Greenland’s glaciers and the Arctic climate

These before-and-after photographs show Petermann Glacier in July 2009, before the calving event, and again in July 2011. Photographs courtesy Jason Box (top), Alan Hubbard (bottom)

Last summer, a chunk of ice three times the size of Manhattan broke off Petermann Glacier in Greenland and floated out to sea. The calving left miles of newly open water in the deep Petermann Fjord, which had been capped in a thick layer of glacial ice. New research out this summer confirmed that it was likely the largest calving in the region since observations began in 1876. What does this event tell us about climate change in the Arctic? Continue reading

Climate change or variability: What rules Arctic sea ice?

This photo, taken during the NASA ICESCAPE mission in summer 2011, shows melt ponds on the surface of Arctic sea ice. Weather patterns in the Arctic this summer have favored ice loss, leading to near-record low ice extent over most of the summer. New research is explaining how much ice loss is caused by variable conditions, and how much can be pinned on human-caused climate change. Credit: NASA/Kathryn Hansen

Arctic sea ice is near its annual low extent for the year. Will it reach a new record low? While many people are watching this year’s ice extent closely, the effect of climate change on ice extent in a single year is different than its effect in the long term. Arctic sea ice has declined more than 30 percent in summer since satellite measurements started in 1979. But from year to year, ice extent jumps up and down quite a lot. Continue reading

Getting beneath the ice

Researchers can measure ice thickness by drilling holes in the sea ice. But the method is not a practical way to measure thickness over the millions of square miles of Arctic sea ice. Image courtesy of Martin Hartley

NSIDC reports ice extent, a two-dimensional measure of the Arctic Ocean’s ice cover. But sea ice extent tells only part of the story: sea ice is not all flat like a sheet of paper. While freshly formed ice might not be much thicker than a few sheets of paper, the oldest, thickest ice in the Arctic can be more than 15 feet thick—as thick as a one-story house. Scientists want to know not just how far the ice extends, but also how deep and thick it is, because thinner ice is more vulnerable to summer melt. Continue reading