ATL19 Product Data Dictionary

Date Generated: 2022-08-08T12:47:39

The ATL19 product contains Sea Surface Height (SSH) of the mid latitudes, northern and southern polar regions based on 1 month of data coverage (for ATL23 - based on 3 months of data coverage).

<table>
<thead>
<tr>
<th>Description</th>
<th>Notes</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dot hist_bincenters</td>
<td>DIMENSION 1</td>
</tr>
<tr>
<td>Grid dimension for dot_hist_grid</td>
<td></td>
</tr>
<tr>
<td>delta_time_beg</td>
<td>DOUBLE</td>
</tr>
<tr>
<td>Beginning elapsed GPS seconds</td>
<td></td>
</tr>
<tr>
<td>delta_time_end</td>
<td>DOUBLE</td>
</tr>
<tr>
<td>Ending elapsed GPS seconds</td>
<td></td>
</tr>
<tr>
<td>ds_hist_bincenters</td>
<td>DOUBLE</td>
</tr>
<tr>
<td>Grid dimension for dot_hist_grid</td>
<td></td>
</tr>
<tr>
<td>ds_surf_type</td>
<td>INTEGER</td>
</tr>
<tr>
<td>Surface Type Dimension</td>
<td></td>
</tr>
<tr>
<td>axis</td>
<td>ATTRIBUTES</td>
</tr>
<tr>
<td>Grid dimension for dot_hist_grid</td>
<td></td>
</tr>
<tr>
<td>atlas_sdp_gps_epoch</td>
<td>DOUBLE</td>
</tr>
<tr>
<td>ATLAS Epoch Offset</td>
<td></td>
</tr>
</tbody>
</table>

Conventions: CF-1.6

Citation: [CF-1.6](http://dx.doi.org/10.5067/ATLAS/ATL19.001)

License: Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of NASA/GSFC.

Acknowledgments: Thomas A Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (data processing), William Williams (data validation), and the rest of the Operation Team.

Contact

- Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer: Thomas A Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (data processing)
- Data Producer: David W Hancock III (data processing)
- Data Producer: William Williams (data validation)
- Data Producer: ATLAS Project Team

History

Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of NASA/GSFC.

Metadata

- **Title**: ATL19 Product Data Dictionary
- **Publisher**: NASA/GSFC
- **DOI**: [10.5067/ATLAS/ATL19.001](http://dx.doi.org/10.5067/ATLAS/ATL19.001)
- **License**: Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of NASA/GSFC.

Source

- **Source**: Operations

Granule Type

- **Granule Type**: ATL19

Granule

- **Granule Type**: L3B

Granule Time

- **Granule Time**: 2022-08-08T12:47:39

Granule Dimensions

- **Granule Dimensions**: 90 x 90

Granule Size

- **Granule Size**: 750 MB

Granule Storage

- **Granule Storage**: HDF5

Granule Compression

- **Granule Compression**: None

Granule Description

- **Granule Description**: Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants.

Granule Attributes

- **Granule Attributes**: Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants.

Granule Keywords

- **Granule Keywords**: Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants.

Granule Keywords Vocabulary

- **Granule Keywords Vocabulary**: Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants.

Granule Keywords

- **Granule Keywords**: Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants.

Granule Keywords Vocabulary

- **Granule Keywords Vocabulary**: Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants.

Granule Keywords

- **Granule Keywords**: Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants.

Granule Keywords Vocabulary

- **Granule Keywords Vocabulary**: Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants.

Granule Keywords

- **Granule Keywords**: Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants.
ATL19 Product Data Dictionary

control CONTIGUOUS
- **STRING(1)** Control File None 1 PGE-specific control file used to generate this granule. To re-use, replace breaks (BR) with linefeeds. (Source: [Operations])

data_end_utc COMPACT
- **STRING(1)** End UTC Time of Granule (CCSDS-A, Actual) None 1 UTC in (CCSDS-A format) of the last data point within the granule. (Source: [Derived])

data_start_utc COMPACT
- **STRING(1)** Start UTC Time of Granule (CCSDS-A, Actual) None 1 UTC in (CCSDS-A format) of the first data point within the granule. (Source: [Derived])

end_cycle COMPACT
- **INTEGER(1)** Ending Cycle None 1 The ending cycle number associated with the data contained within this granule. The cycle number is the counter of the number of orbit increments each time the spacecraft completes a full orbit of the Earth and resets to 1 (Source: Derived)

end_delta_time COMPACT
- **DOUBLE(1)** ATLAS End Time (Actual) time seconds since 2018-01-01 1 Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Unit: atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00Z) contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS s (Source: Derived)

end_geoseg COMPACT
- **INTEGER(1)** Ending Geolocation Segment None 1 The ending geolocation segment number associated with the data contained within this granule. ICESat2 granule geo (the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to 1 beams and provide a common segment length for the L2 and higher products. The geolocation segment indices c Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not bee (Source: Derived)

end_granule_end_utc COMPACT
- **DOUBLE(1)** Ending GPS SOW of Granule (Actual) None seconds 1 GPS seconds-of-week of the last data point in the granule. (Source: Derived)

end_granule_start_utc COMPACT
- **STRING(1)** Start UTC Time of Granule (CCSDS-A, Requested) None 1 Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived)

end_granule_version COMPACT
- **INTEGER(1)** Ending Granule Version None 1 Statistics time interval for along-track QA data. (Source: Derived)

end_orbit COMPACT
- **INTEGER(1)** Ending Orbit Number None 1 The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth and resets to 1 (Source: Derived)

end_region COMPACT
- **INTEGER(1)** Ending Region None 1 The ending product-specific region number associated with the data contained within this granule. ICESat-2 data within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geol (Source: Derived)

