

Jeffrey S. Kargel, Gregory J. Leonard, Michael P. Bishop, Andreas Kääb and Bruce H. Raup (Editors)

Global Land Ice Measurements from Space

Published in association with **Praxis Publishing** Chichester, UK

Editors:

Dr. Jeffrey S. Kargel University of Arizona Tucson Arizona U.S.A.

Dr. Michael P. Bishop Department of Geography Texas A&M University College Station Texas U.S.A.

Bruce H. Raup University of Colorado Boulder Colorado U.S.A. Gregory J. Leonard University of Arizona Tucson Arizona U.S.A

Professor Dr. Andreas Kääb University of Oslo Oslo Norway

SPRINGER-PRAXIS BOOKS IN GEOPHYSICAL SCIENCES SUBJECT *ADVISORY EDITOR*: Philippe Blondel, C.Geol., F.G.S., Ph.D., M.Sc., F.I.O.A., Senior Scientist, Department of Physics, University of Bath, U.K.

ISBN 978-3-540-79817-0 e-ISBN 978-3-540-79818-7 DOI 10.1007/978-3-540-79818-7

Springer Heidelberg Dordrecht London New York

Library of Congress Control Number: 2012944198

© Springer-Verlag Berlin Heidelberg 2013

This work is subject to copyright. All rights are reserved, whether the whole or part of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilm or in any other way, and storage in data banks. Duplication of this publication or parts thereof is permitted only under the provisions of the German Copyright Law of September 9, 1965, in its current version, and permission for use must always be obtained from Springer. Violations are liable to prosecution under the German Copyright Law.

The use of general descriptive names, registered names, trademarks, etc. in this publication does not imply, even in the absence of a specific statement, that such names are exempt from the relevant protective laws and regulations and therefore free for general use.

Cover design: Jim Wilkie Project management: OPS Ltd., Gt. Yarmouth, Norfolk, U.K.

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Contents

Dedication	XV
List of contributors	xvii
Preface	XXV
Acknowledgments	xxvii
Online supplement	xxix
Chapter receipt information	xxxi
List of figures	xxxiii
List of tables	xlv
List of abbreviations and acronyms	xlix
About the editors	lv
Prologue	lvii

1	Introduction: Global glacier monitoring—a long-term task integrating <i>in situ</i> observations and remote sensing Michael Zemp, Richard Armstrong, Isabelle Gärtner-Roer, Wilfried Haeberli, Martin Hoelzle, Andreas Kääb, Jeffrey S. Kargel, Siri Jodha S. Khalsa, Creacew L. Loonard, Eventh, Baul, and	
	Bruce Raup	1
1.1	Why this book?	1
1.2	Perennial surface ice on land	2
1.2.1	Definitions	2
1.2.2	Global coverage	3
1.3	Glaciers and climate	4

2	Theoretical foundations of remote sensing for glacier assessment and	
1.8	Conclusions	16
1.7	Synopsis and organization of the book	15
1.6	Integrative glacier change assessments	15
1.5.3	Challenges	14
1.5.2	Possible applications	13
1.5.1	Satellite observations in GTN-G	12
1.5	Glacier observations from space	12
1.4.4	Challenges of the 21st century	11
1.4.3	Available datasets	9
	Glaciers (GTN-G)	8
1.4.2	The Global Terrestrial Network for	
	in the 19th and 20th centuries	6
1.4.1	History of international glacier monitoring	
1.4	International glacier monitoring	6
1.3.3	Reporting glacier change rates	5
	response times	5
1.3.2	Glacier reactions to climate change, and	
	controls	4
1.3.1	Formation of glaciers and their dynamical	

	sensing for glacier assessment and	
	mapping	
	Michael P. Bishop, Andrew B.G. Bush,	
	Roberto Furfaro, Alan R. Gillespie,	
	Dorothy K. Hall, Umesh K. Haritashya,	
	and John F. Shroder Jr.	23
2.1	Introduction	23
2.2	Radiation transfer cascade	24
2.2.1	Solar irradiance	24
2.2.2	Surface irradiance	25
2.2.3	Surface reflectance	30
2.2.4	Surface emission	31
2.3	Surface-energy interactions	32

2.3.1 2.3.2 2.3.3 2.4 2.5 2.5.1 2.5.2 2.5.3 2.5.4 2.5.5	Snow Glaciers Water Complications Space-based information extraction Snow cover Ice sheets Alpine glacier mapping Debris-covered glaciers Snow line and ELA	32 34 35 37 37 37 37 38 38 38 39 40
2.5.6	Ice flow velocities	41
2.6	Numerical modeling	41
2.6.1	Climate modeling	42
2.6.2	Energy balance modeling	43
2.6.3	Glacier mass balance modeling	45
2.7	Conclusions	46
3	Radiative transfer modeling in the cryosphere	
	R. Furfaro, A. Previti, P. Picca,	
	J.S. Kargel, M.P. Bishop	53
3.1	Introduction	53
3.2	Radiative transfer modeling of glacier	
	surfaces	55
3.2.1	RT modeling approach for glacier surfaces	56
3.2.2	Radiative transfer equation in layered	50
2 2 2	mixtures of snow, ice, and debris	28
3.2.3	Radiative transfer equation in glacter take	50
2 2	Ontical properties of snow ice debris	39
5.5	mixtures and glacier lake water	60
331	Snow	61
332	Glacier ice	61
3.3.3	Rock debris	62
3.3.4	Mixtures	63
3.3.5	Glacier lake water	63
3.4	Numerical solution of the RTE	64
3.5	Glacier radiative transfer simulation	
	examples	66
3.6	Conclusions	70
4	Glacier mapping and monitoring using multispectral data	
	Andreas Kääb, Tobias Bolch,	
	Kimberly Casey, Torborg Heid,	
	Jeffrey Kargel, Greg Leonard, Frank Paul,	
	Bruce Raup	75
4.1	Introduction	75
4.2	Image preprocessing	76
4.2.1	Radiometric calibration	76
4.2.2	Geometric preprocessing	76
4.3	Multispectral methods	78
4.3.1	Spectral reflectance of glacier surfaces	78
4.3.2	Image classification approaches	79
4.3.3	Image-processing techniques	81
4.3.4	rosiprocessing and GIS work flow	82

4.4	Mapping debris-covered ice	86
4.5	Thermal imaging	87
4.6	Microwave/SAR methods	89
4.7	Spectral change detection and temporal	
	data merging	89
4.7.1	Overview	89
4.7.2	Image change evaluation by subtraction of	
	multispectral anniversary pairs	
	(ICESMAP)	94
4.8	Ice flow	98
4.8.1	Image choice and preprocessing for image	
	matching	98
4.8.2	Image-matching techniques	100
4.8.3	Postprocessing and analysis	101
484	Accuracy	102
485	SAR offset tracking and interferometry	102
1.0.5	Challenges conclusions and perspectives	102
т.)	chancinges, conclusions, and perspectives	104
5	Digital terrain modeling and glacier	
0	tonographic characterization	
	Duncan I Quincey Michael P Rishon	
	Andreas Kääb Etienne Berthier	
	Roris Flach Tobias Rolch	
	Manfred Ruchroithner Ulrich Kann	
	Siri Jodha Singh Khalsa Thiorry Toutin	
	Umosh K Haritashya Adina Pacovitaanu	
	John F. Shroder and Bruce H. Paun	113
	John T. Shrouer, and Bruce II. Kaup	115
5.1	Introduction	113
5.2	Background	114
5.3	Digital elevation model generation	115
5.3.1	Source data	115
5.3.2	Aerial and satellite image stereoscopy	117
5.3.3	Ground control points	118
5.3.4	Software packages	119
5.3.5	Postprocessing (interpolation and	120
526	smootning)	120
5.3.6	Data jusion	122
5.4	DEM error and uncertainty	122
5.4.1	Representation of DEM error and	122
512	Tune and quicin of gunous	122
5.4.2	Type and origin of errors	123
5.5	Common phometric land surface parameters	124
5.5.1	Geomorphometric tana surjace parameters	124
5.5.2	Scale-aependent analysis	120
5.5.5	Altitude functions	120
5.5.4	Annual Junctions Classes and mass	127
5.5.5	balance calculations	128
56	Glacier manning	120
561	Pattern recognition	132
562	Artificial intelligence techniques	122
563	Object-oriented manning	133
5.0.5	o ojeci-onenicu mupping	1.57

5.8 Conclusions

5.7 Discussion

6	ASTER datasets and derived products	
	for global glacier monitoring	
	Bhaskar Ramachandran, John Dwyer,	
	Bruce Raup, and Jeffrey S. Kargel	145
6.1	Introduction	145
6.2	ASTER Data Access and Use Policy	146
6.3	ASTER data	147
6.3.1	Performance of ASTER VNIR, SWIR,	
	and TIR	147
6.4	ASTER data-processing stream	152
6.4.1	Standard Level 1A and Level 1B	152
6.5	ASTER data for GLIMS: STARS,	1.50
	DARs, gain settings, and image seasons	159
7	Quality in the GLIMS Glacier	
	Database	
	Bruce Raup, Siri J.S. Khalsa,	
	Richard Armstrong, W.A. Sneed,	
	G.S. Hamilton, Frank Paul, F. Cawkwell,	
	M.J. Beedle, B. Menounos, R. Wheate,	
	H. Rott, S. Liu, X. Li,	163
7.1	Introduction	163
7.2	Standard methods and tools	164
7.3	Accuracy and precision in glacier	
	mapping	164
7.4	Glacier analysis comparison experiments	
	(GLACE)	166
7.4.1	GLACE 1 and GLACE 2	166
7.4.2	GLACE 2A and GLACE 3A (manual	
	digitization)	168
7.5	GLACE results	168
7.5.1	GLACE 1 and GLACE 2	168
7.5.2	GLACE 2A and GLACE 3A	171
7.5.3	Discussion	173
/.0	GLIMS Glacier Database and the data	176
761	Ingest process	176
7.6.2	Representation of measurement error	170
7.6.3	Derived parameters in the database	179
7.7	Conclusion	180
,.,	Conclusion	100
8	Mapping of glaciers in Greenland	100
	Leigh A. Stearns and Hester Jiskoot	183
8.1	Greenland glaciology	183
8.1.1	Ice sheet mass changes	184
8.2	Case Study 1: Central East Greenland	
	margin fluctuations and climate	
	sensitivity from a GLIMS Glacier	
	Inventory and ASTER GDEM	105
0.0.1	(by Hester Jiskoot)	186
8.2.1	Introduction	186
8.2.2	Methods Describe	188
0.2.3	Results	189

8.3 Case Study 2: A comparison of high-rate GPS and ASTER-derived measurements

on	Helheim	Glacier

	on Helheim Glacier	
	(by Leigh A. Stearns and G.S. Hamilton)	193
8.3.1	Introduction	193
8.3.2	Data	193
8.3.3	Results	196
8.3.4	Discussion and conclusion	199
9	Remote sensing of recent glacier	
	changes in the Canadian Arctic	
	Martin Sharp, David O. Burgess,	
	Fiona Cawkwell, Luke Copland,	
	James A. Davis, Evelvn K. Dowdeswell,	
	Julian A. Dowdeswell, Alex S. Gardner,	
	Douglas Mair, Libo Wang,	
	Scott N. Williamson, Gabriel J. Wolken,	
	and Faye Wyatt	205
9.1	Introduction	205
9.2	Regional context	206
9.2.1	Geology and physiography	206
9.2.2	Climate and recent climate trends in the	
	Canadian Arctic	206
9.2.3	Glacier characteristics	209
9.3	Special topics: regional glacier mass	
	balance and proxy indicators	210
9.3.1	Surface mass balance and mass balance	
	changes	210
9.3.2	Summer melt	211
9.3.3	Ice flow and iceberg-calving fluxes	213
9.4	Case studies	214
9.4.1	Surge-type glaciers	214
9.4.2	Northern Ellesmere Island ice shelves	216
9.5	Regional synthesis: Recent changes in	
	equilibrium line altitude and glacier	217
051	Mathadalagu	217
9.5.1	Methodology Bosults	217
9.3.2	Kesuis V au issue	219
9.0	Changes in glacier surface elevation	220
7.0.1	volume and mass sea level contributions	220
9.7	Summary and conclusions	224
	-	
10	A digital glacier database for	

Svalbard Max König, Christopher Nuth, Jack Kohler, Geir Moholdt, and 229 Rickard Pettersen 10.1 Introduction 229 10.2 Regional context 230 10.3 Database structure 230 10.4 Data 231 10.4.1 The original Topographic Map Series of Svalbard (S100)-1936/1966/1971 231 10.4.2 The 1990 photogrammetric survey 232 10.4.3 The satellite dataset 232

233 10.5 Methodology

10.5.1	Creation of glacier outlines from	
	cartographic data for the 1936/1966/1971	
	dataset	233
10.5.2	Creation of outlines from cartographic	
	data for the 1990 dataset	233
10.5.3	Creation of outlines from satellite data	
	for the 2001–2010 dataset	233
10.5.4	Glacier and snow patches smaller than	
	1 km^2	234
10.6	Results	234
10.7	Conclusions and future perspectives	238
11	Alaska: Glaciers of Kenai Fjords	
	National Park and Katmai National	
	Parks and Preserve	
	Bruce A. Giffen, Dorothy K. Hall, and	
	Janet Y.L. Chien	241
11 1	Introduction	241
11.1	Regional context	241
11.2	Geographic/topographic/environmental	242
11.2.1	setting	242
1122	Climate	242
11.2.2	Clanule Glaciar characteristics—Kenai Fiords	243
11.2.5	National Park	243
11.2.4	Glacier characteristics—Katmai National	275
11.2.7	Park and Preserve	244
11.3	Procedures for analysis of glacier	277
11.5	changes	245
1131	Imagery classification	245
11.3.2	Complicating issues	247
11.3.2	Manual editing	247
11.4	Satellite imagery interpretation accuracy	247
11.5	Areal extent—glacier ice	248
11.5.1	Kenai Fiords National Park	248
11.5.2	Katmai National Park and Preserve	248
11.6	Terminus position measurements	250
11.6.1	Methodology	250
11.6.2	Kenai Fiords National Park	251
11.6.3	Katmai National Park and Preserve	256
11.7	Discussion and conclusions	259
12	Glacier-dammed ice-marginal lakes	
	of Alaska	
	David F.G. Wolfe, Jeffrey S. Kargel,	
	and Gregory J. Leonard	263
12.1	Introduction	264
12.2	Regional context	265
12.2.1	Geographic setting	265
12.2.2	Climate	267
12.2.3	Previous research	267
12.3	Methods	268
12.3.1	Horizontal attributes	271
12.3.2	Mean glacier altitude (MGA)	271
12.3.3	Glacier stream order (complexity)	271
12.3.4	Glacier surface gradient	271

12.3.5	Damming glacier origin and terminus	
	types, and minimum–maximum altitudes	271
12.3.6	Aspects of ice dams and damming	
	glaciers	272
12.4	Results	272
12.4.1	Changes over time: Lake-admining	272
12/2	Changes over time: Glacier-dammed lake	213
12.4.2	population	276
12.5	Case study: Iceberg Lake	280
12.5.1	Overview	280
12.5.2	Satellite observations	283
12.5.3	Field observations	284
12.5.4	Satellite era hydrology	286
12.5.5	Possible causes of Iceberg Lake's	
10 (dynamical evolution	289
12.6	Discussion and conclusions	291
10		
13	Nultispectral image analysis of	
	glaciers and glacier lakes in the	
	Chugach Wiountains, Alaska	
	Jejjrey S. Kargel, Matthew J. Beeale,	
	Andrew Bush, Francisco Carreno,	
	Elena Castellanos, Umesn K. Harilashya, Cragowy Loonard Javier Lillo	
	Gregory Leonard, Juvier Lino,	
	Edward Pollack and David Wolfe	207
10.1	Lawara Tonack, and Davia Woije	297
13.1	Introduction	297
13.2	Caplogical context	299
13.2.1	Climatic context: Descriptive overview	299
13.2.2	and downscaled model	301
13.2.3	Regional significance of glaciers in the	
	Chugach/St. Elias Mountains	304
13.3	Case studies: Glacier inventorying and	
	assessment of glacier dynamics	306
13.3.1	A preliminary inventory of the Bering-	
10.0.0	Malaspina glacier complex	306
13.3.2	Glaciers of College Fiord: Harvard	212
1333	Scott Glacier	312
13.3.5	Glaciers of the Conner River corridor:	519
10.0.1	Childs. Miles. and Allen Glaciers	320
13.4	Conclusions	327
14	Remote sensing of glaciers in the	
	Canadian Cordillera, western Canada	
	Roger D. Wheate, Etienne Berthier,	
	Tobias Bolch, Brian P. Menounos,	
	Joseph M. Shea, John J. Clague, and	
	Erik Schiefer	333
14.1	Introduction	333
14.2	Regional context	334

14.2.1 Topographic setting

14.2.2 Climate

Glacier distribution and characteristics	334
Special topics and case studies	336
Glacier hazards	336
Glacier change	339
Regional glacier inventories and	
synthesis	344
British Columbia and Alberta	344
Yukon	346
Concluding remarks	351
	Glacier distribution and characteristics Special topics and case studies Glacier hazards Glacier change Regional glacier inventories and synthesis British Columbia and Alberta Yukon Concluding remarks

15 ASTER and DEM change assessment of glaciers near Hoodoo Mountain, British Columbia, Canada

	Jejjrey S. Kargel, Gregory Leonara,	
	Roger Wheate, and Benjamin Edwards	353
15.1	Introduction	353
15.2	Geologic and climatic context	354
15.3	Special topics	355
15.3.1	ASTER image differencing	355
15.3.2	Topographic differencing of Hoodoo	
	Mountain and vicinity: Analysis of four	
	time series of DEMs	360
15.3.3	Mass balance of glaciers in the Hoodoo	
	Mountain study region	363
15.3.4	Ground and air photo assessment of	
	glacier changes on Hoodoo Mountain	
	and vicinity	363
15.3.5	Glacier and climate changes in the	
	vicinity of Hoodoo Mountain	369
15.4	Synthesis and conclusions	372

16 Glaciers of the Ragged Range, Nahanni National Park Reserve, Northwest Territories, Canada

	Michael N. Demuth, Philip Wilson, and	
	Dana Haggarty	375
16.1	Introduction	375
16.2	Geographic, social, and climatic context	376
16.3	Glacier inventory and morphometry	377
16.4	Regional synthesis	377

16.5 Recommendations for further work 381

17 Glaciers and perennial snowfields of the U.S. Cordillera Andrew G. Fountain,

	Hassan J. Basagic IV, Charles Cannon,	
	Mark Devisser, Matthew J. Hoffman,	
	Jeffrey S. Kargel, Gregory J. Leonard,	
	Kristina Thorneykroft, and Steve Wilson	385
17.1	Introduction	385
17.2	Regional context	386
17.2.1	Geologic context	386
17.2.2	Climatic context	387
17.3	Methods	388
17.4	Results	388

17.4.1	California	389
17.4.2	Colorado	389
17.4.3	Idaho	390
17.4.4	Montana	390
17.4.5	Nevada	391
17.4.6	Oregon	391
17.4.7	Washington	392
17.4.8	Wvoming	393
17.4.9	Advancing glaciers	393
17.5	Case studies using ASTER	394
17.5.1	Grinnell Glacier. Glacier National Park.	
	Montana	394
17.5.2	Case study: Glacier changes	
	using ASTER and MASTER	
	multispectral and thermal imagery	395
1753	Case study: ASTER and field studies of	575
17.5.5	Rhu Glacier Olympic Mountains	
	Washington US A	401
17.6	Summary and conclusions	403
17.0	Summary and conclusions	H 05
18	Remote sensing of glaciers and	
	Oddam Sizamitaran	
	Odaur Sigur o sson,	
	Richard S. Williams, Jr.,	400
	Sandro Martinis, and Ulrich Münzer	409
18.1	Introduction	409
18.1.1	History of mapping Iceland's glaciers	409
18.1.2	Scientific analysis of Iceland's'glaciers	410
18.1.3	Air and spaceborne imaging and remote-	
	sensing analysis of Iceland's glaciers	411
18.2	Regional context	412
18.2.1	Geography and geology	412
18.2.2	Climate and climate variability	414
18.3	Special topics and methodology	415
18.3.1	Types of glaciers	415
18.3.2	History of Iceland's glacier variations	416
18.3.3	Identifying the outline, the transient snow	
	line, and the firn line of glaciers	417
18.3.4	Jökulhlaups	417
18.4	Three case studies	418
18.4.1	Transient tephra lines	418
18.4.2	Classification of the Vatnajökull ice cap	
	according to three different outlines	418
18.4.3	The impact of the 2004 jökulhlaup on	
	glacier dynamics of Skeiðarjökull,	410
10.5	Iceland, using optical remote-sensing data	419
18.5	Regional summary	421
19	Norway	
	Liss M. Andreassen, Frank Paul, and	
	Jon Endre Hausberg	427
19.1	Introduction	427
19.2	Regional context	427
19.2.1	Glacier observations	428
10 2 2	Glacier changes	120

19.2.3	Previous glacier inventories	430
19.2.4	Digital glacier outlines from	
	topographical maps (N50)	430
19.3	Methodology (derivation of glacier	
10.2.1	outlines from Landsat)	431
19.3.1	Selection of Landsat scenes	431
19.3.2	Glacier-mapping methods	432
19.4	Case studies and special topics	433
19.4.1	Glacier size alstribution	433
19.4.2	Assessing area changes in Jolunneimen	122
10/3	Uncortainties	433
19.4.5	Conclusions	435
17.5	Conclusions	155
20	European Alps	
	Frank Paul. Yves Arnaud.	
	Roberto Ranzi, and Helmut Rott	439
20.1	Regional context	439
20.1	Geographic and topographic	757
20.1.1	characteristics	439
20.1.2	Climatic conditions	440
20.1.3	Glacier characteristics	441
20.1.4	Glacier observations	442
20.1.5	Satellite data	443
20.2	Austria	444
20.2.1	Regional context	444
20.2.2	Austrian glacier inventories	444
20.2.3	Satellite-based study of glaciers in the	
	Stubaier Alpen	445
20.2.4	Conclusion	447
20.3	France	447
20.3.1	Introduction	447
20.3.2	Examples of remote sensing-based studies	
	in the French Alps	448
20.4	Italy	451
20.4.1	Glacier retreat: glaciers in the Sabbione,	450
20.4.2	Pusterial, and Dolomites regions	432
20.4.2	The Belvedere and Mlage debris-covered	152
20.4.3	Albedo and energy balance of Mandrone	7 52
20.4.3	Glacier	455
20.5	Switzerland	456
20.5.1	Methods for glacier inventory creation	456
20.5.2	Results	457
20.5.3	Conclusions	459
20.6	Synthesis and outlook	459
21	Satellite inventory of glaciers in	
	lurkey	
	Mehmet Akif Sarıkaya and	1
	Ahmet Emre Tekeli	465
21.1	Introduction	465
21.2	Regional context	466
21.2.1	Topography	466
21.2.2	Climate	467

21.3	Methods	467
21.4	Occurrences of glaciers	468
21.4.1	Glaciers in the Southeastern Taurus	
	Mountains	468
21.4.2	Glaciers in the coastal ranges of the	
	eastern Black Sea	471
21.4.3	Glaciers on individual mountains	472
21.5	Rock glaciers	476
21.5.1	Kavuşşahap Mountains	476
21.5.2	Soğanlı Mountains	476
21.5.3	Rize Mountains	476
21.5.4	Karaçal Mountains	477
21.5.5	Mt. Erciyes	477
21.5.6	Mercan Mountains	477
21.5.7	Esence Mountains	477
21.6	Summary and conclusion	477

439	22	Recent glacier changes in the	
130		Mongolian Altai Mountains: Case	
440		studies from Munkh Khairkhan and	
441		Tavan Bogd	
442		Brandon S. Krumwiede, Ulrich Kamp,	
443		Gregory J. Leonard, Avirmed Dashtseren,	101
444		and Michael Walther	481
444	22.1	Introduction	481
444	22.2	Regional background	482
	22.2.1	Quaternary history of glaciers in the	
445		Mongolian Altai	482
447	22.2.2	Recent history of glaciers in the	
447		Mongolian Alta	483
447	22.3	Regional context and study areas	484
	22.3.1	Geography and climate	484
448	22.3.2	Munkh Khairkhan range	485
451	22.3.3	Tavan Bogd range	486
450	22.4	Data and methods	487
452	22.4.1	Topographic maps	487
452	22.4.2	Satellite imagery	487
432	22.4.3	GPS data	489
455	22.4.4	Pan-sharpening	489
456	22.4.5	Glacier mapping	490
456	22.4.6	Error analysis (area accuracy and change	
457		precision)	492
459	22.4.7	Digital elevation models	493
459	22.4.8	DEM-derived datasets	496
	22.4.9	Geomorphometric analysis	497
	22.5	Results	498
	22.5.1	Glacial change in the Munkh Khairkhan	
		range	498
465	22.5.2	Glacial change in the Tavan Bogd range	499
465	22.6	Discussion	502
466	22.6.1	Munkh Khairkhan range	502
466	22.6.2	Tavan Bogd range	505
467	22.7	Conclusions	506

