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1.0   INTRODUCTION 
 
1.1  Objectives 

The AMSR-E and AMSR2 instruments are multichannel passive microwave radiometers 
flying on the EOS Aqua and GCOM-W1 spacecrafts. As a science mission with 
integrated applications goals, these sensors will advance understanding of the Earth's 
water and energy cycle and extend current capabilities in using accurate and timely 
information of atmospheric moisture to directly benefit the society.  The current 
Algorithm Theoretical Basis Document (ATBD) deals with the ocean product from the 
AMSR-E and AMSR2 sensors.  The passive microwave algorithm uses an optimal 
estimation approach to derive sea surface Wind Speed (WS), Total precipitable Water 
(TPW) and Cloud Liquid Water (CLW).   

    
1.2  Purpose 

 
This ATBD describes the AMSR-E/AMSR2 passive microwave ocean algorithm.  Output 
parameters of the algorithm are enumerated in Table 1. This document identifies the 
physical theory upon which the algorithm is based and the specific sources of input data 
and output from the retrieval algorithm.  The document includes implementation details, 
as well as the assumptions and limitations of the adopted approach.   
  
 

Table 1.  Key output parameters from the U2 Ocean Product. 
 

 
1.3   Scope 
 

Pixel Information 
Parameter Units Comments 

Latitude, longitude Deg. Pixel earth coordinate position 
Quality Flag None A measure of the convergence of the OE 

algorithm 
Liquid Water Path g m-2 Integrated liquid water in the atmospheric 

column for cloud water only  
Total Precipitatable Water mm Integrated water vapor  
Sun Glint Angle degrees Relative angle of reflection between the sun and 

line of sight of the instrument 
Reynolds SST K Sea surface temperature from Reynolds OISST 
Wind Speed m s-1 Integrated from retrieved profile 



This document covers the theoretical basis for the retrieval from the AMSR radiometers.  
A fully physical, 1D variational inversion algorithm (1DVAR) is used to simultaneously 
retrieve ‘non-raining’ parameters such as total precipitable water (TPW), 10m-wind 
speed, and cloud liquid water path (CLWP) over ocean. Methods were developed for the 
Global Precipitation Measurement (GPM) Microwave Imager (GMI), but the algorithm is 
adaptable to any microwave imager due to its fully physical forward model. 
 
Section 1 describes the objectives, purpose and scope of the document.  Section 2 
provides AMSR-E/AMSR2 satellite instrumentation background. The process concepts 
and algorithm descriptions for the geophysical parameters of the ocean product are 
presented in Section 3.  Section 4 describes the algorithm infrastructure, while Section 5 
summarizes the assumptions and limitations.   
 
  
 



2.0   INSTRUMENT CHARACTERISTICS  
 
The AMSR-E instrument is a twelve channel, six frequency total power passive 
microwave radiometer system. It measures brightness temperatures at 6.925, 10.65, 18.7, 
23.8, 36.5, and 89.0 GHz.  AMSR2 is very similar instrument, with only one additional 
channel: 7.3 GHz used for mitigating Radio Frequency interference at 6.9265 GHz. 
Vertically and horizontally polarized measurements are taken at all channels.  

The AMSR-E instrument, modified from the design used for the ADEOS-II AMSR, 
consists of a 1.6 meter diameter offset parabolic reflector (2.0 meters for AMSR2) fed by 
an array of six feedhorns. The reflector and feedhorn arrays are mounted on a drum, 
which contains the radiometers, digital data subsystem, mechanical scanning subsystem, 
and power subsystem. The reflector/feed/drum assembly is rotated about the axis of the 
drum by a coaxially mounted bearing and power transfer assembly. All data, commands, 
timing and telemetry signals, and power pass through the assembly on slip ring 
connectors to the rotating assembly.  

A cold load reflector and a warm load are mounted on the transfer assembly shaft and do 
not rotate with the drum assembly. They are positioned off axis such that they pass 
between the feedhorn array and the parabolic reflector, occulting it once each scan. The 
cold load reflector reflects cold sky radiation into the feedhorn array thus serving, along 
with the warm load, as calibration references for the AMSR-E/AMSR2. Calibration of 
the radiometers is essential for collection of useful data. Corrections for spillover and 
other antenna pattern effects are incorporated in the data processing algorithms.  