end_rgt COMPACT
- **INTEGER(1)** Ending Reference Groundtrack None 1 The ending reference groundtrack (RGt) number associated with the data contained within this granule. There ar reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 (Source: Derived)

granule_end_utc COMPACT
- **STRING(1)** End UTC Time of Granule (CCSDS-A, Requested) None 1 Requested end time (in UTC CCSDS-A) of this granule. (Source: Derived)

granule_start_utc COMPACT
- **STRING(1)** Start UTC Time of Granule (CCSDS-A, Requested) None 1 Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived)

granule_start_utc COMPACT
- **DOUBLE(1)** QA Along-Track Interval None seconds 1 Statistics time interval for along-track QA data. (Source: Derived)

granule_start_utc COMPACT
- **DOUBLE(1)** Start UTC Time of Granule (CCSDS-A, Requested) None 1 Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived)

granule_version COMPACT
- **INTEGER(1)** Granule Version None 1 Statistics time interval for along-track QA data. (Source: Derived)

start_cycle COMPACT
- **INTEGER(1)** Starting Cycle None 1 The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of orbit increments each time the spacecraft completes a full orbit of the Earth and resets to 1 (Source: Derived)

start_delta_time COMPACT
- **DOUBLE(1)** ATLAS Start Time (Actual) time seconds since 2018-01-01 1 Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Unit: atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00Z) contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS s (Source: Derived)

start_geoseg COMPACT
- **INTEGER(1)** Starting Geolocation Segment None 1 The starting geolocation segment number associated with the data contained within this granule. ICESat2 granule geo (the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to 1 beams and provide a common segment length for the L2 and higher products. The geolocation segment indices c Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not bee (Source: Derived)

start_granule_end_utc COMPACT
- **DOUBLE(1)** Start GPS SOW of Granule (Actual) None seconds 1 GPS seconds-of-week of the first data point in the granule. (Source: Derived)

start_granule_start_utc COMPACT
- **INTEGER(1)** Starting Granule Version None 1 Statistics time interval for along-track QA data. (Source: Derived)

start_granule_version COMPACT
- **INTEGER(1)** Starting Granule Version None 1 Statistics time interval for along-track QA data. (Source: Derived)

start_orbit COMPACT
- **INTEGER(1)** Starting Orbit Number None 1 The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth and resets to 1 (Source: Derived)

start_region COMPACT
- **INTEGER(1)** Starting Region None 1 The starting product-specific region number associated with the data contained within this granule. ICESat-2 data within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geol (Source: Derived)

start_rgt COMPACT
- **INTEGER(1)** Starting Reference Groundtrack None 1 The starting reference groundtrack (RGt) number associated with the data contained within this granule. There ar reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 (Source: Derived)

version COMPACT
- **STRING(1)** Version None 1 Version number of this granule within the release. It is a sequential number corresponding to the number of times (Source: Derived)

<table>
<thead>
<tr>
<th>Group: ancestral_data/ocean</th>
<th>Contains general ancillary parameters.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>Label</th>
<th>Datatype(Dims)</th>
<th>Fldname</th>
<th>units</th>
<th>description</th>
</tr>
</thead>
<tbody>
<tr>
<td>lat</td>
<td>COMPACT</td>
<td>integer</td>
<td></td>
<td>Use cell and surrounding 8 cells None 1 Process data within the grid cell and the surrounding 8 grid cells. True (default), Orfalse (Source: [Ocean ATBD])</td>
</tr>
</tbody>
</table>
midlat_max_dfwcntr_uncrtn

Type: DOUBLE

Units: meters

Description: Set midlat_dot_dfwcntr and midlat_ssb_avgcntr invalid if midlat_dot_dfwcntr_uncrtn is greater than this. (Source: Ocean ATBD)

min_n_ocsegs

Type: INTEGER

Value: 1

Description: Min ocean segments for processing None

min_n_ocsegs4cntn

Type: INTEGER

Value: 1

Description: Min ocean segments for calculating center values None

min_n_orbits

Type: INTEGER

Value: 1

Description: Process data for center values if it contains data from a number of orbits greater than or equal to this. (Source: Ocean ATBD)

n_polar_max_avgcntr_uncrtn

Type: DOUBLE

Units: None

Description: Set npolar_dot_dfwcntr and npolar_ssb_avgcntr invalid if npolar_dot_dfwcntr_uncrtn is greater than this. (Source: Ocean ATBD)

n_polar_max_dfwcntr_uncrtn

Type: DOUBLE

Units: None

Description: Set npolar_dot_dfwcntr and npolar_ssb_dfwcntr invalid if npolar_dot_dfwcntr_uncrtn is greater than this. (Source: Ocean ATBD)

ocscan_time1

Type: DOUBLE

Units: seconds

Description: Ocean scan time None

podppd_edit

Type: INTEGER

Value: 1

Description: Control to filter use of ATL12 ocean segments based on ATL12 podppd_flag seg values. 0 - use podppd = 0 and use only podppd = 0; 2 - use both podppd = 0 and 4 (Source: Control File Override); (Meanings: [0 1 2]) (Source: Operations)

spolar_max_dfwcntr_uncrtn

Type: DOUBLE

Units: None

Description: Set spolar_dot_dfwcntr and spolar_ssb_avgcntr invalid if spolar_dot_dfwcntr_uncrtn is greater than this. (Source: Ocean ATBD)

spolar_max_avgcntr_uncrtn

Type: DOUBLE

Units: None

Description: Set spolar_dot_avgcntr and spolar_ssb_avgcntr invalid if spolar_dot_avgcntr_uncrtn is greater than this. (Source: Ocean ATBD)

use_all_beams

Type: INTEGER

Value: 1

Description: 0 - Use only strong beams; 1 - use all beams. (Source: Control File Override); (Meanings: [0 1]) (Values: ["use_3_strong_beams",'use_all_6_beams'])

Group: midlat_latitude

This group contains the mid_latitude grids.