23 Remote sensing of glaciers in Afghanistan and Pakistan

	Michael P. Bishop, John F. Shroder Jr.,	
	Ghazanfar Ali, Andrew B.G. Bush,	
	Umesh Haritashya, Rakshan Roohi,	
	Mehmet Akif Sarikaya, and	
	Brandon J. Weihs	509
23.1	Introduction	509
23.2	Regional context	510
23.2.1	Geology	510
23.2.2	Topography	513
23.2.3	Climate	513
23.2.4	Glaciers	514
23.3	Methodology	518
23.4	Case studies	520
23.4.1	Afghanistan	520
23.4.2	Pakistan	529
23.5	Regional synthesis	543
23.5.1	Afghanistan	543
23.5.2	Pakistan	543

24 Himalayan glaciers (India, Bhutan, Nepal)

	A. Racoviteanu, Y. Arnaud,	
	I.M. Baghuna, S. Bajracharya,	
	E. Berthier, R. Bhambri, T. Bolch,	
	M. Byrne, R.K Chaujar, A. Kääb,	
	U. Kamp, Jeffrey S. Kargel,	
	A.V. Kulkarni, G. Leonard, P. Mool,	
	R. Frauenfelder, and I. Sossna	549
24.1	Overview	549
24.2	Regional context	550
24.2.1	Geographic, geologic, and topographic	
	setting	550
24.2.2	Climate dynamics and glacier regimes	552
24.2.3	Previous glacier mapping and observations	553
24.3	Case studies and specific topics	553
24.3.1	Sikkim Himalaya: glacier area change,	
	1960–2000	553
24.3.2	Khumbu and Garhwal Himalaya: glacier	
	area and thickness changes, 1960s–2000s	555
24.3.3	Everest region, Nepal: geomorphologic	
	and surface reflectance changes,	
	2001–2005	561
24.3.4	Brahmaputra River basin: glacier area,	
	volume, and velocity changes, 1970s	
	through to about 2000	564
24.3.5	Ladakh, northwestern Indian Himalaya:	
	glacier length/area change, 1975–2008	568
24.3.6	Himachal Pradesh and Uttarakhand,	
	western Indian Himalaya: glacier area	
	change, 1962–2004	570
24.3.7	Himachal Pradesh, western Himalaya:	
	geodetic mass balance estimates,	
	1999–2004	572

24.4 24.5	Summary and outlook Appendix—image differencing: methodology limitations and errors	574
	methodology, mintations, and errors	575
25	Glaciers in China and their variations Liu Shiyin, Shangguan Donghui, Xu Junli, Wang Xin, Yao Xiaojun, Jiang Zongli,	
	Guo Wanqin, Lu Anxin, Zhang Shiqiang,	
	Ye Baisheng, Li Zhen, Wei Junfeng, and	500
	Wu Li	583
25.1	Introduction to glaciers in China	583
25.2	Regional context	584
25.3	Methods for glacier change monitoring	505
25.4	by remote sensing	585
25.4	Glacier area extent change	586
25.4.1	Glacier change since the Little Ice Age	586
25 1 2	muximum Glaciar change during recent decades	588
25.4.2	Change in surface elevations	591
25.51	Keaikar Baxi Glacier	591
25.5.1	Yanglong River	593
25.6	Surface movement derived by satellite	070
2010	remote sensing	595
25.6.1	Justification	595
25.6.2	Glacier velocity derived using	
	D-InSAR and SAR feature-tracking	
	methods	597
25.6.3	Glacier velocity derived by optical images	598
25.7	Special topics: applied hydrological	
	aspects of Chinese glacier dynamics	599
25.7.1	Special Topic 1: glacier hazards in the	500
2572	Upper Yalung Zangbo River basin, China Special Tapia 2: algoing water pagement	399
23.1.2	in western China provinces	601
25.8	Summary and future prospects	604
2010		
26	Remote sensing of rapidly diminishing	
	tropical glaciers in the northern Andes	
	Todd Albert, Andrew Klein, Joni Kincaid,	
	Christian Huggel, Adina Racoviteanu,	
	Yves Arnaud, Walter Silverio, and	
	Jorge Luis Ceballos	609
26.1	Introduction	609
26.2	Regional context	610
26.3	Special topics and case studies	610
26.3.1	Quelccaya, Peru	610
26.3.2	Cordillera Vilcanota, Peru	614
26.3.3	Nevado Coropuna, Peru	616
26.3.4	Cordillera Blanca, Peru	616
26.3.5	Colombia	622
26.3.6	Tres Cruces, Bolivia	625
26.3.7	Venezuela	630
28.4	Regional synthesis	632
28.5	Discussion	633

27	A new glacier inventory for the Southern Patagonia Icefield and areal		
	changes 1986–2000		
	Gino Casassa, José Luis Rodríguez, and		
	Thomas Loriaux	639	
27.1	Introduction	639	
27.2	Regional context	641	
27.2.1	Geographic setting	641	
27.2.2	Climate	641	
27.2.3	Glacier characteristics and changes	641	
27.3	Data and methods	642	
27.3.1	Satellite imagery	642	
27.3.2	Glacier delineation	643	
27.3.3	Ice divides	643	
27.3.4	ELAs	644	
27.4	Results	645	
27.4.1	Glacier inventory	645	
27.4.2	Glacier variations 1986–2000	647	
27.5	Discussion	649	
27.6	Conclusions	653	
28	First glacier inventory and recent		
	glacier variation on Isla Grande de		
	Tierra del Fuego and adjacent		
	islands in Southern Chile		
	Francisca Bown, Andrés Rivera.		
	Pablo Zenteno. Claudio Bravo, and		
	Fiona Cawkwell	661	
28-1	Introduction	661	
20.1	Regional context	662	
28.2	Methods	664	
28.3.1	Satellite data acquisition and	004	
20.3.1	nrenrocessing	664	
28.3.2	Glacier extent classification and ice	001	
201012	divide digitization	664	
28.3.3	Frontal variations	666	
28.3.4	Errors	666	
28.4	Results	666	
28.4.1	Glacier inventory	666	
28.4.2	Frontal variations	667	
28.5	Discussion	669	
28.5.1	Some possible explanations	671	
28.6	Conclusions	671	
29	New Zealand's glaciers		
	Trevor J. Chinn, Jeffrey S. Kargel,		
	Gregory J. Leonard,		
	Umesh K. Haritashya, and	-	
	Mark Pleasants	675	
29.1	Introduction	676	
29.2	Regional context	678	
29.2.1	Geologic setting	678	
29.2.2	Climatic context and glacier overview	679	

29.3	New Zealand's historical glacier	
	dynamics	681
29.3.1	Early historical observations	681
29.3.2	Franz Josef Glacier's long historical	
	record	682
29.3.3	Proxy mass balance from the Snowlines	
	Program and aerial photography	683
29.3.4	Glacier responses since the end of the	
	LIA	685
29.4	Remote-sensing case studies	687
29.4.1	ASTER observations of Mt. Ruapehu,	
	North Island	687
29.4.2	ASTER observations of small glaciers in	
	the Southern Alps	691
29.4.3	ASTER observations of Mt. Cook	
	glaciers	693
29.5	Special topics	704
29.5.1	Debris production and debris cover of	
	New Zealand glaciers	704
29.5.2	Special topic: New Zealand glacier and	
	climate coupling	706
29.6	Conclusions	710

30 Monitoring glacier changes on the Antarctic Peninsula

	Jorge Arigony-Neto, Pedro Skvarca,	
	Sebastián Marinsek, Matthias Braun,	
	Angelika Humbert, Cláudio Wilson	
	Mendes Júnior, and Ricardo Jaña	717
30.1	Introduction	717
30.2	Regional context	719
30.2.1	Geologic context	719
30.2.2	Climatic context	719
30.2.3	Summary of known glacier dynamics	720
30.3	Methodology	721
30.3.1	Evaluation of ASTER-derived DEMs for	
	the Antarctic Peninsula	721
30.4	Case studies and special topics	725
30.4.1	Monitoring glacier change in the	
	northeastern Antarctic Peninsula	725
30.4.2	Glaciers of Vega Island and James Ross	
	Island	725
30.4.3	Former tributaries of Prince Gustav	
	Channel (PGC) Ice Shelf	727
30.4.4	Former tributaries of Larsen A Ice Shelf	727
30.4.5	Former tributaries of Larsen B Ice Shelf	727
30.4.6	Monitoring changes and breakup events	
	on the Wilkins Ice Shelf	728
30.4.7	Variation of radar glacier zone	
	boundaries in the northeastern Antarctic	
	Peninsula	733
30.5	Regional synthesis	736
30.6	Summary and conclusions	736

31	Mapping blue-ice areas and crevasses in West Antarctica using ASTER images, GPS, and radar measurements	
	Andrés Rivera, Fiona Cawkwell.	
	Anja Wendt, and Rodrigo Zamora	743
31.1	Introduction	7/3
31.1	Blue-ice areas	743
31.2.1	Manning BIA extent in the field and on	,
011211	imagery	744
31.2.2	Interannual fluctuations in the extent of Patriot Hills' BIA	746
31.2.3	Interannual fluctuation in the extent of	
	other BIAs	749
31.3	Crevasse detection on satellite imagery	750
31.4	Radio-echo sounding and ground-	
	penetrating radar measurements	752
31.5	Discussion	753
31.6	Conclusions	755
32	Remote sensing of glaciers of the	
	L Cusham Cooley E Ponthion and	
	J. Granam Cogley, E. Berinler, and	750
	S. Donognue	/ 39
32.1	Introduction	759
32.2	The regional context	759
32.3	Case studies	762
32.3.1	Heard Island	762
32.3.2	Kerguelen	765
32.3.3	Montagu Island	768
32.4	Cartographic Inventory of the	
22.5	Subantarctic	771
32.5	Summary and conclusion	//4
33	A world of changing glaciers: Summary and climatic context	
	Jeffrey S Kargel Andrew RG Rush	
	I Graham Cogley Gregory I Leonard	
	Drugo H. Daup, Claudio Sminaglia	
	Massimo Pagai and Pahauta Pana	701
	wassimo recci, ana Koberto Kanz	/01
33.1	Overview	781
33.2	Summary: the foundations of glacier	
	remote-sensing science (Chapters 2–7)	782
33.3	Super-regional narratives of glacier	
	dynamics	784

33.3.1	Glacier changes in the Arctic	
	Super-Region (Greenland and the	
	Canadian High Arctic)	784
33.3.2	Glacier changes in the North Atlantic	
	Super-Region (Iceland–Norway–Sweden–	
	Svalbard)	789
33.3.3	Glaciers in the North American	
	Cordilleran Super-Region (U.S. and	
	western Canada)	793
33.3.4	Glacier changes in the Mediterranean	
	Super-Region	796
33.3.5	Glacier changes in the South and Central	
	Asia Super-Region	798
33.3.6	Changes in glaciers of the northern Andes	802
33.3.7	Glacier change in the Southern Ocean	
	Super-Region	804
33.3.8	Seasonal thaw in a blue-ice area of the	
	Antarctic interior	809
33.4	Summary discussion: What lies behind	
	glacier fluctuations and general retreat?	809
33.4.1	Global trends in glacier and ice sheet	
	mass balance and sea level trends	809
33.4.2	Global warming: first-order cause of	
	modern-day retreat and thinning of	
	glaciers	810
33.4.3	What drives variability in glacier	
	responses to a changing global	
	environment?	812
33.4.4	Climate change is heterogeneous and	
	multivariate	813
33.4.5	Variable response times as a further	
	cause of heterogeneous glacier responses	816
33.4.6	Other causes of variability in the	
	response dynamics of glaciers	820
33.4.7	Little known or unknown causes with the	
	potential to affect glaciers and us	821
33.5	Joe Public's two big questions	825
33.6	Conclusions	828
34	Enilogue: Skenticism versus fallibilism	
01	for achieving reliable science and wise	

34	Ephogue: Skepucisiii versus failibilisiii	
	for achieving reliable science and wise	
	policy decisions	
	Victor R. Baker	841

Index

Dedication

We dedicate this book to our families, who endured our absences from them and endured as well our dispositions, whether joyous or vexed, during our time on the book. In dedication we also recognize the world's land ice, those frozen lands from the majestic ice sheets of the white circumpolar realms, to the graceful valley glaciers and fast-disappearing glacier bits; and to those glaciers no longer here.

Contributors

I.M. Baghuna

Marine and Earth Sciences Group, Space Applications Centre (ISRO), Ahmedabad-380015, India

S. Bajracharya

International Center for Integrated Mountain Development, G.P.O Box 3226, Kathmandu, Nepal

Victor R. Baker University of Arizona, Tucson, Arizona, U.S.A.

Matthew J. Beedle

Natural Resources and Environmental Studies Institute and Geography Program, University of Northern British Columbia—Northwest Campus, Terrace, British Columbia, V8G 1K7, Canada

Etienne Berthier

Centre national de la recherche scientifique, Laboratoire d'Etude en Géophysique et Océanographie Spatiales, OMP-LEGOS, 14 Avenue Ed. Belin, F-31400 Toulouse, France

R. Bhambri

Guru Nanak Khalsa College, Karnal-132001, Haryana, India

Todd Albert

Department of Agriculture, Geosciences, and Natural Resources, The University of Tennessee at Martin, Martin, Tennessee, U.S.A.

Ghazanfar Ali

Water Resources and Glaciology Section, Global Change Impact Studies Center (GCISC), National Center for Physics Complex, Jhang Bagayal, Shahdara Road, Quaid-i-Azam University, Islamabad, Pakistan 44000

Liss M. Andreassen

Norwegian Water Resources and Energy Directorate, Oslo, Norway; Department of Geosciences, University of Oslo, Oslo, Norway

Jorge Arigony-Neto

Instituto Nacional de Ciência e Tecnologia da Criosfera, Laboratório de Monitoramento da Criosfera, Instituto de Ciências Humanas e da Informação, Universidade Federal do Rio Grande, Av. Itália km 8, Rio Grande, Brazil

Richard Armstrong

National Snow and Ice Data Center, University of Colorado, Boulder, U.S.A.

Yves Arnaud

Laboratoire de Glaciologie et Géophysique de l'Environnement, 54 Rue Molière, BP 96, 38402 St Martin d'Hères, France; Institut de Recherche pour le Développement, France

Michael P. Bishop

Department of Geography and Geology, University of Nebraska-Omaha, 6001 Dodge Street, Omaha, Nebraska 68182, U.S.A.; Department of Geography, Texas A&M University, College Station, Texas 77843-3147, U.S.A.

Tobias Bolch

Department of Geography, University of Zurich Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Institut für Kartographie, Technische Universität Dresden, 01062 Dresden, Germany

Francisca Bown

Centro de Estudios Científicos (CECs), Valdivia, Chile

Matthias Braun

Center for Remote Sensing of Land Surfaces, University of Bonn, Walter-Flex-Strasse 3, D-53113 Bonn, Germany; Geophysical Institute, University of Alaska Fairbanks, 903 Koyukuk Drive, Fairbanks, AK 99775-7320, U.S.A.

Claudio Bravo

Departamento de Geofísica, Universidad de Chile, Santiago, Chile

Manfred Buchroithner

Fakultät Forst-, Geo- und Hydrowissenschaften Fachrichtung, Geowissenschaften, 01062 Dresden, Germany

David O. Burgess

Natural Resources Canada, National Glaciology Program

Andrew B.G. Bush

Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3 Canada

M. Byrne

Department of Geography, University of Montana, Missoula, MT 59812, U.S.A.

Francisco Carreño

Natural Área de Geología—ESCET, Universidad Rey Juan Carlos, Tulipán 28933, Móstoles, Madrid, Spain

Gino Casassa

Centro de Estudios Científicos, Av. Prat 514, Valdivia, Chile; presently at Fundación Huilo Huilo, Av. Vitacura 2909 Of. 1112, Las Condes, Santiago, Chile

Kimberly Casey

Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway

Elena Castellanos

Natural Área de Geología—ESCET, Universidad Rey Juan Carlos, Tulipán 28933, Móstoles, Madrid, Spain

Fiona Cawkwell

Department of Geography, University College Cork, Cork, Ireland

Jorge L. Ceballos

Institute of Meteorology, Hydrology and Environmental Studies (IDEAM), Bogotá, Colombia

R.K. Chaujar

Wadia Institute of Himalayan Geology, Dehradun-248001, India

G. Cheng

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

Janet Y.L. Chien

SAIC and Cryospheric Sciences Branch, Code 614.1, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A.

Trevor J. Chinn

Alpine & Polar Consultancy, 20 Muir Rd, Lake Hawea LGM, RD2 Wanaka, New Zealand

John J. Clague

Earth Sciences, Simon Fraser University, Burnaby, BC, V5A 1S6 Canada

> J. Graham Cogley Department of Geography, Trent University, Peterborough, Ontario, K9J 7B8 Canada

Luke Copland

Department of Geography, University of Ottawa

Alex S. Gardner

Department of Earth and Atmospheric Sciences, University of Alberta

Bruce A. Giffen

Alaska Regional Office, National Park Service, 240 West 5th Ave., Anchorage, Alaska 99501, U.S.A. (bruce_giffen@nps.gov)

Alan R. Gillespie

Department of Earth and Space Sciences, University of Washington, Seattle, WA 98195-1310, U.S.A.

Guo Wanqin

State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences

Isabelle Gärtner-Roer

World Glacier Monitoring Service, Department of Geography, University of Zurich, Zurich, Switzerland

Wilfried Haeberli

World Glacier Monitoring Service, Department of Geography, University of Zurich, Zurich, Switzerland

Dana Haggarty

Parks Canada—Nahanni National Park and Reserve, Fort Simpson, NT, Canada

Dorothy K. Hall

Cryospheric Sciences Branch, Code 614.1/615, NASA/Goddard Space Flight Center, Greenbelt, MD 20771, U.S.A. (*dorothy.k.hall@nasa.gov*)

G.S. Hamilton

University of Maine, Orono, Maine, U.S.A.

Umesh K. Haritashya

Department of Geology, University of Dayton, Dayton, OH 45469, U.S.A.; Department of Geography, University of Zurich Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

Jon E. Hausberg

Norwegian Water Resources and Energy Directorate, Oslo, Norway

Avirmed Dashtseren

Geographical Institute, Mongolian Academy of Sciences, Ulaanbaatar, Mongolia

James A. Davis

Department of Earth and Atmospheric Sciences, University of Alberta

Michael N. Demuth

Natural Resources Canada—Geological Survey of Canada—Cryosphere Geoscience Section, Ottawa, K1A 0E8 Canada

S. Donoghue

Antarctic Climate and Ecosystem Cooperative Research Centre, Hobart, Australia; Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Australia

Evelyn K. Dowdeswell

Department of Geographical Sciences, University of Bristol; Scott Polar Research Institute, University of Cambridge, Cambridge, U.K.

Julian A. Dowdeswell

Scott Polar Research Institute, University of Cambridge, Cambridge, U.K.

John Dwyer

Landsat Data Continuity Mission Ground System, U.S. Geological Survey, Earth Resources Observation & Science Center, Sioux Falls, SD 57198 (dwver@usgs.gov)

Benjamin Edwards

Department of Earth Sciences, Dickinson College, Carlisle, Pennsylvania

Boris Flach

Department of Geography, University of Zurich Irchel, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland

R. Frauenfelder

Department of Geosciences, University of Oslo, Norway

Roberto Furfaro

Department of Systems and Industrial Engineering and Department of Aerospace and Mechanical Engineering, University of Arizona, 1127 E. James E. Rogers Way, P.O. Box 210020, Tucson, AZ 85721, U.S.A.

Torborg Heid

Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway

Martin Hoelzle

World Glacier Monitoring Service, Department of Geosciences, University of Fribourg, Fribourg, Switzerland

Christian Huggel

Department of Geography, University of Zurich, Zurich, Switzerland

Angelika Humbert

Institute of Geophysics, Klima Campus, University of Hamburg, Bundesstrasse 55, D-20146 Hamburg, Germany

Ricardo Jaña

Instituto Antártico Chileno, Plaza Gobernador Benjamín Muñoz Gamero 1055, CP 6200965, Punta Arenas, Chile; Fundación Centro de Estudios del Cuaternario, Av. Bulnes 01890, Punta Arenas, Chile

Jiang Zongli

Hunan University of Science and Technology

Hester Jiskoot

Department of Geography, University of Lethbridge, Lethbridge, AB, Canada

Ulrich Kamp

Department of Geography, The University of Montana, 32 Campus Drive, Missoula, MT 59812, U.S.A.

Jeffrey S. Kargel

Department of Hydrology and Water Resources, College of Science, School of Earth and Environmental Sciences, The University of Arizona, Tucson AZ 85721; National Snow and Ice Data Center, University of Colorado, Boulder, Colorado, U.S.A. (kargel@hwr.arizona.edu)

Siri J.S. Khalsa

World Glacier Monitoring Service, Department of Geography, University of Zurich, Zurich, Switzerland; National Snow and Ice Data Center, University of Colorado, Boulder, CO 80309-0449, U.S.A.

Joni Kincaid Department of Geography, Texas A&M University, College Station, Texas, U.S.A.

Andrew Klein

Department of Geography, Texas A&M University, College Station, Texas, U.S.A.

Jack Kohler

Norwegian Polar Institute, Fram Center, N-9296 Tromsø, Norway

V. Konovalov

Russian Academy of Sciences, Moscow, Russia

Brandon S. Krumwiede

Department of Geography, The University of Montana, Missoula, MT 59812, U.S.A.

A.V. Kulkarni

Indian Institute of Science, Bangalore, India

Andreas Kääb

Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, N-0316 Oslo, Norway

Max König

Norwegian Polar Institute, Fram Center, N-9296 Tromsø, Norway

C.F. Larsen University of Alaska, Fairbanks, Alaska, U.S.A.

Gregory J. Leonard

Department of Hydrology and Water Resources, University of Arizona, P.O. Box 210011, Tucson, AZ 85721-0011, U.S.A.

Li Zhen

Center for Earth observation and Digital Earth, Chinese Academy of Sciences

Libo Wang

Climate Research Division, Environment Canada

Javier Lillo

Natural Área de Geología—ESCET, Universidad Rey Juan Carlos, Tulipán 28933, Móstoles, Madrid, Spain

Ulrich Münzer

Department of Earth and Environmental Sciences, Section Geology, University of Munich, 80333 Munich, Luisenstrasse 37

Christopher Nuth

Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway

Frank Paul

World Glacier Monitoring Service, Department of Geography, University of Zurich, Winterthurerstrasse 190, 8057 Zurich, Switzerland

Massimo Pecci

Ente Italiano della Montagna, Roma, Italy

Rickard Pettersen

Department of Earth Sciences, University of Uppsala, S-752 36 Uppsala

P. Picca

Dipartimento di Energetica, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino (TO), Italy

Mark Pleasants

Department of Geology, University of Dayton, Dayton, Ohio, U.S.A.

Edward Pollack

Department of Earth Sciences, University of Alberta, Edmonton, Alberta, T6G 2E3 Canada

A. Previti

Laboratorio di Ingegneria Nucleare di Montecuccolino, Alma Mater Studiorum, Università di Bologna, Via dei Colli 16, 40136 Bologna (BO), Italy

Duncan J. Quincey School of Geography, University of Leeds,

Leeds LS2 9JT, U.K.

Adina Racoviteanu

Department of Geography, Institute of Arctic and Alpine Research, University of Colorado, Boulder, Colorado, U.S.A; National Snow and Ice Data Center, University of Colorado, Boulder, Colorado, U.S.A.

Liu Shiyin

State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences

Ivan Lopez

Natural Área de Geología—ESCET, Universidad Rey Juan Carlos, Tulipán 28933, Móstoles, Madrid, Spain

Thomas Loriaux

Centro de Estudios Científicos, Av. Prat 514, Valdivia, Chile

Lu Anxin

State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences

Douglas Mair

School of Geosciences—Geography and Environment, University of Aberdeen

Sebastián Marinsek

División Glaciología, Instituto Antártico Argentino, Cerrito 1248, C1010AAZ Buenos Aires, Argentina

Sandro Martinis

German Aerospace Center (DLR), German Remote Sensing Data Center (DFD, 82234 Weßling, Münchner Strasse 20

Brian P. Menounos

Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, V2N 4Z9 Canada

Geir Moholdt

Department of Geosciences, University of Oslo, P.O. Box 1047, Blindern, 0316 Oslo, Norway

B.F. Molnia

U.S. Geological Survey, Reston, Virginia, U.S.A.

P. Mool

International Center for Integrated Mountain Development, G.P.O Box 3226, Kathmandu, Nepal

Erik Schiefer

Geography, Planning and Recreation, Northern Arizona University, Flagstaff, AZ 86011, U.S.A.

Shangguan Donghui

State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

Martin Sharp

Department of Earth and Atmospheric Sciences, University of Alberta

Joseph M. Shea

Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, V2N 4Z9 Canada

John F. Shroder, Jr.

Department of Geography and Geology, University of Nebraska-Omaha, 6001 Dodge Street, Omaha, NE 68182, U.S.A.

