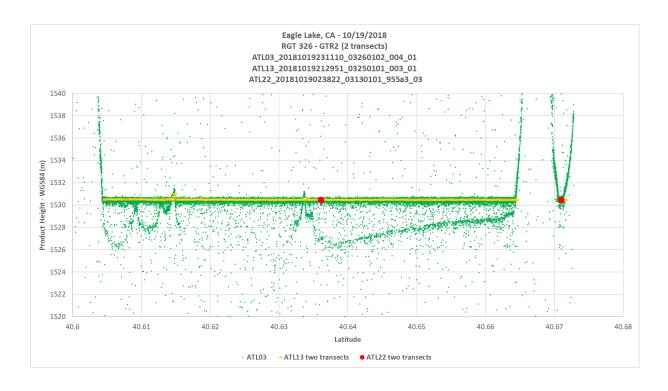


Figure 6-1 Typical example of ATL22 product (red dots) identifying two ICESat-2 transects over Eagle Lake on October 19, 2018. Yellow surface represents ATL13 short segment products (See Fig 4-8 in ATL13 ATBD Rel 7).

6.2 Typical daily global summary of ATL22 transect length and mean orthometric height

Figures 6-2 and 6-3 show two ATL22 browse products for a 24 hour period. Figure 6-2 indicates the global mean water surface orthometric height for each water body transect that it crosses on October 18, 2019. The figure gives an indication of the density of products and the orbital pattern during that period. It can be seen that the higher elevations occur in the mountain region and in the interior of the continent, while lower elevations occur near the coast. The legend is plotted in log scale for convenience.

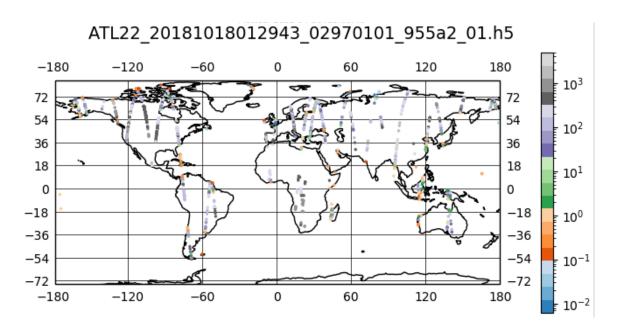


Figure 6-2 Typical ATL22 daily browse summary of transect mean orthometric height (EGM2008) for all global ICESat-2 crossings on October 18, 2019.

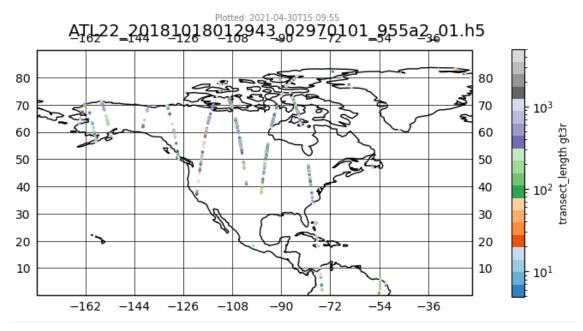


Figure 6-3 Typical ATL22 daily summary of transect length (m) for all North America ICESat-2 crossings on October 18, 2019.

Figure 6-3 shows the corresponding transect lengths associated with each of the heights shown in Figure 6-2 but zoomed in for North America. Greater transect lengths can be observed over the Great Lakes, whereas shorter lengths over smaller lakes are exhibited, for example, in the interior of Alaska. Overall results from Figures 6-1, 6-2, and 6-3 demonstrate that the ATL22 height products and their mean locations are being calculated correctly together with their locations.

7.0 REFERENCES

Allen, G.H. and T. M. Pavelsky, 2018: Global extent of rivers and streams. Science 361, 585–588. DOI: 10.1126/science.aat0636.

M. Jasinski, J. Stoll, D. Hancock, J. Robbins, J. Nattala and C Carabajal (March 2024). *ATLAS/ICESat-2 L3B Mean Inland Surface Water Data, Release 4*. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.* DOI:10.5067/ATLAS/ATL22.004.

Jasinski, M., J. Stoll, D. Hancock, J. Robbins, J. Nattala, and C. Carabajal (2023). ICESat-2 Algorithm Theoretical Basis Document (ATBD) for Mean Inland Surface Water Data, ATL22, Version 3. ICESat-2 Project, DOI: 10.5067/5AALHPWLMJ4D.

M. Jasinski, J. Stoll, D. Hancock, J. Robbins, J. Nattala, April 28, 2023. ATLAS/ICESat-2 L3B Mean Inland Surface Water Data, Version 3. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.* DOI:10.5067/ATLAS/ATL22.003

Jasinski, M., Stoll, J., Hancock, D., Robbins, J., Nattala, J., Pavelsky, T., Morrison, J., Jones, B., Ondrusek, M., Parrish, C., Carabajal C., and the ICESat-2 Science Team (January 31, 2025). *ICESat-2 Algorithm Theoretical Basis Document (ATBD) for Along Track Inland Surface Water Data, ATL13, Release* 7. ICESat-2 Project, NASA Goddard Space Flight Center, Greenbelt, MD, 190 pp. DOI: 10.5067/46BO943W5S2X.

