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U. Kamp, Jeffrey S. Kargel,

A.V. Kulkarni, G. Leonard, P. Mool,

R. Frauenfelder, and I. Sossna 549

24.1 Overview 549

24.2 Regional context 550

24.2.1 Geographic, geologic, and topographic

setting 550

24.2.2 Climate dynamics and glacier regimes 552

24.2.3 Previous glacier mapping and observations 553

24.3 Case studies and specific topics 553

24.3.1 Sikkim Himalaya: glacier area change,

1960–2000 553

24.3.2 Khumbu and Garhwal Himalaya: glacier

area and thickness changes, 1960s–2000s 555

24.3.3 Everest region, Nepal: geomorphologic

and surface reflectance changes,

2001–2005 561

24.3.4 Brahmaputra River basin: glacier area,

volume, and velocity changes, 1970s

through to about 2000 564

24.3.5 Ladakh, northwestern Indian Himalaya:

glacier length/area change, 1975–2008 568

24.3.6 Himachal Pradesh and Uttarakhand,

western Indian Himalaya: glacier area

change, 1962–2004 570

24.3.7 Himachal Pradesh, western Himalaya:

geodetic mass balance estimates,

1999–2004 572

24.4 Summary and outlook 574

24.5 Appendix—image differencing:

methodology, limitations, and errors 575

25 Glaciers in China and their variations

Liu Shiyin, Shangguan Donghui, Xu Junli,

Wang Xin, Yao Xiaojun, Jiang Zongli,

Guo Wanqin, Lu Anxin, Zhang Shiqiang,

Ye Baisheng, Li Zhen, Wei Junfeng, and

Wu Li 583

25.1 Introduction to glaciers in China 583

25.2 Regional context 584

25.3 Methods for glacier change monitoring

by remote sensing 585

25.4 Glacier area extent change 586

25.4.1 Glacier change since the Little Ice Age

maximum 586

25.4.2 Glacier change during recent decades 588

25.5 Change in surface elevations 591

25.5.1 Keqikar Baxi Glacier 591

25.5.2 Yanglong River 593

25.6 Surface movement derived by satellite

remote sensing 595

25.6.1 Justification 595

25.6.2 Glacier velocity derived using

D-InSAR and SAR feature-tracking

methods 597

25.6.3 Glacier velocity derived by optical images 598

25.7 Special topics: applied hydrological

aspects of Chinese glacier dynamics 599

25.7.1 Special Topic 1: glacier hazards in the

Upper Yalung Zangbo River basin, China 599

25.7.2 Special Topic 2: glacier water resources

in western China provinces 601

25.8 Summary and future prospects 604

26 Remote sensing of rapidly diminishing

tropical glaciers in the northern Andes

Todd Albert, Andrew Klein, Joni Kincaid,

Christian Huggel, Adina Racoviteanu,

Yves Arnaud, Walter Silverio, and

Jorge Luis Ceballos 609

26.1 Introduction 609

26.2 Regional context 610

26.3 Special topics and case studies 610

26.3.1 Quelccaya, Peru 610

26.3.2 Cordillera Vilcanota, Peru 614

26.3.3 Nevado Coropuna, Peru 616

26.3.4 Cordillera Blanca, Peru 616

26.3.5 Colombia 622

26.3.6 Tres Cruces, Bolivia 625

26.3.7 Venezuela 630

28.4 Regional synthesis 632

28.5 Discussion 633

Contents xi



27 A new glacier inventory for the

Southern Patagonia Icefield and areal

changes 1986–2000
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Mendes Júnior, and Ricardo Jaña 717

30.1 Introduction 717

30.2 Regional context 719

30.2.1 Geologic context 719

30.2.2 Climatic context 719

30.2.3 Summary of known glacier dynamics 720

30.3 Methodology 721

30.3.1 Evaluation of ASTER-derived DEMs for

the Antarctic Peninsula 721

30.4 Case studies and special topics 725

30.4.1 Monitoring glacier change in the

northeastern Antarctic Peninsula 725

30.4.2 Glaciers of Vega Island and James Ross

Island 725

30.4.3 Former tributaries of Prince Gustav

Channel (PGC) Ice Shelf 727

30.4.4 Former tributaries of Larsen A Ice Shelf 727

30.4.5 Former tributaries of Larsen B Ice Shelf 727

30.4.6 Monitoring changes and breakup events

on the Wilkins Ice Shelf 728

30.4.7 Variation of radar glacier zone

boundaries in the northeastern Antarctic

Peninsula 733

30.5 Regional synthesis 736

30.6 Summary and conclusions 736

xii Contents



31 Mapping blue-ice areas and crevasses

in West Antarctica using ASTER

images, GPS, and radar

measurements

Andrés Rivera, Fiona Cawkwell,

Anja Wendt, and Rodrigo Zamora 743

31.1 Introduction 743

31.2 Blue-ice areas 744

31.2.1 Mapping BIA extent in the field and on

imagery 744

31.2.2 Interannual fluctuations in the extent of

Patriot Hills’ BIA 746

31.2.3 Interannual fluctuation in the extent of

other BIAs 749

31.3 Crevasse detection on satellite imagery 750

31.4 Radio-echo sounding and ground-

penetrating radar measurements 752

31.5 Discussion 753

31.6 Conclusions 755

32 Remote sensing of glaciers of the

subantarctic islands

J. Graham Cogley, E. Berthier, and

S. Donoghue 759

32.1 Introduction 759

32.2 The regional context 759

32.3 Case studies 762

32.3.1 Heard Island 762

32.3.2 Kerguelen 765

32.3.3 Montagu Island 768

32.4 Cartographic Inventory of the

Subantarctic 771

32.5 Summary and conclusion 774

33 A world of changing glaciers:

Summary and climatic context

Jeffrey S. Kargel, Andrew B.G. Bush,

J. Graham Cogley, Gregory J. Leonard,

Bruce H. Raup, Claudio Smiraglia,

Massimo Pecci, and Roberto Ranz 781

33.1 Overview 781

33.2 Summary: the foundations of glacier

remote-sensing science (Chapters 2–7) 782

33.3 Super-regional narratives of glacier

dynamics 784

33.3.1 Glacier changes in the Arctic

Super-Region (Greenland and the

Canadian High Arctic) 784

33.3.2 Glacier changes in the North Atlantic

Super-Region (Iceland–Norway–Sweden–

Svalbard) 789

33.3.3 Glaciers in the North American

Cordilleran Super-Region (U.S. and

western Canada) 793

33.3.4 Glacier changes in the Mediterranean

Super-Region 796

33.3.5 Glacier changes in the South and Central

Asia Super-Region 798

33.3.6 Changes in glaciers of the northern Andes 802

33.3.7 Glacier change in the Southern Ocean

Super-Region 804

33.3.8 Seasonal thaw in a blue-ice area of the

Antarctic interior 809

33.4 Summary discussion: What lies behind

glacier fluctuations and general retreat? 809

33.4.1 Global trends in glacier and ice sheet

mass balance and sea level trends 809

33.4.2 Global warming: first-order cause of

modern-day retreat and thinning of

glaciers 810

33.4.3 What drives variability in glacier

responses to a changing global

environment? 812

33.4.4 Climate change is heterogeneous and

multivariate 813

33.4.5 Variable response times as a further

cause of heterogeneous glacier responses 816

33.4.6 Other causes of variability in the

response dynamics of glaciers 820

33.4.7 Little known or unknown causes with the

potential to affect glaciers and us 821

33.5 Joe Public’s two big questions 825

33.6 Conclusions 828

34 Epilogue: Skepticism versus fallibilism

for achieving reliable science and wise

policy decisions

Victor R. Baker 841

Index 847

Contents xiii





Dedication

We dedicate this book to our families, who endured
our absences from them and endured as well our
dispositions, whether joyous or vexed, during our
time on the book. In dedication we also recognize

the world’s land ice, those frozen lands from the
majestic ice sheets of the white circumpolar realms,
to the graceful valley glaciers and fast-disappearing
glacier bits; and to those glaciers no longer here.





Contributors

Todd Albert

Department of Agriculture, Geosciences, and
Natural Resources, The University of Tennessee at

Martin, Martin, Tennessee, U.S.A.