Oddur Sigurðsson

Icelandic Meteorological Office, Bústaavegi 9, IS-150 Reykjavík, Iceland

Walter Silverio

Institute for Environmental Science, Climate Change and Climate Impact Group, University of Geneva, Switzerland

Pedro Skvarca

División Glaciología, Instituto Antártico Argentino, Cerrito 1248, C1010AAZ Buenos Aires, Argentina

> **Claudio Smiraglia** University of Milan, DST, Italy

W.A. Sneed University of Maine, Orono, Maine, U.S.A.

I. Sossna Department of Geography, University of Jena

Leigh A. Stearns

Climate Change Institute, University of Maine, Orono, Maine, U.S.A.; Department of Geology, University of Kansas, Lawrence, Kansas, U.S.A. (stearns@ku.edu)

Bhaskar Ramachandran

NASA EOS LP DAAC, U.S. Geological Survey, Earth Resources Observation & Science Center, Sioux Falls, SD 57198 (*bhaskar@usgs.gov*)

Roberto Ranzi

IRD, France; University of Brescia, Italy

Bruce H. Raup

National Snow and Ice Data Center, University of Colorado, Boulder, CO 80309-0449, U.S.A.; Global Land Ice Measurements from Space, Department of Hydrology & Water Resources, University of Arizona, Tucson, U.S.A. (raup@nsidc.org)

Andrés Rivera

Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia, Chile; Departamento de Geografía Universidad de Chile, Marcoleta 250, Santiago, Chile; Departamento de Geofísica, Universidad de Chile, Santiago, Chile

José L. Rodríguez

Centro de Estudios Científicos, Av. Prat 514, Valdivia, Chile; Universidad Católica de Temuco, Temuco, Chile; presently at Fundación Huilo Huilo, Av. Vitacura 2909, Of. 1112, Las Condes, Santiago, Chile

Rakshan Roohi

Principal Scientific Officer, Water Resources Research Institute, National Agricultural Research Center, Islamabad, Pakistan

Helmut Rott

Institute of Meteorology and Geophysics, University of Innsbruck, Austria

S. Liu

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

Mehmet A. Sarıkaya

Department of Geography, Fatih University, 34500 Büyükçekmece, Istanbul Turkey (current); Department of Geography and Geology, University of Nebraska-Omaha, 6001 Dodge Street Omaha, NE 68182, U.S.A.

Rio Grande do Sul, Av. Bento Gonçalves 9500, Porto Alegre, Brazil

Philip Wilson

Parks Canada—Nahanni National Park and Reserve, Fort Simpson, NT, Canada

David F.G. Wolfe

GLIMS Alaska Regional Center Steward, 2218 Alder Drive, Anchorage, AL 99508, U.S.A.

Gabriel J. Wolken

Department of Earth and Atmospheric Sciences, University of Alberta

Wu Lizong

Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences

Faye Wyatt

Department of Earth and Atmospheric Sciences, University of Alberta

X. Li

Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou, China

Xu Junli

State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences

Yao Xiaojun

State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences; Geography and Environment College, Northwest Normal University

Ye Baisheng

State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences

Rodrigo Zamora

Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia, Chile

Ahmet E. Tekeli

Civil Engineering Department, Zirve University, 27260, Gaziantep, Turkey (current); Remote Sensing Division, Turkish State Meteorological Service, Ankara, Turkey

Thierry Toutin

Natural Resources Canada, 580 Booth, Ottawa, ON, K1A 0E4 Canada

Michael Walther

MOLARE Research Center for Climate and Landscape Studies, National University of Mongolia, Ulaanbaatar, Mongolia

Wang Xin

Hunan University of Science and Technology

Wei Junfeng

State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences

Brandon J. Weihs

Department of Geography, Kansas State University, Manhattan, KS 66506, U.S.A.

Anja Wendt

Centro de Estudios Científicos, CECs, Arturo Prat 514, Valdivia, Chile

Roger D. Wheate

Natural Resources and Environmental Studies Institute, University of Northern British Columbia, Prince George, BC, V2N 4Z9 Canada

Richard S. Williams, Jr.

Woods Hole Research Center, P.O. Box 296, Woods Hole, MA 02543-0296, U.S.A.

Scott N. Williamson

Department of Biological Sciences, University of Alberta

Cláudio Wilson Mendes Júnior

Instituto Nacional de Ciência e Tecnologia da Criosfera, Laboratório de Monitoramento da Criosfera, Instituto de Ciências Humanas e da Informação, Universidade Federal do Rio Grande, Av. Itália km 8, Rio Grande, Brazil; Instituto Nacional de Ciência e Tecnologia da Criosfera, Centro Polar e Climático, Universidade Federal do

Zhang Shiqiang

State Key Laboratory of Cryosphere Sciences, Cold and Arid Regions of Environmental and Engineering Research Institute, Chinese Academy of Sciences

Geography, University of British Columbia, Vancouver, BC, 1Z4 Canada

Michael Zemp

World Glacier Monitoring Service, Department of Geography, University of Zurich, Zurich, Switzerland

Pablo Zenteno

Centro de Estudios Científicos (CECs), Valdivia, Chile

Preface

Text to come, two pages allowed **.**

Acknowledgments

Text to come, two pages allowed **I**.

Online supplemental material

Text to come, two pages allowed .

Chapter receipt information

Chapter No.	Authors	Date received	Date revised	Other information

Figures

1.1	Retreat of South Cascade Glacier, U.S.A.	2
1.2	function of mean annual air temperature	
	and average annual precipitation	4
1.3	Global distribution of the institutions	
	affiliated with GLIMS; and global distribu-	
	tion of authors associated with this book	7
1.4	Worldwide glacier monitoring	10
1.5	Global distribution of inventoried glaciers	10
1.6	Comparison of spatial resolution versus	
	spectral information for Forno Glacier in	
	southwestern Switzerland	14
2.1	Comparison of exoatmospheric spectral	
	irradiance from the composite SMARTS2	
	spectrum and a blackbody approximation	25
2.2	Simulated atmospheric transmittance in	
	the shortwave spectrum at the terminus	
	of Baltoro Glacier near K2	26
2.3	Slope-altitude functions for numerous	
	alpine glaciers in the Karakoram Himalaya	27
2.4	Simulations of local and mesoscale topo-	
	graphic influences on direct irradiance for	
	the Mt. Everest region in Nepal	28
2.5	Sky view factor over the Mt. Everest region	
	in Nepal	29
2.6	Sky view-altitude function for numerous	
	glaciers in the Karakoram Himalaya	29
2.7	Thermal emissivity of water, snow, and ice	32
2.8	Reflectance of snow with different effective	
	particle size.	33
2.9	Broadband BRDFs measured over melting	
	glacier ice	34
2.10	Two-angle reflected intensity as a function	
	of inclination for three different snow	
	models	36

2	2.11	Relationship between the accumulation	
		area ratio and the specific mass balance	
		for Shaune Garang Glacier and Gor	
ŀ		Garang Glacier in the India Himalaya	41
	3.1	Examples of monomineralic and mono-	
_		lithologic materials, intimate mixtures,	
/		and areal mixtures of materials on Root	
)		Glacier and Kennicott Glacier in the	50
)	2.2	wrangell Mountains, Alaska	58
	3.2	Spectral behavior of the real part and	
		imaginary part of the complex index of	(1
ŀ	2.2		61
	3.3	spectral behavior of absorption and scat-	()
-	2.4	DT have dely for pure water	64
)	3.4	RI-based model of spectral albedo for a	
		function of wavelength and grain size	66
	25	PT based model of spectral albedo for a	00
,	3.3	layer of optically thick pure spow as a	
7		function of wavelength and solar zenith	
		angle	67
	3.6	RT-based model of spectral albedo for a	07
3	010	laver of an optically thick mixture of pure	
		snow and carbon soot as a function of	
)		wavelength and snow grain size	68
	3.7	BRF simulations for intimate mixtures of	
)		ice and sediment/soil	69
2	3.8	Simulated spectral reflectance curves from	
		390 to 710 nm as a function of suspended	
3		particles and phytoplankton concentra-	
		tions, wind speed, and Sun angle	70
ŀ	4.1	Section of an ASTER 3N image over	
		Svalbard, near Longyearbyen; and normal-	
		ized difference index image between the	
5		orthorectified 3N and 3B	77

4.2	Atmospheric transmission, sections of the optical and microwave spectrum, and spectral band widths of Landsat ETM+, ASTEP and active microwave spectrum.	
	bands	78
4.3	Atmospheric transmission, locations of ASTER and Landsat bands, and typical reflectance curves for glacier surfaces and materials found around glaciers	79
4.4	Landsat TM color composites over Tor- drillo Mountains, Alaska	82
4.5	IHS transform of the Landsat TM 3, 2, 1 composite of Figure 4.4	82
4.6	First three principal component images (PC1 PC2 PC3) from the Landsat scene	02
	displayed in Fig. 4.4	83
4.7	Decorrelation stretch of the Landsat scene in Fig. 4.6, computed as a histogram stretch of the PC1, PC2, PC3 RGB false-color	
	composite	84
4.8	North Iceland	87
4.9	TIR images over Tordrillo Mountains,	
4.10	Alaska, during the same day	88
4.10	ASTER RGB composite (bands 4, 9, 10, NIP, SWIP, TIP) over Uieper Closier in	
	the Karakoram Himalaya	88
4.11	Color composite of HH (sent H. received	00
	H) and HV channels (sent H, received V) of	
	an ALOS PALSAR winter scene over	
	Kronebreen, Ny Alesund, Svalbard	90
4.12	Color composite of a fully polarized ALOS PALSAR winter scene over Ny Ålesund,	
4.12	Svalbard.	90
4.13	Levend Krongbroon Synthesid	01
4 14	ALOS PALSAR winter backscatter data	91
7.17	over Kronebreen. Ny Ålesund, Svalbard.	92
4.15	Deposits of the September 20, 2002 rock/	
	ice avalanche at Karmadon in the North	
	Ossetian Caucasus	93
4.16	Normalized difference index image of two	0.0
4 17	ASTER images over a glacier in Bhutan.	93
4.1/	index	94
4.18	Surface velocity field for a section of	
	Kronebreen, derived from ASTER imagery	101
4.19	Radar interferogram between an ERS 1/2	
	tandem pair	103
4.20	Surface displacements on Kronebreen	
	Radarsat-2 fine beam data	104
5.1	Imaging geometry of the ASTER sensor	107
-	on board the Terra satellite	116
5.2	A typical stereo photogrammetric model,	
	illustrating the monotemporal generation	
	of height information from overlapping	110
	images	118

5.3	The major steps required for the extraction of DEMs from satellite imagery	119
5.4	Mean difference altitude generated from a SRTM DEM and an ASTER-derived DEM	124
5.5	Geomorphometric analysis of Batura Glacier, Hunza Valley, Pakistan	124
5.6	Hypsometric curves for Batura, Ghulkin, Gulmit, and Pasu Glaciers in the Hunza Valley, Pakistan	128
5.7	Selected seasonal and annual centerline velocity profiles for Baltoro Glacier, Paki- stan Karakoram	129
5.8	Simple 3D visualization (SPOT) HRVIR panchromatic imagery overlain on SPOT HRS-derived DEM of Batura Glacier, Pakistan	131
5.9	Optical satellite image of the classification area; relaxed expert segmentation; first component of estimated shading; and final segmentation obtained after learning	134
6.1	ASTER data flow dynamics at the LP DAAC	153
6.2	Performance of ASTER TIR as shown in the kinetic temperature standard product for an image over the Chugach Mountains,	
6.3	Alaska ASTER image detection and spatial resolv- ability of rectangular and circular features using VNIR, SWIR, and TIR	156 157
7.1	Five manual digitization trials described in Sneed (2007), performed separately from the CLACE experiments	165
7 2	Images used in GLACE 1 and GLACE 2	105
7.3	All GLACE 1 glacier boundaries overlaid on the ASTER image that was analyzed in the experiment; and some GLACE 1 glacier boundaries for Spencer Glacier overlaid on the ASTER image	167
7.4	GLACE 1 boundaries for Skookum Glacier overlaid on the ASTER image that was analyzed in the experiment; two GLACE 2 glacier outlines overlaid on the September 9, 2000 ASTER image from that	
7.5	All outlines from GLACE 2, Landsat	169
7.6	Distances between all the vertices of one glacier outline and the other outlines were	170
7.7	determined Distances between outlines 1 and 3 in	172
7 8	GLACE 2	173
/ •0	fault imagery in Google Earth	175

7.9	Variability of the glacier area calculated from the glacier outlines produced before viewing the glacier in Google Earth and		9.5	Stan High balar
	after	176	9.6	Ann
7.10	Results of manual glacier delineation per-			the Q
	formed in GLACE 3A	177		2000-
7.11	The 17,585 GLIMS glacier outlines for			nrod
	British Columbia displayed in Google		07	Com
	into the CLIMS Classer Database	170	2.1	facie
7 1 2	A missing outling for a glasion in British	1/8		Ouee
/.12	A missing outline for a glacier in British		9.8	AST
	played in Google Earth	178		Elles
7 13	GLIMS glacier outlines showing a geo-	170	9.9	Ann
7.15	graphic offset in Google Farth	170		surgi
8 1	Geikie Plateau region with glacier outlines	1/9		Elles
0.1	from the new glacier inventory: and DEM			deriv
	shading according to ASTER Global DEM		9.10	Sequ
	Version 1 data	187		satel
8.2	Pattern of 20 ground control points or "tie			Ayle
	points" for georeferencing ASTER images		9.11	AST
	to orthorectified Landsat 7 images	188		wate
8.3	Steps in semiautomated glacier extraction	189		from
8.4	Glacier inventory map showing tidewater-		0.12	Social
	terminating glaciers, tidewater margins,		9.12	chro
	and land-terminating glaciers	190		treat
8.5	Case studies of tidewater margin changes	191		Wyk
8.6	Normalized hypsometric curve of 180 land-			Icefie
	terminating glaciers	192	10.1	The
8.7	An ASTER image of the trunk of Helheim		10.2	Svall
	Glacier; and ice velocity along the profile in			three
	panel A	194		lines
8.8	A DEM of Helheim Glacier, derived from			SPO
	an ASTER image	194	10.3	A su
8.9	Two ASTER scenes of Helheim Glacier			data
	illustrating the IMCORR technique	196		imag
8.10	Elevation results from GPS and two		10.4	Dist
	ASTER-derived DEMS	197	10.5	Glac
8.11	The influence of different IMCORR grid		10 6	Svall
	spacings on derived velocities	198	10.6	ELA
8.12	Velocity results from GPS and ASTER-			Irom
	derived velocity measurements	199	10.7	Ann
8.13	The velocity vectors of GPS and ASTER-		10.7	ner v
	derived data	199		relati
9.1	Radarsat 1 image mosaic of the Canadian		11.1	Land
	Arctic showing the location of major ice		11.1	the 1
	caps and icefields.	207		Yalil
9.2	Mean July screen-level air temperatures for			boun
	selected Environment Canada weather		11.2	Land
	stations in the Canadian Arctic.	207		glaci
9.3	Decadal mean summer (JJA) temperature		11.3	Land
	anomalies at 700 hPa over nine major			cove
	glaciated regions of the Canadian Arctic .	208		same
9.4	Winter, summer, and annual net surface			posit
	mass balance of the Meighen Ice Cap	210		glaci

9.5	Standardized anomalies of the Canadian High Arctic regional glacier surface mass balance	211
9.6	Annual mean melt duration over glaciers in the Queen Elizabeth Islands for the period 2000–2004 derived from enhanced reso-	
	lution QuikScat backscatter coefficient	
9.7	Comparison of end-of-summer snow/ice	212
	facies distributions on glaciers in the	212
9.8	ASTER mosaic of the Manson Icefield,	212
	Ellesmere Island	215
9.9	Annual velocity fields for the actively surging Mittie Glacier, Manson Icefield, Ellesmere Island for the year 2004–2005	
0 10	derived from Landsat 7 ETM+ imagery .	216
J.10	satellite images showing calving of the	
0.11	Ayles Ice Shelf	218
9.11	water outlet glacier that drains eastwards	
	from the Prince of Wales Icefield, Ellesmere	210
9.12	Sequence of Landsat 7 ETM+ pan-	218
	chromatic images showing the recent re-	
	treat of the termini of Trinity Glacier and Wykeham Glacier, eastern Prince of Wales	
	Icefield, Ellesmere Island	222
10.1	The Svalbard Archipelago	230
10.2	Svalbard maps showing coverage of the	
	lines derived from cartographic data and	
	SPOT images	232
10.3	A subset of the database shows all available data at Brøggerhalvøya with a 2007 SPOT	
	image as background	234
10.4	Distribution of glacier sizes for Svalbard.	235
10.5	Glacier hypsometry for different regions on Svalbard.	235
10.6	ELA distribution for Svalbard, estimated	
	from individual glacier hypsometries and	
10.7	assuming a constant AAR of 0.6	236
10.7	per year for 1936 to 1990 and 1990 to 2008,	
	relative to 1936 and 1990, respectively	237
11.1	Landsat satellite color composite image of	
	Yalik Glacier Complex with the KEFJ park	
	boundary shown	244
11.2	Landsat satellite color composite image of	0.45
11 3	glacierized areas in KAIM	245
11.3	covered glaciers; aerial oblique photo of the	
	same volcanic ash-covered glacier; and the	
	position of this glacier in reference to	
	glacierized areas of KATM	246

11.4	Changes in areal extent from 1986 to 2000, Harding Icefield; and the Grewingk–Yalik		12.12
	Glacier Complex	249	
11.5	Changes in areal extent from 1986/1987 to		12.13
	2000, KATM	250	12.14
11.6	Illustration of how glacier terminus pos-		
	ition change is measured	251	13.1
11.7	Color composite Landsat image of the		
	glacierized portion of KEFJ	254	
11.8	Bear Glacier; Aialik, Pederson, and Hol-		13.2
	gate glaciers; and McCarty Glacier and		13.3
	Dinglestadt Glacier-in KEFJ, Alaska	255	
11.9	Yalik Glacier, Lowell and Exit Glaciers,		
	and Northwestern Glacier-KEFJ, Alaska	255	13.4
11.10	Dinglestadt-west and Kachemak Glaciers,		
	Skilak Glacier, and Tustumena and Truuli		13.5
	Glaciers-Kenai Peninsula, Alaska	256	
11.11	Color composite Landsat image of the		
	glacierized portion of KATM	258	13.6
11.12	"B" and "C" glaciers, Fourpeaked Glacier,		
	and Spotted Glacier, Katmai National		13.7
	Park and Preserve, Alaska	258	
11.13	"K" and "L" glaciers, Hallo Glacier, and		13.8
	Hook and "H" glaciers, Katmai National		13.9
	Park and Preserve, Alaska	259	
12.1	Glacier-dammed lakes of Alaska popula-		13.10
	tion study area and surrounding U.S state		13.11
	of Alaska, as well as Canada's Yukon	265	
12.2	Climatic temperature of British Columbia	265	13.12
12.2	for Alaska and within the study area:		
	temperature changes over the 62 years		
	from 1949 to 2011	266	12 12
12.3	Lake types	269	13.13
12.4	Glacier ablation and lake changes: Melbern	202	13 14
	Glacier and Castner Glacier	270	13.14
12.5	Changes in lake-damming glacier popula-		
	tion 1971–2000 across Southcentral		13.15
	Alaska, U.S.A.	272	
12.6	Numbers of historic and recent glacier-		13.16
	dammed lakes across central Alaska and		
	adjacent Canada	273	
12.7	Ice dam and glacier flow aspects	279	13.17
12.8	Iceberg Lake vicinity and location within		
	the larger ice-marginal glacier-dammed		
	lake survey area in southern Alaska		13.18
	(inset); and location of Iceberg Lake	201	10.10
12.0	Looparg Lake Londoot ETM - time series	281	13.19
12.9	contures a drainage event over a 47 h 49 min		
	neriod in late August 1900	282	12 20
12 10	Iceberg Lake eastern Chugash Mountains	202	13.20
12.10	Iceberg Lake 21 stop satellite time series	203	
14.11	captures a sequence of summer to early		13 21
	autumn fill_drain cycles from 1986 to 2011	285	13.41
	aaranni nii aranii eyenes monii 1700 to 2011	200	

249	12.12	Iceberg Lake drainage basin, lake area, and lake bathymetry derived from ASTER DEM	2
2- T J	12.13	Iceberg Lake, eastern Chugach Mountains	2
250	12.14	Calculation of lake volume for Iceberg Lake	2
251	13.1	Location of some glaciers, mountain ranges, and other physiographic features	
254	12.2	of southeastern Alaska	2
255	13.2 13.3	Fluvial basin sediment yield versus basin area for most of the world's largest drain-	2
200		age basins	3
255	13.4	Downscaled regional climate model of southern Alaska	3
256	13.5	Map of Alaska showing the Bering– Malaspina complex, Hubbard Glacier, and the 53 glaciers of the Juneau Icefield.	3
258	13.6	Twenty glaciers of the Bering–Malaspina complex and their debris-covered areas	3
258	13.7	Hypsometric curves of individual glaciers and glacier systems	3
	13.8	Bering glacier complex	3
259	13.9	Low-altitude oblique air photos of College Fiord and its glaciers	3
	13.10	College Fiord	3
	13.11	Shifting glacier termini at Harvard Glacier and Yale Glacier	3
265	13.12	Oblique perspective 3D view of College Fiord, produced from the 2000 ASTER scene, showing Harvard Glacier and Yale Glacier from the south	2
266 269	13.13	SPOT DEM draped onto a hillshade pro- duced from the DEM	3
270	13.14	Elevation histograms and centerline pro- files of catchment basins produced from a SPOT DEM	3
272	13.15	Flow speed vector field of Scott Glacier, Chugach Mountain, Alaska	3
	13.16	Evolution of three calving glaciers of the Copper River corridor, Chugach Moun-	
273 279	13.17	tains, Alaska ASTER image time series of Miles Glacier and Van Cleve Lake; and low-altitude oblique air photos	3
	13.18	Surface flow vector field of Miles Glacier from ASTER image analysis	3
281	13.19	ASTER image time series of the Childs Glacier calving terminus where it fronts the Copper River	3
282 283	13.20	A century of growth of Allen Lake and retreat of the glacier's former piedmont lobe	3
285	13.21	The considerable extent of ablation be- tween 1910 and a field site visit in 2009	3
13.22	The landslide emplaced around 1963 or 1964 has been deformed and swept downvalley by ice flow	327	
-------	--	------	
13.23	The landslide, most likely emplaced in 1964 or possibly 1963, has undergone deforma- tion due to glacial flow and has resulted in differential ablation due to the insulating		
14.1	properties of debris	328	
14.0	glaciers.	335	
14.2	Lake	336	
14.3	Landsat 5 TM 543 color composite show- ing previous extent (1972) of Salmon Glacier.	337	
14.4	Tulsequah Glacier, Landsat 5 TM 543 color composite, July 29, 2006	338	
14.5	Extent of landslide from Meager Mountain in the valleys of Capricorn Creek, Meager Creek, and Lillooet Piver	220	
14.6	Bridge Glacier, false-color composites; and view of Bridge Glacier and proglacial lake	220	
14.7	Lowell Glacier and Dusty Glacier, ASTER 3D view, 321 false-color composite, Sep-	340	
14.8	tember 11, 2003	342	
	Glacier between 1999 (July 14) and 2006 (July 17) false-color composites	343	
14.9	Animated GIF showing the contrasting evolution of Dusty Glacier and Lowell Glacier between 1999 (July 14) and 2006 (July 17) false-color composites	242	
14.10	Landsat TM scenes used for the 2005	243	
14.11	Extents of Bromley Glacier, Cambria Ice- field in 1955, 1982, 2005, and 2010, overlain on a Landsat 5 TM 543 color composite	344	
14.12	Hillshaded DEMs of the area including Salmon, Berendon, and Frank Mackie Glaciers in the northern Coast Mountains	545	
14 13	of British Columbia.	347	
14.15	2005 of the area shown in Fig. 14.12	348	
14.14	Shaded relief image of the GTOPO30 DEM showing the ice-covered area in Yukon Territory	349	
14.15	Glacier surface elevation changes in the Yukon and adjacent areas of Alaska and British Columbia between 1977 and 2007	350	
14.16	Glacier hypsometry and rate of ice surface elevation change versus altitude in the	2.50	
	Yukon between 1977 and 2007	350	