Suggested citation when using ATL13 Inland Water data products from NSIDC:

Jasinski, M., J. Stoll, D. Hancock, J. Robbins, J. Nattala, T. Pavelsky, J. Morrison, B. Jones, M. Ondrusek, C. Parrish, and the ICESat-2 Science Team, 2025. *ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data, Release 7*. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. DOI:10.5067/ATLAS/ATL13.007

M. Jasinski, J. Stoll, D. Hancock, J. Robbins, J. Nattala, T. Pavelsky, J. Morrison, B. Jones, M. Ondrusek, C. Parrish, and the ICESat-2 Science Team, April 2023: *Algorithm Theoretical Basis Document (ATBD) for Along Track Inland Surface Water Data, ATL13, Release 6*, Release Date

April 2023, NASA Goddard Space Flight Center, Greenbelt, MD, 124 and NSIDC, Boulder CO, pp. DOI: 10.5067/03JYGZ0758UL 178 pp.

M. Jasinski, J. Stoll, D. Hancock, J. Robbins, J. Nattala, T. Pavelsky, J. Morrison, B. Jones, M. Ondrusek, C. Parrish, and the ICESat-2 Science Team, 2023. *ATLAS/ICESat-2 L3A Along Track Inland Surface Water Data, Release 6*. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center. DOI:10.5067/ATLAS/ATL13.006.

M. Jasinski, J. Stoll, D. Hancock, J. Robbins, J. Nattala, *Algorithm Theoretical Basis Document (ATBD) for Mean Inland Surface Water Data, ATL22, Version 1*, NASA Goddard Space Flight Center, Greenbelt, MD, 40 pp. (August 31, 2021a)* DOI: 10.5067/HB1X7RGLFRPP.

M. Jasinski, J. Stoll, D. Hancock, J. Robbins, J. Nattala, August 2021b. *ATLAS/ICESat-2 L3B Mean Inland Surface Water Data, Version 1*. [Indicate subset used]. Boulder, Colorado USA. NASA National Snow and Ice Data Center Distributed Active Archive Center.* DOI:10.5067/ATLAS/ATL22.001

Jasinski, M., Stoll, J., Gao, H., Parrish, C., December 12, 2019a. Inland Water Observations with ICESat-2, *AGU Fall Meeting, Town Hall Session* TH45L, San Francisco, CA.

Jasinski, M., Stoll, J., Hancock, D., Robbins, J., Nattala, J., Jung, H.C., Pavelsky, T., Jones, B., Lehner, B., Neumann, T., Harbeck., K., December 11, 2019b. Inland Water Observations with ICESat-2, *AGU Fall Meeting, Town Hall Session TH45L*, San Francisco, CA.

Jasinski, M.; Stoll, J.; Cook, W.; Ondrusek, M.; Stengel, E., and Brunt, K., 2016. Inland and near-shore water profiles derived from the high-altitude Multiple Altimeter Beam Experimental Lidar (MABEL). *In*: Brock, J.C.; Gesch, D.B.; Parrish, C.E.; Rogers, J.N., and Wright, C.W. (eds.), *Advances in Topobathymetric Mapping, Models, and Applications. Journal of Coastal Research*, Special Issue, No. 76, pp. 44–55. Coconut Creek (Florida), ISSN0749-0208.

Lehner, B. and Döll, P. (2004): Development and validation of a global database of lakes, reservoirs and wetlands. Journal of Hydrology 296/1-4: 1-22.

T. Markus, Neumann, T., Martino, A., Abdalati, W., et al., The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sensing of Environment, Vol 190, 2017, Pg. 260-273, https://doi.org/10.1016/j.rse.2016.12.029.

Martino, A.J., Neumann, T.A., Kurtz, N.T. and McLennan, D., 2019, October. ICESat-2 mission overview and early performance. In *Sensors, systems, and next-generation satellites XXIII* (Vol. 11151, pp. 68-77). SPIE.

Messager, M.L., Lehner, B., Grill, G., Nedeva, I., Schmitt, O. (2016): Estimating the volume and age of water stored in global lakes using a geo-statistical approach. Nature Communications: 13603. doi: 10.1038/ncomms13603.

Neumann, T. A., A. Brenner, D. Hancock, J. Robbins, A. Gibbons, J. Lee, K. Harbeck, J. Saba, S. Luthcke, and T. Rebold (2022). Ice, Cloud, and Land Elevation Satellite (ICESat-2) Project Algorithm Theoretical Basis Document (ATBD) for Global Geolocated Photons ATL03, Version 6. ICESat-2 Project, DOI: 10.5067/GA5KCLJT7LOT.