Ghazanfar Ali

Water Resources and Glaciology Section, Global
Change Impact Studies Center (GCISC), National

Center for Physics Complex, Jhang Bagayal,
Shahdara Road, Quaid-i-Azam University,

Islamabad, Pakistan 44000

Liss M. Andreassen

Norwegian Water Resources and Energy
Directorate, Oslo, Norway; Department of

Geosciences, University of Oslo, Oslo, Norway

Jorge Arigony-Neto

Instituto Nacional de Ciência e Tecnologia da
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Centro Polar e Climático, Universidade Federal do

Rio Grande do Sul, Av. Bento Gonçalves 9500,
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247, 639

GDL Glacier-Dammed Lake

GDS Ground Data System

GEMS Global Environment
Monitoring System

GeoTIFF Geographic Tagged Image File
Format

GFDL Geophysical Fluid Dynamics
Laboratory

GHOST Global Hierarchical Observing
STrategy

GIA Glacial Isostatic Adjustment
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GIFOV Ground-projected Instantaneous
Field Of View

GINA Geographic Information
Network of Alaska

GIPSY 195

GIS Geographic Information System
23, 164, 241

GIS Greenland Ice Sheet 184

GL Grounding Line

GLACE GLacier Analysis Comparison
Experiments

Glaciers_CCI Glaciers Climate Change
Initiative

GLACIOCLIM GLACIers, an Observatory of
the CLIMate

GLAS Geoscience Laser Altimeter
System

GLCF Global Land Cover Facility

GLIMS Global Land and Ice
Measurements from Space

GLOF Glacier Lake Outburst Flood

GNE Greater Nahanni Ecosystem

GNSS Global Navigation Satellite
System

GPR Ground-Penetrating Radar

GPS Global Positioning System

GRACE Gravity Recovery and Climate
Experiment

GSFC Goddard Space Flight Center

GSI Geologic Survey of India

GSSI Geophysical Survey Systems,
Inc.

GTA Glacier Terminus Altitude

GTN-G Global Terrestrial Network for
Glaciers

H-G-E Hektoria–Green–Evans

HDF Hierarchical Data Format114

HKH Himalaya–Karakoram–Hindu
Kush

HRS High Resolution Sensor 115

HRS High Resolution Stereoscopic
(instrument) 348

HRS High Resolution Stereoscopic
Sensor 232

HRTI High-Resolution Terrain
Information

HTP Himalaya and Tibetan Plateau

IACS International Association of the
Cryospheric Sciences

IandM Inventory and Monitoring
program

ICESMAP Image Change Evaluation by
Subtraction of Multispectral
Anniversary Pairs

ICSI International Commission on
Snow and Ice

IDL 120
IDW Inverse Distance Weighted
IGM Instituto Geográfico Militar

(Chilean Military Geographical
Institute)

IGN L’information grandeur nature
(National Institute of
Geographic and Forest
Information) 621

IGN Institut Géographique National
(National Geographical
Institute) 766

IGS International GNSS Service
IHP International Hydrological

Program
IHS Intensity Hue Saturation
IKP International Karakoram

Project
IL Iceberg Lake
IMCORR Software distributed by NSIDC
IMS Interactive Multi-sensor Snow

and Ice Mapping System 37
IMS IP Multimedia Subsystem 146
INGEOMINAS INstituto Colombiano de

GEOlogı́a y MINerı́a (Geology
and Mining Institute)

INPE Instituto Nacional des Pesquisas
Espaciais (National Institute for
Space Research)

InSAR Interferometric Synthetic
Aperture Radar

IOP Inherent Optical Property
IPA Independent Pixel

Approximation
IPG Institute of Physical Geography,

University of Freiburg
IPO Interdecadal Pacific Oscillation
IPY International Polar Year
IRS Indian Remote Sensing

(satellite)
IRS LISS Indian Remote Sensing Linear

Imaging Self Scanner
ITCZ Inter-Tropical Convergence

Zone
IUGG International Union of Geodesy

and Geophysics
J-C-M-M Jorum–Crane–Mapple–Melville

(glacier system)
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JAROS 238
JAXA Japanese Aerospace

eXploration Agency
JRI James Ross Island
KATM KATMai National Park and

Preserve
KEFJ KEnai FJords National Park
L1T Level 1 Terrain corrected
LACL LAke CLark National Park and

Preserve
LBE Linearized Boltzmann Equation
LDCM Landsat Data Continuity

Mission
LGM Last Glacial Maximum
LIA Little Ice Age
LIAM Little Ice Age Maximum
LIDAR LIght Detection And Ranging
LP DAAC Land Processes Distributed

Active Archive Center
LPS Lightweight Portable Security
LST Land Surface Temperature
LUT Look-Up Table
MADOC Multi-layer Analytic Discrete

Ordinate Code
MAE Mean Absolute Error
MAGRA Mean Annual Global Radiation

modeled for Alaska
MASTER 395
MATLAB High-level computing language
MDL Moraine-Dammed Lake
MDOW MultiDirectional, Oblique-

Weighted
MEG Median Elevation of a Glacier
MELM Maximum Elevation of Lateral

Moraines
met.no Norwegian Meteorological

Institute
METI Ministry of Economy, Trade

and Industry (Japan)
MGM Morphometric Glacier Mapping
MIS Marine Isotope Stage
MISR Multiangle Imaging

SpectroRadiometer
MM Mesoscale Model
MMD Minimum–Maximum Difference
MO Mission Operations
MODIS MODerate-resolution Imaging

Spectroradiometer
MODTRAN MODerate resolution

atmospheric TRANsmission
(computer program)

MODVOLC MODIS Thermal Alert System
MSS MultiSpectral Scanner

MT DEM MultiTemporal DEM

MTF Modulation Transfer Function

MWE Meters Water Equivalent

NAALSED North American ASTER Land
Surface Emissivity Database

NAO North Atlantic Oscillation

NARR North American Regional
Reanalysis

NASA National Aeronautics and Space
Administration

NBR Navigation Base Reference

NCAR National Center for
Atmospheric Research

NCDC National Climatic Data Center

NCEP National Center for
Environmental Prediction

NDI Normalized Difference Index

NDSI Normalized Difference Snow
Index

NDVI Normalized Difference
Vegetation Index

NDWI Normalized Difference Water
Index

NEM Normalized Emissivity Method

NESDIS National Environmental
Satellite, Data, and Information
Service

NIR Near-InfraRed

NLSI National Land Survey of
Iceland

NNPR Nahanni National Park Reserve

NOAA National Oceanic and
Atmospheric Administration

NPI Northern Patagonia Icefield 639

NPI Norwegian Polar Institute 231

NPOC 14

NPS National Park Service

NSERC Natural Sciences and
Engineering Research Council
of Canada

NSIDC National Snow and Ice Data
Center

NT Northwest Territories

NTDB National Topographic Data
Base

NVE Norges Vassdrags- og
Energidirektorat (Norwegian
Water Directorate)

OAR Office of Oceanic and
Atmospheric Research

OBC OnBoard Calibration

lii Acronyms and abbreviations



ORE Observatoire de Recherches en
Environnement (Observatory for
Research in the Environment)

OSCAR Ocean Surface Current Analyses
Real-time

OSU Ohio State University752
PACC Programa de Adaptación al

Cambio Climático en el Perú
(Program on Climatic Change
Adaptation in Peru)

PALSAR Phased Array type L-band
Synthetic Aperture Radar

PCA Principal Component Analysis
PCI 120
PDD Positive Degree-Day
PDO Pacific Decadal Oscillation
PDOP Position Dilution of Precision
PF Polar Front
PGC Prince Gustav Channel
PI Principal Investigator
POLDER POLarization and Directionality

of Earth Reflectance instrument
PRISM Panchromatic Remote-sensing

Instrument for Stereo Mapping
129

PRISM Parameter–elevation Regression
on Independent Slope Model
440

PROMICE PROgramme for Monitoring of
the Greenland ICE Sheet

PSD Physical Sciences Division
PSFG Permanent Service on the

Fluctuations of Glaciers
PSI Perennial Snow and Ice
PSU Pennsylvania State University
QB QuickBird
QC Quality Control
QEI Queen Elizabeth Islands
RAMP Radarset Antarctic Mapping

Project
RBV Return Beam Vidicon
RC Regional Center
RCC Radiometric Calibration

Coefficient
RES Radio Echo Sounding
RGI Randolph Glacier Inventory
RMS Root Mean Square
RMSE Root Mean Square Error
RT Radiation Transfer
RTC Radiative Transfer Code
RTE Radiation Transfer Equation
RTK Real Time Kinematic (survey

system)

SAM Southern Annular Mode
SAR Synthetic Aperture Radar
SDC Swiss Agency for Development

and Cooperation
SF Subantarctic Front
SFAR Steep Front at the Angle of

Repose
SILC Sensor Information Laboratory

Corporation
SLC Scan Line Corrector
SLE Sea Level Equivalent
SMARTS2 Simple Model of the

Atmospheric Radiative Transfer
of Sunshine (radiation model)