15.1	Image map showing the locations of Hoodoo Mountain, the Andrei Icefield,	
	and two weather stations at Stewart and Dease Lake	354
15.2	ASTER image differencing for a pair of ASTER images	356
15.3	ASTER image differencing for a pair of scenes spanning 7 years	357
15.4	Four digital elevation datasets	361
15.5	Histograms of elevation change of the \sim 2005 GDEM 1 minus the 1965 NTDB DEM in the Hoodoo Mountain area that was shown in Fig. 15.4	362
15.6	Long-term retreat of Hoodoo Glacier and Twin Glacier, and the comparative stability of the margin positions of Hoodoo Moun- tain ice cap	364
15.7	Locations of ground and air images of Twin Glacier, Hoodoo Glacier, and Hoodoo Mountain	365
15.8	Twin Glacier	366
15.9	Hoodoo Glacier	367
15.10	Hoodoo Mountain and its ice cap	368
15.11	Stereo image anaglyph generated from an ASTER scene acquired October 3, 2012.	369
15.12	Dease Lake and Stewart, BC climate data records for summer mean temperature each calendar year and monthly mean daily	
16.1	Location of Nahanni National Park Re-	370
16.2	the Ragged Range False-color composite of the Ragged Range, and a view of the Brintnell Creek Glacier looking west	376
16.3	Sample glacier inventory map for the Ragged Range, 2008	370
16.4	Ragged Range glacier perimeter and major flowline length–area relationships	380
16.5	Ragged Range glacier fractional area change (FAC) 1982–2008 as a function of 1982 glacier area	381
17.1	Locations of glacier and perennial snow- fields in the American Cordillera	386
17.2	Time series of Grinnell Glacier's shrinking extent from 1850 to 2003	394
17.3	Photo of Grinnell Glacier and the Sala- mander, Glacier National Park, taken in 2009	395
17.4	Mt. Rainier glaciers; and outlines for north-facing glaciers on an orthorectified ASTER 321RGB false-color composite	306
17.5	Glacier extent time series for Mt. Rainier's north and northeast-facing glaciers on	590
	ASTER 321RGB false-color composites .	398

17.6	Mt. Rainier north and northeast-facing glaciers on ASTER 321RGB false-color composite; unsupervised (ISODATA) classification, and post-classification assignment of glacial land cover classes; and grouped debris cover classes for Winthrop Glacier and Emmons Glacier;	
	and grouped debris classes plus one	
	debris-ice class for Carbon Glacier	398
17.7	Winthrop Glacier, Mt. Rainier	399
17.8	Mt. Rainier's north-facing glacier terminus extents since 1913	400
17.9	Mt. Rainier's north-facing glacier debris	
	cover since 1913	401
17.10	MASTER image of Mt. Rainier	402
17.11	Record of surface area for Blue Glacier excluding snowdome over the past 94 years	403
17.12	ASTER VNIR band 321 false-color com-	
	posite image of glaciers in the Olympic	
	Mountains, Washington, U.S.A., including	
10.1	Blue Glacier	404
18.1	Landsat 5 Thematic Mapper image mosaic of Iceland showing the distribution of glaciers, vegetation, lightly vegetated or unvegetated areas, including bare rock	
	and sediment, and water	410
18.2	Map of the eight regional glacier groups in Iceland	411
18.3	Graph showing annual variations in the terminus of Sólheimajökull, an outlet glacier from the Myrdalsjökull ice cap, southern Iceland, and Hyrningsjökull ice outlet glacier from the Snæfellsjökull ice	
	cap, western iceland, correlated with mean	415
18.4	Brúarjökull outlet glacier with a distinct	415
10 5	Vetroiäluull in or with three different	419
18.5	valuajokuli ice cap with three different	420
18.6	Surface velocity field of Skeiðarárjökull	420
10.1	Man of Norman sharing the leasting of the	421
19.1	Landsat images used in the new glacier inventory for Norway; and mean precipita- tion of Norway between 1961 and 1990	120
10.2	Red green blue (RGB) composite of bands	420
17.2	5.4.3 of a Landsat ETM + scene from 2006	
	showing the Jostedalsbreen ice cap in southern Norway	429
19.3	RGB composite of bands 5. 4. 3 of a	
	Landsat TM scene from 2003 showing the glaciers in Jotunheimen in southern	
	Norway	430
19.4	Orthophoto showing Storbreen in 2004 and the retreat of the glacier since its maximum Little Ice Age extent	431

19.5	Mapped glacier outlines from the Landsat	
	1 M image from 2003 using a thresholded	
	Jotunheimen region	432
19.6	Normalized part of the glacier area and	
	number per size class for two different	
	regions in Norway: Jotunheimen in south-	
	Norway	433
19.7	RGB composite of bands 5, 4, 3 of a	
	Landsat TM scene from 2003; and glacier	
10.0	outlines from topographical maps	434
19.8	Relative area changes in the regions: Iotunheimen and Svartisen	435
20.1	Oberaarglacier in the Swiss Alps, a typical	455
	small-valley glacier	440
20.2	Color-coded map of mean annual precipi-	
20.2	tation for the greater Alpine region	441
20.3	temperature and precipitation for the	
	climate station Sils since 1864	442
20.4	Percentage of glacier count and area cov-	
	ered for seven distinct size classes and all	
	glacier Inventory	112
20.5	Landsat image with the main glacier-	772
	covered mountain groups in Austria	444
20.6	Landsat 5 TM image of glaciers in the	
20.7	Stubaier Alpen in Austria	446
20.7	Alpen with glacier outlines	446
20.8	Area change in percent of total glacier area	
	per year for the Stubaier Alpen	447
20.9	Differential DEMs for the 2000–2003	
	satellite images	448
20.10	Rate of thickness change on the lower Mer	110
	de Glace for the last 25 years	448
20.11	Horizontal displacement of glaciers of the	
	September 18 2003 for the entire Mont	
	Blanc area	449
20.12	Computed ELA obtained from remote	
	sensing versus ELA observed from field	150
20.13	Cumulative mass balance derived from	450
20.15	remote sensing (Cum computed) and	
	from field measurements	450
20.14	Comparison between ELA derived from	
	remote-sensing data and ELA derived from	151
20.15	Comparison of mass balance series of	431
_0.10	French alpine glaciers	451
20.16	ASTER images of the Italian Alps pro-	
20.15	cessed within the GLIMS project	451
20.17	ASTER image of the Sabbione glacier area acquired on August 24, 2001	453
	uoquitou on muguot 27, 2001	455

20.18	ASTER image of the Pustertal glacier area acquired on September 17, 2003	454
20.19	Area change of 56 glaciers located in regions No. 1, 2, and 3	454
20.20	Belvedere Glacier (No. 4 in Fig. 20.15) with the dramatic change of Effimero Lake visible from the August 24, 2001 and July 19, 2002 ASTER images	454
20.21	Thermal signature of debris-covered Bel- vedere Glacier	455
20.22	Computed melt rate over snow-covered and ice-covered regions around the Adamello group of glaciers; and an ASTER satellite image from June 20, 2003 for comparison	455
20.23	Glacier catchments from manual delinea- tion for extraction and identification of individual glaciers; and individual glaciers color-coded and converted back to raster format for zonal calculation	456
20.24	Relative change in glacier area from 1973 to 1998 versus glacier size in 1973 for a sample of 713 Swiss glaciers	457
20.25	Glacier outlines in the Rheinwald Region for 1850, 1973, and 1999 on a TM5, 4, 3 false-color composite from 1999 illustrat- ing the high local variability in area change	458
20.26	Color-coded median elevation for each glacier in Switzerland.	459
20.27	Area-elevation distribution of the glacier- ized surface from 1973 and 1998 for a sample of 713 Swiss glaciers	459
21.1	Digital elevation model and locations of present glaciers and rock glaciers in Turkey	466
21.2	Glacier map of Buzul Mountains	470
21.3	Glacier map of Mt. Ağrı (Ararat)	473
21.4	Observed retreats of Turkish glaciers	474
21.5	Erciyes Glacier, looking southeast on August 9, 2006	474
22.1	Location of the two study regions, the Munkh Khairkhan and Tavan Bogd ranges, within the Mongolian Altai moun-	
22.2	tains Munkh Khairkhan range, central Mon- golian Altai showing study area and Munkh Khairkhan National Park bound-	482
22.3	Tavan Bogd range, far northwest Mongolia showing study area and approximate inter-	485
22 A	national boundaries	486
22.4	Aerial views of Potanin Glacier and Alex- andra Glacier, Tavan Bogd National Park	486
22.5	boundaries	489

22.6	Munkh Khairkhan study area: an example	
	of the Maximum Likelihood Supervised	
	Classification of a Landsat image used to	
	delineate glacier snow and ice	490
22.7	Munkh Khairkhan study area: SilcAst-	
	generated DEM from ASTER scenes	494
22.8	Munkh Khairkhan study area: sample	
	distribution of DEM elevation values	495
22.9	Munkh Khairkhan study area: the result-	
	ing mean ASTER DEM covering the	
	Shuurkhai Valley created from three	
	ASTER DEMs using SilcAst	496
22.10	Munkh Khairkhan study area: comparison	
	between typical hillshade and mean hill-	
	shade from eight different directions using a	407
22.11		497
22.11	Munkh Khairkhan study area: multi-	
	everlage on DEMs	100
22.12	Munich Khairlehan atudu araa aamarigan	498
22.12	of mean annual temperature and total	
	snow/ice area from 1990 to 2008	501
22.13	Munkh Khairkhan study area: comparison	501
22.13	of total annual precipitation and total	
	snow/ice area from 1990 to 2008.	501
22.14	Munkh Khairkhan study area: general	
	geomorphological map of today and ap-	
	proximation of glacial extent during the	
	LGM based on data collected during the	
	field campaign	502
22.15	Tavan Bogd study area: glacier extents for	
	the 20-year period derived from Landsat	
	TM imagery	503
22.16	Tavan Bogd study area: glacier extents for	
	the largest glaciers	505
23.1	Afghanistan swath profile analysis results	513
23.2	Pakistan swath profile analysis results	514
23.3	NCEP/NCAR annual mean reanalysis	
	data of surface air temperature, precipita-	
	tion, and seasonal precipitation	515
23.4	Mountain regions in Afghanistan and	
	Pakıstan	515
23.5	Diagrams of glaciers and rock glaciers in	
	the Hindu Kush and western Himalaya	516
23.6	Synthetic oblique view looking southwest,	
	trom a viewpoint above the Sanglech	
	waney in Badakshan of the Kolli Baldakha	
	tions of rock fragments and ice	517
23 7	Synthetic oblique view of debris-covered	517
23.1	rampart glacier northeast of Kohi	
	Bandakha that formed when a debris-	
	covered glacier moved out of its circue	
	and into the adjacent valley over a ramp	
	of its own debris piled up at the angle of	
	repose	518

23.8	Ground photo of a rock glacier in the	
	North Cuisrab Mountains of northern	
	Pakistan	510
23.9	Synthetic oblique view to the northeast of	519
<i>43.)</i>	Mir Samir at the Yakhchaali Gharb or Mir	
	Samir West Glacier	524
23.10	Synthetic oblique view looking north-	
	northeast at Sakhi East Glacier 2	528
23.11	Modified version of fig. 21 of Shroder and	
	Weihs (2010) showing some of the recent	
	variation of glaciers in the Greater Pamir of	
	the Wakhan Corridor	532
23.12	ASTER false-color composite image of	
	Hispar Glacier in the Hispar Muztagh	
a a 1a	Mountains	537
23.13	Terminus of Passu Glacier in Pakistan in	627
22.14	ASTED false color composite of exten	537
23.14	sively debris-covered Gurpi Glacier in the	
	Batura Muztagh Mountains	538
23.15	Yengutz Har Glacier in Pakistan in 1984.	539
23.16	Three-dimensional perspective of Bualter	
	Glacier using high-resolution satellite	
	imagery draped over a digital elevation	
	model	539
23.17	Liligo Glacier with proglacial lake in July	
	2005 on the south side of Baltoro Glacier	540
23.18	Tap Glacier with moraine-dammed lake in	
	July 1996 on the south side of Nanga	540
23 10	ASTER false-color composite of Buldar	540
23.17	Glacier on the north side of Nanga Parbat	541
24.1	Study area showing the regions analyzed in	511
	this chapter, covering the Himalaya from	
	east to west.	551
24.2	Glacier area change 1962–2000 in the Zemu	
	area of the Sikkim Himalaya	558
24.3	Glacier elevation changes 1970–2007 at Mt.	
	Everest calculated from a Corona KH-4B	
	DEM and a Cartosat-1 DEM	560
24.4	A subset of ASIER 321RGB false-color	
	composite images of the Mit. Everest area showing earlier 2001 and later 2005 images	567
24 5	Sagarmatha_Khumhu region Nepal	563
24.6	Glacier change in the Lhasa River basin	505
	between 1970 and 2000	566
24.7	Selected representative glacier speeds over	
	the main ridge of the Himalaya in Bhutan	567
24.8	Velocity field and isolines of speed of a	
	glacier in Bhutan as derived from repeat	
	ASTER data of 2001	567
24.9	Glacier change results based on semiauto-	
	mated mapping approaches	570
24.10	Retreat of Samudra Tapu Glacier, Hima-	
	chai Pradesh between 1962 and 2006	- 571

24.11	Disintegration of glaciers in the Parbati River basin Indian Himalaya	573
24.12	November 12, 2004 SPOT-5 image of the	515
	Chhota Shigri area, Lahaul-Spiti, showing	670
24.12	Man of classic classic change between	573
24.15	February 2000 and November 2004 for	
	glaciers in the Labaul/Spiti region	574
25.1	The relationship between summer mean	571
2011	temperature and annual precipitation at	
	the ELAs of 16 glaciers showing field	
	measurements	585
25.2	Distribution of glaciers and their LIAM	
	measurements	587
25.3	Annual percentage glacier area change in	
	each river basin and mountain range	591
25.4	3D view of Keqikar Baxi Glacier on the	500
25 F	south slope of Mt. Tomuer, Hanshan	592
25.5	DEM1974 and DEM2000 along the central	
	flowline of the Kegikar Baxi Glacier	593
25.6	A map of YLHG1 and YLHG5 and their	070
	surroundings	594
25.7	Ice elevation change as a function of	
	altitude on 5Y432A1 and 5Y432A5 from	
	topographic maps and GPS RTK DEMs	595
25.8	The effect of surface elevation change on	
	ablation of YLHG1 and YLHG5 from	506
25.0	The flow field on Dongkomedi Classer	596
23.7	derived by D-InSAR	597
25.10	Glacier surface velocities from feature	571
	tracking of ALOS PALSAR data, Kara-	
	koram, China	598
25.11	Distributions of annual flow velocities of	
	Koxkar Baxi Glacier during three phases	
	between 2001 and 2006	599
25.12	Map of basins in the southern Tibetan	(01
25.12	Plateau region.	601
25.15	the main hydrological stations in the rivers	
	in West China.	603
26.1	Map of the study areas referred to in this	002
	chapter	611
26.2	Satellite image of the Quelccaya Ice Cap	
	from June 25, 1985	612
26.3	Ice extent history of the Quelccaya Ice Cap	
26.4	derived from satellite imagery	614
26.4	Map of Quelccaya Ice Cap, showing also its	
	image and a 2000 TM image	615
26 5	Glacial cover of the Cordillera Vilcanota	013
_0. J	between 1985 and 2006	616
26.6	Situation of Japujapu Glacier and Osiollo	510
	Anante Glacier in 1985, 1996, and 2006.	617
26.7	Nevado Coropuna glacial cover between	
	1955 and 2003	618

26.8	The Cordillera Blanca study area showing the two orthorectified SPOT scenes from		28.3
26.0	August 2003	619	28 4
20.9	calqui massif estimated from the 1970 digital inventory and 2003 SPOT-5 imagery	621	28.5
26.10	Histogram of elevation differences over the Cordillera Blanca derived from SRTM elevation data and 1970 and 2003 glacier outlines	(21	
26 11	Clasiers in Colombia	021	
20.11	Glacier area change over recent decades of	025	
20,12	ice-capped volcanoes in Colombia	624	29.1
26.13	Precipitation and standardized anomalies registered at the El Cocuy meteorological station between 1007 and 1008 demonstrat	021	
	ing the precipitation deficit that resulted		29.2
	from the corresponding El Niño	629	29.3
26.14	Cumulative glacier length change in differ- ent glacier tongues of Nevado de Santa		29.4
	Isabel	629	<i>2</i>)
26.15	Cumulative glacier length change in differ-		29.6
	ent glacier tongues of the Sierra Nevada de		29.7
	El Cocuy	630	
26.16	Areal extent of glaciers in the Tres Cruces region, Bolivia, from 1975 to 2000	631	29.8
26.17	Observed retreat of glaciers in the Tres		29.9
0(10	Cruces region from 1975 to 2009	632	29.1
26.18	Areal extent of the ice on Pico Humboldt and Pico Bonpland, Venezuela, from 1981 to 2007	633	29.1
26.19	Observed retreat of the Pico Humboldt and	055	29.1
2011	Pico Bonpland ice masses from 1952 to 2007	634	
27.1	Map of the Southern Patagonia Icefield .	640	29.1
27.2	Landsat TM image of January 14, 1986 showing associated ice margins	646	20.1
27.3	Landsat ETM+ image of October 27, 2000 with corresponding ice margins	647	29.1
27.4	Frequency diagrams showing area distribu-		
	tions in 1986 for 48 major SPI glaciers,		29.1
	smaller valley, and cirque glaciers within		
	the SPI according to a preliminary classi-		
	spi	610	29.1
28.1	The four glaciated mountain regions in	040	20.1
20.1	ventoried at the southern tip of Chile: and		29.1
	satellite composite insets showing the glacier outlines derived for Isla Santa		29.1
	Inés, Monte Sarmiento, Cordillera		29.1
	Darwin, and Isla Hoste	663	
28.2	Glacier variation at Glaciar Marinelli and		29.2
	Glaciar 4 as draped on an ASTER compo-		
	site 5-2-1 KGB image acquired on Septem- ber 13, 2003	660	29.2
		000	

	28.3	Frontal variation at Glaciar Ventisquero as	
		draped on an ASTER composite 3-2-1	
619	20.4	RGB image acquired on February 13, 2004	669
	28.4	Compilation of recent glacier changes in the study area	670
(21	28 5	Lithograph drawn by Charles Darwin	0/0
621	20.3	during his voyage on board HMS Beagle	
		in 1836 showing Monte Sarmiento across	
		Canal Magdalena; and a map of Monte	
621		Sarmiento showing the route climbed by	
623		the priest Alberto de Agostini and some	
025		glaciers mentioned in the text	672
624	29.1	Fox Glacier, West Coast, New Zealand,	
02.		descending steeply from the Mt. Cook	
		massi and penetrating into temperate	676
	29.2	Franz Josef Glacier	677
	29.3	Map of Mt Cook area	678
629	29.4	New Zealand annual temperature anomaly	070
		since the 1850s	680
	29.5	Cumulative length fluctuations of Franz	
629		Josef Glacier	682
	29.6	Changes in specific mass balance	684
(20)	29.7	Cumulative volume change in glaciers of	
630	2 0 0	the Southern Alps	684
(21	29.8	A century of mean length changes up until	(0)
631	20.0	ASTER VNIR images of Mt Ruspehu	680
622	29.9	Young labar deposit imaged just days after	007
032	27.10	formation	689
	29.11	ASTER time series of Mt. Ruapehu's	005
633		Crater Lake	690
	29.12	Summit of Mt. Ruapehu is shown here with	
		color saturation and contrast enhance-	
634		ments of ASTER VNIR images	691
640	29.13	ASTER images of the Mt. Tutoko/Milford	
		sound area and changes in Donne Glacier	602
646	29 14	A pair of ASTER 321 RGB false-color	092
	27,14	composite images spanning some three	
647		years of changes at Brewster Glacier, and	
		their respective image differencing results.	693
	29.15	Pair of ASTER false-color VNIR 321	
		images of the Mt. Cook area obtained on	<u> </u>
	20.10	near-anniversary dates / years apart	695
648	29.16	Image difference of the near-anniversary	606
0.10	29 17	Surface flow of Tasman Glacier and	090
	¥/•1/	Hooker Glacier	698
	29.18	Tasman Glacier and Tasman Lake viewed	570
		from the air and the lake surface	699
	29.19	ASTER 10-year time series of Tasman	
663		Lake, Hooker Lake, and Mueller Lake	700
	29.20	Growth histories of Mt. Cook's glacier	
	20.21	lakes and their possible futures	701
660	29.21	Longitudinal glacier surface and bed pro-	702
008		11105	/02

29.22	Secular trends and oscillations in New Zealand's mean temperature and climatic indices	708
29.23	Correlations between New Zealand's seven-station mean temperature and time and with five oceanographic and climatic indices	700
30.1	Overview map of the Antarctic Peninsula	/09
30.2	showing the location of the study areas Digital elevation model of the test site located in the surroundings of the Base General San Martin, Marguerite Bay; and	718
30.3	Base General San Martin aerial photo map Flow diagram for the multitemporal ASTER scenes processing approach	722
30.4	Altitude deviations between the TUD reference model versus ASTER-derived and	723
30.5	RAMP models	724
30.6	Section of ASTER image showing the retreat of B-S glaciers behind the grounding	720
30.7	lineSection of the ASTER image showing recent surge and D-B-E ice front fluctua- tions since 2001 and retreat inland behind	728
30.8	the GL	729
30.0	shown on a section of an ASTER image.	730
30.9	Section of an ASTER image	731
30.10	Overview map of Wilkins Ice Shelf based on a Landsat mosaic; and the situation as depicted by a TerraSAR-X ScanSAR image superimposed on two Envisat ASAR	
30 11	The three-step process during ice shelf	732
30.11	breakups using the ice bridge on WIS as an example	734
30.12	Area corresponding to footprints of ERS- 1/2 SAR imagery	725
31.1	Map of Antarctica showing the nunataks studied in this chapter and some of the	/33
31.2	main stations in the area	745
51.2	showing the main features discussed in the text	746
31.3	Outline of the Patriot Hills' BIA derived from field GPS measurements and manual digitization of ASTER images	747
31.4	Outline of the Patriot Hills' BIA from manual digitization and supervised classi-	/4/
31.5	fication for selected dates	748
	mins BIA over time	/50

31.6	An area of crevasses near the Heritage	
	Range as shown on an ASTER composite	
	image	751
31.7	ASTER mosaic, based on composite bands	
	1, 2, and 3N, showing the track to Union	
	Glacier and the crevasse fields along the	751
21.0	ASTED massis with annuars datasted	/31
31.8	ASTER mosaic with crevasses detected	
	for the field	752
31.0	The BIA and location of the RES profile	155
51.7	A = A': the radargram $A = A'$: and the cor-	
	rected topographic profile	754
32.1	The Subantarctic as defined for the present	701
0201	purpose	760
32.2	Annual positive degree-day sums based on	
	records of near-surface air temperature	
	from stations near sea level	761
32.3	The glacier boundaries of Heard Island	
	from 1947 to 2008/2009	763
32.4	Quickbird and Worldview images of Heard	
	Island	765
32.5	Retreat of Cook Ice Cap between 1963 and	
	2001	767
32.6	Retreat of Ampère Glacier between 1963	
	and 2009	767
32.7	Montagu Island	769
32.8	The Difference of the second s	774
32.9	The Balleny Islands	775
32.10	Laurie Island, South Orkney Islands	//6
33.1	bightighted in the book's chapters	701
22.2	North Polar projection showing the main	/04
33.2	ocean currents and the diminishing extent	
	of perennial sea ice	785
33.3	Typical Icelandic ice cap. Myrdalsjökull.	100
	and outlet glacier, Sólheimajökull	790
33.4	Sea surface temperature anomalies ex-	
	tracted from AVHRR	793
33.5	Calderone Glacier and its glacierets, the	
	last remnants of glacial ice in the Italian	
	Apennines	797
33.6	Asian climate simulated in GCMs	801
33.7	Locations of glaciers in the northern Andes	
22.0	and ice caps discussed in Chapter 26	803
33.8	Global ocean currents	805
33.9	Marion Island sported a small summit	
	giacier unun 1–2 decades ago as well as a	804
33 10	Trajectory of global warming from the	800
33.10	mid/late 19th century height of the Little	
	Ice Age to 2010.	810
33.11	Model of the thermal infrared spectrum of	510
	outgoing thermal radiation	811
33.12	CO ₂ abundance in Earth's atmosphere	812
	Climate shares in clasical actions	014

33.14	Some of the important geographically variable climatic and nonclimatic factors	
	controlling glacier dynamics and	
	glacier behaviors	815
33.15	Climate-smoothing influence of glacier	

			-						-				
response tim	е.											81	7

- **33.16** The Asian brown cloud in April 2003 over Kathmandu, and northeast of Kathmandu along the front of the Greater Himalaya . 820
- **33.17** Relationships between basic science and applied science aspects of glacier remote sensing and associated field glaciology... 829

Tables

1.1	Area, volume, and sea level equivalent of	2
3.1	Input optical parameters employed for	3
	MADOC BRF simulations of intimate	(0)
	and areal mixtures of ice and soil	69
4.1	Examples of ICESMAP image difference	0.0
		99
6.1	ASTER: baseline performance require-	1.40
(\mathbf{a})		148
6.2	ASTER: baseline performance require-	1.40
(\mathbf{a})	ASTED CDS at line trian liberting of	149
6.3	ASTER GDS radiometric calibration coef-	150
()	A STEP	150
0.4	ASTER: geometric performance param-	151
5 1		151
7.1	Satellite images used in the GLACE experi-	1//
7.2	Teste en la teste income de la CLACE 1	166
1.2	Tools and techniques used in GLACE I and CLACE 2	1(7
7.2		16/
1.3	Quantitative comparison between different	
	specific glocier	170
74	Changes in area of Vlinghlini Classer as	170
/.4	determined by the different groups portion	
	pating in GLACE 2	174
Q 1	Summary of arrars for absolute and role	1/4
0.1	tive DEMs of different post-spacings	109
0.1	Changes in the area of ice cans and glaciers	190
<i>)</i> .1	in the OFI and Bylot Island and of selected	
	ice caps on Baffin Island	221
92	Mean percentage area change of glaciers	221
<i>у.ш</i>	and ice caps in different regions of the OEL	
	as a function of initial ice area.	221
11.1	Landsat images used in KEFI	248
	Zandout infugeo uoed in tell b	270