Label

Layout

Datatype(ORMs)

Fillvalue

Units

Description

a_avg

Type: DOUBLE

Units: degree/second

Description: Planar fit a coefficient None

grid_mapping

Type: crs

Description: None

b_avg

Type: DOUBLE

Units: degree/second

Description: Planar fit b coefficient None

grid_mapping

Type: crs

Description: None

c_avg

Type: DOUBLE

Units: degree/second

Description: Planar fit c coefficient None

grid_mapping

Type: crs

Description: None

crs

Type: INTEGER

Value: 1

Description: Coordinate Reference System None

grid_mapping_name

Type: crs

Description: None

inverse_flattening

Type: 6378137.0

Description: None

longitude_of_prime_meridian

Type: 0.0

Description: None

proj4text

Type: +proj=longlat +datum=WGS84 +no_defs

semi_major_axis

Type: 6378137.0

Description: None

srid

Type: urn:ogc:def:crs:EPSG::4326

Description: None

delta_time_beg

Type: DOUBLE

Units: seconds

Description: Beginning elapsed GPS seconds for the month of midlat_latitude data (Source: Ocean ATBD)

delta_time_end

Type: DOUBLE

Units: seconds

Description: Ending elapsed GPS seconds for the month of midlat_latitude data (Source: Ocean ATBD)

depth_avg_albm

Type: FLOAT

Units: meters

Description: Mean ocean depth None

grid_mapping

Type: crs

Description: None

depth_dfw_albm

Type: FLOAT

Units: meters

Description: Degrees of freedom (DOF) weighted mean ocean depth for each grid cell. (Source: Ocean ATBD)

grid_mapping

Type: crs

Description: None

dot_albm

Type: DOUBLE

Units: counts

Description: Total degrees of freedom None

grid_mapping

Type: crs

Description: None

dot_avg_albm

Type: DOUBLE

Units: meters

Description: All beam average of ocean segment ocean depth for each grid cell. (Source: Ocean ATBD)

grid_mapping

Type: crs

Description: None

dot_avg_uncrtn_albm

Type: DOUBLE

Units: None

Description: Uncertainty of mean DOT (Source: Ocean ATBD)
grid_mapping
(Attribute) crs:

dot_avcntr
DOUBLE(:,:) INVALID_R8B
Mean DOT at cell center
None
meters
Simple all-beam average of ATL12 ocean segments dynamic ocean topography interpolated to center of grid cell
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

dot_avcntr_unctr
DOUBLE(:,:) INVALID_R8B
Uncertainty of mean DOT center
None
meters
All beam uncertainty of ocean segment dynamic ocean topography (DOT) interpolated to center of grid cell.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

dot_dfw
DOUBLE(:,:) INVALID_R8B
DOF-weighted mean DOT
None
meters
All beam DOF-weighted average of ATL12 ocean segments DOT within each grid cell.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

dot_dfw_unctr
DOUBLE(:,:) INVALID_R8B
Uncertainty of DOF-weighted DOT
None
meters
All beam uncertainty of DOF-weighted average of ocean segment DOT
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

dot_hi
DOUBLE(:,:) INVALID_R8B
DOF-weighted mean DOT at cell center
None
meters
Degree of freedom weighted all-beam average dynamic ocean topography interpolated to center of grid cell base
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

dot_siga
DOUBLE(:,:) INVALID_R8B
Mean DOT sigma
None
meters
All beam simple average of ocean segment standard deviation of dynamic ocean topography (DOT)
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

dot_siga_dfw
DOUBLE(:,:) INVALID_R8B
DOF-weighted mean DOT sigma
None
meters
All beam DOF-weighted average of ocean segment standard deviation of DOT
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

gcell
DOUBLE(:,:) INVALID_R8B
Mean geoid height
None
meters
All beam average of ocean segment mean tide system geoid height.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

gcell_dfw
DOUBLE(:,:) INVALID_R8B
DOF-weighted mean geoid height
None
meters
All beam DOF-weighted average of ocean segment mean tide system geoid height.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

glabel
DOUBLE(:,:) INVALID_R8B
Grid cell center latitude
None
degrees_north
Defined center latitude for each grid cell.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

glabel_lon
DOUBLE(:,:) INVALID_R8B
Grid cell center longitude
None
degrees_east
Defined center longitude for each grid cell.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

icce_conc
FLOAT(:)
Mean ice concentration
None
1
All beam average of ice concentration.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

landmask
INTEGER(:)
Ocean landmask
None
1
Ocean landmask: 0=land, 1=oceano.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

lat_avg
DOUBLE(:,:) INVALID_R8B
Mean latitude
None
degrees_north
All beam average of ocean segment latitude.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

lat_dfw
DOUBLE(:,:) INVALID_R8B
DOF-weighted mean latitudes
None
degrees_north
All beam DOF-weighted average of ocean segment latitude.

grid_mapping
(Attribute) crs:

latitude
DOUBLE(:)
Grid cell center latitudes
degree
Grid cell center latitudes (dimension scale)
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

length_dfw
FLOAT(:)
DOF-weighted mean ocean segment length
None
meters
All beam DOF-weighted average of ocean segment lengths.

grid_mapping
(Attribute) crs:

length_sum
FLOAT(:)
Sum of ocean segment lengths
None
meters
All beam sum of ocean segment lengths.