SMB Surface Mass Balance
SN 65
SOI Southern Oscillation Index
SOPAC Scripps Orbit and Permanent

Array Center
SPI Southern Patagonia Icefield
SPIRIT SPOT-5 stereoscopic survey of

Polar Ice: Reference Images and
Topographies

SPOT Satellite Pour l’Observation de
la Terre (satellite for observaion
of the Earth)

SPRI Scott Polar Research Institute
SQL Structured Query Language
SRFT SAR Feature-Tracking
SRTM Shuttle Radar Topography

Mission
SSI South Shetland Islands
SST Sea Surface Temperature
SSW Sudden Stratospheric Warming
STAR Science Team Acquisition

Request
SWAN SouthWest Alaska Network
SWIR ShortWave InfraRed
TES Temperature Emissivity

Separation
THAR Toe-to-Headwall Altitude Ratio
TIN Triangulated Irregular Network
TIR Thermal Infrared
TM Thematic Mapper
TOPOGRID Command in ArcInfo software
TP Qinghai–Xizang (Tibet) Plateau
TRIM Terrain Resource Information

Management
TSAM Toe-to-Summit Altitude

Method
TSL Transient Snow Line
TTS/WGI Temporal Technical Secretary

for the World Glacier Inventory

Acronyms and abbreviations liii



TUD DTM Technical University of
Darmstadt Digital Terrain
Model

TVZ Taupo Volcanic Zone

UNESCO United Nations Educational,
Scientific and Cultural
Organization

USAID U.S. Agency for International
Development

USGS U.S. Geological Survey

USNPS U.S. National Park Service

UTM Universal Transverse Mercator

VI Vega Island

VICC Valdivia Ice and Climate
Change (a series of conferences
held in Valdivia, Chile)660

VIS VISible

VM Virtual Machine

VNIR Visible and Near InfraRed

WAIS West Antarctic Ice Sheet

w.e. water equivalent

WC2N Western Canadian Cryospheric
Network

WGI World Glacier Inventory

WGMS World Glacier Monitoring
Service

WGS 84 World Geodetic System 1984

WIS Wilkins Ice Shelf

WRC 25

WRS Worldwide Reference System

WSRZ Wet Snow Radar Zone

WV2 WorldView-2 (satellite)

WWW World Wide Web
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PROLOGUE

Scientific and public perceptions about
the importance of fluctuations in

glaciers and ice sheets

Jeffrey S. Kargel

P.1 EARLY SCIENTIFIC RECOGNITION

OF THE SIGNIFICANCE OF

GLACIERS

There have been few revolutions in Earth sciences
as impactful as the discovery of modern and ancient
glaciation. Glacial theory is exceeded in impact
perhaps only by the advent of superposition prin-
ciples, biological evolutionary theory, radiometric
dating, and plate tectonics. The intellectual reach of
glacial theory is vast and is intertwined with the
development of physics and the establishment of
Earth’s deep-time geological history. Many of the
implications of ancient and modern flowing ice were
recognized immediately following the first detailed
and most compelling scientific publication and pre-
sentation by Louis Agassiz in 1840. Glaciers have
been a point of fascination for scientists from many
disciplines ever since then, and remain so today.
Though Agassiz was among the founders of mod-
ern glaciology and often is credited as the father of
the field, Jens Esmark and several others had pre-
viously arrived at glacial interpretations of boulder
erratics and other landscape elements. Esmark con-
cluded, a decade before Agassiz published his first
work on glaciers, that glaciers in his field area of
Scandinavia had once been more extensive than
they are now (Andersen 1992).

From the beginnings of modern glaciology and
evolutionary theory in the early and mid-19th cen-
tury, glaciation has been recognized as a dynamic
signpost of changing climate, a controller of habi-
tats, and a driver of biological evolution (Agassiz

1840, Darwin 1859, notwithstanding arguments
between those two on evolution). The root of this
interest derives from the very visual dynamic nature
of glaciers, and their close relationship to the triple
point of water (H2O), and hence their relationship
to climate; and though the public would not phrase
it this way, these same things motivate public inter-
est as well. Agassiz’s work had immediate impact
among physicists, such as John D. Forbes, who
formulated a viscous flow explanation of glaciers.
The interest of 19th century geologists in glacia-

tion is well documented and primarily will not be
repeated here. These days, the world over, glaciol-
ogy, geology, physical geography, and climate
studies tend to be closely affiliated. There is a per-
ceived less direct connection with modern physics,
which today is usually viewed as an analytical tool-
box by glaciologists and geologists. Modern culture
in the physics community tends to rank physics as
somehow a ‘‘harder’’ science than either geology or
glaciology; in fact, this was clearly not the case in
the 19th century, when all of these, and many other
disciplines, were viewed as components of natural
philosophy, and the chief drivers of science were
highly interdisciplinary. The crucial role played
by physics in understanding glaciation and relation-
ships to climate is well recognized; possibly less
recognized is the role that glaciation and glaciology
have played in catalyzing the interests of physicists
and the development of physics.
A nascent theory of planetary climate control by

radiatively active atmospheres began with the
calculations of Jean Baptiste Joseph Fourier, who
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otherwise is known for many advances in mathe-
matics and the study of heat transfer. Fourier (1824,
1827) recognized that Earth should be far colder if
its surface had been warmed only by its absorption
of solar illumination; he performed benchtop
experiments, which provided the insight that per-
haps the atmosphere contains a gas that allows
sunlight in but traps heat. Fourier included an
intriguing postulate maintaining that, had it not
been for the Sun, Earth’s surface temperature
would be only slightly colder than the polar
countries are, because that is the background tem-
perature of the sky due to starlight and other
sources of heat. Though incorrect quantitatively,
it was a prescient statement about a cosmic back-
ground temperature, whose value was then deduced
to be about �40�C,1 being a little colder than
Earth’s icy polar realms, Fourier claimed. With
the Sun, but without our atmosphere, the surface
of Earth should still be colder than it actually is, he
deduced. Fourier showed at length that geothermal
heat was utterly insignificant in warming Earth’s
surface, despite its prodigious ability to maintain
a warm interior for geological durations. His entire
set of calculations was based on a knowledge of
conductive heat transfer (the theory which he first
developed), but lacked the advantages of the
Stefan–Boltzmann Law, which took another half
century to be formulated using key inputs from
John Tyndall, who drew heavily from Fourier’s
advances. Therefore, a theoretical basis for the
warmth of Earth’s surface was at that time lacking,
although the warmer-than-expected Earth surface
was clear from calculations. Since the Earth’s inter-
ior heat flow already had been approximated (and
found negligible in controling Earth’s average sur-
face temperatures), it became evident that the heat
transfer mystery was somewhere in the atmosphere.

After the death of Joseph Fourier, but clearly
motivated by his work, experimental measurements
by John Tyndall (1863, republication in 1893)
began in 1859 on the radiative transfer properties
of gases identified as likely contributors to the
greenhouse effect, as it became known: primarily
water vapor; secondarily carbon dioxide. Tyndall
later became a leader in the early development of
radiative transfer theory, following Fourier. Tyn-
dall’s experiments and interest in radiative transfer

stem clearly from formative experiences he had
among the glaciers of the Alps. Tyndall was an avid
alpinist.2 Throughout his career, glaciology—his
contributions including an early and scientifically
accurate sketch of Mer de Glace (French Alps), a
theory of glacial flow, and field measurements of
glaciers, among others—was interleaved with
laboratory work explaining the greenhouse effect.
By 1859, the intriguing phenomenon of glaciation
and the newly inferred existence of climate change,
argued compellingly by Agassiz, was already pro-
foundly influencing the development of modern
physics through Tyndall’s work.
James Croll, initially an amateur scientist

inspired by discussions with Charles Lyell, in an
1864 paper and then in an 1875 book provided a
new hypothesis on the origin of glacial–interglacial
cycles. Croll (1875) provided a detailed account of
his proposal that climate and glaciers were affected
by changes in the amount of sunlight received by
the Northern and Southern Hemispheres of Earth
due to cyclic changes in the eccentricity of Earth’s
orbit and the obliquity of the spin axis, which others
had worked out from astronomical theory. Fleming
(2006) provides an excellent review of Croll’s ideas
and how they relate to the later, more detailed, and
better-known work of Milutin Milankovitch (1941).
This theoretical work was largely validated by
detailed and globe-spanning studies of Earth’s sedi-
mentological and glaciological record (Imbrie and
Imbrie 1986). Croll advocated the crucial role
played by feedback mechanisms, including changes
in ocean currents, such as the Gulf Stream, in con-
trolling the onset and pattern of glaciation as an
indirect result of astronomical perturbations.
Croll’s main purpose was to explain glacial–
interglacial cycles, but he also described in detail
the origins of coal and other matters of sedimentol-
ogy. He argued against glaciations having geo-
logical causes (such as mountain building and
continental drift, which already was being dis-
cussed), though he allowed that those processes
may affect glaciation. Alfred Russell Wallace
(1879), and many others, wrote in support of Croll’s
hypothesis.
Svante Arrhenius (1896, 1908) made some astro-

nomical observations and calculated that CO2

(which he referred to as carbonic acid)—even as a
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1 The cosmic background temperature is now known to be

�270.45�Cand is related toBigBang radiation rather than

distant starlight, and has no significance for the thermal

regime at Earth’s poles.