 \overline{r}

11.2	Summary of the extent of the Harding	
11.4	Icefield the Grewingk–Valik Glacier Com-	
	nlex and surrounding glaciers as measured	
	using Landsat data	248
11 3	Landsat images used in KATM	240
11.5	Summary of the areal extent of closics in	249
11.4	KATM as measured using Landset date	250
11.5	KATM as measured using Landsat data .	250
11.5	Glacier terminus change in KEFJ	252
11.6	Glacier terminus change in KATM	257
12.1	Characteristics of lake-damming glaciers of	
	Alaska and bordering Canada	274
12.2	Summary statistics for comparisons of	
	absent and new glacier-dammed lake basins	275
12.3	Summary statistics for comparisons of	
	absent and persistent lakes	276
12.4	Lake status since 1971, elevation, and	
	damming glacier origin type by analysis	
	region	277
12.5	Chronology of Iceberg Lake, Alaska, lake	
	drainage events from satellite and field	
	observations	282
12.6	Components of water influx to Iceberg	
	Lake for a one-year filling time	288
13.1	Twenty Bering–Malaspina complex	
	glaciers ranked by area	309
13.2	Comparison of 16 of the 2000/2001 glacier	
	areas with previous area estimates	310
13.3	Comparison of recent sizes and some	
	change parameters for selected glaciers of	
	the Chugach Mountains	318
14.1	Glacier area change 1985-2005, with esti-	
	mated uncertainties	346
16.1	Ragged Range glacier area and count by	
	area class	379

17.1	Mt. Rainier's north-facing glacier termini	400	23.6
17.2	Mt. Rainier's north-facing glacier debris	400	23.7
18.1	Area of Iceland's glaciers from analysis of	400	23.8
19.1	aerial photos and satellite images Landsat scenes used for glacier mapping	413	23.9
20.1	and change analysis in this chapter Glacier areas of the main mountain groups	432	24.1
	in the Austrian Alps and total area, based on aerial photogrammetry, for the refer-	115	24.2
20.2	Glacier area in the Stubai Alps based on aerial photogrammetry in the years 1969		
21.1	Turkish mountains and their glaciers and	446	24.3
21.2	Turkish glaciers and rock glaciers	468 469	24.4
21.3	Observed retreats of glaciers in Buzul and İkiyaka Mountains	471	
21.4	Observed retreats of glaciers in Kaçkar	+/1	24.5
21.5	Mountains	472 475	25.1
21.6	Observed retreat of Hızır Glacier on Mt. Süphan	475	25.2
22.1 22.2	Data used in the Munkh Khairkhan study Munkh Khairkhan study area: MBE, MAE, and RMSE values for three ASTER DEMs compared with differen	488	25.3
22.3	tially corrected GPS elevation values Munkh Khairkhan study area: MBE,	496	25.4
	MAE, and RMSE values for three types of DEMs compared with differentially corrected GPS elevation values	496	25.5 26.1
22.4	Munkh Khairkhan study area: changes in snow/ice/glacial areas between 1990 and 2006	499	26.2
22.5	Munkh Khairkhan study area: snow/ice/ glacial area of selected glaciers for 1990– 2006	499	26.3
22.6	Munkh Khairkhan study area: ELA cal- culations for individual glaciers using the		26.4
22.7	TSAM method Tavan Bogd study area: selected glacier	500	27.1
23.1	change for 1989–2009 List of glaciated and glacierized mountain	504	27.2
23.2	ranges in Afghanistan List of glaciated and glacierized mountain	511	28.1
23.3	ranges in Pakistan	512	
	to estimate glacier terminus change for regions in Afghanistan and Pakistan	520	28.2
23.4	Glaciers and related features near the peak of Mir Samir in the central Hindu Kush .	522	29.1
23.5	Various glaciers and related types on the Kohi Bandaka massif in southern Badak- shan, Afghanistan	525	30.1