grid_mapping
(Attribute) crs:

lon_avg
DOUBLE(:,:) INVALID_R8B
Mean longitude
None
degrees_east
All beam average of ocean segment longitude.

grid_mapping
(Attribute) crs:

lon_dfw
DOUBLE(:,:) INVALID_R8B
DOF-weighted mean grid longitude
None
degrees_east
All beam DOF-weighted average of ocean segment longitude.

grid_mapping
(Attribute) crs:

longitude
DOUBLE(:)
Grid cell center longitude
degrees_east
Grid cell center longitudes (dimension scale)
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

n_ph_srf
INTEGER(:)
Number of surface photons
None
counts
All beam sum of ocean segment number of surface reflected photons.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

n_ph_tot
INTEGER(:)
Number of total photons
None
counts
All beam sum of ocean segment total number of photons.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

n_segments
INTEGER(:)
Number of ocean segments
None
counts
All beam number of ocean segments.
(Source: Ocean ATBD)

grid_mapping
(Attribute) crs:

n_segments
INTEGER(:)
Number of ocean segments
None
counts
All beam number of ocean segments.
(Source: Ocean ATBD)
grid_mapping (Attribute) crs

podppd_flag_pront_ablm CHUNKED FLOAT(:,:) INVALID_R8B Percent segments used with podppd_flag=0 for each grid cell. (Source: Ocean ATBD)

grid_mapping (Attribute) crs

r_noise_ablm CHUNKED DOUBLE(:,:) INVALID_R8B Rate of noise photons per meter None 1/meter All beam rate of noise photons per meter. (Source: Ocean ATBD)

grid_mapping (Attribute) crs

r_rsrc_ablm CHUNKED DOUBLE(:,:) INVALID_R8B Rate of surface photons per meter None 1/meter All beam rate of surface photons per meter. (Source: Ocean ATBD)

grid_mapping (Attribute) crs

sea_ice_flag CHUNKED INTEGER(:) INVALID_I4B Sea ice flag None counts TBD (Source: Ocean ATBD)

grid_mapping (Attribute) crs

ssb_avg_ablm CHUNKED DOUBLE(:,:) INVALID_R8B Mean sea state bias at cell center None meters All beam average of ocean segment sea state bias (SSB). (Source: Ocean ATBD)

grid_mapping (Attribute) crs

ssb_avgcntr CHUNKED DOUBLE(:,:) INVALID_R8B Sea state bias at cell center None meters All beam estimate of sea state bias at center of each grid cell for dot_avgcntr. (Source: Ocean ATBD)

grid_mapping (Attribute) crs

ssb_dftw_ablm CHUNKED DOUBLE(:,:) INVALID_R8B DOF-weighted mean sea state bias at cell center None meters All beam DOF-weighted average of ocean segment sea state bias. (Source: Ocean ATBD)

grid_mapping (Attribute) crs

ssb_dftwcntr CHUNKED DOUBLE(:,:) INVALID_R8B DOF-weighted sea state bias at cell center None meters All beam estimate of sea state bias at center of grid cell for dot_dftwcntr. (Source: Ocean ATBD)

grid_mapping (Attribute) crs

surf_pront_avg_ablm CHUNKED FLOAT(:,:) INVALID_R8B Mean surface type at cell center None 1 All beam average of the percentage of each surface type. Map order: land, ocean, sea ice, ice sheet, inland water (Source: Ocean ATBD)

grid_mapping (Attribute) crs

surf_pront_dftw_ablm CHUNKED FLOAT(:,:) INVALID_R8B DOF-weighted mean surface type at cell center None 1 All beam DOF-weighted average of the percentage of each surface type. Map order: land, ocean, sea ice, ice she (Source: Ocean ATBD)

grid_mapping (Attribute) crs

ssw_avg_ablm CHUNKED DOUBLE(:,:) INVALID_R8B Mean significant waveheight at cell center None meters All beam mean of the ocean segment significant wave heights. (Source: Ocean ATBD)

grid_mapping (Attribute) crs

ssw_dftw_ablm CHUNKED DOUBLE(:,:) INVALID_R8B DOF-weighted mean significant wave height at cell center None meters All beam DOF-weighted average of ocean segment significant wave height. (Source: Ocean ATBD)

grid_mapping (Attribute) crs

Group: mid_latitude/beam_x This group contains data for beams 1, 3, and 5 (strong beams), and beams 2, 4, and 6 (weak beams).

Label (Layers) Datatype(Dims) Filevalue (Units) long_name standard_name units description

depth_avg CHUNKED FLOAT(:,:) INVALID_R8B Mean ocean depth None meters Average of ocean segment ocean depth for each grid cell. (Source: Ocean ATBD)

depth_dftw CHUNKED FLOAT(:,:) INVALID_R8B Degrees of freedom (DOF) weighted mean ocean depth None meters Degrees of freedom (DOF) weighted average of ocean segment ocean depth. (Source: Ocean ATBD)

dof CHUNKED DOUBLE(:,:) INVALID_R8B Total degrees of freedom None meters Beam total of ocean segment degrees of freedom (Source: Ocean ATBD)

dot_avg CHUNKED DOUBLE(:,:) INVALID_R8B Average of ATL12 ocean segments dynamic ocean topography (DOT) within each grid cell for one beam. (Source: Ocean ATBD)

dot_avg_uncntr CHUNKED DOUBLE(:,:) INVALID_R8B Uncertainty of mean DOT None meters Uncertainty of mean ocean segment DOT (Source: Ocean ATBD)

