Published Research

The following references cite studies that used MODIS data. Please contact NSIDC User Services if you have a reference you would like to share on this page.


Abake, Gulijianati et al. 2014. Potential Hazard Map for Snow Disaster Prevention Using GIS-Based Weighted Linear Combination Analysis and Remote Sensing Techniques: A Case Study in Northern Xinjiang, China. Advances in Remote Sensing 3(4). Art. #52718. doi: 10.4236/ars.2014.34018

Abeli, Thomas et al. 2014. Geographical pattern in the response of the arctic-alpine Silene suecica (Cariophyllaceae) to the interaction between water availability and photoperiod. Ecological Research . doi: 10.1007/s11284-014-1225-3

Alemohammad, Seyed H. Dara Entekhabi, and Dennis B. McLaughlin. 2014. Evaluation of Long-Term SSM/I-Based Precipitation Records over Land. Journal of Hydrometeorology 15(5). p. 2012–2029. doi: 10.1175/JHM-D-13-0171.1

Alexander, P. M. et al. 2014. Assessing spatio-temporal variability and trends in modelled and measured Greenland Ice Sheet albedo (2000–2013). The Cryosphere 8. p. 2293-2312. doi: 10.5194/tc-8-2293-2014

Arsenault, Kristi R., Paul R. Houser, and Gabriëlle J. M. De Lannoy. 2014. Evaluation of the MODIS snow cover fraction product. Hydrological Processes 28(3). p. 980-988. doi: 10.1002/hyp.9636

Bavera, D., et al. 2014. A comparison between two statistical and a physically-based model in snow water equivalent mapping. Advances in Water Resources 63. p. 167-178. doi: 10.1016/j.advwatres.2013.11.011

Bergeron, Jean et al. 2014. Snow cover estimation using blended MODIS and AMSR-E data for improved watershed-scale spring streamflow simulation in Quebec, Canada. Hydrological Processes 28(16). p. 4626-4639. doi: 10.1002/hyp.10123

Boori, Mukesh and Ralph Ferraro. 2014. Global Land Cover Classification Based on Microwave Polarization and Gradient Ratio (MPGR). GIS Ostrava 2014 - Geoinformatics for Intelligent Transportation January 27 – 29, 2014, Ostrava .

Brisbourne, A. M., et al. 2014. Seabed topography beneath Larsen C Ice Shelf from seismic soundings. The Cryosphere 8(1). p. 1-13. doi: 10.5194/tc-8-1-2014

Chen, Siyu, et al. 2014. Interrelation among climate factors, snow cover, grassland vegetation, and lake in the Nam Co basin of the Tibetan Plateau. J. of Applied Remote Sensing 8(1). Art. #084694. doi: 10.1117/1.JRS.8.084694

Cortés, Gonzalo et al. 2014. Analysis of sub-pixel snow and ice extent over the extratropical Andes using spectral unmixing of historical Landsat imagery. Remote Sensing of Environment 141. p. 64-78. doi: 10.1016/j.rse.2013.10.023

Culibrk, D., et al. 2014. Sources of remote sensing data for precision irrigation. Sensing technologies for precision irrigation . p. 53-67.

Da Ronco, P. and C. De Michele. 2014. Cloud obstruction and snow cover in Alpine areas from MODIS products. Hydrology and Earth System Sciences 18. p. 4579-4600. doi: 10.5194/hess-18-4579-2014

Dedieu, J. P. et al. 2014. Shifting mountain snow patterns in a changing climate from remote sensing retrieval. Science of the Total Environment 493. p. 1267-1279. doi: 10.1016/j.scitotenv.2014.04.078

Dietze, Andreas J. et al. 2014. Identifying Changing Snow Cover Characteristics in Central Asia between 1986 and 2014 from Remote Sensing Data. Remote Sensing 6. p. 12752-12775. doi: 10.3390/rs61212752

Dong, Jiarui et al. 2014. Using Air Temperature to Quantitatively Predict the MODIS Fractional Snow Cover Retrieval Errors over the Continental United States. Journal of Hydrometeorology 15(2). p. 551-562. doi: 10.1175/JHM-D-13-060.1

Dumont, M., et al. 2014. Contribution of light-absorbing impurities in snow to Greenland's darkening since 2009. Nature Geoscience 7. p. 509-512. doi: 10.1038/ngeo2180