ni	400	23.6	Sampled alpine glaciers over the Wakhan Pamir, Afghanistan	530
is	400	23.7	Sampled alpine glaciers over the Hindu Raj Region Pakistan	534
of.		23.8	Sampled alpine glaciers over the Batura	551
	413	2010	and Hispar Muztagh regions in Pakistan.	536
ıg		23.9	Sampled alpine glaciers over the Nanga	000
	432		Parbat massif, Pakistan	542
ps		24.1	Summary of satellite imagery and topo-	
ed			graphic data used in this chapter	556
r-		24.2	Change in total ice cover, clean ice, and	
	445		debris-covered ice areas in the Khumbu	
on			Himalaya between 1962 and 2005 based on	
59			spaceborne imagery	559
•	446	24.3	Glacier area/volume change in the north-	
nd	4.60		west Brahmaputra Basin (Area 1) and the	
•	468		Lhasa River basin	565
•	469	24.4	Change in length and debris-covered area	
la	471		for three glaciers in Ladakh	569
•	4/1	24.5	Glacier retreat in Himachal Pradesh from	
aı	472		1962–2001/2004	572
•	472	25.1	Estimated change in area and volume of	
[t	T 75		glaciers since the LIAM in western China	587
	475	25.2	Data types used for analyzing glacier	
lv.	488		change during past decades in selected	500
É,		25.2	Clasical sharper in contraction regions in	388
ee		25.3	Glacier change in representative regions in	
n-			monitored by remote sensing	580
	496	25 4	Change in ice elevation in the two glaciers	569
Е,		23.4	since 1956	600
es		25.5	Glacier lakes and their outburst history	602
ly	10.6	26.1	Comparison of IGN 1970 and SPOT 2003	002
	496	2011	glacier inventories	620
1n		26.2	Glacier elevation and area changes from	
Id	400		1970 to 2003 for 367 selected glaciers with	
•	499		the same ice divides in both inventories.	621
C/		26.3	Estimates of ice extent for the entire	
)_	499		Cordillera Blanca from previous studies	
1-	177		based on aerial photos and satellite images	622
ne		26.4	Change in glacier extent for selected glacier	
	500		areas in Colombia	626
er		27.1	Glacier inventory and parameters obtained	
	504		in this study	650
in		27.2	Glacier inventory and parameters; and	
	511		glacier variations for 1986–2000	654
in		28.1	Satellite optical imagery used for the glacier	
·	512		ice inventory and to determine frontal	
ed		20.2		665
or	500	28.2	inumber and area of glaciers located on	
	520		lanes classified according to size rank	667
ιĸ	522	20.1	A pprovimate peak and mean flow speeds of	00/
ne	322	47.1	Mt. Cook's glaciers	697
k-		30.1	Distribution of altitude deviations between	071
	52.5	2011	different elevation models.	725
	~~~			14-)

Ice Shelf since 1986733 <b>30.3</b> Thresholds for backscattering coefficients and altitude used for the classification of radar glacier zones on the Antarctic Penin- sula736 <b>31.1</b> ASTER image details748 <b>31.2</b> Extent of blue-ice area of Patriot Hills between 1996 and 2007 as derived by different techniques749 <b>32.1</b> Temperature at subantarctic weather stations761	30.2	Compilation of the retreat area of Wilkins	
<ul> <li>30.3 Thresholds for backscattering coefficients and altitude used for the classification of radar glacier zones on the Antarctic Peninsula</li></ul>		Ice Shelf since 1986	733
sula73631.1ASTER image details74831.2Extent of blue-ice area of Patriot Hills between 1996 and 2007 as derived by different techniques74932.1Temperature at subantarctic weather stations761	30.3	Thresholds for backscattering coefficients and altitude used for the classification of radar glacier zones on the Antarctic Penin-	
<ul> <li>31.1 ASTER image details</li></ul>		sula	736
<ul> <li>31.2 Extent of blue-ice area of Patriot Hills between 1996 and 2007 as derived by different techniques</li></ul>	31.1	ASTER image details	748
different techniques       749         32.1       Temperature at subantarctic weather stations       761	31.2	Extent of blue-ice area of Patriot Hills between 1996 and 2007 as derived by	
<b>32.1</b> Temperature at subantarctic weather stations		different techniques	749
stations	32.1	Temperature at subantarctic weather	
		stations	761

32.2	Precipitation at subantarctic weather stations	762
32.3	Observations of the equilibrium line alti- tude on subantarctic islands	763
22.4	Chan and in Managalan ion around	705
32.4	Changes in Kergueien ice cover	/66
32.5	Cartographic glacier inventory of the Sub-	
	antarctic	772
32.6	Mass balance measurements on subantarc-	
	tic glaciers	777
33.1	Response times of three different sizes of generic glaciers in four environments	818
	0 0	

## Acronyms and abbreviations



AABI	Area-Altitude Balance Index	BO
AABR	Area-Altitude Balance Ratio	BI
AAO	AntArctic Oscillation	
AAPO	AntArctic-Pacific Oscillation	BI
AAR	Accumulation Area Ratio	BI
ACC	Antarctic Circumpolar Current	B.
ADD	Antarctic Digital Database	BI
ADO	Analytical Discrete Ordinates	DI
	(method)	
AHAP	Alaska High Altitude Aerial	RI
	Photography	BI
ALE	Antarctic Logistic and	DI
	Expeditions (a private	BI
	company)	
ALI	Advanced Land Imager	
ALOS	Advanced Land Observing	
	Satellite	C
AMS	Army Map Service	C
ANN	Artificial Neural Network	
AP	Antarctic Peninsula	
APAC	Annual Percentage of glacier	CI
	Area Change	
APU	Alaska Pacific University	C
AR	Assessment Report	C
ASTER	Advanced Spaceborne Thermal	Cl
	Emission and Reflection	
	Radiometer	Cl
ATBD	Algorithm Theoretical Basis	
	Document	Cl
ATM	Airborne Topographic Mapper	
AVHRR	Advanced Very High	Cl
	Resolution Radiometer	
AWS	Automatic Weather Station	C

BC	British Columbia
BEST	Basic Envisat and ERS SAR
	Toolbox
BIA	Blue Ice Area
BIRZ	Bare Ice Radar Zone
BJ54	Beijing 54 (coordinate system)
BKG	Bundesamt für Kartographie und
	Geodäsie (Federal Agency for
	Cartography and Geodesy)
BLM	Bureau of Land Management
BRDF	Bidirectional Reflectance
	Distribution Function
BRF	Bidirectional Reflectance Factor
CAREERI	Cold and Arid Regions
	Environment and Engineering
	Research Institute 182
CAREERI	Cold and Arid Regions
	Environmental and Engineering
	Research Institute 593
CBERS	China Brazil Earth Resources
	Satellite
CCD	Charge-Coupled Device
CCI	Climate Change Initiative
CDED	Canadian Digital Elevation
	Dataset
CDOM	Colored Dissolved Organic
	Matter
CEC	Centro de Estudios Científicos
	(Scientific Study Center)
CFCAS	Climate and Atmospheric
	Sciences
UGI	Chinese Glacier Inventory

CGIAR-CSI	Consultative Group on International Agricultural
	Research_Consortium for
	Spatial Information
CIAS	Correlation Image Analysis
CIAS	Software
CIDES	Cooperative Institute for
CIKES	Desegrable in Environmental
	Research in Environmental
ONEG	Sciences
CNES	Centre National d Etudes
	Spatiales (National Center for
66 A 7 7	Space Studies)
COART	Coupled Ocean Atmosphere
	Radiative Transfer code
CONICYT	COmisión Nacional de
	Investigación CIentífica y
	Tecnológica de Chile (National
	Commission of Scientific and
	Technological Investigation)
COTS	Commercial Off-The-Shelf
CP	Check Point
CR-D-InSAR	Corner Reflector Differential
	Interferometry
CRB	Copper River Basin
CRU	Climatic Research Unit
CKU	University of East Anglia
DDE	Dingmaan Dombandian
D-D-E	Edgeworth
	Edgeworth Data A aquisition B aquast
DAK	Data Acquisition Request
DEM	Digital Elevation Model
DGPS	Differential Global Positioning
1000	System 118, 596
dGPS	differential GPS 117
DInSAR	Differential radar interferometry
DISORT	DIScrete Ordinates Radiative
	Transfer model
DLR	Deutschen Zentrums für Luft-
	und Raumfahrt (German
	Aerospace Center)
DMS	Desktop Mapping System
DMSP	Defense Meteorological Satellite
	Program
DN	Digital Number (reflects
	radiation value measured by a
	radiometer)
D-0	Dansgaard–Oeschger
D000	Digital Orthophoto Quarter
DUXX	Quadrangle
DOS	Dark Object Subtraction
DSM	Digital Surface Model
	Dry Snow Padar Zana
DIN	Digital Tampin Madal
	Digital Terrain Model
ECV	Essential Climate Variable

FΙΛ	Equilibrium Line Altitude
ELA	El Niño-Southern Oscillation
ENSO_SOI	El Niño-Southern Oscillation
	Index
ENVI	ENvironment for Visualizing
EO-1	Earth Observing-1 (satellite)
EOS	Earth Observing System
EROS	Earth Resources Observation
LICOD	and Science
ERSDAC	Earth Remote Sensing Data
	Analysis Center 147
ERSDAC	Earth Remote Sensing Division
	(Japan) 238
ESA	European Space Agency
ESRL	Earth System Research
	Laboratory
ETM+	Enhanced Thematic Mapper Plus
FAC	Fractional Area Change
FAGS	Federation of Astronomical and
	Geophysical Data Analysis
	Services
FCC	False-Color Composite
FONDECYT	FOndo Nacional de DEsarrollo
	Científico Y Tecnológico
	(National Fund for Scientific
	and Technological
	Development)
FPRZ	Frozen Percolation Radar Zone
G-DEM	Global DEM
GDEM1	First ASTER Global DEM
GCM	General Circulation Model
GCOS/GTOS	Global Climate/Terrestrial
,	Observing System
GCP	Ground Control Point
GDEM	Global Digital Elevation Map
	493
GDEM	Global Digital Elevation Model
	247, 639
GDL	Glacier-Dammed Lake
GDS	Ground Data System
GEMS	Global Environment
~	Monitoring System
GeoTIFF	Geographic Tagged Image File
CEDI	Format
GFDL	Geophysical Fluid Dynamics
CHOST	Laboratory
GHO21	Giodal Hierarchical Observing
CIA	Sinalegy
UIA	Giacial Isostatic Adjustment

GIFOV	Ground-projected Instantaneous Field Of View	
GINA	Geographic Information Network of Alaska	
GIPSY	195	
GIS	Geographic Information System 23, 164, 241	
GIS	Greenland Ice Sheet 184	
GL	Grounding Line	
GLACE	GLacier Analysis Comparison Experiments	
Glaciers_CCI	Glaciers Climate Change Initiative	
GLACIOCLIM	GLACIers, an Observatory of the CLIMate	
GLAS	Geoscience Laser Altimeter System	
GLCF	Global Land Cover Facility	
GLIMS	Global Land and Ice	
	Measurements from Space	
GLOF	Glacier Lake Outburst Flood	
GNE	Greater Nahanni Ecosystem	
GNSS	Global Navigation Satellite System	
GPR	Ground-Penetrating Radar	
GPS	Global Positioning System	
GRACE	Gravity Recovery and Climate Experiment	
GSFC	Goddard Space Flight Center	
GSI	Geologic Survey of India	
GSSI	Geophysical Survey Systems, Inc.	
GTA	Glacier Terminus Altitude	
GTN-G	Global Terrestrial Network for Glaciers	
H-G-E	Hektoria-Green-Evans	
HDF	Hierarchical Data Format114	
НКН	Himalaya–Karakoram–Hindu Kush	
HRS	High Resolution Sensor 115	
HRS	High Resolution Stereoscopic (instrument) 348	
HRS	High Resolution Stereoscopic Sensor 232	
HRTI	High-Resolution Terrain Information	
HTP	Himalaya and Tibetan Plateau	
IACS	International Association of the Cryospheric Sciences	
IandM	Inventory and Monitoring program	

ICESMAP	Image Change Evaluation by Subtraction of Multispectral Anniversary Pairs
ICSI	International Commission on Snow and Ice
IDL	120
IDW	Inverse Distance Weighted
IGM	<i>Instituto Geográfico Militar</i> (Chilean Military Geographical Institute)
IGN	<i>L'information grandeur nature</i> (National Institute of Geographic and Forest Information) 621
IGN	Institut Géographique National (National Geographical Institute) 766
IGS	International GNSS Service
IHP	International Hydrological Program
IHS	Intensity Hue Saturation
IKP	International Karakoram Project
IL	Iceberg Lake
IMCORR	Software distributed by NSIDC
IMS	Interactive Multi-sensor Snow and Ice Mapping System 37
IMS	IP Multimedia Subsystem 146
INGEOMINAS	INstituto Colombiano de GEOlogía y MINería (Geology and Mining Institute)
INPE	<i>Instituto Nacional des Pesquisas</i> <i>Espaciais</i> (National Institute for Space Research)
InSAR	Interferometric Synthetic Aperture Radar
IOP	Inherent Optical Property
IPA	Independent Pixel Approximation
IPG	Institute of Physical Geography, University of Freiburg
IPO	Interdecadal Pacific Oscillation
IPY	International Polar Year
IRS	Indian Remote Sensing (satellite)
IRS LISS	Indian Remote Sensing Linear Imaging Self Scanner
ITCZ	Inter-Tropical Convergence Zone
IUGG	International Union of Geodesy and Geophysics
J-C-M-M	Jorum–Crane–Mapple–Melville (glacier system)

JAROS	238	MT DEM	MultiTemporal DEM
JAXA	Japanese Aerospace	MTF	Modulation Transfer Function
	eXploration Agency	MWE	Meters Water Equivalent
JRI	James Ross Island	NAALSED	North American ASTER Land
KATM	KATMai National Park and		Surface Emissivity Database
	Preserve	NAO	North Atlantic Oscillation
KEFJ	KEnai FJords National Park	NARR	North American Regional
L1T	Level 1 Terrain corrected	1 11 11 11 11	Reanalysis
LACL	LAke CLark National Park and	NASA	National Aeronautics and Space
	Preserve		Administration
LBE	Linearized Boltzmann Equation	NRR	Navigation Base Reference
LDCM	Landsat Data Continuity	NCAR	National Center for
	Mission	NCAK	Atmospheric Research
LGM	Last Glacial Maximum	NCDC	National Climatic Data Center
LIA	Little Ice Age	NCEP	National Cantar for
LIAM	Little Ice Age Maximum	NCEP	Environmental Prediction
LIDAR	LIght Detection And Ranging	NIDI	Newselles d Differences Index
LP DAAC	Land Processes Distributed	NDI	Normalized Difference Index
	Active Archive Center	NDSI	Normalized Difference Snow
LPS	Lightweight Portable Security	NDU	Index
LST	Land Surface Temperature	NDVI	Normalized Difference
LUT	Look-Up Table		Vegetation Index
MADOC	Multi-layer Analytic Discrete	NDWI	Normalized Difference Water
	Ordinate Code		Index
MAE	Mean Absolute Error	NEM	Normalized Emissivity Method
MAGRA	Mean Annual Global Radiation	NESDIS	National Environmental
	modeled for Alaska		Satellite, Data, and Information
MASTER	395		Service
MATLAB	High-level computing language	NIR	Near-InfraRed
MDL	Moraine-Dammed Lake	NLSI	National Land Survey of
MDOW	MultiDirectional, Oblique-		Iceland
	Weighted	NNPR	Nahanni National Park Reserve
MEG	Median Elevation of a Glacier	NOAA	National Oceanic and
MELM	Maximum Elevation of Lateral		Atmospheric Administration
	Moraines	NPI	Northern Patagonia Icefield 639
met.no	Norwegian Meteorological	NPI	Norwegian Polar Institute 231
METI	Institute T 1	NPOC	14
MEII	Ministry of Economy, Trade	NPS	National Park Service
MOM	and Industry (Japan)	NSERC	Natural Sciences and
MGM	Morphometric Glacier Mapping		Engineering Research Council
MIS	Marine Isotope Stage		of Canada
MISK	Multiangle Imaging	NSIDC	National Snow and Ice Data
MM	SpectroRadiometer		Center
	Minimum Manimum Difference	NT	Northwest Territories
MMD	Minimum-Maximum Difference	NTDB	National Topographic Data
MODIS	MODerate resolution Imaging	NIDD	Rase
MODIS	Spectrorediameter	NVF	Norges Vassdrags- og
MODTDAN	MODerate resolution	1 V V L	Energidirektorat (Norwegian
MODIKAN	atmospheric TRANsmission		Water Directorate)
	(computer program)	OAR	Office of Oceanic and
MODVOLC	MODIS Thermal Alert System	0/110	Atmospheric Research
MSS	MultiSpectral Scapper	OBC	OnBoard Calibration
11100	manopeena seame		Chiboura Canoration

ORE	Observatoire de Recherches en	SA
	Environnement (Observatory for	SA
	Research in the Environment)	SD
OSCAR	Ocean Surface Current Analyses	
	Real-time	SF
OSU	Ohio State University752	SFA
PACC	Programa de Adaptación al	
	Cambio Climático en el Perú	SIL
	(Program on Climatic Change	
	Adaptation in Peru)	SLO
PALSAR	Phased Array type L-band	SLE
	Synthetic Aperture Radar	SM
PCA	Principal Component Analysis	
PCI	120	
PDD	Positive Degree-Day	SM
PDO	Pacific Decadal Oscillation	SN
PDOP	Position Dilution of Precision	SO
PF	Polar Front	SOI
PGC	Prince Gustav Channel	
PI	Principal Investigator	SPI
POLDER	POLarization and Directionality	SPI
	of Earth Reflectance instrument	
PRISM	Panchromatic Remote-sensing	
	Instrument for Stereo Mapping	SPO
	129	
PRISM	Parameter-elevation Regression	
	on Independent Slope Model	SPF
	440	SQ
PROMICE	PROgramme for Monitoring of	SR
	the Greenland ICE Sheet	SR
PSD	Physical Sciences Division	
PSFG	Permanent Service on the	SSI
	Fluctuations of Glaciers	SST
PSI	Perennial Snow and Ice	SSV
PSU	Pennsylvania State University	STA
OB	OuickBird	
òc	Ouality Control	SW
<b>O</b> EI	Queen Elizabeth Islands	SW
RAMP	Radarset Antarctic Mapping	TES
	Project	
RBV	Return Beam Vidicon	TH
RC	Regional Center	TIN
RCC	Radiometric Calibration	TIR
	Coefficient	ТМ
RES	Radio Echo Sounding	TO
RGI	Randolph Glacier Inventory	TP
RMS	Root Mean Square	TR
RMSE	Root Mean Square Error	
RT	Radiation Transfer	TSA
RTC	Radiative Transfer Code	
RTE	Radiation Transfer Equation	TSI
RTK	Real Time Kinematic (survey	TT

system)

AM	Southern Annular Mode
AR	Synthetic Aperture Radar
DC	Swiss Agency for Development
	and Cooperation
7	Subantarctic Front
FAR	Steep Front at the Angle of
	Repose
LC	Sensor Information Laboratory
	Corporation
LC	Scan Line Corrector
LE	Sea Level Equivalent
MARTS2	Simple Model of the
	Atmospheric Radiative Transfer
	of Sunshine (radiation model)
MB	Surface Mass Balance
N	65
IC	Southern Oscillation Index
OPAC	Scripps Orbit and Permanent
	Array Center
Ы	Southern Patagonia Icefield
PIRIT	SPOT-5 stereoscopic survey of
	Polar Ice: Reference Images and
	Topographies
TOY	Satellite Pour l'Observation de
	la Terre (satellite for observaion
	of the Earth)
PRI	Scott Polar Research Institute
QL	Structured Query Language
RFT	SAR Feature-Tracking
RTM	Shuttle Radar Topography
	Mission
SI	South Shetland Islands
ST	Sea Surface Temperature
SW	Sudden Stratospheric Warming
ΓAR	Science Team Acquisition
	Request
WAN	SouthWest Alaska Network
WIR	ShortWave InfraRed
ES	Temperature Emissivity
	Separation
HAR	Toe-to-Headwall Altitude Ratio
IN	Triangulated Irregular Network
IR	Thermal Infrared
М	Thematic Mapper
OPOGRID	Command in ArcInfo software
	Qinghai–Xizang (Tibet) Plateau
KIM	Ierrain Resource Information
	Management
SAM	I oe-to-Summit Altitude
T	Method
SL DAVGI	Transient Snow Line
IS/WGI	Temporal Technical Secretary
	tor the World Glacier Inventory

TUD DTM	Technical University of Darmstadt Digital Terrain Model	VM VNIR WAIS	Virtual Machine Visible and Near InfraRed West Antarctic Ice Sheet
TVZ UNESCO	Taupo Volcanic Zone United Nations Educational, Scientific and Cultural Organization U.S. Agency for International Development U.S. Geological Survey U.S. National Park Service Universal Transverse Mercator Vega Island Valdivia Ice and Climate Change (a series of conferences held in Valdivia, Chile)660 VISible	w.e. WC2N	west Antarctic fee Sheet water equivalent Western Canadian Cryospheric Network
USAID		WGI WGMS	World Glacier Inventory World Glacier Monitoring
USGS USNPS UTM		WGS 84 WIS WRC	World Geodetic System 1984 Wilkins Ice Shelf 25
VI VICC VIS		WRS WSRZ WV2 WWW	Worldwide Reference System Wet Snow Radar Zone WorldView-2 (satellite) World Wide Web



## About the editors

- Jeffrey S. Kargel is ∎ text to come ∎.
- **Gregory J. Leonard** is **■** text to come **■**.
- **Michael P. Bishop** is **∎** text to come **∎**.
- Andreas Kääb is ∎ text to come ∎.
- **Bruce H. Raup** is **∎** text to come **∎**.

#### PROLOGUE

### Scientific and public perceptions about the importance of fluctuations in glaciers and ice sheets

#### Jeffrey S. Kargel

#### P.1 EARLY SCIENTIFIC RECOGNITION OF THE SIGNIFICANCE OF GLACIERS

There have been few revolutions in Earth sciences as impactful as the discovery of modern and ancient glaciation. Glacial theory is exceeded in impact perhaps only by the advent of superposition principles, biological evolutionary theory, radiometric dating, and plate tectonics. The intellectual reach of glacial theory is vast and is intertwined with the development of physics and the establishment of Earth's deep-time geological history. Many of the implications of ancient and modern flowing ice were recognized immediately following the first detailed and most compelling scientific publication and presentation by Louis Agassiz in 1840. Glaciers have been a point of fascination for scientists from many disciplines ever since then, and remain so today. Though Agassiz was among the founders of modern glaciology and often is credited as the father of the field, Jens Esmark and several others had previously arrived at glacial interpretations of boulder erratics and other landscape elements. Esmark concluded, a decade before Agassiz published his first work on glaciers, that glaciers in his field area of Scandinavia had once been more extensive than they are now (Andersen 1992).

From the beginnings of modern glaciology and evolutionary theory in the early and mid-19th century, glaciation has been recognized as a dynamic signpost of changing climate, a controller of habitats, and a driver of biological evolution (Agassiz 1840, Darwin 1859, notwithstanding arguments between those two on evolution). The root of this interest derives from the very visual dynamic nature of glaciers, and their close relationship to the triple point of water ( $H_2O$ ), and hence their relationship to climate; and though the public would not phrase it this way, these same things motivate public interest as well. Agassiz's work had immediate impact among physicists, such as John D. Forbes, who formulated a viscous flow explanation of glaciers.

The interest of 19th century geologists in glaciation is well documented and primarily will not be repeated here. These days, the world over, glaciology, geology, physical geography, and climate studies tend to be closely affiliated. There is a perceived less direct connection with modern physics, which today is usually viewed as an analytical toolbox by glaciologists and geologists. Modern culture in the physics community tends to rank physics as somehow a "harder" science than either geology or glaciology; in fact, this was clearly not the case in the 19th century, when all of these, and many other disciplines, were viewed as components of natural philosophy, and the chief drivers of science were highly interdisciplinary. The crucial role played by physics in understanding glaciation and relationships to climate is well recognized; possibly less recognized is the role that glaciation and glaciology have played in catalyzing the interests of physicists and the development of physics.

A nascent theory of planetary climate control by radiatively active atmospheres began with the calculations of Jean Baptiste Joseph Fourier, who



otherwise is known for many advances in mathematics and the study of heat transfer. Fourier (1824. 1827) recognized that Earth should be far colder if its surface had been warmed only by its absorption of solar illumination; he performed benchtop experiments, which provided the insight that perhaps the atmosphere contains a gas that allows sunlight in but traps heat. Fourier included an intriguing postulate maintaining that, had it not been for the Sun, Earth's surface temperature would be only slightly colder than the polar countries are, because that is the background temperature of the sky due to starlight and other sources of heat. Though incorrect quantitatively, it was a prescient statement about a cosmic background temperature, whose value was then deduced to be about  $-40^{\circ}$ C,¹ being a little colder than Earth's icy polar realms, Fourier claimed. With the Sun, but without our atmosphere, the surface of Earth should still be colder than it actually is, he deduced. Fourier showed at length that geothermal heat was utterly insignificant in warming Earth's surface, despite its prodigious ability to maintain a warm interior for geological durations. His entire set of calculations was based on a knowledge of conductive heat transfer (the theory which he first developed), but lacked the advantages of the Stefan-Boltzmann Law, which took another half century to be formulated using key inputs from John Tyndall, who drew heavily from Fourier's advances. Therefore, a theoretical basis for the warmth of Earth's surface was at that time lacking, although the warmer-than-expected Earth surface was clear from calculations. Since the Earth's interior heat flow already had been approximated (and found negligible in controling Earth's average surface temperatures), it became evident that the heat transfer mystery was somewhere in the atmosphere.

After the death of Joseph Fourier, but clearly motivated by his work, experimental measurements by John Tyndall (1863, republication in 1893) began in 1859 on the radiative transfer properties of gases identified as likely contributors to the greenhouse effect, as it became known: primarily water vapor; secondarily carbon dioxide. Tyndall later became a leader in the early development of radiative transfer theory, following Fourier. Tyndall's experiments and interest in radiative transfer stem clearly from formative experiences he had among the glaciers of the Alps. Tyndall was an avid alpinist.² Throughout his career, glaciology—his contributions including an early and scientifically accurate sketch of Mer de Glace (French Alps), a theory of glacial flow, and field measurements of glaciers, among others—was interleaved with laboratory work explaining the greenhouse effect. By 1859, the intriguing phenomenon of glaciation and the newly inferred existence of climate change, argued compellingly by Agassiz, was already profoundly influencing the development of modern physics through Tyndall's work.

James Croll, initially an amateur scientist inspired by discussions with Charles Lyell, in an 1864 paper and then in an 1875 book provided a new hypothesis on the origin of glacial-interglacial cycles. Croll (1875) provided a detailed account of his proposal that climate and glaciers were affected by changes in the amount of sunlight received by the Northern and Southern Hemispheres of Earth due to cyclic changes in the eccentricity of Earth's orbit and the obliquity of the spin axis, which others had worked out from astronomical theory. Fleming (2006) provides an excellent review of Croll's ideas and how they relate to the later, more detailed, and better-known work of Milutin Milankovitch (1941). This theoretical work was largely validated by detailed and globe-spanning studies of Earth's sedimentological and glaciological record (Imbrie and Imbrie 1986). Croll advocated the crucial role played by feedback mechanisms, including changes in ocean currents, such as the Gulf Stream, in controlling the onset and pattern of glaciation as an indirect result of astronomical perturbations. Croll's main purpose was to explain glacialinterglacial cycles, but he also described in detail the origins of coal and other matters of sedimentology. He argued against glaciations having geological causes (such as mountain building and continental drift, which already was being discussed), though he allowed that those processes may affect glaciation. Alfred Russell Wallace (1879), and many others, wrote in support of Croll's hypothesis.

Svante Arrhenius (1896, 1908) made some astronomical observations and calculated that  $CO_2$  (which he referred to as carbonic acid)—even as a

¹ The cosmic background temperature is now known to be  $-270.45^{\circ}$ C and is related to Big Bang radiation rather than distant starlight, and has no significance for the thermal regime at Earth's poles.

² The massive Tyndall Glacier in the South Patagonia Icefield and Tyndall Glacier in Colorado's Rocky Mountain National Park (a small cirque glacier) are named for him.

trace gas in Earth's atmosphere—is a potent greenhouse gas and works with water vapor to warm the Earth's surface. He and other scientists showed that a 4–5°C global cooling (sufficient to cause ice ages) could have been brought on by a 50% reduction in atmospheric CO₂; that reduction could plausibly have occurred by reduced emissions of geological sources of CO₂ and geochemical uptake of CO₂ into the solid Earth by rock weathering and carbonate deposition. He also recognized that Earth's obliquity and orbital eccentricity variations would eventually bring on a new ice age. He felt that industrial emissions of CO₂ could double atmospheric CO₂ over a period of several millennia (later he scaled that back to a few centuries), raise global temperatures by 5–6°C, and thus help save the world from what he thought to be the impending grip of readvancing ice (Arrhenius 1908). He could not have predicted the myriad additional climatic effects and impacts that just 1°C warming has had to date.

A contemporary of Arrhenius and one of the most prescient theorists in the history of Earth and planetary science, Thomas Chrowder Chamberlin (1899), made the strongest link yet between greenhouse gas abundances, net carbonate deposition and dissolution, the waxing and waning of glacial climates and of the great Pleistocene ice sheets, and future anthropogenic greenhouse warming over a period of millennia. Arrhenius and Chamberlin reinforced the foundations of climate change research; there was little to criticise scientifically either then or now. However, until another century had passed, recognition of their contributions was largely restricted to the geologic past.

What these classic scientists-Fourier, Agassiz, Forbes, Tyndall, Darwin, Wallace, Croll, Arrhenius, Chamberlin, and Milankovitch-have in common is that they dared to think on planetary scales, and they trusted either well-validated physics theory or common sense interpretations of the Earth's landscape; they let the inferences of basic observation, math, and logic drive bold conclusions. Although Fourier died before the advent of modern glacial theory, the others listed here had another thing in common-they were fascinated by glaciers as a planetary phenomenon, by the evidence of glacier fluctuations, and by the implications of these fluctuations for colder past climates and, hence, for climate change on a planetary scale. Several of them spent much time on glaciers and pondered Earth's climatic future.

In the mid-1800s the link between climate state and greenhouse gases was still mainly circumstantial. The key missing parts of radiative transfer and atmospheric theory were developed in thermodynamic theory, which became largely complete in the 1870s, and in electromagnetic and radiation theory, which were largely understood before the turn of the 20th century, aside from quantum aspects, which took a little longer. Thus, it is not surprising that the recent climate history of the Earth and the role of the greenhouse effect in warming the Earth was first explained by physicists and mathematicians, but it was the power of basic empiricism and interpretation of landform evidence related to glaciation that drove climate evolution studies. The immense and geologically recent climate changes begged an explanation, and so geologists, physicists, and astronomers looked to the solid Earth, to the atmosphere, and to the Solar System beyond Earth to find an explanation.

Many famous physicists weighed in on the rapidly developing field of glaciology in the decades following Agassiz's discoveries. John David Forbes (1846) maintained that glaciers behaved with a plastic rheology and flowed with viscous characteristics; he drew an analogy between glaciers and lava flows, and made field observations of the flow of Mer de Glace. Forbes (1855) critically commented (correctly) on a model that tried to account (incorrectly) for glacier motion by thermal expansion and contraction (Moseley 1855). When Moseley (1869) later returned with a detailed mathematical physics model of glacial viscous deformation, and concluded that glacier weight alone would not drive the deformation, James Clerk Maxwell (1869) responded with a brief communication about slow viscous deformation mechanisms; thus, Maxwell and Forbes were thinking about ice rheology in a way Moseley was not. When glaciers were discussed, physicists listened, reacted, and contributed. Michael Faraday discovered regelation, and Hermann von Helmholtz applied that discovery to glacier flow processes. William Thomson (Lord Kelvin) and his brother James Kelvin were both major figures in experimental and theoretical approaches to the motion of glaciers. These physicists made big contributions in other areas of science, but in the mid and late 19th century it was almost the popular fashion of physicists to deal with glaciation in some way. Glacier studies also permeated down to humble student inquiries, including an essay by no less than the young Albert Einstein.³

Walker and Waddington (1988) wrote a review of "the early discoverers"—glaciologists, geologists, and physicists—who developed the early theory of glacier flow; they tell the story of how many able physicists flatly failed to explain much about glaciers, despite trying (although some succeeded famously). Some physicists, such as Einstein, did better as humble young students than later as accomplished physicists in matters glaciological. Although it is difficult to find fault with Einstein, it happens that in one of his last writings on the topic of glaciation, he subscribed to a hypothesis that almost immediately was revealed to be demonstrably wrong;⁴ even the greatest scientists are fallible.

Radok (1997) provides a review of the origin and early development of internationally coordinated glacier observations, which became known as the World Glacier Monitoring Service based in Zurich, Switzerland (see Section 1.4.1). While science was blossoming around the world, the World Glacier Monitoring Service gained its ancestral foothold in late 19th century science, beginning with the 1894 founding of the Glacier Commission Internationale (CIG)—under the lead of François-Alphonse Forel—at a geological congress in Zurich (Forel 1895). The CIG's second President, Eduard

⁴ Glaciology was never key to Einstein's work, but in his later years he wrote a foreword to a book in 1953 (published in 1958, after Einstein's death; Hapgood 1958) on polar wander. Hapgood's hypothesis was that the asymmetric deposition of polar ice resulted in rotationinduced torque on the lithosphere, which drove the polar lithosphere toward the equator, thus explaining the sudden climatic shifts in Earth's record. The revolution in plate tectonic theory began the year of Hapgood's book publication. Within a few years, the overwhelming evidence for plate tectonics undermined the credibility of Hapgood's hypothesis. Einstein, alongside his effusive admiration of Hapgood, also included notes of caution about the hypothesis. When Einstein wrote the foreword, he understood the value of boldness and creativity in science, but he could not have known how wrong Hapgood was.