dot_dftw CHUNKED DOUBLE(:,:) INVALID_R8B DOF-weighted mean DOT None meters DOF-weighted average of ATL12 ocean segments DOT within each grid cell for one beam. (Source: Ocean ATBD)

dot_dftw_uncntr CHUNKED DOUBLE(:,:) INVALID_R8B Uncertainty of DOF-weighted DOT None meters Uncertainty of DOF-weighted average of ocean segment DOT (Source: Ocean ATBD)

dot_kurt_avg CHUNKED DOUBLE(:,:) INVALID_R8B Mean DOT kurtosis None 1 Average of ocean segment excess kurtosis of the dynamic ocean topography (DOT) (Source: Ocean ATBD)

dot_kurt_dftw CHUNKED DOUBLE(:,:) INVALID_R8B DOF-weighted mean DOT kurtosis None 1 Kurtosis of the dynamic ocean topography (DOT) as a degree-of-freedom weighted average of kurtosis of DOT (Source: Ocean ATBD)

dot_sigma_avg CHUNKED DOUBLE(:,:) INVALID_R8B Mean DOT sigma None meters Simple average of ocean segment standard deviation of dynamic ocean topography (DOT) (Source: Ocean ATBD)

dot_sigma_dftw CHUNKED DOUBLE(:,:) INVALID_R8B DOF-weighted mean DOT sigma None meters DOF-weighted average of ocean segment standard deviation of DOT (Source: Ocean ATBD)

grid_mapping (Attribute) crs

https://icesat-2-scf.gsfc.nasa.gov/sites/default/files/asas/asasv60/atl19_template.html
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Description</th>
</tr>
</thead>
</table>
| lat_avg | DOUBLE(:,:)
Mean latitudes
degrees_north
Average of ocean segment latitude
(Source: Ocean ATBD) |
| lon_avg | DOUBLE(:,:)
Mean longitudes
degrees_east
Average of ocean segment longitude.
(Source: Ocean ATBD) |
| surf_prcnt_avg | DOUBLE(:,:)
DOF-weighted mean surface type.
None
Average of the percentage of each surface type. Map order: land, ocean, sea ice, ice sheet, inland water
(Source: Ocean ATBD) |
| dot_skew_avg | DOUBLE(:,:)
DOF-weighted average of the percentage of each surface type. Map order: land, ocean, sea ice, ice sheet, inland water
None
Average of ocean segment skewness of the dynamic ocean topography (DOT)
(Source: Ocean ATBD) |
| dot_skew_dfw | DOUBLE(:,:)
DOF-weighted mean DOT skewness
None
Skewness of the dynamic ocean topography (DOT) as a degree-of-freedom weighted average of skewness of DO
(Source: Ocean ATBD) |

Group: /orbit_info

data_rate

Varies. Data are only provided when one of the stored values (besides time) changes.

Label

<table>
<thead>
<tr>
<th>Datatype</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>long_name</td>
<td>Datalong_name</td>
</tr>
<tr>
<td>standard_name</td>
<td>Units</td>
</tr>
</tbody>
</table>

Fillvalue

<table>
<thead>
<tr>
<th>Units</th>
<th>Description</th>
</tr>
</thead>
</table>
| m | Rate of surface photons per meter
| m | Rate of noise photons per meter
| counts | Number of surface photons
| counts | Number of total photons
| counts | Number of ocean segments
| percent | Percent of ATL12 segments used that had podppd_flag_seg=0 for each grid cell.
| percent | Percent of ATL12 segments used that had podppd_flag_seg=0 for each grid cell.
ATL19 Product Data Dictionary

crossing_time (CHUNKED) Ascending Node Crossing Time
- **Dimensions:** seconds since 2018-01-01
- **Description:** The time in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The A
- **Units:** None
- **Source:** POD/PPD

cycle_number (CHUNKED) Cycle Number
- **Dimensions:** None
- **Values:** A count of the number of exact repeats of this reference orbit.
- **Source:** Operations

lat (CHUNKED) Ascending Node Longitude
- **Dimensions:** degrees_east
- **Description:** Longitudes at the ascending node crossing.
- **Units:** None
- **Source:** POD/PPD

orbit_number (CHUNKED) Orbit Number
- **Dimensions:** None
- **Values:** Unique identifying number for each planned ICESat-2 orbit.
- **Source:** Operations

rgf (CHUNKED) Reference Ground track
- **Dimensions:** None
- **Values:** The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory
- **Source:** Operations

sc_orient_time (CHUNKED) Time of Last Spacecraft Orientation Change
- **Dimensions:** seconds since 2018-01-01
- **Values:** The time of the last spacecraft orientation change between backward, backward and transitional flight modes.
- **Units:** None
- **Source:** POD/PPD

delta_time_beg (COMPACT) Beginning elapsed GPS seconds
- **Dimensions:** None
- **Values:** Beginning elapsed GPS seconds for the month of data.
- **Units:** seconds
- **Source:** Operations

delta_time_end (COMPACT) Ending elapsed GPS seconds
- **Dimensions:** None
- **Values:** Ending elapsed GPS seconds for the month of data.
- **Units:** seconds
- **Source:** Operations

depth_avg_albm (CHUNKED) Mean Ocean Depth
- **Dimensions:** meters
- **Values:** All beam average of ocean segment depth.
- **Units:** None
- **Source:** Operations

grid_mapping (Attribute)
- **Value:** grid_mapping

a_avg (CHUNKED) Planar fit a coefficient
- **Dimensions:** Planar fit a coefficient
- **Values:** The a coefficient of the planar fit used to compute dot_avgcntr_albm.
- **Units:** meters/meter
- **Source:** Ocean ATBD