Duo, Chu, et al. 2014. Snow cover variation over the Tibetan Plateau from MODIS and comparison with ground observations. J. of Applied Remote Sensing 8(1). Art. #084690. doi: 10.1117/1.JRS.8.084690

Eisner, Lisa B. et al. 2014. Climate-mediated changes in zooplankton community structure for the eastern Bering Sea. Deep-Sea Research Part II - Topical Studies in Oceanography 109. p. 157-171. doi: 10.1016/j.dsr2.2014.03.004

Farhan, Suhaib Bin et al. 2014. Hydrological regimes under the conjunction of westerly and monsoon climates: a case investigation in the Astore Basin, Northwestern Himalaya. Climate Dynamics . doi: 10.1007/s00382-014-2409-9

Fernandes, R. Fuqun Zhou, and Hyungkeon Song. 2014. Evaluation of multiple datasets for snow cover indicators for Canada. Geoscience and Remote Sensing Symposium (IGARSS), 2014 IEEE International . p. 239-242. doi: 10.1109/IGARSS.2014.6946401

González, E. Perez and P. Garcia Rodriguez. 2014. Evolution in sea ice from 1978 to 2012. Environmental Earth Sciences 72(9). p. 3467-3477. doi: 10.1007/s12665-014-3254-1

Grab, S. W. and J. H. Linde. 2014. Mapping exposure to snow in a developing African context: implications for human and livestock vulnerability in Lesotho. Natural Hazards 71(3). p. 1537-1560. doi: 10.1007/s11069-013-0964-8

Hakeem, Samreen Abdul, et al. 2014. Remote Sensing Data Application to Monitor Snow Cover Variation and Hydrological Regime in a Poorly Gauged River CatchmentÑNorthern Pakistan. International J. of Geosciences 5(1). p. 27-37. doi: 10.4236/ijg.2014.51005

Hancock, Steven, et al. 2014. Biases in Reanalysis Snowfall Found by Comparing the JULES Land Surface Model to GlobSnow. J. of Climate 27(2). p. 624-632. doi: 10.1175/JCLI-D-13-00382.1

Hasson, S. et al. 2014. Early 21st century snow cover state over the western river basins of the Indus River system. Hydrology and Earth System Sciences 18. p. 4077-4100. doi: 10.5194/hess-18-4077-2014

He, Z. H. et al. 2014. Estimating degree-day factors from MODIS for snowmelt runoff modeling. Hydrology and Earth System Sciences 18. p. 4773-4789. doi: 10.5194/hess-18-4773-2014

Hou, Jinliang and Chunlin Huang. 2014. Improving Mountainous Snow Cover Fraction Mapping via Artificial Neural Networks Combined With MODIS and Ancillary Topographic Data. IEEE Transactions on Geoscience and Remote Sensing 52(9). p. 5601-5611. doi: 10.1109/TGRS.2013.2290996

Jayaprasad, P. et al. 2014. Ice calving and deformation from Antarctic ice margins using RISAT-1 Circular Polarization SAR data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-8. p. 525-529. doi: 10.5194/isprsarchives-XL-8-525-2014

Kang, Daehyun, et al. 2014. The MODIS ice surface temperature product as an indicator of sea ice minimum over the Arctic Ocean. Remote Sensing of Environment 152. p. 99-108. doi: 10.1016/j.rse.2014.05.012

Ke, C.-Q. and Xun Liu. 2014. MODIS-observed spatial and temporal variation in snow cover in Xinjiang, China. Climate Research 59. p. 15-26. doi: 10.335/cr01206

Kheyrollah Pour, Homa, et al. 2014. Impact of satellite-based lake surface observations on the initial state of HIRLAM. Part I: evaluation of remotely-sensed lake surface water temperature observations. Tellus Series A-Dynamic Meteorology and Oceanobraphy 66. Art. #21534. doi: 10.3402/tellusa.v66.21534

Kim, Youngwook et al. 2014. Attribution of divergent northern vegetation growth responses to lengthening non-frozen seasons using satellite optical-NIR and microwave remote sensing. International Journal of Remote Sensing 35(10). p. 3700-3721. doi: 10.1080/01431161.2014.915595