Richter, Professor of Geography at Graz University, in 1899 urged increased efforts toward measurement and understanding of glacier mass budgets, seasonal speed variations, and moraines. In 1903, the third CIG President, Sebastian Finsterwalder, Professor of Analytical Geometry and Calculus at the Munich Technische Hochschule (TH), presented a model that related glacier sizes and shapes to mass balance changes (Radok 1997). Finsterwalder is otherwise known for use of vector terminology in the early development of quantitative aerial photogrammetry, thus helping to found the basis of a technology that today looms large in satellite-based analysis of glaciers.

The connections among climate, glaciers, and the solid Earth beneath the glaciers also received much attention in those early decades of modern glaciology. The dynamic interactions among these components of the Earth were perhaps most evident to glaciologists who spent their time either working in or growing up amongst the world's most active orogenic belts. For example, in 1888 Olinto De Pretto, who was born at the foot of the Italian Alps in Schio, wrote about The Influence of the Raising and the Degradation of Mountains on the Development of Glaciers. De Pretto (1903) later contributed to the theoretical development of mass-energy equivalence (briefly mentioning uranium and thorium decay transformation of mass to energy) and thus might have been a help to Einstein's theoretical work, though their respective physics differed totally (De Pretto's physics turned out to be wrong, and Einstein's well validated).

Active foundational glaciological research, by physicists and others, continued into the early 20th century. Wegener (1912, 1915) famously formulated the continental drift theory (Frankel 2012), but he was also fervently into Greenland field studies; he drilled an ice core, probed the thickness of the ice sheet, published on ancient climates (Köppen and Wegener 1924), and went on to die there as well. Greenland geology integrated closely into his continental drift hypothesis. Glacial geomorphology-including the global pattern of the great Permian glaciation-also helped him link continents into a former megacontinent. Ironically, though he was in need of a deformation mechanism for what later became known as plate tectonics, the viscous flow of glacial ice-which we find to be so evident on the Greenland ice that Wegener knew so well-barely, if at all, entered into Wegener's ideas on how continents moved across the face of the

³ Albert Einstein, 17 years old and starting university studies at what now is ETH-Zurich, presented an examination essay on "Evidence of the earlier glaciation of our country" (Einstein 1896). His essay was mainly on moraine evidence for the former more extensive glaciation of Switzerland. It was objective, mainstream, and correct, but fully devoid of the greatness Einstein would soon reveal.

Earth. Nevertheless, the big picture of shifting continents and shifting climate and waxing and waning of ice sheets was at the heart of this theory, and today still is important in the more comprehensive theory of plate tectonics.

A few years before Wegener published his first classic paper on his theory of continental drift, another continental drift hypothesis-very similar to Wegener's (probably mutually independent, Frankel 2012)—was published in a paper by Frank Bursley Taylor (1910). Taylor included a deformation analog, though not actually a mechanism. Taylor was a glacial geomorphologist, and his experience showed in what he proposed as homologous Pleistocene moraine patterns in North America and convergent plate margin patterns in places like Indonesia and the western Pacific. Taylor clearly was thinking in terms of relatively thin-skinned ice sheet-like deformation of the continents along convergent boundaries, as well as rifting along places like the Mid-Atlantic Ridge. Wegener, though highly experienced in field glaciology, did not seem to apply much insight from that experience to his continental drift ideas (Frankel 2012).

Physicists of the 19th century were engrossed in theory development for several key natural phenomena including heat and thermodynamics, mass, light, magnetism, electricity, gravity, rheology, and glaciers. Physicists were also pursuing validation of theory using elegant but simple benchtop experiment approaches; they were looking at phenomena easily seen and measured, and which carried both immensely practical and less tangible concepts that formed the technical foundation of our modern civilization. Similarly, glaciology offered a rich variety of observable phenomena that were readily understood at a basic and almost instinctive level, but which posed vexing challenges to explain scientifically.

Glaciers—past, present, and future—were at the nexus of mid and late 19th century scientific advances in physics and geology. The impacts of glacial theory extended throughout the natural sciences by the start of the 20th century. Taylor's and then also Wegener's ideas on continental drift or creep took more than a nugget of insight from glacial flow (as well as mechanical and geological inaccuracies and informational gaps). The essence of their hypothesis turned out to be on the whole correct, but, it was partly rooted in an analogy to what by 1910 had become a well-known tangible phenomenon—that of glacial flow, which in the previous century was an exciting novelty in scientific considerations.

Glaciology in the 19th century helped define the emergent field of biogeography. John Muir famously arrived at the glacial hypothesis of valley development in the Sierra Nevada and proposed Pleistocene glaciation to explain the geographic range of the giant sequoia (Muir 1876). Wallace (1879, 1880, 1886, 1889) presented detailed treatises on continental glaciation and other Earth changes, as well as a hypothesis of how the waxing and waning of ice sheets would affect animal and plant migration and primary succession.

Glaciation has figured prominently and repeatedly in the development of plate tectonic theory, including the important aspects of postglacial rebound, which provides some of the best information on upper mantle and lithospheric rheology, and insights from glacial creep into mantle creep processes (Weertman and Weertman 1975). Rheological characterization of ice and glaciers largely preceded and has helped to motivate rheological studies of mantle silicates and studies of mantle convection. Thus, glacier physicists and geomorphologists were concerned with the rheology of both ice and silicate materials. Glacier rheology deduced from field observations and lab studies (starting with Glen's Flow Law; Glen 1955, 1958; and more recent lab work by Durham and colleagues: reviewed in Durham et al. 2010) and theoretical applications to glacial flow (starting with Nye 1953, 1957, 1960 and Paterson 1994) underpins modern analytical and numerical glacial flow modeling in a major way. Ice rheology is also key to tectonic, geologic, and thermal modeling of the icy satellites of the gas giant planets and of Martian polar caps and glaciers (Durham et al. 2010).

The importance of glaciers to many great classical scientists of the 19th century, and still today for scientists across many disciplines, stems mainly from glaciers' extremely visual display of dynamics and their evolution on human-observed timescales. The significance of this for scientists is not much different than for the layperson. The graceful curve of medial moraines, the wave patterns of ogives, the arcs of crevasses, the symmetry of parabolic form, and blueness of light scattered within are each spectacular; the sum of the parts, which we call glaciers, is something of inexplicable beauty. The physical phenomena presented by glaciers are equally amazing; superlatives aside, the phenomenology is measurable and explicable by science. John Tyndall (1863, republished in 1893) in his 1863 article—and in a public lecture explaining the greenhouse effect and meteorological phenomena based on the radiative opacity of water vapor as well as describing the supportive experimental evidence—wrote "we conceive the invisible by means of proper images derived from the visible, and purify our conceptions afterwards." Though he was specifically referring to radiative transfer through water vapor, his statement applies equally to all science, including the science of glaciers, to which Tyndall contributed immensely. The fact is, despite their geographic remoteness, glaciers are eminently tangible in the processes they embody and display.

Starting with J.D. Forbes and continuing for generations and still today, glaciologists have spent thousands of person-years in the field making measurements of many types. Through the 20th century, the knowledge of glaciers increased dramatically through new geophysical field-sounding methods, application of aerial photography, new lab data on the mechanical properties of ice, new analytical models and early computer numerical models of glacier behavior, and access to an ever-increasing number of glaciers. However, on the global scale, the vast area covered by glaciers and ice sheets and the difficulty and cost of their study has sharply limited ground-based and airborne investigations. Volume IX of Fluctuations of Glaciers (WGMS 2008), one in a series of periodic reports published by the World Glacier Monitoring Service, most recently included data-mainly field-acquired observations-for glaciers in 28 countries and other geographic entities. Glacier frontal positions, for example, are reported for 605 glaciers (not all of these have data for more than one year), roughly 0.3% of the world's glaciers. Mass balance data are much more limited due to the great effort needed to gain this information from field-based observations, which remains the most reliable and accurate method.

With the advent of satellite imaging and remote geophysical probing, entirely new ways of looking at glaciers became available; from the very moment ERTS-1 (Landsat-1) was launched, satellite applications to glaciology began. Places as remote and immense as Antarctica and the Himalaya could be mapped in their entirety and the dynamics of ice sheets and glaciers measured (Southard and Mac-Donald 1974, Krimmel and Meier 1975, Østrem 1975, MacDonald 1976, Rott 1976, Swithinbank et al. 1976, Orheim 1978, Rundquist et al. 1980, Williams et al. 1982, 1995, Berg et al. 1982, Howarth and Ommanney 1986, Lucchitta and Ferguson 1986, MacDonald et al. 1990, Lucchitta et al. 1991, 1993, 1994, 1995, Bindschadler and Scambos 1991, Scambos et al. 1992, Ferrigno et al. 1980, 1993, 1994, Bishop et al. 2000). From those early satellite-based studies, and midway through production of the Satellite Image Atlas of the Glaciers of the World (Ferrigno and Williams 1980 and the whole series by Williams, Ferrigno et al., Vols. A-K), GLIMS and other systematic satellite-based surveys of the world's land ice were conceived and implemented (Kieffer et al. 2000, Bindschadler et al. 2001, Raup and Kargel 2012). As the number of satellites and the capabilities of their sensors have improved, so too has the technology to extract information from these sensor data. Data relevant even to mass balance—just 10-20 years ago thought exclusively the domain of field investigations (Scherler 1983)—now can be acquired with the use of satellites. This book is largely about modern techniques of glacier mapping and analysis using satellite data, the contributions of satellite analysis to regional and world glacier inventories, and use of these data to enhance understanding of glacierclimate-land-ocean linkages (Bishop et al. 2004, Kargel et al. 2005, Raup et al. 2007, Bolch et al. 2012, Arendt et al. 2012, Raup and Kargel 2012).

#### P.2 THE PRACTICAL AND PERCEIVED IMPORTANCE OF GLACIERS TODAY

# P.2.1 Modern understanding of climate change due to greenhouse gases and other causes

The two related concepts of natural and anthropogenic greenhouse effects have been well developed in theory for over a century but the latter has been widely accepted by scientists only for the past 40 years, during which time evidence has mounted exponentially in its favor. However, the evidence indicates that a much more rapid rate of global warming is occurring than was thought possible a century ago, mainly because of the exponential growth in anthropogenic greenhouse gas emissions. Earth's climate is a little less sensitive to CO₂ concentration (gauged by the amount of global warming or cooling for a given change in  $CO_2$ ) than what Arrhenius calculated, because now we have a greater understanding of the important negative feedback of increased cloud cover as CO₂ rises. Rather than saving the world *with* global warming as Arrhenius suggested, saving the world *from* anthropogenic greenhouse warming has emerged as one of the world's biggest challenges. Global climate change has some positive effects but many serious deleterious ones, which pertain as much to the rapid pace of global warming (unanticipated by Arrhenius) as to its magnitude.

Besides the influences of greenhouse gases on climate and glacier variations, other climate-forcing phenomena are also recognized and now very widely accepted, including orbital variations (Croll 1875, Milankovitch 1941, Hays et al. 1976, Berger 1978, Muller and MacDonald 1997, Ruddiman 2003), large volcanic eruptions (Robock 2000), and solar activity cycles (Bard and Frank 2006). The important roles of planetary gravitation-driven and rotation-driven cycles in affecting Earth's climate were confirmed in the landmark studies of Hays, Imbrie, and Shackleton⁵ (1976) and Imbrie and Imbrie (1986), who documented sedimentary rhythms matching expectations from astronomical theory.

The Sun itself is steadily brightening along the stellar main sequence, but by less than 1% per hundred million years (Sagan and Mullen 1972). The sunspot cycle alone accounts for an oscillation of about 2 W m⁻² (or about 0.15% of total solar irradiance) on an 11-year cycle, and about twice that on a cycle of several centuries. Solar activity variations could account for 0.1-0.2°C oscillations of global temperature (not including feedbacks, which could increase the impact). The climate impact from solar activity cycles appears to be an order of magnitude less substantial than needed to explain ice ages. Bard and Frank (2006) considered solar activity variability to be a possible contributing cause of the Medieval Warm Period and Little Ice Age, but that overall it is a secondary effect modulating the climate changes induced by other causes.

Geological and solar evolution and solar oscillations can control huge planetary-scale climatic changes without any human influences, as the rock records of Mars and Venus attest. The extreme climatic fluctuations of those planets as well as of

Earth reinforce prevailing scientific theories and models of climate change controlled partly by greenhouse gas abundances in geologic deep time (Kirschvink 1992, Hoffmann et al. 1998, Baker 2001, Bullock and Grinspoon 2001, Jakosky and Phillips 2001, Kasting 2003, Kargel 2004, Kasting and Howard 2006, Wilson et al. 2007, Winguth et al. 2010). The physics of radiative transfer (see Chapters 2, 3, and 33 of this book by Bishop et al., Furfaro et al., and Kargel et al., respectively) are unchanged with or without humans. With anthropogenic climate change occurring ever more rapidly, no legitimate questions are being raised about the fundamental planetary habitability of Earth in the same way that habitability is being explored for exoplanets (Kasting 2011) or for Venus in the past (Grinspoon and Bullock 2007). The magnitude of anthropogenic climate changes-even in worst-case scenarios—is simply too small to call into question Earth's habitability for life in general. However, the ongoing mainly human-caused changes to the Earth's biosphere and lithosphere have motivated a new term for our epoch: the Anthropocene (Crutzen and Stoermer 2000). There are few serious suggestions that this informally defined human-affected geologic epoch will be comparable with the first-order geologic transitions in Earth history, such as the atmosphere and climate-change-linked Proterozoic/Paleozoic transition (Kasting 2003, Maruyama and Santosh 2008), but the term "Anthropocene" does have rising currency within the scientific community, as the term connotes widespread deep-cutting changes to the Earth system.

Climate change has been linked to the rise and fall of ancient civilizations (Binford 1997, Peterson and Haug 2005, Dugmore et al. 2007). The impacts of more recent climate changes may have been felt in the economies of many poor nations and may affect the political stabilities of some of them (Dell et al. 2008). Some 20th-21st century economic declines and demographic shifts within the United States also have been linked to climatic fluctuations (Feng et al. 2012, Hornbeck 2012). Hence, the roles played by 20th and 21st century climate change on the global economy and even on the suitability of Earth for modern civilization are serious needed topics of discussion. In much the same way as glaciers are important to climate change, they also are necessarily a part of one of the most important global scientific and political discussions of our day. Not surprisingly, such "pocketbook" topics engender much controversy. This book is not about those

⁵ The third author was the great nephew of the polar explorer Ernest Shackleton. He was also the intellectual force behind the development of oxygen isotope geothermometers and magnetic dating of sedimentary rocks, both of which have been crucial in the establishment of Earth's climate and glacial history.

humanly relevant matters, it is specifically about the pure record of Earth's glacier state and dynamics and their links to climate change and other dynamic components of the physical Earth system.

It is now accepted that climate and climate change on Earth are controlled by: solar main sequence brightening (timescales for major changes  $10^{8}$ – $4.5 \times 10^{9}$  years), biological influences on atmospheric composition ( $10^9$  years), geological controls by mountain building and the distribution of continents and interaction of rock weathering with the biosphere  $(5 \times 10^6 - 5 \times 10^8 \text{ years})$ , obliquity and eccentricity variations  $(10^4 - 10^6 \text{ years})$ , short-term solar activity cycles  $(10^{1}-10^{3} \text{ years})$ , greenhouse gas uptake and release from the solid Earth  $(10^4 - 10^8)$ years when natural,  $10^2$  years due to industrial emissions), soot emission and deposition  $(10^{1}-10^{2})$ years), redistribution of heat by ocean currents (1-10 years for the faster changes), and acid aerosols injected into the stratosphere by volcanic eruptions (1-10 years). The Sun keeps its own schedule, as does the solid Earth. Humans mainly affect greenhouse gas abundances, which top the list for potent effects on climate, and soot.

Ensemble models combining the effects of orbital variations, volcanic aerosol emissions, solar activity oscillations, and greenhouse gas emissions are pretty good at explaining 20th century decadal climatic fluctuations and long-term warming (Meehl et al. 2003, 2004). Anthropogenic greenhouse gases are forcing inexorable warming and are largely responsible-according to prevailing scientific thought and modeling—for a century-long reversal of slow global cooling that had been under way for millennia due to orbital variations (Kaufman et al. 2009). Arrhenius (1908) was right in his lab measurements and math, though he somewhat overestimated climate sensitivity because he did not take full account of negative feedbacks, such as cloud influences, now known to be part of the system. Arrhenius also lacked understanding of how rapidly greenhouse gases would increase and, therefore, miscalculated the timescale of climate warming; he also failed to recognize the deleterious impacts of climate change, and thus had the wrong cost/benefit relation.

## P.2.2 Modern impacts of changing glaciers and ice sheets on people

Glaciers are among the most dynamic elements of the solid Earth and are fascinating in their own right. This was enough to drive largely esoteric inquiries by physicists, geologists, and glaciologists during the 19th century, when the implications of greenhouse gas emissions were little more than distant considerations and when common snow avalanches seemed more of a concern to human well-being than glacier fluctuations. Additionally, by the mid to late 19th century, glaciers were at their greatest elongation of the Little Ice Age, driven there ultimately by Jupiter's (and somewhat by Saturn's) gravitational influences on Earth's orbital eccentricity and by Earth's spin-axis obliquity cycle and precession of the spin axis (Croll 1875, Milankovitch 1941, Hays et al. 1976, Berger 1978, Imbrie and Imbrie 1986, Muller and Mac-Donald 1997, Ruddiman 2003). The modern idea of ongoing anthropogenic greenhouse gas-driven climate change stems straight from that era of fervent observation, theoretical development, and experimentation regarding Ice Age Earth and modern glacial activity.

Not recognized in the 19th century, glaciers and ice sheets are also an important freshwater resource, an important contributor to ongoing sea level rise (Meier 1984, IPCC 2007, Rignot et al. 2011), and a cause of serious natural hazards. Because they are close to the melting point and react strongly to small changes in climate, glaciers provide some of the clearest evidence of climate change and constitute key variables for early-detection strategies in global climate-related observations (GCOS 2004, 2006). The most crucial humanly important aspects of glacier and ice sheet fluctuations depend on where one lives—near the sea, in a glacierized mountain valley, or on a farm downstream of a glaciers, for instance.

In coral atoll nations, on barrier islands, and marine deltas-places like the Maldives, New Orleans, New York City, the Florida Keys, the Netherlands, and the Mekong Delta-sea level is a big issue; whereas alpine glacier change represents a warning sign to those coastal people, it is the large ice masses, such as Greenland, that fuel the greatest concern about sea level change. As Alley et al. (2010), Kargel et al. (2012a), and Chapter 8 of this book "Mapping of glaciers in Greenland" by Stearns and Jiskoot point out, the Greenland Ice Sheet and peripheral ice bodies are melting rapidly enough this century to be a fate-determining concern to the world's populations who are most vulnerable to coastal infringements by the sea. The pace at which the large ice sheets and largest ice caps are melting is such that the biggest impacts for most other people this century are apt to include costs incurred in the construction of new airports and seaports where vulnerable ones are flooded, higher food prices where delta farmlands are inundated, loss of tourism on some barrier islands, and increased insurance premiums and taxation to cover catastrophic losses related to storm damage of coastal populations and infrastructure. Melting in Greenland, Antarctica, and the largest ice caps is thus immediately highly consequential for comparatively few people (a few million) and an increasingly important pocketbook issue for billions of others. Sea level rise of just a few decimeters this century, then eventually (in a few centuries) a few meters, is also an enormous ecological issue in places like the Florida Everglades and the lagoons of coral atolls.

For people living in glacierized mountain valleys-again numbering a few million worldwidethe impacts of climate change on fast-responding valley glaciers, particularly those in the more temperate or maritime environments, pose the greatest concern. For many of these people, glaciers supply water for drinking, irrigation, heavy industry, electrical power, and sanitation. For others, the release of too much water at once (e.g., glacier lake outburst floods) can be a life-and-death issue irrespective of whether it is linked to climate change or simply part of the *modus operandi* of normal glaciers. There is also an issue regarding people's well-being, where glacier runoff drives hydroelectric power projects, vital for electrical power and reliable drinking water. If climate changes, then glaciers change, and these changes can be for the better or worse; they are individual and circumstance dependent. Clearly, the next generation to live in glacierized mountain regions and lowland coastal areas worldwide will not live in the same way or as securely as today's generation.

Recent glacier-related disasters in the Himalaya– Karakoram region—including the Attabad landslide that formed glacier meltwater-fed Lake Gojal (Kargel et al. 2010), the Gayari ice avalanche/ landslide that buried a Pakistani Army base (deemed by some to be sabotage), and the Seti River outburst flood—raise the question of whether these types of disasters are on the rise in that region, and perhaps globally. Science is not yet ready to offer a full answer to this question, but it is an important one to address and resolve in light of the demands of future land use planning and protective measures in each glacierized region.

Certainly, the threat and occurrence of natural disasters have been commonplace throughout the

lengthy history of humans residing in certain regions, such as the Caucasus (Kääb et al. 2003), the Peruvian and Colombian Andes (Carey 2005, Kargel et al. 2011), and the Himalaya–Karakoram region (Richardson and Reynolds 2000, Quincey et al. 2007, Ives et al. 2010, Kargel et al. 2010), to name a few. The changing natural (and humanaffected) environment of cryospheric processes, natural hazards, and risks is dominated by the rapid expansion of human land use and infrastructure development in once-forbidding and remote mountains (e.g., Kargel et al. 2012b). Risk too is shifting because climate change is modifying the land surface process system, and development is encroaching into affected areas.

Rapidly changing glaciers—whether retreating or advancing-destabilize the landscape and for a time may increase the frequency of mass movements such as debris avalanches, ice avalanches, and debris flows due to glacier lake outbursts. Glaciers are fundamentally a metastable phenomenon. Atmospheric precipitation places ice at high gravitational potential energies, and this energy must be released. As glaciers flow downslope, they erode and transport rocks and deposit debris in gravitationally unstable positions. As glaciers flow downslope, they encounter warmer conditions and so they melt, thus producing lakes, streams, and wet sediment. The ice, debris, and meltwater are forced gravitationally to move downslope. When they do so steadily or in small increments the problems that arise are few or manageable; furthermore, meltwater is a valued resource and helps to smooth out seasonal variations in water flow. Disaster happens when an unstable mass (ice, water, or sediment-or, most formidably, all three together) accumulates excessively, moves suddenly, and infrastructure or people get in the way. Any change in the climate-landglacier system must result in a change in the land process system, with hazards and risks rising, falling, or changing location accordingly.

Most commonly, glacier-related disasters involve a natural process cascade effect; as the factors that affect land surface processes and the frequency or magnitude of any component of the process cascade changes, the net hazard and risk to people also changes. A glacier in a metastable dynamical steady state will pose one set of natural hazards, a glacier in retreat poses another set, and an advancing glacier yet another. The overall risk to people will depend on the details near, say, a particular village, bridge, or railroad. One size does not fit all. Hence, climate change—which is documentably having large impacts on glaciers both regionally and globally-is affecting the natural process, natural hazard, and human risk environment. Overwhelmingly, however, changing land use inevitably has the greatest impact on the natural hazard and risk environment. Nevertheless, of all the factors involved in the natural disaster process cascade (causes and effects, and changes in the system), land use in mountain environments and vulnerable coastal locales may be the most readily controlled by people. In principle, this could be a good thing, as it allows people to become better masters of their own destiny. Too often, people enter into risky situations as a result of ignorance or informed acceptance of risk in favor of some perceived benefit, and as a consequence avoidable tragedies continue to happen. The impact of climate change and cryospheric response makes informed decision making more of a challenge as the local history of glaciological hazards and disasters loses its guiding value.

#### P.2.3 Recent public perceptions about the importance of glacier fluctuations

Much as they did for the great 19th century scientists, glacier variations today provide the general public with the most compelling visual evidence of climate change. The foremost thing that the general public are aware of concerning glaciers, besides their being icy and cold, is that they are melting. The people of the world are divided and many are confused about climate change (the citizens of some countries are notable exceptions). However, it is not simply a case of total rejection or unawareness of the relevant science. A huge international Gallup survey in 2007-2008 in 128 countries indicated a 61% global awareness of climate change among individuals 15 years old and above (Pelham 2009). The results of the poll varied markedly among different countries. Awareness was 99% in Japan, and 35, 62, and 97% in India, China, and the U.S., respectively, to take four examples. Attribution of climate change to human activities, the poll showed, was believed by 91% in Japan, 58% in China, 53% in India, and 49% in the U.S. Asked whether global warming was a serious personal threat, the response was in the affirmative for 80% in Japan, 63% in the U.S.A., 29% in India, and 21% in China.

A separate survey by the Brookings Institution of American adults in fall 2011 indicated that 62% thought that there was solid evidence of global warming over the past 40 years (Borick and Rabe 2012). That survey also found that personal observation was the most frequently cited (of nine "most important factors" listed) forming the opinions of those accepting the existence of evidence of global warming; the second most frequently cited involved reports of melting of the world's polar ice sheets and glaciers. A slightly different inquiry in the same poll listed melting glaciers and polar ice as the most frequently mentioned contributory factor (of the same nine factors) that helped forge their acceptance of global warming. This poll also examined perceptions about scientists' integrity and media objectiveness; noteworthy is the finding that, among individuals disbelieving the case for global warming, 80% believe that scientists are overstating evidence for their own interests and 90% claim that the media are overstating the case for global warming.

Media misreporting and misrepresenting climate and glacier data, and in some cases clearly errant scientific reporting, have been a serious hindrance to communicating facts and understanding that are likely relevant to public well-being. Noted cases of misrepresentation of scientific findings and knowledge have pertained to Peruvian and Himalayan glaciers and the Greenland Ice Sheet (Cogley et al. 2010, Kargel et al. 2011, 2012a). The film industry is notorious for misrepresenting science, particularly when such phenomena as climate change are involved. Glacier melting and sea level rise is not as some Hollywood doomsday films (e.g., The Day After Tomorrow, 20th Century Fox, 2004; or Waterworld, Universal Pictures, 1995) make it out to be. It is perhaps more useful to comment on genuine public misperceptions that are closer to reality than to waste time on evident absurdities. Such films, while viewed by most of the public as mere entertainment, nonetheless have the potential to contribute to public confusion about climate change, which in extreme cases might bring about political backlashes or other illogical responses to nonsense contained in sensationalistic films.

In this book's Epilogue, Victor Baker argues that the most important factor limiting public understanding of climate change is not deficiencies in knowledge of scientific "facts" (part of the education gap comprising widespread scientific illiteracy), but rather a broad misconception about how science works. This misconception enables the more extreme forms of climate change skepticism and climate change denialism to go unchallenged by much of the public and causes many governments to be unwilling to make logical decisions on relevant matters. The public's confusion between science and nonscience and manipulation of the public by some narrow special interests is a serious challenge to solid decision making.