b_avg (CHUNKED) Planar fit b coefficient
- **Dimensions:** Planar fit b coefficient
- **Values:** The b coefficient of the planar fit used to compute dot_avgcntr_albm.
- **Units:** meters/meter
- **Source:** Ocean ATBD

c_avg (CHUNKED) Planar fit c coefficient
- **Dimensions:** Planar fit c coefficient
- **Values:** The c coefficient of the planar fit used to compute dot_avgcntr_albm.
- **Units:** meters
- **Source:** Ocean ATBD

a_dfw (CHUNKED) Degrees of freedom planar fit a coefficient
- **Dimensions:** Degrees of freedom planar fit a coefficient
- **Values:** The a coefficient of the planar fit used to compute dot_dfwcntr_albm.
- **Units:** meters/meter
- **Source:** Ocean ATBD

b_dfw (CHUNKED) Degrees of freedom planar fit b coefficient
- **Dimensions:** Degrees of freedom planar fit b coefficient
- **Values:** The b coefficient of the planar fit used to compute dot_dfwcntr_albm.
- **Units:** meters/meter
- **Source:** Ocean ATBD

c_dfw (CHUNKED) Degrees of freedom planar fit c coefficient
- **Dimensions:** Degrees of freedom planar fit c coefficient
- **Values:** The c coefficient of the planar fit used to compute dot_dfwcntr_albm.
- **Units:** meters
- **Source:** Ocean ATBD

north_polar (GROUP)
- **Label:** /x_polar
 - **Contains:** polar grids, and will be instantiated as north_polar and south_polar.

south_polar (GROUP)
- **Label:** /x_polar
 - **Contains:** polar grids, and will be instantiated as north_polar and south_polar.

cycle_number (CHUNKED) Cycle Number
- **Dimensions:** None
- **Values:** A count of the number of exact repeats of this reference orbit.
- **Source:** Operations

lat (CHUNKED) Ascending Node Longitude
- **Dimensions:** degrees_east
- **Description:** Longitudes at the ascending node crossing.
- **Units:** None
- **Source:** POD/PPD

orbit_number (CHUNKED) Orbit Number
- **Dimensions:** None
- **Values:** Unique identifying number for each planned ICESat-2 orbit.
- **Source:** Operations

rgf (CHUNKED) Reference Ground track
- **Dimensions:** None
- **Values:** The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory
- **Source:** Operations

sc_orient_time (CHUNKED) Time of Last Spacecraft Orientation Change
- **Dimensions:** seconds since 2018-01-01
- **Values:** The time of the last spacecraft orientation change between backward, backward and transitional flight modes.
- **Units:** None
- **Source:** POD/PPD

delta_time_beg (COMPACT) Beginning elapsed GPS seconds
- **Dimensions:** None
- **Values:** Beginning elapsed GPS seconds for the month of data.
- **Units:** seconds
- **Source:** Operations

delta_time_end (COMPACT) Ending elapsed GPS seconds
- **Dimensions:** None
- **Values:** Ending elapsed GPS seconds for the month of data.
- **Units:** seconds
- **Source:** Operations

depth_avg_albm (CHUNKED) Mean Ocean Depth
- **Dimensions:** meters
- **Values:** All beam average of ocean segment depth.
- **Units:** None
- **Source:** Operations

grid_mapping (Attribute)
- **Value:** grid_mapping

a_avg (CHUNKED) Planar fit a coefficient
- **Dimensions:** Planar fit a coefficient
- **Values:** The a coefficient of the planar fit used to compute dot_avgcntr_albm.
- **Units:** meters/meter
- **Source:** Ocean ATBD

b_avg (CHUNKED) Planar fit b coefficient
- **Dimensions:** Planar fit b coefficient
- **Values:** The b coefficient of the planar fit used to compute dot_avgcntr_albm.
- **Units:** meters/meter
- **Source:** Ocean ATBD

c_avg (CHUNKED) Planar fit c coefficient
- **Dimensions:** Planar fit c coefficient
- **Values:** The c coefficient of the planar fit used to compute dot_avgcntr_albm.
- **Units:** meters
- **Source:** Ocean ATBD

a_dfw (CHUNKED) Degrees of freedom planar fit a coefficient
- **Dimensions:** Degrees of freedom planar fit a coefficient
- **Values:** The a coefficient of the planar fit used to compute dot_dfwcntr_albm.
- **Units:** meters/meter
- **Source:** Ocean ATBD

b_dfw (CHUNKED) Degrees of freedom planar fit b coefficient
- **Dimensions:** Degrees of freedom planar fit b coefficient
- **Values:** The b coefficient of the planar fit used to compute dot_dfwcntr_albm.
- **Units:** meters/meter
- **Source:** Ocean ATBD

c_dfw (CHUNKED) Degrees of freedom planar fit c coefficient
- **Dimensions:** Degrees of freedom planar fit c coefficient
- **Values:** The c coefficient of the planar fit used to compute dot_dfwcntr_albm.
- **Units:** meters
- **Source:** Ocean ATBD

north_polar (GROUP)
- **Label:** /x_polar
 - **Contains:** polar grids, and will be instantiated as north_polar and south_polar.