2 The massive Tyndall Glacier in the South Patagonia

Icefield and Tyndall Glacier in Colorado’s Rocky

Mountain National Park (a small cirque glacier) are

named for him.



trace gas in Earth’s atmosphere—is a potent green-
house gas and works with water vapor to warm the
Earth’s surface. He and other scientists showed that
a 4–5�C global cooling (sufficient to cause ice ages)
could have been brought on by a 50% reduction in
atmospheric CO2; that reduction could plausibly
have occurred by reduced emissions of geological
sources of CO2 and geochemical uptake of CO2 into
the solid Earth by rock weathering and carbonate
deposition. He also recognized that Earth’s
obliquity and orbital eccentricity variations would
eventually bring on a new ice age. He felt that
industrial emissions of CO2 could double atmo-
spheric CO2 over a period of several millennia (later
he scaled that back to a few centuries), raise global
temperatures by 5–6�C, and thus help save the
world from what he thought to be the impending
grip of readvancing ice (Arrhenius 1908). He could
not have predicted the myriad additional climatic
effects and impacts that just 1�C warming has had
to date.

A contemporary of Arrhenius and one of the
most prescient theorists in the history of Earth
and planetary science, Thomas Chrowder Cham-
berlin (1899), made the strongest link yet between
greenhouse gas abundances, net carbonate deposi-
tion and dissolution, the waxing and waning of
glacial climates and of the great Pleistocene ice
sheets, and future anthropogenic greenhouse
warming over a period of millennia. Arrhenius
and Chamberlin reinforced the foundations of
climate change research; there was little to criticise
scientifically either then or now. However, until
another century had passed, recognition of their
contributions was largely restricted to the geologic
past.

What these classic scientists—Fourier, Agassiz,
Forbes, Tyndall, Darwin, Wallace, Croll,
Arrhenius, Chamberlin, and Milankovitch—have
in common is that they dared to think on planetary
scales, and they trusted either well-validated physics
theory or common sense interpretations of the
Earth’s landscape; they let the inferences of basic
observation, math, and logic drive bold conclu-
sions. Although Fourier died before the advent of
modern glacial theory, the others listed here had
another thing in common—they were fascinated
by glaciers as a planetary phenomenon, by the evi-
dence of glacier fluctuations, and by the implica-
tions of these fluctuations for colder past climates
and, hence, for climate change on a planetary scale.
Several of them spent much time on glaciers and
pondered Earth’s climatic future.

In the mid-1800s the link between climate state
and greenhouse gases was still mainly circumstan-
tial. The key missing parts of radiative transfer and
atmospheric theory were developed in thermo-
dynamic theory, which became largely complete
in the 1870s, and in electromagnetic and radiation
theory, which were largely understood before the
turn of the 20th century, aside from quantum
aspects, which took a little longer. Thus, it is not
surprising that the recent climate history of the
Earth and the role of the greenhouse effect in
warming the Earth was first explained by physicists
and mathematicians, but it was the power of
basic empiricism and interpretation of landform
evidence related to glaciation that drove climate
evolution studies. The immense and geologically
recent climate changes begged an explanation,
and so geologists, physicists, and astronomers
looked to the solid Earth, to the atmosphere, and
to the Solar System beyond Earth to find an
explanation.
Many famous physicists weighed in on the

rapidly developing field of glaciology in the decades
following Agassiz’s discoveries. John David Forbes
(1846) maintained that glaciers behaved with a
plastic rheology and flowed with viscous character-
istics; he drew an analogy between glaciers and lava
flows, and made field observations of the flow of
Mer de Glace. Forbes (1855) critically commented
(correctly) on a model that tried to account (incor-
rectly) for glacier motion by thermal expansion and
contraction (Moseley 1855). When Moseley (1869)
later returned with a detailed mathematical physics
model of glacial viscous deformation, and con-
cluded that glacier weight alone would not drive
the deformation, James Clerk Maxwell (1869)
responded with a brief communication about slow
viscous deformation mechanisms; thus, Maxwell
and Forbes were thinking about ice rheology in a
way Moseley was not. When glaciers were dis-
cussed, physicists listened, reacted, and contributed.
Michael Faraday discovered regelation, and
Hermann von Helmholtz applied that discovery
to glacier flow processes. William Thomson (Lord
Kelvin) and his brother James Kelvin were both
major figures in experimental and theoretical
approaches to the motion of glaciers. These
physicists made big contributions in other areas
of science, but in the mid and late 19th century it
was almost the popular fashion of physicists to deal
with glaciation in some way. Glacier studies also
permeated down to humble student inquiries,
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including an essay by no less than the young Albert
Einstein.3

Walker andWaddington (1988) wrote a review of
‘‘the early discoverers’’—glaciologists, geologists,
and physicists—who developed the early theory of
glacier flow; they tell the story of how many able
physicists flatly failed to explain much about
glaciers, despite trying (although some succeeded
famously). Some physicists, such as Einstein, did
better as humble young students than later as
accomplished physicists in matters glaciological.
Although it is difficult to find fault with Einstein,
it happens that in one of his last writings on the
topic of glaciation, he subscribed to a hypothesis
that almost immediately was revealed to be demon-
strably wrong;4 even the greatest scientists are
fallible.

Radok (1997) provides a review of the origin and
early development of internationally coordinated
glacier observations, which became known as the
World Glacier Monitoring Service based in Zurich,
Switzerland (see Section 1.4.1). While science was
blossoming around the world, the World Glacier
Monitoring Service gained its ancestral foothold
in late 19th century science, beginning with the
1894 founding of the Glacier Commission Inter-
nationale (CIG)—under the lead of François-
Alphonse Forel—at a geological congress in Zurich
(Forel 1895). The CIG’s second President, Eduard

Richter, Professor of Geography at Graz Uni-
versity, in 1899 urged increased efforts toward
measurement and understanding of glacier mass
budgets, seasonal speed variations, and moraines.
In 1903, the third CIG President, Sebastian
Finsterwalder, Professor of Analytical Geometry
and Calculus at the Munich Technische Hochschule
(TH), presented a model that related glacier sizes
and shapes to mass balance changes (Radok 1997).
Finsterwalder is otherwise known for use of
vector terminology in the early development of
quantitative aerial photogrammetry, thus helping
to found the basis of a technology that today
looms large in satellite-based analysis of
glaciers.
The connections among climate, glaciers, and the

solid Earth beneath the glaciers also received much
attention in those early decades of modern glaciol-
ogy. The dynamic interactions among these com-
ponents of the Earth were perhaps most evident to
glaciologists who spent their time either working in
or growing up amongst the world’s most active
orogenic belts. For example, in 1888 Olinto De
Pretto, who was born at the foot of the Italian Alps
in Schio, wrote about The Influence of the Raising
and the Degradation of Mountains on the Develop-
ment of Glaciers. De Pretto (1903) later contributed
to the theoretical development of mass–energy
equivalence (briefly mentioning uranium and thor-
ium decay transformation of mass to energy) and
thus might have been a help to Einstein’s theoretical
work, though their respective physics differed
totally (De Pretto’s physics turned out to be wrong,
and Einstein’s well validated).
Active foundational glaciological research, by

physicists and others, continued into the early
20th century. Wegener (1912, 1915) famously for-
mulated the continental drift theory (Frankel 2012),
but he was also fervently into Greenland field
studies; he drilled an ice core, probed the thickness
of the ice sheet, published on ancient climates
(Köppen and Wegener 1924), and went on to die
there as well. Greenland geology integrated closely
into his continental drift hypothesis. Glacial geo-
morphology—including the global pattern of the
great Permian glaciation—also helped him link con-
tinents into a former megacontinent. Ironically,
though he was in need of a deformation mechanism
for what later became known as plate tectonics, the
viscous flow of glacial ice—which we find to be so
evident on the Greenland ice that Wegener knew so
well—barely, if at all, entered into Wegener’s ideas
on how continents moved across the face of the
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3 Albert Einstein, 17 years old and starting university

studies at what now is ETH-Zurich, presented an

examination essay on ‘‘Evidence of the earlier

glaciation of our country’’ (Einstein 1896). His essay

was mainly on moraine evidence for the former more

extensive glaciation of Switzerland. It was objective,

mainstream, and correct, but fully devoid of the

greatness Einstein would soon reveal.
4 Glaciology was never key to Einstein’s work, but in his

later years he wrote a foreword to a book in 1953

(published in 1958, after Einstein’s death; Hapgood

1958) on polar wander. Hapgood’s hypothesis was that

the asymmetric deposition of polar ice resulted in rotation-

induced torque on the lithosphere, which drove the

polar lithosphere toward the equator, thus explaining

the sudden climatic shifts in Earth’s record. The

revolution in plate tectonic theory began the year of

Hapgood’s book publication. Within a few years, the

overwhelming evidence for plate tectonics undermined

the credibility of Hapgood’s hypothesis. Einstein,

alongside his effusive admiration of Hapgood, also

included notes of caution about the hypothesis. When

Einstein wrote the foreword, he understood the value

of boldness and creativity in science, but he could not

have known how wrong Hapgood was.