The AMSR-E rotates continuously about an axis parallel to the local spacecraft vertical at 
40 rpm. At an altitude of 705 km (700km for AMSR2), it measures the upwelling scene 
brightness temperatures over an azimuthal range of +/- 70 degrees about the sub-satellite 
track, resulting in a swath width of 1500 km (1450km for AMSR2).  

During a period of 1.5 seconds the spacecraft sub-satellite point travels 10 km. Even 
though the instantaneous field-of-view for each channel is different, active scene 
measurements are recorded at equal intervals of 10 km along the scan. To produce 
complete images at 89 GHz where the IFOV (5x5km) is smaller than the separation 
between scan lines, both AMSRs uses an offset 89 GHz channel (89B) that scans 



between the all-channel scan lines with an offset of 5 km.  The half cone angle at which 
the reflector is fixed is 46.6 degrees which results in an Earth incidence angle of 53.8 
degrees (AMSR2: 47.5 and 55.0 degrees). Table 2 lists the pertinent performance 
characteristics.  

 

Table 2. AMSR-E and AMSR2 PERFORMANCE CHARACTERISTICS 

AMSR-E        
Center Frequency (GHz) 6.925  10.65 18.7 23.8 36.5 89.0 
Bandwidth (MHz)   350    100   200   400 1000 3000 
Sensitivity (K) 0.34  0.7 0.7 0.6 0.7 1.2 
IFOV(km x km) 75 x 43  51 x 29 27 x 16 32 x 18 14 x 8 6 x 4 
Sampling rate (km x km) 10 x 9  10 x 9 10 x 9 10 x 9 10 x 10 5 x 5 
Integration Time (msec) 2.5  2.5 2.5 2.5 2.5 1.2 
Main Beam Efficiency (%) 95.3  95.0 96.3 96.4 95.3 96.0 
Beamwidth (degrees) 2.2  1.5 0.8 0.92 0.42 0.19 
AMSR2        
Center Frequency (GHz) 6.925 7.3 10.65 18.7 23.8 36.5 89.0 
Bandwidth (MHz)   350  350   100   200   400 1000 3000 
Sensitivity (K) 0.34 .43 0.7 0.7 0.6 0.7 1.4 
IFOV(km x km) 62 x 35 62 x 35 42 x 24 22 x 14 26 x 15 12 x 7 5 x 3 
Sampling rate (km x km) 10 x 10 10 x 10 10 x 10 10 x 10 10 x 10 10 x 10 5 x 5 
Integration Time (msec) 2.6 2.6 2.6 2.6 2.6 2.6 1.3 
Main Beam Efficiency (%) >90.0 >90.0 >90.0 >90.0 >90.0 >90.0 >90.0 
Beamwidth (degrees) 1.8 1.8 1.2 0.65 0.75 0.35 0.15 
 
 
It should be noted that while AMSR-E and AMSR2 are very similar instruments, and use 
the same retrieval algorithm, the brightness temperatures provided in the Level 1B 
product used as input to the retrieval algorithm are not fully consistent.  To avoid 
introducing Inconsistencies in the geophysical parameters, Tb for both AMSR-E and 
AMSR2 are shifted to be consistent with the GPM GMI radiometer as defined by the 
GPM Intercalibration Working Group (Berg et al., 2016).   



3.0 ALGORITHM DESCRIPTION 

 

3.1 Ocean Algorithm (from Duncan and Kummerow, 2016) 
The oceanic parameters of TPW, 10m wind speed, and CLWP are termed ‘non-

raining’ because, historically, microwave radiative transfer models can quickly and fairly 

accurately model radiances in an absorbing/emitting atmosphere, but the scattering of 

microwave radiation by precipitation is more difficult and remains an ongoing problem 

[Weng, 2007]. In fact, most satellite observations in areas of precipitation, and indeed 

cloud, are not assimilated into global weather models and constitute an active area of 

research [Bauer et al., 2006; Bennartz and Greenwald, 2011]. The non-raining 

parameters are thus geophysical variables retrievable from a passive microwave platform 

in clear-sky or cloudy conditions, but not in precipitating or scattering conditions; to 

retrieve in raining conditions, assumptions have to be made about partitioning cloud 

water and rainwater, as in Hilburn and Wentz [2008], and the radiative transfer is more 

complicated. 