south_polar (GROUP)
- **Label:** /x_polar
 - **Contains:** polar grids, and will be instantiated as north_polar and south_polar.
grid_mapping [Attribute] crs

dot_avg_unctr_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 Uncertainty of mean DOT
 None
 All beam uncertainty of mean ocean segment DOT
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

dot_avgctr CHUNKED DOUBLE(:,:), INVALID_R8B
 Mean DOT at cell center
 None
 Simple all-beam average of ATL12 ocean segments dynamic ocean topography interpolated to center of grid cell
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

dot_avgctr_unctr_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 Uncertainty of mean DOT center
 None
 All beam uncertainty of ocean segment dynamic ocean topography (DOT) interpolated to center of grid cell.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

dot_dfw_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 DOF-weighted mean DOT
 None
 All beam DOF-weighted all beam average of ATL12 ocean segments DOT within each grid cell.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

dot_dfw_unctr_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 DOF-weighted mean DOT at cell center
 None
 Degree of freedom weighted all-beam average dynamic ocean topography interpolated to center of grid cell base
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

dot_hist_albm CHUNKED FLOAT(:,:), INVALID_R4B
 Aggregate PDF of photon heights
 None
 All beam aggregate probability density function of all surface photon DOT for all the ocean segments in the grid cell
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

dot_sigma_avg_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 Mean DOT sigma
 None
 All beam simple average of ocean segment standard deviation of dynamic ocean topography (DOT).
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

dot_sigma_dfw_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 DOF-weighted mean DOT sigma
 None
 All beam DOF-weighted average of ocean segment standard deviation of DOT
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

dotx_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 Grid cell center latitude
 None
 Defined center latitude for each grid cell.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

doty_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 Grid cell center longitude
 None
 Defined center longitude for each grid cell.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

gridcntr_lat CHUNKED DOUBLE(:,:), INVALID_R8B
 Grid cell center latitude
 None
 Defined center latitude for each grid cell.
 (Source: Ocean ATBD)

gridcntr_lon CHUNKED DOUBLE(:,:), INVALID_R8B
 Grid cell center longitude
 None
 Defined center longitude for each grid cell.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

ice_conc_albm CHUNKED FLOAT(:)
 Mean ice concentration
 1
 All beam average of ice concentration.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

landmask CHUNKED INTEGER(:)
 Ocean landmask
 1
 Ocean landmask, 0=land, 1=oceean.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

lat_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 Mean latitude
 None
 All beam average of ocean segment latitudes.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

lat_dfw_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 DOF weighted mean latitude
 None
 All beam DOF-weighted average of ocean segment latitude.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

length_dfw_albm CHUNKED FLOAT(:,:), INVALID_R4B
 DOF-weighted mean ocean segment length
 None
 All beam DOF-weighted average of ocean segment lengths.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

length_sum_albm CHUNKED FLOAT(:,:), INVALID_R4B
 Sum of ocean segment lengths
 None
 All beam sum of ocean segment lengths.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

lon_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 Mean longitude
 None
 All beam average of ocean segment longitude.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

lon_dfw_albm CHUNKED DOUBLE(:,:), INVALID_R8B
 DOF weighted mean longitude
 None
 All beam DOF-weighted average of ocean segment longitude.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

n_ph_srfc_albm CHUNKED INTEGER(:)
 Number of surface photons
 None
 All beam sum of ocean segment number of surface reflected photons.
 (Source: Ocean ATBD)

grid_mapping [Attribute] crs

n_ph_ttl_albm CHUNKED INTEGER(:)
 Number of total photons
 None
 All beam sum of ocean segment total number of photons.
 (Source: Ocean ATBD)
<table>
<thead>
<tr>
<th>Attribute</th>
<th>Datatype(Dims)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>x_avg_albm</td>
<td>DOUBLE(:,:)</td>
<td>Mean x at cell center</td>
</tr>
<tr>
<td>y_avg_albm</td>
<td>DOUBLE(:,:)</td>
<td>Mean y at cell center</td>
</tr>
<tr>
<td>x_dfw_albm</td>
<td>DOUBLE(:,:)</td>
<td>DOF-weighted mean x at cell center</td>
</tr>
<tr>
<td>y_dfw_albm</td>
<td>DOUBLE(:,:)</td>
<td>DOF-weighted mean y at cell center</td>
</tr>
<tr>
<td>surf_prnt_dfw_albm</td>
<td>FLOAT(:,:)</td>
<td>Mean surface type</td>
</tr>
<tr>
<td>ssb_avg_albm</td>
<td>DOUBLE(:,:)</td>
<td>Mean sea state bias</td>
</tr>
<tr>
<td>ssb_avgcntr</td>
<td>DOUBLE(:,:)</td>
<td>Mean sea state bias at cell center</td>
</tr>
<tr>
<td>ssh_dfw_albm</td>
<td>DOUBLE(:,:)</td>
<td>DOF-weighted mean surface at cell center</td>
</tr>
<tr>
<td>ssh_dfwcntr</td>
<td>DOUBLE(:,:)</td>
<td>DOF-weighted sea state bias at cell center</td>
</tr>
<tr>
<td>n_segs_albm</td>
<td>INTEGER(:,:)</td>
<td>Number of ocean segments</td>
</tr>
<tr>
<td>podpdp_flag_prnt_albm</td>
<td>FLOAT(:,:)</td>
<td>Percent segments used</td>
</tr>
<tr>
<td>r_noise_albm</td>
<td>DOUBLE(:,:)</td>
<td>Rate of noise photons per meter</td>
</tr>
<tr>
<td>r_sfc_albm</td>
<td>DOUBLE(:,:)</td>
<td>Rate of surface photons per meter</td>
</tr>
<tr>
<td>sea_ice_flag</td>
<td>INTEGER(:,:)</td>
<td>Sea ice flag</td>
</tr>
<tr>
<td>sub_avg_albm</td>
<td>DOUBLE(:,:)</td>
<td>Mean sea state bias</td>
</tr>
<tr>
<td>sub_avgcntr</td>
<td>DOUBLE(:,:)</td>
<td>Mean sea state bias at cell center</td>
</tr>
<tr>
<td>dot_avg</td>
<td>FLOAT(:,:)</td>
<td>DOF-weighted mean ocean depth</td>
</tr>
<tr>
<td>dot_avgcntr</td>
<td>FLOAT(:,:)</td>
<td>DOF-weighted mean ocean depth at cell center</td>
</tr>
<tr>
<td>dot_dfw</td>
<td>FLOAT(:,:)</td>
<td>DOF-weighted mean significant wave height</td>
</tr>
<tr>
<td>dot_dfwcntr</td>
<td>FLOAT(:,:)</td>
<td>DOF-weighted mean significant wave height at cell center</td>
</tr>
<tr>
<td>dot_avg_uncrt</td>
<td>DOUBLE(:,:)</td>
<td>Uncertainty of mean ocean depth</td>
</tr>
<tr>
<td>dot_dfw_uncrt</td>
<td>DOUBLE(:,:)</td>
<td>Uncertainty of DOF-weighted mean ocean depth</td>
</tr>
<tr>
<td>dot_dfw_unctr</td>
<td>DOUBLE(:,:)</td>
<td>Uncertainty of DOF-weighted mean ocean depth at cell center</td>
</tr>
</tbody>
</table>