Earth. Nevertheless, the big picture of shifting con-
tinents and shifting climate and waxing and waning
of ice sheets was at the heart of this theory, and
today still is important in the more comprehensive
theory of plate tectonics.

A few years before Wegener published his first
classic paper on his theory of continental drift,
another continental drift hypothesis—very similar
to Wegener’s (probably mutually independent,
Frankel 2012)—was published in a paper by Frank
Bursley Taylor (1910). Taylor included a deforma-
tion analog, though not actually a mechanism.
Taylor was a glacial geomorphologist, and his
experience showed in what he proposed as homo-
logous Pleistocene moraine patterns in North
America and convergent plate margin patterns in
places like Indonesia and the western Pacific.
Taylor clearly was thinking in terms of relatively
thin-skinned ice sheet–like deformation of the con-
tinents along convergent boundaries, as well as rift-
ing along places like the Mid-Atlantic Ridge.
Wegener, though highly experienced in field glaciol-
ogy, did not seem to apply much insight from that
experience to his continental drift ideas (Frankel
2012).

Physicists of the 19th century were engrossed in
theory development for several key natural phe-
nomena including heat and thermodynamics, mass,
light, magnetism, electricity, gravity, rheology, and
glaciers. Physicists were also pursuing validation of
theory using elegant but simple benchtop experi-
ment approaches; they were looking at phenomena
easily seen and measured, and which carried both
immensely practical and less tangible concepts that
formed the technical foundation of our modern
civilization. Similarly, glaciology offered a rich
variety of observable phenomena that were readily
understood at a basic and almost instinctive level,
but which posed vexing challenges to explain scien-
tifically.

Glaciers—past, present, and future—were at
the nexus of mid and late 19th century scientific
advances in physics and geology. The impacts of
glacial theory extended throughout the natural
sciences by the start of the 20th century. Taylor’s
and then also Wegener’s ideas on continental drift
or creep took more than a nugget of insight from
glacial flow (as well as mechanical and geological
inaccuracies and informational gaps). The essence
of their hypothesis turned out to be on the whole
correct, but, it was partly rooted in an analogy to
what by 1910 had become a well-known tangible
phenomenon—that of glacial flow, which in the

previous century was an exciting novelty in scien-
tific considerations.
Glaciology in the 19th century helped define the

emergent field of biogeography. John Muir
famously arrived at the glacial hypothesis of valley
development in the Sierra Nevada and proposed
Pleistocene glaciation to explain the geographic
range of the giant sequoia (Muir 1876). Wallace
(1879, 1880, 1886, 1889) presented detailed treatises
on continental glaciation and other Earth changes,
as well as a hypothesis of how the waxing and
waning of ice sheets would affect animal and plant
migration and primary succession.
Glaciation has figured prominently and repeat-

edly in the development of plate tectonic theory,
including the important aspects of postglacial
rebound, which provides some of the best informa-
tion on upper mantle and lithospheric rheology,
and insights from glacial creep into mantle creep
processes (Weertman and Weertman 1975). Rheo-
logical characterization of ice and glaciers largely
preceded and has helped to motivate rheological
studies of mantle silicates and studies of mantle
convection. Thus, glacier physicists and geomor-
phologists were concerned with the rheology of
both ice and silicate materials. Glacier rheology
deduced from field observations and lab studies
(starting with Glen’s Flow Law; Glen 1955, 1958;
and more recent lab work by Durham and col-
leagues; reviewed in Durham et al. 2010) and
theoretical applications to glacial flow (starting
with Nye 1953, 1957, 1960 and Paterson 1994)
underpins modern analytical and numerical glacial
flow modeling in a major way. Ice rheology is also
key to tectonic, geologic, and thermal modeling of
the icy satellites of the gas giant planets and of
Martian polar caps and glaciers (Durham et al.
2010).
The importance of glaciers to many great clas-

sical scientists of the 19th century, and still today
for scientists across many disciplines, stems mainly
from glaciers’ extremely visual display of dynamics
and their evolution on human-observed timescales.
The significance of this for scientists is not much
different than for the layperson. The graceful curve
of medial moraines, the wave patterns of ogives, the
arcs of crevasses, the symmetry of parabolic form,
and blueness of light scattered within are each spec-
tacular; the sum of the parts, which we call glaciers,
is something of inexplicable beauty. The physical
phenomena presented by glaciers are equally
amazing; superlatives aside, the phenomenology is
measurable and explicable by science. John Tyndall
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(1863, republished in 1893) in his 1863 article—and
in a public lecture explaining the greenhouse effect
and meteorological phenomena based on the radia-
tive opacity of water vapor as well as describing the
supportive experimental evidence—wrote ‘‘we
conceive the invisible by means of proper images
derived from the visible, and purify our conceptions
afterwards.’’ Though he was specifically referring to
radiative transfer through water vapor, his state-
ment applies equally to all science, including the
science of glaciers, to which Tyndall contributed
immensely. The fact is, despite their geographic
remoteness, glaciers are eminently tangible in the
processes they embody and display.

Starting with J.D. Forbes and continuing for
generations and still today, glaciologists have spent
thousands of person-years in the field making meas-
urements of many types. Through the 20th century,
the knowledge of glaciers increased dramatically
through new geophysical field-sounding methods,
application of aerial photography, new lab data
on the mechanical properties of ice, new analytical
models and early computer numerical models of
glacier behavior, and access to an ever-increasing
number of glaciers. However, on the global scale,
the vast area covered by glaciers and ice sheets and
the difficulty and cost of their study has sharply
limited ground-based and airborne investigations.
Volume IX of Fluctuations of Glaciers (WGMS
2008), one in a series of periodic reports published
by the World Glacier Monitoring Service, most
recently included data—mainly field-acquired
observations—for glaciers in 28 countries and other
geographic entities. Glacier frontal positions, for
example, are reported for 605 glaciers (not all of
these have data for more than one year), roughly
0.3% of the world’s glaciers. Mass balance data are
much more limited due to the great effort needed to
gain this information from field-based observa-
tions, which remains the most reliable and accurate
method.

With the advent of satellite imaging and remote
geophysical probing, entirely new ways of looking
at glaciers became available; from the very moment
ERTS-1 (Landsat-1) was launched, satellite appli-
cations to glaciology began. Places as remote and
immense as Antarctica and the Himalaya could be
mapped in their entirety and the dynamics of ice
sheets and glaciers measured (Southard and Mac-
Donald 1974, Krimmel and Meier 1975, Østrem
1975, MacDonald 1976, Rott 1976, Swithinbank
et al. 1976, Orheim 1978, Rundquist et al. 1980,
Williams et al. 1982, 1995, Berg et al. 1982,

Howarth and Ommanney 1986, Lucchitta and Fer-
guson 1986, MacDonald et al. 1990, Lucchitta et al.
1991, 1993, 1994, 1995, Bindschadler and Scambos
1991, Scambos et al. 1992, Ferrigno et al. 1980,
1993, 1994, Bishop et al. 2000). From those early
satellite-based studies, and midway through pro-
duction of the Satellite Image Atlas of the Glaciers
of the World (Ferrigno and Williams 1980 and the
whole series by Williams, Ferrigno et al., Vols. A–
K), GLIMS and other systematic satellite-based
surveys of the world’s land ice were conceived
and implemented (Kieffer et al. 2000, Bindschadler
et al. 2001, Raup and Kargel 2012). As the number
of satellites and the capabilities of their sensors have
improved, so too has the technology to extract
information from these sensor data. Data relevant
even to mass balance—just 10–20 years ago thought
exclusively the domain of field investigations
(Scherler 1983)—now can be acquired with the
use of satellites. This book is largely about modern
techniques of glacier mapping and analysis using
satellite data, the contributions of satellite analysis
to regional and world glacier inventories, and use of
these data to enhance understanding of glacier–
climate–land–ocean linkages (Bishop et al. 2004,
Kargel et al. 2005, Raup et al. 2007, Bolch et al.
2012, Arendt et al. 2012, Raup and Kargel 2012).