Ability to retrieve the non-raining parameters from passive microwave radiances 

derives from the emission/absorption characteristics of water vapor and liquid water at 

microwave frequencies and the effect of wind speed on the emissivity of the ocean. To 

first order, the emission of the ocean surface at microwave frequencies is dependent on 

wind speed and temperature alone; other factors like ocean salinity and wind direction are 

second-order effects [Meissner and Wentz, 2002]. By assuming a vertical profile of water 

vapor and cloud water, as well as a temperature profile, the atmosphere can be adequately 

modeled at microwave frequencies, and thus the non-raining parameters can be retrieved. 

Highly variable atmospheric constituents such as aerosols and ozone are ignored due to 

their small radiative impacts.  

Retrieval algorithms for microwave imagers have historically relied upon 

statistical methods [Wilheit and Chang, 1980; Alishouse et al., 1990], and semi-physical 

methods [Liu et al., 1992; Greenwald et al., 1993; Wentz, 1997] to determine some or all 

of the non-raining parameters over ocean. Though empirical and semi-physical methods 

are still widely used, retrieval algorithms have generally moved towards simultaneous 

retrieval of all non-raining parameters [Boukabara et al., 2011]. In addition to increased 



computational power, this is due to the interdependence of microwave frequencies on 

surface emissivity and emission from both water vapor and cloud water, and is thus the 

best way to ensure that the resultant output is consistent with the observed radiances. 

Elsaesser and Kummerow [2008], hereinafter EK08, utilized the mathematical framework 

outlined in Rodgers [2000] to iteratively solve for all parameters simultaneously, and it is 

this approach that is built upon here. 

In the last decade or more, efforts have moved from sensor-specific approaches to 

an emphasis on intercalibration and algorithms that can provide consistent time series of 

geophysical constituents from multiple satellite sensors [Berg et al., 2013; Robertson et 

al., 2014; Hou et al., 2014]. The approach detailed here follows previous studies that 

iteratively solve for geophysical parameters by forward modeling the atmosphere and 

finding a solution that closely matches observed radiances, balancing observations with 

prior knowledge of the state vector [Deblonde and English, 2003; Bettenhausen et al., 

2006; EK08; Boukabara et al., 2011; Munchak and Kummerow, 2011]. The 1D 

variational (1DVAR) approach is generalizable to other sensors due to its fully physical 

forward model. The process of forward modeling and iterating to find a solution that 

minimizes differences between observed and simulated radiances, while taking prior 

information into account, adds constraints to the under-constrained problem. The forward 

model must contain all atmospheric components to which the radiances are significantly 

sensitive and simulate the atmospheric profile of absorbing/emitting constituents with 

enough fidelity to satisfy the weighting functions of all channels. Any combination of 

channels may be used in the iteration, the radiative transfer and emissivity models may be 

swapped, and prior information can be weighted heavily or not at all, lending the 

approach great flexibility. 

The remainder of this paper is organized as follows. Section two lists the data 

sources employed for algorithm development and validation; section three gives a brief 

overview of 1DVAR theory, details the CSU 1DVAR’s forward model, and describes 

calculation of the covariance matrices; section four contains results and validation against 

independent datasets; section five discusses sensitivities of the algorithm; and section six 

contains discussion and some conclusions. 



 3.1.1 1DVAR 

 At the heart of the retrieval is the mathematical framework known as a one-

dimensional variational (1DVAR) technique, also known as optimal estimation. While 

the mathematics of this technique is described in detail in numerous places [Rodgers, 

2000; Bettenhausen et al., 2006; EK08; Boukabara et al., 2011], it is critical to the 

retrieval and thus warrants a quick overview.   

 1DVAR is a matrix-based inverse method predicated upon Bayes’ Theorem. It 

blends observations, prior environmental knowledge, and knowledge of the errors in both 

to invert the measurement vector y to determine the state vector x. In this case, y is a 

vector of brightness temperatures from GMI and x is a vector that includes CLWP, wind 

speed, and atmospheric water vapor. The measurements are related to the geophysical 

state by a forward model, f(x,b), that is dependent upon elements in the state vector and 

also assumed geophysical properties, b. In this case, the forward model is described in 

Section 3.2 and b constitutes the atmospheric temperature profile, wind direction, surface 

salinity, and everything else not solved for explicitly.  

The covariancess in the measurement vector are described by matrix Sy, and 

covariances in the a priori vector, xa, that describe prior knowledge of the state vector is 

given by matrix Sa. The inversion is solved iteratively via Newton’s method by assuming 

Gaussian-distributed errors and a moderately linear response of the measurements to 

changes in the state vector [Rodgers, 2000]. To solve the inverse problem, we minimize a 

cost function that weights both measurements and prior knowledge in accordance with 

their uncertainties: 

Φ = (x-xa)TSa
-1(x-xa) + [y-f(x,b)]TSy

-1[y-f(x,b)]. 