A certain amount of public confusion is understandable. Both climate records and glaciological records show that there is nothing simple about global climate change and the roles played by greenhouse gases, let alone the basic essence of the theory. Climate change is about much more than anthropogenic and natural greenhouse gases. Whereas the 11-year solar activity cycle is recognized as having a minor but measurable control on climate, major controls include orbital variations and various geological processes including volcanism, carbonate formation in shallow inland seas, and other phenomena that may be broadly linked to plate tectonics (Imbrie and Imbrie 1986, Kasting and Seifert 2002). The plate tectonic components of climate change are variable on timescales of tens of millions of years, though volcanism can be more episodic, as can of course asteroid and comet impacts, which also can affect climate.

The only major components of the Earth climate system that vary on the scale of human lifetimes and are either progressive and cyclic (thus somewhat predictable) are solar activity cycles (which have minor climate influences), cycles related to deep oceanic circulation, feedbacks such as Arctic sea ice coverage, and anthropogenic greenhouse gas emissions and aerosol pollutants. Volcanic eruptions despite being important, frequent, and occurring on human timescales are not predictable or progressive. The only component of this set of humanly relevant climate change forcings which is new to Earth-and can cause fundamentally new climate ordering on human timescales-is the industrial and consumer-driven emission of greenhouse gases and aerosol pollutants. Despite the many contributory and complicating factors that affect climate, whether they operate episodically and on short timescales or inexorably on geologic timescales, it is human influences on climate that are most dramatically affecting glaciers on timescales that are relevant to the lives of people today. This is recognized by most people on Earth, more so in Europe, the Americas, and Australia/Oceania than in parts of Asia and Africa. Thus, people generally recognize that we are affecting the global climate and that glaciers are melting largely as a consequence; the actual complexities are manifold, but the basic perception is correct.

People's perceptions of glaciers vary widely depending on whether they live in an area continually under threat from glaciers, have livelihoods directly tied to glaciers, derive reliable year-round electrical power or water from them, merely visit them on occasion, view them from a distance perhaps via television—as a signpost of a changing global environment, or have no personal or intellectual relationship to glaciers. Governments likewise can have very different perspectives about glaciers, depending on whether there is a scientific underpinning of the government or a large economic stake rooted in glaciers or contingent on keeping the public in the dark about glaciers.

As happens with other natural hazards and public responses to them, people and governments also respond very differently to the risks posed by glaciers. Glacier hazards and disasters, much like floods, fires, and earthquakes in other parts of the world, are not simple matters to deal with. The issues are multidimensional and any solutions are likely to be at cross purposes with other values. The situation is directly analogous to the long-term response to Hurricane Katrina, which involved questions about whether to rebuild the most damaged parts of New Orleans, how much to invest in flood protection, or even whether to relocate the city entirely. As is so often the case with natural disasters and Earth hazards, as explained for the Katrina case by Baker (2007), social, cultural, and humanistic values can sometimes conflict with economic values, which in turn may conflict with geophysical and Earth surface science, engineering, and technology. What may seem a logical response may not be politically or socially possible; and what may be popularly demanded might be economically infeasible. Finding a compromise can be difficult, a process often made worse by irresponsible, errant, or accidentally inflammatory reporting of the issues by the media and the timeless problem of influence peddling at broad and illogical public expense.

Given the visually compelling evidence and partially intuitive nature of scientific deductions related to glacier fluctuations, it is not surprising that glaciers figure prominently in today's public debate about climate change. The tangibility of such information is there for all to see; like Jupiter's satellites from the time of Galileo to now, glaciers are there to be observed and refute antiscience dogma, whether from the climate change denial perspective or from a climate change exaggeration vantage point. Though public perceptions may be clouded by antiscience dogma, the confusion cannot last because of the unrelenting changes to the Earth that are under way and occurring at a pace that humans can perceive. There is little point in my reviewing the prodigious and highly varied evidence that global climate change is under way and is linked partially to anthropogenic greenhouse gases, as excellent modern reviews are already available (Mitchell 1989, Ledley et al. 1999, Le Treut et al. 2007). However, we will return to this topic in connection to glaciers in Chapter 33.

Remarkably, the fundamentals of greenhouse climate theory have not changed much since the 19th century, and this is clearly because the basic physics are comparatively simple and have been understood for over five generations. The important details-cloud cover feedback effects, trace gas influences, and the all-important evaluation of climate sensitivity (the amount of warming per increment rise in atmospheric CO₂ abundance)have been steadily developed, as have increasingly detailed spatially resolved general circulation models of global and regional climate. Rather than reviewing climate theory and modeling (which is dealt with in various chapters), we use this book to highlight the abundant glacier evidenceobtained both from space-based and ground-based observations of glaciers-that climate is changing and affecting the world's ice and, further, to highlight the many complexities and dynamical aspects of glacier fluctuations that are not related directly to climate change.

The Alps have given rise to much of the world's scientific interest in glaciers and their links to climate, and Zurich much more so than most other places. Thus it is fitting that the GLIMS initiative held its first workshop in Zurich in 1999, one century after Professor Richter's (the CIG President) mandate to look more deeply into the problems of glacier change.

#### P.2.4 Time to move on

In sum, glaciers and the associated issues of climate and climate change have been a topic of exceptional scientific interest for nearly two centuries. Now that evidence of natural and anthropogenic climate change is widely perceived as being relevant to people today, these matters are top of the agenda in public discussion and policy development. Skepticism or public questioning of science is healthy and should be welcomed. People rightly perceive climate change as a multi-trillion dollar issue spanning generations. Public questioning has had the positive effect of focusing more scientific attention on uncertainties. Unfortunately, much public discourse has misinterpreted scientific concepts of uncertainty to mean a void of understanding or a prevailing state of confusion due to intractable ambiguities. Furthermore, much of so-called climate change skepticism is tantamount to spheroidal Earth skepticism, or questioning whether, despite centuries of scientific understanding, heat and energy flows from hot things to cold things. That said, climate is changing in complex ways and glaciers are responding with their own individual complexities. In essence the issue is simple: climate warms when we add visibly transparent gases that are opaque in the infrared to the atmosphere and glaciers melt when they are heated, but the details are not simple. This book is about the complexities of glaciers and how we measure and monitor them. The satellite era and remote sensing may provide the necessary answers.

#### P.3 ACKNOWLEDGMENT

The author acknowledges a helpful review by Victor R. Baker.

#### P.4 REFERENCES

- Agassiz, L. (1840) *Etudes sur les glaciers*, Agassiz, Jent & Glassmann, Neuchatel, Switzerland [for a translation see Carozzi (1967)].
- Alley, R.B., Andrews, J.T., Brigham-Grette, J., Clarke, G.K.C., Cuffey, K.M., Fitzpatrick, J.J., Funder, S., Marshall, S.J., Miller, G.H., Mitrovica, J.X. et al. (2010) History of the Greenland ice sheet: Paleoclimatic insights. *Quaternary Science Reviews*, 29(1516), 1728–1756.
- Andersen, B.G. (1992) Jens Esmark: A pioneer in glacial geology. *Boreas*, **21**, 97–102, doi: 10.1111/j.1502-3885.1992.tb00016.x
- Arendt, A., Bolch, T., Cogley, J.G., Gardner, A., Hagen, J.-O., Hock, R., Kaser, G., Pfeffer, W.T., Moholdt, G., Paul, F. et al. (2012) *Randolph Glacier Inventory* [v2.0]: A Dataset of Global Glacier Outlines, Global Land Ice Measurements from Space, Boulder, CO [Digital Media]. GLIMS Technical Report available at http://www.glims.org/RGI/RGI_Tech_Report_ V2.0. pdf

- Arrhenius, S. (1896) On the influence of carbonic acid in the air upon the temperature of the ground. *Philo*sophical Magazine, **1896**(41), 237–276.
- Arrhenius, S. (1908) *Worlds in the Making*, Harper & Brothers, New York.
- Baker, V.R. (2001) Water and the martian landscape. *Nature*, **412**, 228–236.
- Baker, V.R. (2007) Flood hazard science, policy and values: A pragmatist stance. *Technology in Society*, 29, 161–168.
- Bard, E., and Frank, M. (2006) Climate change and solar variability: What's new under the sun? *Earth and Planetary Science Letters*, **248**, 1–14.
- Berg, C.P., Wiesnet, D.R., and Legeckis, R. (1982) The NOAA-6 satellite mosaic of Antarctica: A progress report. *Annals of Glaciology*, **3**, 23–26.
- Berger, A.L. (1978) Long-term variations of caloric insolation resulting from the earth's orbital elements. *Quaternary Research*, **9**, 139–167.
- Bindschadler, R.A., and Scambos, T.A. (1991) Satelliteimage-derived velocity field of an Antarctic ice stream. *Science*, 252, 242–246.
- Bindschadler, R., Dowdeswell, J., Hall, D., and Winther, J.-G. (2001) Glaciological applications with Landsat-7 imagery: Early assessments. *Remote Sensing of En*vironment, **78**, 163–179.
- Binford, M. (1997) Climate variation and the rise and fall of an Andean civilization. *Quaternary Research*, 47(2), 235–248.
- Bishop, M.P., Kargel, J., Kieffer, H., MacKinnon, D.J., Raup, B.H., and Shroder, J.F. (2000) Remote sensing science and technology for studying glacier processes in High Asia. *Annals of Glaciology*, **31**, 164–170.
- Bishop, M.P., Barry, R.G., Bush, A.B.G., Copeland, L., Dwyer, J.L., Fountain, A.G., Haeberli, W., Hall, D.K., Kääb, A., Kargel, J.S. et al. (2004) Global Land Ice Measurements from Space (GLIMS): Remote sensing and GIS investigations of the Earth's cryosphere. *Geocarto International*, 19(2), 57–85.
- Bolch, T., Kulkarni, A., Kääb, A., Huggel, C., Paul, F., Cogley, J.G., Frey, H., Kargel, J.S., Fujita, K., Scheel, M. et al. (2012) The state and fate of Himalayan glaciers. *Science*, **336**, 310–314 [see supplemental online material].
- Borick, C., and Rabe, B. (2012) Fall 2011 National Survey of American Public Opinion on Climate Change. Available at http://www.brookings.edu/~/media/research/ files/papers/2012/2/climate%20change%20rabe%20 borick/02_climate_change_rabe_borick
- Bullock, M.A., and Grinspoon, D.H. (2001) The recent evolution of climate on Venus. *Icarus*, 150(1), 19–37.
- Carey, M. (2005) Living and dying with glaciers: People's historical vulnerability to avalanches and outburst floods in Peru. *Global and Planetary Change*, **47**(2/4), 122–134.

- Carozzi, A.V. (1967) Studies on Glaciers Preceded by the Discourse of Neuchâtel by Louis Agassiz, Hafner, New York.
- Chamberlin, T.C. (1899) An attempt to frame a working hypothesis of the cause of glacial periods on an atmospheric basis. *Journal of Geology*, **7**, 545–584.
- Cogley, J.G., Kargel, J.S., Kaser, G., and van der Veen, C.J. (2010) Tracking the source of glacier misinformation. *Science*, **326**, 924–925.
- Croll, J. (1875) Climate and Time in Their Geological Relations: A Theory of Secular Changes of the Earth's Climate, Daldy, Isbister & Co., London. Available from Google Books at http://books.google.com/books? id=mLYKAQAAIAAJ&pg=PR3#v
- Crutzen, P.J., and Stoermer, E.F. (2000) The "Anthropocene". *Global Change Newsletter*, **41**, 17–18.
- Darwin, C. (1859) On the Origin of Species by Natural Selection, or the Preservation of Favoured Races in the Struggle for Life, J. Murray, London, 502 pp.
- Dell, M., Jones, B.F., and Olken, B.A. (2008) Climate Change and Economic Growth: Evidence from the Last Half Century (NBER Working Paper No. 14132), National Bureau of Economic Research, Cambridge, MA.
- De Pretto, O. (1903) Ipotesi dell'Etere nella Vita dell'Universo ("Hypothesis of aether in the life of the universe"). Atti del Reale Istituto Veneto di Scienze, Lettere ed Arti, LXIII (Proceedings of the Royal Venetian Institute of Science, Letters and Arts). Available at http://www.cartesio-episteme.net/st/mem-depr-vf.htm
- Dugmore, A.J., Keller, C., and McGovern, T.H. (2007) Norse Greenland settlement: Reflections of climate change, trade, and the contrasting fates of human settlements in the North Atlantic islands. *Arctic Anthropology*, **44**(1), 12–36.
- Durham, W.B., Prieto-Ballesteros, O., Goldsby, D.L., and Kargel, J.S. (2010) Rheological and thermal properties of icy materials. *Space Science Reviews*, **153**, 273– 298, doi: 10.1007/s11214-009-9619-1.
- Einstein, A. (1896) Evidence of the earlier glaciation of our country. In: A. Beck and P. Havas, *The Collected Papers of Albert Einstein, Vol. 1: The Early Years, 1879–1902*, Princeton University Press, Princeton, NJ. Matura Examination (E) Natural History: "Evidence of the Earlier Glaciation of Our Country," 21 September 1896.
- Feng, S., Oppenheimer, M., and Schenkler, W. (2012) *Climate Change, Crop Yields, and Internal Migration in the United States* (NBER Working Paper No. 17734), National Bureau of Economic Research, Cambridge, MA.
- Ferrigno, J.G., and Williams, R.S., Jr. (1980) Satellite Image Atlas of Glaciers (IAHS Publication 126), International Association of Hydrological Sciences, Rennes, France [Workshop at Riederalp 1978—World Glacier Inventory, pp. 333–341].

- Ferrigno, J.G., Lucchitta, B.K., Mullins, K.F., Allison, A.L., Allen, R.J., and Gould W.G. (1993) Velocity measurements and changes in position of Thwaites Glacier/Iceberg Tongue from aerial photography, Landsat images and NOAA AVHRR data. *Annals of Glaciology*, 17, 239–244.
- Ferrigno, J.G., Mullins, J.L., Stapleton, J., Bindschadler, R.A., Scambos, T.A., Bellisime, L.B., Bowell, J., and Acosta, A.V. (1994) Landsat TM image maps of the Shirase and Siple Coast ice streams, West Antarctica. *Annals of Glaciology*, **20**, 407–412.
- Fleming, J.R. (2006) James Croll in context: The encounter between climate dynamics and geology in the second half of the nineteenth century. *History of Meteorology*, **3**, 43–53. Available at *http://www. meteohistory.org/2006historyofmeteorology3/3fleming_ croll.pdf*
- Forbes, J.D. (1846) Illustrations of the viscous theory of motion, I: Containing experiments on the flow of plastic bodies, and observations of the phenomena of lava streams; II: An attempt to establish by observation the plasticity of ice; III: Illustrations of the viscous theory of glacier motion. *Philosophical Transactions*, Part II.
- Forbes, J.D. (1855) Remarks and the Rev. H. Moseley's "Theory of the descent of glaciers". *Proceedings of the Royal Society*, vii, June 7, 411–417.
- Forel, F.A. (1895) Les variations périodiques des glaciers: Discours préliminaire. *Extrait des Archives des Sciences Physiques et Naturelles*, **XXXIV**, 209–229 [in French].
- Fourier, J. (1824) Remarques générales sur les températures du globe terrestre et des espaces planétaires. *Annales de Chimie et de Physique*, **27**, 136–167 [in French].
- Fourier, J. (1827) Mémoire sur les températures du globe terrestre et des espaces planétaires. Mémoires de l'Académie Royale des Sciences, 7, 569–604 [in French].
- Frankel, H.R. (2012) *The Continental Drift Controversy: Wegener and the Early Debate*, Cambridge University Press, New York, 604 pp.
- GCOS (2004) Implementation Plan for the Global Observing System for Climate in support of the UNFCCC (Report GCOS 92, WMO/TD No. 1219), World Meteorological Organization, Geneva, Switzerland, 136 pp.
- GCOS (2006) Systematic observation requirements for satellite-based products for climate. *Supplemental Details to the Satellite-based Component of the Implementation Plan for the Global Observing System for Climate in Support of the UNFCCC* (Report GCOS-107; WMO/TD No. 1338), World Meteorological Organization, Geneva, Switzerland, 90 pp.
- Glen, J.W. (1955) The creep of polycrystalline ice. Proceedings of the Royal Society (London) A, 228, 519– 538.

Glen, J.W. (1958) The Flow Law of Ice: A Discussion of the Assumptions Made in Glacier Theory, Their Experimental Foundations and Consequences (IAHS Publ. 47), International Association of Hydrological Sciences, Rennes, France, pp. 171–183.

Grinspoon and Bullock (2007) see p. lxiii

- Hapgood, C.H. (1958) Earth's Shifting Crust: A Key to Some Basic Problems of Earth Science, Pantheon Books, New York, 438 pp [Foreword by Albert Einstein].
- Hays, J.D., Imbrie, J., and Shackleton, N.J (1976) Variations in the Earth's orbit: Pacemaker of the ice ages. *Science*, **194**(4270), 1121–1132.
- Hoffmann, P.F., Kaufman, A.J., Halverson, G.P., and Schrag, D.P. (1998) A Neoproterozoic snowball Earth. *Science*, 281, 1342–1346.
- Hornbeck, R. (2012) The enduring impact of the American Dust Bowl: Short- and long-run adjustments to environmental catastrophe. *American Economic Review*, **102**(4), 1477–1507.
- Howarth, P., and Ommanney, C.S. (1986) The use of Landsat digital data for glacier inventories. *Annals of Glaciology*, 8, 90–92.
- Imbrie, J., and Imbrie, K.P. (1986) *Ice Ages: Solving the Mystery*, Harvard University Press, Cambridge, MA, 224 pp.
- IPCC (2007) Climate Change (2007) The Physical Science Basis: Contribution of Working Group 1 (The Physical Science Basis) to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change (edited by S. Solomon, D. Qin, M. Manning, Z. Chen, M.C. Marquis, K. Averyt, M. Tignor, and H.L. Miller), Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge, U.K.
- Ives, J.D., Shrestha, R.B., and Mool, P.K. (2010) Formation of Glacial Lakes in the Hindu Kush–Himalayas and GLOF Risk Assessment, International Centre for Integrated Mountain Development, Kathmandu, Nepal, 56 pp.
- Jakosky, B.M., and Phillips, R.J. (2001) Mars' volatile and climate history. *Nature*, 412(6843), 237–244.
- Kääb, A., Wessels, R., Haeberli, W., Huggel, C., Kargel, J.S., and Khalsa, S.J.S (2003) Rapid ASTER imaging facilitates timely assessment of glacier hazards and disasters. *EOS Transactions American Geophysical Union*, 84(13), 117–121.
- Kargel, J.S. (2004) Mars: A Warmer Wetter Planet, Springer/Praxis, Heidelberg, Germany/Chichester, U.K., 557 pp. [ISBN: 978-1-85233-568-7].
- Kargel, J.S., Abrams, M.J., Bishop, M.P., Bush, A., Hamilton, G., Jiskoot, H., Kääb, A., Kieffer, H.H., Lee, E.M., Paul, F. et al. (2005) Multispectral imaging contributions to Global Land Ice Measurements from Space. *Remote Sensing of Environment*, **99**, 187–219.
- Kargel, J.S., Leonard, G., Crippen, R.E., Delaney, K.B., Evans, S.G., and Schneider J. (2010) Satellite monitoring of Pakistan's rockslide-dammed Lake Gojal. EOS

*Transactions American Geophysical Union*, **91**(43), doi: 10.1029/2010EO430002.

- Kargel, J., Furfaro, R., Kaser, G., Leonard, G., Fink, W., Huggel, C., Kääb, A., Raup, B., Reynolds, J., Wolfe, D. et al. (2011) ASTER imaging and analysis of glacier hazards. In: B. Ramachandran, C.O. Justice, and M.J. Abrams (Eds.), *Land Remote Sensing and Global En*vironmental Change: NASA's Earth Observing System and the Science of Terra and Aqua, Springer-Verlag, New York, pp. 325–373.
- Kargel, J.S., Ahlstrøm, A.P., Alley, R.B., Bamber, J.L., Benham, T.J., Box, J.E., Chen, C., Christoffersen, P., Citterio, M., Cogley, J.G. et al. (2012a) Brief communication: Greenland's shrinking ice cover: "fast times" but not that fast. *The Cryosphere Discussions*, 6, 533– 537. Available at *http://www.the-cryosphere.net/6/533/* 2012/
- Kargel, J.S., Alho, P., Buytaert, W., Celleri, R., Cogley, J.G., Dussaillant, A., Zambrano, G., Haeberli, W., Harrison, S., Leonard, G. et al. (2012b) Glaciers in Patagonia: Controversy and prospects. *EOS Transactions American Geophysical Union*, **93**, 212.
- Kasting, J.F. (2003) Review of Snowball Earth: The story of the great global catastrophe that spawned life as we know it. *Bulletin of the American Meteorological Society*, **84**, 1581–1584.
- Kasting, J.F. (2011) Habitable planets: What are we learning from Kepler and ground-based searches? *Astrobiology*, **11**, 363–366.
- Kasting, J.F., and Howard, M.T. (2006) Atmospheric composition and climate on the early Earth. *Philo*sophical Transactions of the Royal Society of London B, 361, 1733–1742.
- Kasting, J.F., and Seifert, J.L. (2002) Life and the evolution of Earth's atmosphere. *Science*, **296**, 1066–1068.
- Kaufman, D., Schneider, D., McKay, N., Ammann, C., Bradley, R., Briffa, K., Miller, G., Otto-Bliesner, B. et al. (2009) Recent warming reverses long-term arctic cooling. *Science*, **325**(5945), 1236–1239.
- Kieffer, H., Kargel, J. et al. (2000) New eyes in the sky measure glaciers and ice sheets. *EOS Transactions American Geophysical Union*, **81**(24), June 13.
- Kirschvink, J.L. (1992) Late Proterozoic low-latitude global glaciation: The snowball Earth. In: J.W. Schopf and C. Klein (Eds.), *The Proterozoic Biosphere: A Multidisciplinary Study*, Cambridge University Press, Cambridge, U.K., pp. 51–52.
- Köppen, W., and Wegener, A. (1924) Die Klimate der Geologischen Vorzeit, Gebrüder Borntraeger, Berlin, 255 pp. [in German].
- Krimmel, R.M., and Meier, M.F. (1975) Glacier applications of ERTS-1 images. *Journal of Glaciology*, **15**(73), 391–402.
- Ledley, T.S., Sundquist, E.T., Schwartz, S.E., Hall, D.K., Fellows, J.D., and Killeen, T.L. (1999) Climate change and greenhouse gases. *EOS Transactions American Geophysical Union*, **80**(39), 453.

- Le Treut, H., Somerville, R., Cubasch, U., Ding, Y., Mauritzen, C., Mokssit, A., Peterson, T., and Prather, M. (2007) Historical overview of climate change. In: S. Solomon, D. Qin, M. Manning, Z. Chen, M. Marquis, K.B. Averyt, M. Tignor, and H.L. Miller (Eds.), *Climate Change 2007, The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change*, Cambridge University Press, Cambridge, U.K.
- Lucchitta, B.K., and Ferguson, H.M. (1986) Antarctica: Measuring glacier velocity from satellite images. *Science*, 234, 1105–1108.
- Lucchitta, B.K., Bertolini, L.M., Ferrigno, J.G., and Williams, R.S., Jr. (1991) Monitoring the dynamics of the Antarctic coastline with Landsat images. *Antarctic Journal of the U.S.*, 26, 316–317.
- Lucchitta, B.K., Mullins, K.F., Allison, A.L., and Ferrigno, J.G. (1993) Antarctic glacial tongue velocities from Landsat images: First results. *Annals of Glaciology*, 17, 356–366.
- Lucchitta, B.K., Smith, C.E., Bowell, J.A., and Mullins, K.F. (1994) Velocities and mass balance of Pine Island Glacier, West Antarctica, derived from ERS-1 SAR images, *Proceedings Second ERS-1 Symposium, Hamburg, Germany, October 11–14, 1993* (ESA SP-361), ESA, Noordwijk, The Netherlands, pp. 147–151.
- Lucchitta, B.K., Rosanova, C.E., and Mullins, K.F. (1995) Velocities of Pine Island Glacier, West Antarctica, from ERS-1 SAR images. *Annals of Glaciology*, 21, 277–283.
- MacDonald, W.R. (1976) Geodetic Control in Polar Regions for Accurate Mapping with ERTS Imagery (USGS Professional Paper 929), U.S. Geological Survey, Reston, VA, pp. 34–36.
- MacDonald, T.R., Ferrigno, J.G., Williams, R.S., Jr., and Lucchitta, B.K. (1990) Velocities of antarctic outlet glaciers determined from sequential Landsat images. *Antarctic Journal of the U.S.*, 24(5), 105–106.
- Maruyama, S. and M. Santosh (2008) Models on Snowball Earth and Cambrian explosion: A synopsis. *Gondwana Research*, 14, 22–32.
- Maxwell, J.C. (1869) Report on a paper by Henry Moseley on the motion of glaciers. *Proceedings of the Royal Society (London)*, **17**, 202–208, doi: 10.1098/ rspl.1868. 0028.
- Meehl, G.A., Washington, W.M., Wigley, T.M.L., Arblaster, J.M., and Dai, A. (2003) Solar and greenhouse gas forcing and climatic response in the twentieth century. *Journal of Climate*, 16, 426–444.
- Meehl, G.A., Washington, W.M., Ammann, C.M., Arblaster, J.M., Wigley, T.M.L., and Tebaldi, C. (2004) Combinations of natural and anthropogenic forcings in twentieth-century climate. *Journal of Climate*, **17**, 3721–3727.
- Meier, M.F. (1984) The contribution of small glaciers to sea level rise. *Science*, **226**, 1418–1421.

- Milankovitch, M. (1941) Kanon der Erdbestrahlungen und seine Anwendung auf das Eiszeitenproblem, Royal Serbian Academy, Belgrade [in German].
- Milankovitch, M. (1998) Canon of Insolation and the Ice Age Problem, with Introduction and Biographical Essay by Nikola Pantic, Alven Global, Location, 636 pp. (ISBN 86-17-06619-9, English translation of Milankovitch (1941)].
- Mitchell, J.F.B. (1989) The "greenhouse" effect and climate change. *Reviews of Geophysics*, **27**(1), 115–139.
- Moseley, H. (1855) On the descent of glaciers. *Proceedings of the Royal Society*, **7**, 333–342.
- Moseley (1869) see p. lix
- Muir, J. (1876) On the post-glacial history of *Sequoia* gigantea. American Association for the Advancement of Science Proceedings, **25**, 242–253.
- Muller, R.A., and MacDonald, G.J. (1997) Glacial cycles and astronomical forcing. *Science*, **277**, 215–218.
- Nye, J.F. (1953) The flow law of ice from measurements in glacier tunnels, laboratory experiments, and the jungfraufirn borehole experiment. *Proceedings of the Royal Society (London) A*, **219**(1139), 477–489.
- Nye, J.F. (1957) The distribution of stress and velocity in glaciers and ice sheets. *Proceedings of the Royal Society* (London) A, **239**(1216), 113–133.
- Nye, J.F. (1960) The response of glaciers and ice-sheets to seasonal and climatic changes. *Proceedings of the Royal Society (London) A*, **256**(1287), 559–584.
- Orheim, O. (1978) Glaciological studies by Landsat imagery of perimeter of Dronning Maud Land, Antarctica. Norsk Polarinstitutt Skrifter, 169, 69–80.
- Østrem, G. (1975) ERTS-1 data in glaciology: An effort to monitor glacier mass balance from satellite imagery. *Journal of Glaciology*, **15**(73), 403–415.
- Paterson, W.S.B. (1994) The Physics of Glaciers, Third Edition, Pergamon Press, Oxford, U.K., 480 pp.
- Pelham, B.W. (2009) Awareness, Opinions about Global Warming Vary Worldwide (results of a 2007/2008 Gallup poll about views pertaining to global climate change), pp. 43–53. Available at http://www.gallup. com/poll/117772/awareness-opinions-global-warmingvary-worldwide.aspx
- Peterson, L., and Haug, G. (2005) Climate and the collapse of Maya civilization. *American Scientist*, **93**(4), 322–329.
- Quincey, D.J., Richardson, S.D., Luckman, A., Lucas, R.M., Reynolds, J.M., Hambrey, M.J., and Glasser, N.F. (2007) Early recognition of glacial lake hazards in the Himalaya using remote sensing datasets. *Global* and Planetary Change, 56, 137–152.
- Radok, U. (1997) The International Commission on Snow and Ice and its precursors. *Hydrological Sciences/Journal des Sciences Hydrologiques*, **42**(2), 131–140.
- Raup, B.H., and Kargel, J.S. (2012) Global Land Ice Measurements from Space (GLIMS). In: R.S. Williams, Jr. and J.G. Ferrigno (Eds.), *Satellite Image*

Atlas of the Glaciers of the World, Vol. A (Introduction): State of the Earth's Cryosphere at the Beginning of the 21st Century: Glaciers, Snow Cover, Floating Ice, and Permafrost and Periglacial Environments (USGS Professional Paper 1386-A), U.S. Geological Survey, Reston, VA (in press).

- Raup, R., Kääb, A., Kargel, J.S., Bishop, M.P., Hamilton, G., Lee, E., Paul, F., Rau, F., Soltesz, D., Khalsa, S.J.S. et al. (2007) Remote sensing and GIS technology in the Global Land Ice Measurements from Space (GLIMS) project. *Computers and Geoscience*, 33, 104–125.
- Richardson, S.D., and Reynolds, J.M. (2000) An overview of glacial hazards in the Himalayas. *Quaternary International*, 65/66, 31–47.
- Rignot, E., Velicogna, I., van den Broeke, M.R., Monaghan, A., and Lenaerts, J. (2011) Acceleration of the contribution of the Greenland and Antarctic ice sheets to sea level rise. *Geophysical Research Letters*, 38, L05503, doi: 10.1029/2011GL046583.
- Robock, A. (2000) Volcanic eruptions and climate. *Reviews of Geophysics*, 38, 191–219.
- Rott, H. (1976) Analyse der Schneeflächen auf Gletschern der Tiroler Zentralalpen aus Landsat Bildern. Zeitschrift für Gletscherkunde und Glazialgeologie, 12, 1–28 [in German].
- Ruddiman, W.F. (2003) Orbital insolation, ice volume, and greenhouse gases. *Quaternary Science Reviews*, **22**, 1597–1629.
- Rundquist, D.C., Collins, S.C., Barnes, R.B., Bussom, D.E., Samson, S.A., and Peake, J.S. (1980) The use of Landsat digital information for assessing glacier inventory parameters. *Hydrological Sciences Journal*, 126, 321–331.
- Sagan, C., and Mullen, G. (1972) Earth and Mars: Evolution of atmospheres and surface temperatures. *Science*, 177(4043), 52–56.
- Scambos, T.A., Dutkiewicz, M.J., Wilson, J.C., and Bindschadler, R.A. (1992) Application of image cross-correlation to the measurement of glacier velocity using satellite image data. *Remote Sensing of Environment*, 42, 177–186.
- Scherler, K. (Ed.) (1983) Guidelines for Preliminary Glacier Inventories (IAHS(ICSI)/UNEP/UNESCO report), Temporal Technical Secretariat for the World Glacier Inventory (TTS/WGI), ETH Zurich, Switzerland.
- Southard, R.B., and MacDonald, W.R. (1974) The cartographic and scientific application of ERTS-1 imagery in polar regions. U.S. Geological Survey Journal of Research, 2(4), 385–394.
- Swithinbank, C., Doake, C., Wager, A., and Crabtree, R. (1976) Major change in the map of Antarctica. *Polar Record*, 18(114), 295–299.
- Taylor, F.B. (1910) Bearing of the Tertiary mountain belt on the origin of the Earth's plan. *Geological Society of America Bulletin*, **21**, 179–226.
- Tyndall, J. (1863) On radiation through the Earth's atmosphere. *Proceedings of Royal Institution*, iv, 4 [republished in memoir form in Tyndall (1893)].
- Tyndall, J. (1893) Contributions to Molecular Physics in the Domain of Radiant Heat (a series of memoirs published in the Philosophical Transactions and Philosophical Magazine, with additions), D. Appleton & Co., New York, 446 pp.
- Walker, J.C.F., and Waddington, E.D. (1988) Early discoverers—XXXV, Descent of glaciers: Some early speculations on glacier flow and icy physics. *Journal* of Glaciology, 34(118), 342–348.
- Wallace, A.R. (1879) Glacial epochs and warm polar climates. *Quarterly Review*, July 1879 (2).
- Wallace, A.R. (1880) Island Life: or, The Phenomena and Causes of Insular Faunas and Floras, Including a Revision and Attempted Solution of the Problem of Geological Climates, Macmillan & Co., London.
- Wallace, A.R. (1886) The Geographical Distribution of Animals, with a Study of the Relations of Living and Extinct Faunas as Elucidating the Past Changes of the Earth's Surface, Vols. 1 and 2, Harper & Brothers, New York.
- Wallace, A.R. (1889) The geographical distribution of organisms. In: Darwinism, an Exposition on the Theory of Natural Selection with Some of Its Applications, Macmillan & Co., London.
- Weertman, J., and Weertman, J.R. (1975) Hightemperature creep of rock and mantle viscosity. *Annual Review of Earth and Planetary Sciences*, **3**, 293–315.

- Wegener, A. (1912) Die Entstehung der Kontinente. Geologische Rundschau, 3(4), 276–292 [in German].
- Wegener, A. (1912) The origin of continents. *Journal of Geodynamics*, **32**, 29–63 [translated from the German by E.E. Jacoby in 2001].
- Wegener, A. (1915) Die Entstehung der Kontinente und Ozeane, Publisher, Braunschweig [in German].
- Wegener, A. (1915) *The Origin of Continents and Oceans*, Dover, New York [translated from the German by J. Biram in 1967].
- WGMS (2008) Fluctuations of Glaciers 2000–2005, Vol. IX (edited by W. Haeberli, M. Zemp, A. Kääb, F. Paul, and M. Hoelzle), ICSU(FAGS)/IUGG(IACS)/ UNEP/UNESCO/WMO, World Glacier Monitoring Service, Zurich, Switzerland, 266 pp.
- Williams, R., Jr., Ferrigno, J.G., Kent, T.M., and Schoonmaker, J.W., Jr. (1982) Landsat images and mosaics of Antarctica for mapping and glaciological studies. *Annals of Glaciology*, 3, 321–326.
- Williams, R., Jr., Ferrigno, J.G., and Foley, K.M. (1995) Coastal-change and glaciological maps of Antarctica. *Annals of Glaciology*, **21**, 284–290.
- Wilson, P.A., Norris, R.D., and Cooper, M.J. (2007) Testing the Cretaceous greenhouse hypothesis using glassy foraminiferal calcite from the core of the Turonian tropics on Demerara Rise. *Geology*, **30**(7), 607–610.
- Winguth, A., Shellito, C., Shields, C., and Winguth, C. (2010) Climate response at the Paleocene–Eocene thermal maximum to greenhouse gas forcing: A model study with CCSM3. *Journal of Climate*, 23, 2562–2584.

Something is done the first time only once— Eugene M. Shoemaker (1928–1997)