P.2 THE PRACTICAL AND PERCEIVED

IMPORTANCE OF GLACIERS

TODAY

P.2.1 Modern understanding of climate

change due to greenhouse gases

and other causes

The two related concepts of natural and anthropo-
genic greenhouse effects have been well developed
in theory for over a century but the latter has been
widely accepted by scientists only for the past 40
years, during which time evidence has mounted
exponentially in its favor. However, the evidence
indicates that a much more rapid rate of global
warming is occurring than was thought possible a
century ago, mainly because of the exponential
growth in anthropogenic greenhouse gas emissions.
Earth’s climate is a little less sensitive to CO2 con-
centration (gauged by the amount of global warm-
ing or cooling for a given change in CO2) than what
Arrhenius calculated, because now we have a
greater understanding of the important negative
feedback of increased cloud cover as CO2 rises.
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Rather than saving the world with global warming
as Arrhenius suggested, saving the world from
anthropogenic greenhouse warming has emerged
as one of the world’s biggest challenges. Global
climate change has some positive effects but many
serious deleterious ones, which pertain as much to
the rapid pace of global warming (unanticipated by
Arrhenius) as to its magnitude.

Besides the influences of greenhouse gases on
climate and glacier variations, other climate-forcing
phenomena are also recognized and now very
widely accepted, including orbital variations (Croll
1875, Milankovitch 1941, Hays et al. 1976, Berger
1978, Muller and MacDonald 1997, Ruddiman
2003), large volcanic eruptions (Robock 2000),
and solar activity cycles (Bard and Frank 2006).
The important roles of planetary gravitation-driven
and rotation-driven cycles in affecting Earth’s
climate were confirmed in the landmark studies of
Hays, Imbrie, and Shackleton5 (1976) and Imbrie
and Imbrie (1986), who documented sedimentary
rhythms matching expectations from astronomical
theory.

The Sun itself is steadily brightening along the
stellar main sequence, but by less than 1% per
hundred million years (Sagan and Mullen 1972).
The sunspot cycle alone accounts for an oscillation
of about 2 W m�2 (or about 0.15% of total solar
irradiance) on an 11-year cycle, and about twice
that on a cycle of several centuries. Solar activity
variations could account for 0.1–0.2�C oscillations
of global temperature (not including feedbacks,
which could increase the impact). The climate
impact from solar activity cycles appears to be an
order of magnitude less substantial than needed to
explain ice ages. Bard and Frank (2006) considered
solar activity variability to be a possible contrib-
uting cause of the Medieval Warm Period and Little
Ice Age, but that overall it is a secondary effect
modulating the climate changes induced by other
causes.

Geological and solar evolution and solar oscil-
lations can control huge planetary-scale climatic
changes without any human influences, as the rock
records of Mars and Venus attest. The extreme
climatic fluctuations of those planets as well as of

Earth reinforce prevailing scientific theories and
models of climate change controlled partly by
greenhouse gas abundances in geologic deep time
(Kirschvink 1992, Hoffmann et al. 1998, Baker
2001, Bullock and Grinspoon 2001, Jakosky and
Phillips 2001, Kasting 2003, Kargel 2004, Kasting
and Howard 2006, Wilson et al. 2007, Winguth et
al. 2010). The physics of radiative transfer (see
Chapters 2, 3, and 33 of this book by Bishop et
al., Furfaro et al., and Kargel et al., respectively)
are unchanged with or without humans. With
anthropogenic climate change occurring ever more
rapidly, no legitimate questions are being raised
about the fundamental planetary habitability of
Earth in the same way that habitability is being
explored for exoplanets (Kasting 2011) or for Venus
in the past (Grinspoon and Bullock 2007). The
magnitude of anthropogenic climate changes—even
in worst-case scenarios—is simply too small to call
into question Earth’s habitability for life in general.
However, the ongoing mainly human-caused
changes to the Earth’s biosphere and lithosphere
have motivated a new term for our epoch: the
Anthropocene (Crutzen and Stoermer 2000). There
are few serious suggestions that this informally
defined human-affected geologic epoch will be
comparable with the first-order geologic transitions
in Earth history, such as the atmosphere and
climate-change–linked Proterozoic/Paleozoic tran-
sition (Kasting 2003, Maruyama and Santosh
2008), but the term ‘‘Anthropocene’’ does have ris-
ing currency within the scientific community, as the
term connotes widespread deep-cutting changes to
the Earth system.
Climate change has been linked to the rise and

fall of ancient civilizations (Binford 1997, Peterson
and Haug 2005, Dugmore et al. 2007). The impacts
of more recent climate changes may have been felt
in the economies of many poor nations and may
affect the political stabilities of some of them (Dell
et al. 2008). Some 20th–21st century economic
declines and demographic shifts within the United
States also have been linked to climatic fluctuations
(Feng et al. 2012, Hornbeck 2012). Hence, the roles
played by 20th and 21st century climate change on
the global economy and even on the suitability of
Earth for modern civilization are serious needed
topics of discussion. In much the same way as
glaciers are important to climate change, they also
are necessarily a part of one of the most important
global scientific and political discussions of our day.
Not surprisingly, such ‘‘pocketbook’’ topics engen-
der much controversy. This book is not about those
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humanly relevant matters, it is specifically about the
pure record of Earth’s glacier state and dynamics
and their links to climate change and other dynamic
components of the physical Earth system.

It is now accepted that climate and climate
change on Earth are controlled by: solar main
sequence brightening (timescales for major changes
108–4.5� 109 years), biological influences on atmo-
spheric composition (109 years), geological controls
by mountain building and the distribution of con-
tinents and interaction of rock weathering with the
biosphere (5� 106– 5� 108 years), obliquity and
eccentricity variations (104–106 years), short-term
solar activity cycles (101–103 years), greenhouse gas
uptake and release from the solid Earth (104–108

years when natural, 102 years due to industrial
emissions), soot emission and deposition (101–102

years), redistribution of heat by ocean currents
(1–10 years for the faster changes), and acid aero-
sols injected into the stratosphere by volcanic erup-
tions (1–10 years). The Sun keeps its own schedule,
as does the solid Earth. Humans mainly affect
greenhouse gas abundances, which top the list for
potent effects on climate, and soot.

Ensemble models combining the effects of orbital
variations, volcanic aerosol emissions, solar activity
oscillations, and greenhouse gas emissions are
pretty good at explaining 20th century decadal
climatic fluctuations and long-term warming
(Meehl et al. 2003, 2004). Anthropogenic green-
house gases are forcing inexorable warming and
are largely responsible—according to prevailing
scientific thought and modeling—for a century-long
reversal of slow global cooling that had been under
way for millennia due to orbital variations (Kauf-
man et al. 2009). Arrhenius (1908) was right in his
lab measurements and math, though he somewhat
overestimated climate sensitivity because he did not
take full account of negative feedbacks, such as
cloud influences, now known to be part of the sys-
tem. Arrhenius also lacked understanding of how
rapidly greenhouse gases would increase and, there-
fore, miscalculated the timescale of climate warm-
ing; he also failed to recognize the deleterious
impacts of climate change, and thus had the wrong
cost/benefit relation.