The minimum gradient of Φ with respect to x describes the maximum probability 

solution of x given measurement y. This formalism produces a posterior probability 

density function (PDF) of the retrieved state, described by  

Sx = (KTSy
-1K + Sa

-1)-1, 

where K is the weighting function matrix or Jacobian that describes the first derivative of 

each forward modeled element to changes in the state vector. Elements of the Sx matrix 

describe the estimated variances and covariances of errors for retrieved parameters.  



 Convergence is defined by a minimized cost function and simulated Tbs that 

change very little between iterations (given as equation 5.33 in Rodgers [2000]). 

Convergence is typically reached in two iterations for clear-sky scenes and 3-5 iterations 

for cloudy scenes. A normalized chi-squared metric is used to examine quality of 

convergence, 

χ2 = [y-f(x,b)]TSy
-1[y-f(x,b)] / Nchan, 

where Nchan is the number of satellite channels used. The χ2 cost function referred to 

throughout the paper is thus the part of Φ that signals the fit to the observations and is 

independent of the prior. χ2 is normalized by Nchan to allow greater adaptability to other 

sensors and channel combinations.  

3.1.2 Forward model 

 The forward model employs the Community Radiative Transfer Model, CRTM 

[Liu and Weng, 2013] to compute simulated radiances at the GMI frequencies. Surface 

emissivities come from the FASTEM6 ocean surface emissivity model [Kazumori and 

English, 2015]. The CSU 1DVAR version described here uses CRTM Release 2.2.1. The 

forward model has 16 vertical layers in pressure, from 100hPa to the surface. The lowest 

layer’s depth varies in accordance with sea level pressure from the analysis data, while 

the other layers are static.  

 The EOF-based approach of retrieving the water vapor profile is a compromise 

between allowing the channels’ weighting functions to guide the retrieved distribution of 

water vapor and requiring prior information to make the problem viable. This is a 

common method to reduce dimensionality in 1DVAR retrievals [Boukabara et al., 2011; 

Munchak et al., 2016]. To guide the retrieval, the a priori profiles are subset by SST. The 

EOFs are defined as variations around a mean profile, calculated offline from ERA-

Interim data. The 1DVAR process solves for the coefficient of each EOF, which may be 

positive or negative, yielding a profile that best matches the Tb vector, 

WVret = WVSST + c1EOFSST,1 + c2EOFSST,2 + c3EOFSST,3. 

An advantage of EOFs is no covariance between the principal components, by definition, 

setting off-diagonal elements of the Sa matrix to zero. According to analysis of ERA-

Interim data, the first three EOFs of water vapor mixing ratio account for 90-98% of the 



total variability, depending on the SST regime. The number of EOFs employed could be 

increased or decreased for different channel combinations, but for GMI using three EOFs 

is optimal.  

Both wind direction and the atmospheric temperature profile are taken from ERA-

Interim. Wind direction has a small but significant effect on Tbs that increases with wind 

speed and depends on frequency. Instead of solving for wind direction, which has a weak 

radiometric signal [Wentz, 1992], wind direction is taken from ERA-Interim. Its inclusion 

removes cross-scan artifacts that are present if a static wind direction is assumed. The 

channel suite of GMI does not contain any temperature sounding channels, and therefore 

the temperature profile is also taken from the model. The CSU 1DVAR can be run 

without this model guidance, but assumed channel errors need to be increased if using a 

climatological lapse rate. Sea surface salinity is taken from monthly climatologies 

derived from Aquarius mission data [Le Vine et al., 2015]. 

Other assumptions in the forward model include a fixed cloud layer, no scattering 

due to clouds or aerosols, a fixed cloud drop size distribution, and a plane-parallel 

atmosphere. The significance of the plane-parallel assumption is not assessed here but 

has been explored elsewhere [Rapp et al., 2009; Bennartz and Greenwald, 2011]; FOV 

inhomogeneity is a source of retrieval error for Tbs that have not been convolved to a 

common resolution. This is potentially a significant source of error for broken cloud 

fields in particular, given the size differential between 36GHz and 166GHz FOVs, for 

example. Placement of the cloud layer has little impact on the retrieval due to the 

increasing emissivity of cloud drops with decreasing temperature [Mätzler et al., 2010], 

causing the effective emission to be somewhat independent of cloud height but tied 

strongly to the total amount of liquid water in the column. Pixels for which the non-

scattering assumption is invalid typically lead to non-convergence and often signal areas 

of precipitation, explored in Section 4. If the cloud is non-precipitating, due to cloud 

drops being in the Rayleigh regime for microwave frequencies, emission is proportional 

to column liquid water mass [Bennartz, 2007], and thus the droplet size assumption is not 

significant.  