Group: /x_polar/beam_x

This group contains data for beams 1, 3, and 5 (strong beams), and beams 2, 4, and 6 (weak beams).

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Datatype(Dims)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dof</td>
<td>DOUBLE(:,:)</td>
<td>Total DOF</td>
</tr>
<tr>
<td>dot</td>
<td>DOUBLE(:,:)</td>
<td>Mean DOT</td>
</tr>
<tr>
<td>dot_uncrt</td>
<td>DOUBLE(:,:)</td>
<td>Uncertainty of mean DOT</td>
</tr>
<tr>
<td>dot_fdr</td>
<td>DOUBLE(:,:)</td>
<td>DOF-weighted mean DOT</td>
</tr>
<tr>
<td>dot_fdr_uncrt</td>
<td>DOUBLE(:,:)</td>
<td>Uncertainty of DOF-weighted mean DOT</td>
</tr>
</tbody>
</table>

Group: /x_polar/beam

This group contains data for beams 1, 2, 3, 4, 5, and 6 (all beams).

<table>
<thead>
<tr>
<th>Attribute</th>
<th>Datatype(Dims)</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>dof</td>
<td>DOUBLE(:,:)</td>
<td>Total DOF</td>
</tr>
<tr>
<td>dot</td>
<td>DOUBLE(:,:)</td>
<td>Mean DOT</td>
</tr>
<tr>
<td>dot_uncrt</td>
<td>DOUBLE(:,:)</td>
<td>Uncertainty of mean DOT</td>
</tr>
<tr>
<td>dot_fdr</td>
<td>DOUBLE(:,:)</td>
<td>DOF-weighted mean DOT</td>
</tr>
<tr>
<td>dot_fdr_uncrt</td>
<td>DOUBLE(:,:)</td>
<td>Uncertainty of DOF-weighted mean DOT</td>
</tr>
<tr>
<td>Attribute</td>
<td>Type</td>
<td>Dimensions</td>
</tr>
<tr>
<td>--------------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>dot_kurt_avg</td>
<td>DOUBLE(:,:)</td>
<td>CHUNKED</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>dot_dfw</td>
<td>DOUBLE(:,:)</td>
<td>CHUNKED</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>dot_sigma_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>dot_dfw_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>dot_skew_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>dot_dfw_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>geoid_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>geoid_dfw</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>ice_conc</td>
<td>FLOAT(1:)</td>
<td></td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>lat_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>lat_dfw</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>length_dfw</td>
<td>FLOAT(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>length_sum</td>
<td>FLOAT(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>lon_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>lon_dfw</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>n_ph_srfc</td>
<td>INTEGER(:,:)</td>
<td></td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>n_ph_total</td>
<td>INTEGER(:,:)</td>
<td></td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>n_segs</td>
<td>INTEGER(:,:)</td>
<td></td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>podppd_flag_prct</td>
<td>FLOAT(:,:)</td>
<td>INVALID_RAB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>r_noise</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>r_srfc</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>ssb_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>ssb_dfw</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>crs</td>
<td></td>
</tr>
<tr>
<td>surf_prct_avg</td>
<td>FLOAT(:,:)</td>
<td>INVALID_RAB</td>
</tr>
<tr>
<td>Variable</td>
<td>Type</td>
<td>Dimensions</td>
</tr>
<tr>
<td>----------</td>
<td>------</td>
<td>------------</td>
</tr>
<tr>
<td>surf_prcnt_dfw</td>
<td>FLOAT(:,:,:)</td>
<td>INVALID_R4B</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>(Attribute)</td>
<td>crs</td>
</tr>
<tr>
<td>swh_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>(Attribute)</td>
<td>crs</td>
</tr>
<tr>
<td>swh_dfw_dfw</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>(Attribute)</td>
<td>crs</td>
</tr>
<tr>
<td>x_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>(Attribute)</td>
<td>crs</td>
</tr>
<tr>
<td>x_dfw</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>(Attribute)</td>
<td>crs</td>
</tr>
<tr>
<td>y_avg</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>(Attribute)</td>
<td>crs</td>
</tr>
<tr>
<td>y_dfw</td>
<td>DOUBLE(:,:)</td>
<td>INVALID_RBB</td>
</tr>
<tr>
<td>grid_mapping</td>
<td>(Attribute)</td>
<td>crs</td>
</tr>
</tbody>
</table>