P.2.2 Modern impacts of changing

glaciers and ice sheets on people

Glaciers are among the most dynamic elements of
the solid Earth and are fascinating in their own
right. This was enough to drive largely esoteric

inquiries by physicists, geologists, and glaciologists
during the 19th century, when the implications of
greenhouse gas emissions were little more than
distant considerations and when common snow
avalanches seemed more of a concern to human
well-being than glacier fluctuations. Additionally,
by the mid to late 19th century, glaciers were at
their greatest elongation of the Little Ice Age,
driven there ultimately by Jupiter’s (and somewhat
by Saturn’s) gravitational influences on Earth’s
orbital eccentricity and by Earth’s spin–axis
obliquity cycle and precession of the spin axis (Croll
1875, Milankovitch 1941, Hays et al. 1976, Berger
1978, Imbrie and Imbrie 1986, Muller and Mac-
Donald 1997, Ruddiman 2003). The modern idea
of ongoing anthropogenic greenhouse gas-driven
climate change stems straight from that era of
fervent observation, theoretical development, and
experimentation regarding Ice Age Earth and
modern glacial activity.
Not recognized in the 19th century, glaciers and

ice sheets are also an important freshwater resource,
an important contributor to ongoing sea level rise
(Meier 1984, IPCC 2007, Rignot et al. 2011), and a
cause of serious natural hazards. Because they are
close to the melting point and react strongly to
small changes in climate, glaciers provide some of
the clearest evidence of climate change and consti-
tute key variables for early-detection strategies in
global climate-related observations (GCOS 2004,
2006). The most crucial humanly important aspects
of glacier and ice sheet fluctuations depend on
where one lives—near the sea, in a glacierized
mountain valley, or on a farm downstream of a
glaciers, for instance.
In coral atoll nations, on barrier islands, and

marine deltas—places like the Maldives, New
Orleans, New York City, the Florida Keys, the
Netherlands, and the Mekong Delta—sea level is
a big issue; whereas alpine glacier change represents
a warning sign to those coastal people, it is the large
ice masses, such as Greenland, that fuel the greatest
concern about sea level change. As Alley et al.
(2010), Kargel et al. (2012a), and Chapter 8 of this
book ‘‘Mapping of glaciers in Greenland’’ by
Stearns and Jiskoot point out, the Greenland Ice
Sheet and peripheral ice bodies are melting rapidly
enough this century to be a fate-determining con-
cern to the world’s populations who are most
vulnerable to coastal infringements by the sea.
The pace at which the large ice sheets and largest
ice caps are melting is such that the biggest impacts
for most other people this century are apt to include
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costs incurred in the construction of new airports
and seaports where vulnerable ones are flooded,
higher food prices where delta farmlands are inun-
dated, loss of tourism on some barrier islands, and
increased insurance premiums and taxation to cover
catastrophic losses related to storm damage of
coastal populations and infrastructure. Melting in
Greenland, Antarctica, and the largest ice caps is
thus immediately highly consequential for com-
paratively few people (a few million) and an increas-
ingly important pocketbook issue for billions of
others. Sea level rise of just a few decimeters this
century, then eventually (in a few centuries) a few
meters, is also an enormous ecological issue in
places like the Florida Everglades and the lagoons
of coral atolls.

For people living in glacierized mountain val-
leys—again numbering a few million worldwide—
the impacts of climate change on fast-responding
valley glaciers, particularly those in the more tem-
perate or maritime environments, pose the greatest
concern. For many of these people, glaciers supply
water for drinking, irrigation, heavy industry, elec-
trical power, and sanitation. For others, the release
of too much water at once (e.g., glacier lake out-
burst floods) can be a life-and-death issue irrespec-
tive of whether it is linked to climate change or
simply part of the modus operandi of normal
glaciers. There is also an issue regarding people’s
well-being, where glacier runoff drives hydroelectric
power projects, vital for electrical power and reli-
able drinking water. If climate changes, then
glaciers change, and these changes can be for the
better or worse; they are individual and circum-
stance dependent. Clearly, the next generation to
live in glacierized mountain regions and lowland
coastal areas worldwide will not live in the same
way or as securely as today’s generation.

Recent glacier-related disasters in the Himalaya–
Karakoram region—including the Attabad land-
slide that formed glacier meltwater-fed Lake Gojal
(Kargel et al. 2010), the Gayari ice avalanche/
landslide that buried a Pakistani Army base
(deemed by some to be sabotage), and the Seti River
outburst flood—raise the question of whether these
types of disasters are on the rise in that region, and
perhaps globally. Science is not yet ready to offer a
full answer to this question, but it is an important
one to address and resolve in light of the demands
of future land use planning and protective measures
in each glacierized region.

Certainly, the threat and occurrence of natural
disasters have been commonplace throughout the

lengthy history of humans residing in certain
regions, such as the Caucasus (Kääb et al. 2003),
the Peruvian and Colombian Andes (Carey 2005,
Kargel et al. 2011), and the Himalaya–Karakoram
region (Richardson and Reynolds 2000, Quincey et
al. 2007, Ives et al. 2010, Kargel et al. 2010), to
name a few. The changing natural (and human-
affected) environment of cryospheric processes,
natural hazards, and risks is dominated by the rapid
expansion of human land use and infrastructure
development in once-forbidding and remote moun-
tains (e.g., Kargel et al. 2012b). Risk too is shifting
because climate change is modifying the land sur-
face process system, and development is encroach-
ing into affected areas.
Rapidly changing glaciers—whether retreating or

advancing—destabilize the landscape and for a time
may increase the frequency of mass movements
such as debris avalanches, ice avalanches, and deb-
ris flows due to glacier lake outbursts. Glaciers are
fundamentally a metastable phenomenon. Atmo-
spheric precipitation places ice at high gravitational
potential energies, and this energy must be released.
As glaciers flow downslope, they erode and trans-
port rocks and deposit debris in gravitationally
unstable positions. As glaciers flow downslope, they
encounter warmer conditions and so they melt, thus
producing lakes, streams, and wet sediment. The
ice, debris, and meltwater are forced gravitationally
to move downslope. When they do so steadily or
in small increments the problems that arise are few
or manageable; furthermore, meltwater is a valued
resource and helps to smooth out seasonal varia-
tions in water flow. Disaster happens when an
unstable mass (ice, water, or sediment—or, most
formidably, all three together) accumulates exces-
sively, moves suddenly, and infrastructure or people
get in the way. Any change in the climate–land–
glacier system must result in a change in the land
process system, with hazards and risks rising, fall-
ing, or changing location accordingly.
Most commonly, glacier-related disasters involve

a natural process cascade effect; as the factors that
affect land surface processes and the frequency or
magnitude of any component of the process cascade
changes, the net hazard and risk to people also
changes. A glacier in a metastable dynamical steady
state will pose one set of natural hazards, a glacier
in retreat poses another set, and an advancing
glacier yet another. The overall risk to people will
depend on the details near, say, a particular village,
bridge, or railroad. One size does not fit all. Hence,
climate change—which is documentably having

Prologue lxv

Server
Comment on Text
Is sense OK?



large impacts on glaciers both regionally and glob-
ally—is affecting the natural process, natural haz-
ard, and human risk environment. Overwhelmingly,
however, changing land use inevitably has the
greatest impact on the natural hazard and risk en-
vironment. Nevertheless, of all the factors involved
in the natural disaster process cascade (causes and
effects, and changes in the system), land use in
mountain environments and vulnerable coastal
locales may be the most readily controlled by
people. In principle, this could be a good thing,
as it allows people to become better masters of their
own destiny. Too often, people enter into risky
situations as a result of ignorance or informed
acceptance of risk in favor of some perceived
benefit, and as a consequence avoidable tragedies
continue to happen. The impact of climate change
and cryospheric response makes informed decision
making more of a challenge as the local history of
glaciological hazards and disasters loses its guiding
value.

P.2.3 Recent public perceptions about

the importance of glacier

fluctuations

Much as they did for the great 19th century
scientists, glacier variations today provide the gen-
eral public with the most compelling visual evidence
of climate change. The foremost thing that the gen-
eral public are aware of concerning glaciers, besides
their being icy and cold, is that they are melting.
The people of the world are divided and many are
confused about climate change (the citizens of some
countries are notable exceptions). However, it is not
simply a case of total rejection or unawareness of
the relevant science. A huge international Gallup
survey in 2007–2008 in 128 countries indicated a
61% global awareness of climate change among
individuals 15 years old and above (Pelham
2009). The results of the poll varied markedly
among different countries. Awareness was 99% in
Japan, and 35, 62, and 97% in India, China, and the
U.S., respectively, to take four examples. Attribu-
tion of climate change to human activities, the poll
showed, was believed by 91% in Japan, 58% in
China, 53% in India, and 49% in the U.S. Asked
whether global warming was a serious personal
threat, the response was in the affirmative for
80% in Japan, 63% in the U.S.A., 29% in India,
and 21% in China.