 3.1.3 Determination of Sy and Sa 



 The matrices Sa and Sy especially have a large impact on the 1DVAR retrieval. Sa 

represents the best estimate of prior knowledge of the state vector, and can thus come 

from a variety of sources. For example, Boukabara et al. [2011] use output from various 

global and mesoscale models, whereas EK08 defines global variances of each retrieved 

parameter from climatology and assumes zero covariances for all. Determination of Sy is 

much more nuanced.  

Elements of Sy essentially inform the algorithm how much weight each channel 

should be given in the inversion. This includes sensor noise, forward model parameter 

error, and the error introduced by the forward model, with the latter the dominant term. In 

EK08 this was estimated in a piecewise manner, adding sensor noise (noise-equivalent 

differential temperature, NEDT) to estimates of channel sensitivity taken from 

perturbations to parts of the forward model. In contrast, Boukabara et al. [2011] model 

radiances through ECMWF model output and then scale the resultant uncertainties by 

uncertainties in the geophysical input values themselves. This also serves as a method of 

bias correction, essentially forcing the radiances to match the model, a method common 

in satellite data assimilation [Liu and Boukabara, 2014], though variational methods are 

now common for bias correction in data assimilation as well [Auligne et al., 2007]. 

 In this study, Sa is largely determined via analysis of 6-hourly ERA-Interim data. 

For wind speed, climatological maps of standard deviations yield location- and month-

dependent values. These values are calculated at the N128 model grid resolution and then 

interpolated and smoothed to produce a high-resolution global grid. In contrast, the EOFs 

of water vapor are allowed to move more freely, constrained weakly by the variability 

observed in the reanalysis data, but subset only by SST so as not to alias any regional 

biases of the model into the retrieval. Each EOF coefficient has maximum and minimum 

values of 4 and -4, so as to limit unphysical behavior. 

For liquid water there is less constraint, with the prior and variance globally 

defined in logarithm space; this permits the retrieval to solve for a multitude of clear-sky 

scenes without biasing against high CLWP regimes, as the global distribution of CLWP 

is far from Gaussian but is more so in logarithm space. The relatively strong radiometric 

signal of liquid water thus guides the inversion instead of prior information, with no 

reliance upon model data. Winds and water vapor, in contrast, have subtler radiometric 



signals and therefore benefit from greater constraint. The only off-diagonal elements of 

Sa that are significant, and thus taken into account, are covariances between CLWP and 

the EOFs of water vapor, which come from the reanalysis. The results are fairly 

insensitive to whether xa comes from a model or climatology, but assumed errors need to 

be increased if using climatology and the results are noisier. 

 Calculation of Sy begin with Tbs being forward modeled using ERA-Interim data 

at their native vertical resolution, 37 pressure levels, including ice and water clouds as 

well as scattering in the radiative transfer. This is then compared to simulated radiances, 

again from ERA-Interim, but using the simplified forward model of the retrieval—16 

vertical pressure levels, the EOF-based water vapor profile described in Section 3.2, a 

fixed cloud layer, and no cloud ice. To account for forward model parameter error—the 

uncertainty of prescribed elements (b) in the forward model—noise is added to the 

parameters of SST, salinity, wind direction, and the temperature profile when running the 

simplified forward model. Specifically, the uncertainties are taken to be 0.62K for SST, 

0.5psu for salinity, 20 degrees for wind direction, and 2K for temperature. Around a 

hundred millions points are forward modeled using both sets of assumptions to get a large 

statistical sample.  

The difference in Tb, simulated versus simulated, is then a synthetic dataset that 

speaks to forward model error, including forward model parameter error, in an imperfect 

but tractable way. This method attempts to account for the largest forward model error 

sources, however some error sources, such as absorption model or FOV inhomogeneity 

errors, cannot readily be quantified. After careful screening for bad matchups and 

contamination from precipitation or sea ice, the covariances of these simulated versus 

simulated Tb differences yield an estimate of the forward model errors. This approach 

also yields forward model biases, typically ~0.1K for low frequencies and 1-4K for the 

183GHz channels, which are applied to the observed Tbs prior to processing.  