Klein, Igor, et al. 2014. Evaluation of seasonal water body extents in Central Asia over the past 27 years derived from medium-resolution remote sensing data. International J. of Applied Earth Observation and Geoinformation 26. p. 335-349. doi: 10.1016/j.jag.2013.08.004

Kraj?í, Pavel et al. 2014. Estimation of regional snowline elevation (RSLE) from MODIS images for seasonally snow covered mountain basins. Journal of Hydrology 519B. p. 1769-1778. doi: 10.1016/j.jhydrol.2014.08.064

Kult, Jonathan Woonsup Choi, and Jinmu Choi. 2014. Sensitivity of the Snowmelt Runoff Model to snow covered area and temperature inputs. Applied Geography 55. p. 30-38. doi: 10.1016/j.apgeog.2014.08.011

Lhermitte, S., J. Abermann, and C. Kinnard. 2014. Albedo over rough snow and ice surfaces. The Cryosphere 8. p. 1069-1086 . doi: 10.5194/tc-8-1069-2014

Li, Hongyi, et al. 2014. Synthesis method for simulating snow distribution utilizing remotely sensed data for the Tibetan Plateau. J. of Applied Remote Sensing 8(1). Art. #084696. doi: 10.1117/1.JRS.8.084696

Li, Lan-Yu and Chang-Qing Ke. 2014. Analysis of spatiotemporal snow cover variations in Northeast China based on moderate-resolution-imaging spectroradiometer data. J. of Applied Remote Sensing 8(1). Art. #084695. doi: 10.1117/1.JRS.8.084695

Li, Xinxin et al. 2014. Measurement and Simulation of Topographic Effects on Passive Microwave Remote Sensing Over Mountain Areas: A Case Study From the Tibetan Plateau. IEEE Transactions on Geoscience and Remote Sensing 52(2). p. 1489-1501. doi: 10.1109/TGRS.2013.2251887

Liang, Jiayong et al. 2014. Improved snow depth retrieval by integrating microwave brightness temperature and visible/infrared reflectance. Remote Sensing of Environment 156. p. 500-509. doi: 10.1016/j.rse.2014.10.016

Liu, Xun Chang-Qing Ke, and Zhu-De Shao. 2014. Snow cover variations in Gansu, China, from 2002 to 2013. Theoretical and Applied Climatology . doi: 10.1007/s00704-014-1306-9

Luckman, Adrian et al. 2014. Surface melt and ponding on Larsen C Ice Shelf and the impact of föhn winds. Antarctic Science 26(6). p. 625-635. doi: 10.1017/S0954102014000339

Magand, Claire, et al. 2014. Introducing Hysteresis in Snow Depletion Curves to Improve the Water Budget of a Land Surface Model in an Alpine Catchment. J. of Hydrometeorology 15(2). p. 631-649. doi: 10.1175/JHM-D-13-091.1

Malik, M. Jahanzeb et al. 2014. Improving modeled snow albedo estimates during the spring melt season. Journal of Geophysical Research - Atmospheres 119(12). p. 7311–7331. doi: 10.1002/2013JD021344

Micheletty, P. D. A. M. Kinoshita, and T. S. Hogue. 2014. Application of MODIS snow cover products: wildfire impacts on snow and melt in the Sierra Nevada. Hydrology and Earth System Sciences 18. p. 4601-4615. doi: 10.5194/hess-18-4601-2014

Mishra, Bhogendra, Nitin K. Tripathi, and Mukand S. Babel. 2014. An Artificial Neural Network-Based Snow Cover Predictive Modeling in the Higher Himalayas. J. of Mountain Science 11(4). p. 825-837. doi: 10.1007/s11629-014-2985-5

Möller, Rebecca, et al. 2014. MODIS-derived albedo changes of Vatnajškull (Iceland) due to tephra deposition from the 2004 Grímsvötn eruption. International J. of Applied Earth Observation and Geoinformation 26. p. 256-269. doi: 10.1016/j.jag.2013.08.005

Molotch, Noah P. and Leah Meromy. 2014. Physiographic and climatic controls on snow cover persistence in the Sierra Nevada Mountains. Hydrological Processes 28(16). p. 4573–4586. doi: 10.1002/hyp.10254

Moore, Cara, et al. 2014. A GIS-based method for defining snow zones: application to the western United States. Geocarta International . doi: 10.1080/10106049.2014.885089