A separate survey by the Brookings Institution of
American adults in fall 2011 indicated that 62%

thought that there was solid evidence of global
warming over the past 40 years (Borick and Rabe
2012). That survey also found that personal obser-
vation was the most frequently cited (of nine ‘‘most
important factors’’ listed) forming the opinions of
those accepting the existence of evidence of global
warming; the second most frequently cited involved
reports of melting of the world’s polar ice sheets
and glaciers. A slightly different inquiry in the same
poll listed melting glaciers and polar ice as the most
frequently mentioned contributory factor (of the
same nine factors) that helped forge their accep-
tance of global warming. This poll also examined
perceptions about scientists’ integrity and media
objectiveness; noteworthy is the finding that,
among individuals disbelieving the case for global
warming, 80% believe that scientists are overstating
evidence for their own interests and 90% claim
that the media are overstating the case for global
warming.
Media misreporting and misrepresenting climate

and glacier data, and in some cases clearly errant
scientific reporting, have been a serious hindrance
to communicating facts and understanding that are
likely relevant to public well-being. Noted cases of
misrepresentation of scientific findings and knowl-
edge have pertained to Peruvian and Himalayan
glaciers and the Greenland Ice Sheet (Cogley et
al. 2010, Kargel et al. 2011, 2012a). The film
industry is notorious for misrepresenting science,
particularly when such phenomena as climate
change are involved. Glacier melting and sea level
rise is not as some Hollywood doomsday films (e.g.,
The Day After Tomorrow, 20th Century Fox, 2004;
or Waterworld, Universal Pictures, 1995) make it
out to be. It is perhaps more useful to comment
on genuine public misperceptions that are closer
to reality than to waste time on evident absurdities.
Such films, while viewed by most of the public as
mere entertainment, nonetheless have the potential
to contribute to public confusion about climate
change, which in extreme cases might bring about
political backlashes or other illogical responses to
nonsense contained in sensationalistic films.
In this book’s Epilogue, Victor Baker argues that

the most important factor limiting public under-
standing of climate change is not deficiencies in
knowledge of scientific ‘‘facts’’ (part of the educa-
tion gap comprising widespread scientific illiteracy),
but rather a broad misconception about how
science works. This misconception enables the more
extreme forms of climate change skepticism and
climate change denialism to go unchallenged by
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much of the public and causes many governments
to be unwilling to make logical decisions on
relevant matters. The public’s confusion between
science and nonscience and manipulation of the
public by some narrow special interests is a serious
challenge to solid decision making.

A certain amount of public confusion is under-
standable. Both climate records and glaciological
records show that there is nothing simple about
global climate change and the roles played by
greenhouse gases, let alone the basic essence of
the theory. Climate change is about much more
than anthropogenic and natural greenhouse gases.
Whereas the 11-year solar activity cycle is recog-
nized as having a minor but measurable control
on climate, major controls include orbital varia-
tions and various geological processes including
volcanism, carbonate formation in shallow inland
seas, and other phenomena that may be broadly
linked to plate tectonics (Imbrie and Imbrie 1986,
Kasting and Seifert 2002). The plate tectonic
components of climate change are variable on
timescales of tens of millions of years, though vol-
canism can be more episodic, as can of course aster-
oid and comet impacts, which also can affect
climate.

The only major components of the Earth climate
system that vary on the scale of human lifetimes and
are either progressive and cyclic (thus somewhat
predictable) are solar activity cycles (which have
minor climate influences), cycles related to deep
oceanic circulation, feedbacks such as Arctic sea
ice coverage, and anthropogenic greenhouse gas
emissions and aerosol pollutants. Volcanic erup-
tions despite being important, frequent, and occur-
ring on human timescales are not predictable or
progressive. The only component of this set of
humanly relevant climate change forcings which is
new to Earth—and can cause fundamentally new
climate ordering on human timescales—is the
industrial and consumer-driven emission of green-
house gases and aerosol pollutants. Despite the
many contributory and complicating factors that
affect climate, whether they operate episodically
and on short timescales or inexorably on geologic
timescales, it is human influences on climate that are
most dramatically affecting glaciers on timescales
that are relevant to the lives of people today. This
is recognized by most people on Earth, more so in
Europe, the Americas, and Australia/Oceania than
in parts of Asia and Africa. Thus, people generally
recognize that we are affecting the global climate
and that glaciers are melting largely as a conse-

quence; the actual complexities are manifold, but
the basic perception is correct.
People’s perceptions of glaciers vary widely

depending on whether they live in an area continu-
ally under threat from glaciers, have livelihoods
directly tied to glaciers, derive reliable year-round
electrical power or water from them, merely visit
them on occasion, view them from a distance—
perhaps via television—as a signpost of a changing
global environment, or have no personal or intel-
lectual relationship to glaciers. Governments like-
wise can have very different perspectives about
glaciers, depending on whether there is a scientific
underpinning of the government or a large eco-
nomic stake rooted in glaciers or contingent on
keeping the public in the dark about glaciers.
As happens with other natural hazards and

public responses to them, people and governments
also respond very differently to the risks posed by
glaciers. Glacier hazards and disasters, much like
floods, fires, and earthquakes in other parts of the
world, are not simple matters to deal with. The
issues are multidimensional and any solutions are
likely to be at cross purposes with other values. The
situation is directly analogous to the long-term
response to Hurricane Katrina, which involved
questions about whether to rebuild the most dam-
aged parts of New Orleans, how much to invest in
flood protection, or even whether to relocate the
city entirely. As is so often the case with natural
disasters and Earth hazards, as explained for the
Katrina case by Baker (2007), social, cultural,
and humanistic values can sometimes conflict with
economic values, which in turn may conflict with
geophysical and Earth surface science, engineering,
and technology. What may seem a logical response
may not be politically or socially possible; and what
may be popularly demanded might be economically
infeasible. Finding a compromise can be difficult, a
process often made worse by irresponsible, errant,
or accidentally inflammatory reporting of the issues
by the media and the timeless problem of influence
peddling at broad and illogical public expense.
Given the visually compelling evidence and par-

tially intuitive nature of scientific deductions related
to glacier fluctuations, it is not surprising that
glaciers figure prominently in today’s public debate
about climate change. The tangibility of such infor-
mation is there for all to see; like Jupiter’s satellites
from the time of Galileo to now, glaciers are there
to be observed and refute antiscience dogma,
whether from the climate change denial perspective
or from a climate change exaggeration vantage
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point. Though public perceptions may be clouded
by antiscience dogma, the confusion cannot last
because of the unrelenting changes to the Earth that
are under way and occurring at a pace that humans
can perceive. There is little point in my reviewing
the prodigious and highly varied evidence that
global climate change is under way and is linked
partially to anthropogenic greenhouse gases, as
excellent modern reviews are already available
(Mitchell 1989, Ledley et al. 1999, Le Treut et al.
2007). However, we will return to this topic in con-
nection to glaciers in Chapter 33.

Remarkably, the fundamentals of greenhouse
climate theory have not changed much since the
19th century, and this is clearly because the basic
physics are comparatively simple and have been
understood for over five generations. The impor-
tant details—cloud cover feedback effects, trace
gas influences, and the all-important evaluation of
climate sensitivity (the amount of warming per
increment rise in atmospheric CO2 abundance)—
have been steadily developed, as have increasingly
detailed spatially resolved general circulation
models of global and regional climate. Rather than
reviewing climate theory and modeling (which is
dealt with in various chapters), we use this book
to highlight the abundant glacier evidence—
obtained both from space-based and ground-based
observations of glaciers—that climate is changing
and affecting the world’s ice and, further, to high-
light the many complexities and dynamical aspects
of glacier fluctuations that are not related directly to
climate change.

The Alps have given rise to much of the world’s
scientific interest in glaciers and their links to
climate, and Zurich much more so than most other
places. Thus it is fitting that the GLIMS initiative
held its first workshop in Zurich in 1999, one cen-
tury after Professor Richter’s (the CIG President)
mandate to look more deeply into the problems of
glacier change.

P.2.4 Time to move on

In sum, glaciers and the associated issues of climate
and climate change have been a topic of exceptional
scientific interest for nearly two centuries. Now that
evidence of natural and anthropogenic climate
change is widely perceived as being relevant to
people today, these matters are top of the agenda
in public discussion and policy development. Skep-
ticism or public questioning of science is healthy
and should be welcomed. People rightly perceive

climate change as a multi-trillion dollar issue span-
ning generations. Public questioning has had the
positive effect of focusing more scientific attention
on uncertainties. Unfortunately, much public
discourse has misinterpreted scientific concepts of
uncertainty to mean a void of understanding or a
prevailing state of confusion due to intractable
ambiguities. Furthermore, much of so-called
climate change skepticism is tantamount to spher-
oidal Earth skepticism, or questioning whether,
despite centuries of scientific understanding, heat
and energy flows from hot things to cold things.
That said, climate is changing in complex ways
and glaciers are responding with their own indi-
vidual complexities. In essence the issue is simple:
climate warms when we add visibly transparent
gases that are opaque in the infrared to the atmo-
sphere and glaciers melt when they are heated, but
the details are not simple. This book is about the
complexities of glaciers and how we measure and
monitor them. The satellite era and remote sensing
may provide the necessary answers.
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Something is done the first time only once—

Eugene M. Shoemaker (1928–1997)
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