In order to account for emissivity model errors, a separate analysis compared the 

Tb response of FASTEM6 at AMSR frequencies against another state-of-the-art 

emissivity model, Meissner and Wentz [2012]. Covariances of the difference between the 

two models are taken as a proxy for emissivity model uncertainty. These covariances are 

added to those from the previous analysis. Lastly, NEDT values are added to the diagonal 



elements of Sy from this analysis to yield the channel error covariance matrix used in the 

algorithm, shown in Figure 1.  

It should be stressed that small differences in Sy can cause large differences in the 

performance of the retrieval. Decreasing the diagonal elements by say 20% markedly 

decreases the number of pixels that reach convergence, whereas overestimating Sy will 

cause the retrieval to over-weight the prior. Typically, this sensitivity most affects 

convergence in cloudy scenes, consistent with Bormann et al. [2011], whereas 

convergence can occur in some clear-sky scenes when assuming that Sy is simply NEDT. 

The method described for calculating Sy yields channel errors and their covariances 

related to the forward model, but it does not take every possible error source into account 

and thus may need to be adjusted for different applications and especially for other 

sensors that may not be as well calibrated as GMI. As seen in Figure 2, histograms of Tb 

residuals (observed minus simulated Tb) for each channel are largely Gaussian and 

exhibit maxima near zero.  

 

 
Figure 1. Channel error covariance matrix, given as the square root of the covariances so 
as to be in units of Kelvin. Negative covariances are shown as -1 times the square root of 
the absolute value of the covariance so as to aid interpretation. This represents the 
calculated forward model error plus the published NEDT values along the diagonal. 

 



 
Figure 2. Histograms of Tb residuals (observed minus simulated Tb) for 10 channels of 
AMSR, comprised of all converged pixels over one month. Red signifies V polarization, 
blue H polarization.



4.0  Output Variables and Flags 
4.1 Orbit Header Record Variable Specifications 

 
Num Scans, Num Pixels 
Number of Scans, Pixels in each scan 
 
 

4.2  Scan Data Record Variable Specifications 
 

Time  
year, month, day, hr, min, sec 
 
Latitude, Longitude 
Scan latitude and longitude. 
 

 
4.3  Pixel Data Record Variable Specifications  
 

Latitude, Longitude  
Pixel latitude and longitude. 
 
quality Flag  
qualityFlag indicates a generalized quality of the retrieved pixel.   

  
Valid values include: 

  0 : Highest_quality_retrieval  
  1 : Convergence_reached  
  2 : No_convergence_precipitation_or_land_contamination_possible  
  3 : TPW_quality_check_failed_set_to_missing  
  4 : Sun_glint_angle_less_than_20_degrees_set_to_missing  
  5 : Not_run_due_to_land_or_sea_ice" 
 
 chi Squared 

Error diagnostic for Optimal Estimation calculation of TPW and wind speed. 
Values greater than the number of channels (9 for TMI) should be considered 
suspect, with values greater than 18 of limited use. Rainfall is possible above 
these values. Values could range from 0 to 10000, but should be less than 100.  

 
 Land Percentage 

A surface variable, in percent, defining the fraction of land.  
 
 
 
 
 
 
 



 sun Glint Angle  
Conceptually, the angle between the sun and the instrument view direction as 
reflected off the Earth's surface. More specifically, define a Sun Vector from the 
viewed pixel  location on the earth ellipsoid-model surface to the sun. Also 
define an Inverse Satellite Vector from the pixel to the satellite. Then reflect the 
Inverse Satellite Vector off the earth's surface at the pixel location to form the 
Reflected Satellite View Vector. sunGlintAngle is the angular separation between 
the Reflected Satellite View Vector and the Sun Vector. When sunGlintAngle is 
zero, the instrument views the center of the specular (mirror-like) sun reflection.  

 
Reynolds Sea Surface Temperature 
Reynolds SST for this pixel.   
 
total Precipitable Water 
Liquid equivalent of the total water vapor in the atmospheric column.  
  

 wind Speed 
Wind speed at the 10 meters above sea surface derived from the OE retrieval.   
 
Liquid Water Path 
The liquid water path derived from the OE retrieval of non-raining parameters.  

 
Error of Wind speed, LWP and TPW 
Posterior error for wind speed, LWP and TPW variables, given as the standard 
deviation of errors.   
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