Published Research

The following references cite studies that used data distributed by NSIDC DAAC. Please contact User Services if you have a reference you would like to share on this page.

2018

Cartus, Oliver, Paul Siqueira, and Josef Kellndorfer. 2018. An Error Model for Mapping Forest Cover and Forest Cover Change Using L-Band SAR. IEEE Geoscience and Remote Sensing Letters 15(1): 107-111. doi: http://dx.doi.org/10.1109/LGRS.2017.2775659.

Kulp, Scott A. and Benjamin H. Strauss. 2018. CoastalDEM: A global coastal digital elevation model improved from SRTM using a neural network. Remote Sensing of Environment 206: 231-239. doi: http://dx.doi.org/10.1016/j.rse.2017.12.026.

Nie, Sheng, et al. 2018. A Novel Model for Terrain Slope Estimation Using ICESat/GLAS Waveform Data. IEEE Transactions on Geoscience and Remote Sensing 56(1): 217-227. doi: http://dx.doi.org/10.1109/TGRS.2017.2745107.

Rajab, Manizheh, et al. 2018. Mapping Lorey’s height over Hyrcanian forests of Iran using synergy of ICESat/GLAS and optical images. European Journal of Remote Sensing 4(1): 100-115. doi: http://dx.doi.org/10.1080/22797254.2017.1405717.

Tekeli, Ahmet E. 2018. Augmenting in situ lake level measurements with Earth observation satellites. Teknik Dergi 29(6). doi: http://dx.doi.org/10.18400/tekderg.341316.

Wu, Kunpeng, et al. 2018. Recent glacier mass balance and area changes in the Kangri Karpo Mountains from DEMs and glacier inventories. The Cryosphere 12(1): 103-121. doi: http://dx.doi.org/10.5194/tc-12-103-2018.

2017

Alley, Karen E. 2017. Studies of Antarctic Ice Shelf Stability: Surface Melting, Basal Melting, and Ice Flow Dynamics. : 234 p. Ph. D. University of Colorado Boulder.

Arthern, Robert J., and C. Rosie Williams. 2017. The sensitivity of West Antarctica to the submarine melting feedback. Geophysical Research Letters 44(5): 2352–2359. doi: http://dx.doi.org/10.1002/2017GL072514.

Bye, I. J., et al. 2017. Estimating forest canopy parameters from satellite waveform LiDAR by inversion of the FLIGHT three-dimensional radiative transfer model. Remote Sensing of Environment 188: 177–189. doi: http://dx.doi.org/10.1016/j.rse.2016.10.048.

Chao, Nengfang, et al. 2017. Decline of Geladandong Glacier Elevation in Yangtze River’s Source Region: Detection by ICESat and Assessment by Hydroclimatic Data. Remote Sensing 9(1). Art. #75. doi: http://dx.doi.org/10.3390/rs9010075.

Chi, Hong, et al. 2017. Estimation of Forest Aboveground Biomass in Changbai Mountain Region Using ICESat/GLAS and Landsat/TM Data. Remote Sensing 9(7). Art. #707. doi: http://dx.doi.org/10.3390/rs9070707.

Chu, Thuan, and Karl-Erich Lindenschmidt. 2017. Comparison and Validation of Digital Elevation Models Derived from InSAR for a Flat Inland Delta in the High Latitudes of Northern Canada. Canadian Journal of Remote Sensing 43(2). doi: http://dx.doi.org/10.1080/07038992.2017.1286936.

Chuter, S. J., et al. 2017. Mass balance reassessment of glaciers draining into the Abbot and Getz Ice Shelves of West Antarctica. Geophysical Research Letters 44(14): 7328-7337. doi: http://dx.doi.org/10.1002/2017GL073087.

Dhanda, P., et al. 2017. Optimizing spaceborne LiDAR and very high resolution optical sensor parameters for biomass estimation at ICESat/GLAS footprint level using regression algorithms . Progress in Physical Geography 41(3): 247-267. doi: http://dx.doi.org/10.1177/0309133317693443.

Felikson, Denis, et al. 2017. Comparison of Elevation Change Detection Methods From ICESat Altimetry Over the Greenland Ice Sheet. IEEE Transactions on Geoscience and Remote Sensing 55(10): 5494-5505. doi: http://dx.doi.org/10.1109/TGRS.2017.2709303.

Ghosh, S., and M. D. Behera. 2017. Forest canopy height estimation using satellite laser altimetry: a case study in the Western Ghats, India. Applied Geomatics: 1-18. doi: http://dx.doi.org/10.1007/s12518-017-0190-2.

Ghosh, S., et al. 2017. Land Cover Classification Using ICESat/GLAS Full Waveform Data. Journal of the Indian Society of Remote Sensing 45(2): 327-335. doi: http://dx.doi.org/10.1007/s12524-016-0602-5.

Grinsted, Aslak, et al. 2017. Periodic outburst floods from an ice-dammed lake in East Greenland. Scientific Reports 7. Art. #9966. doi: http://dx.doi.org/10.1038/s41598-017-07960-9.

Gwenzi, David, and Michael Andrew Lefsky. 2017. Spatial Modeling of Lidar-Derived Woody Biomass Estimates Collected Along Transects in a Heterogeneous Savanna Landscape. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10(1): 372-384. doi: http://dx.doi.org/10.1109/JSTARS.2016.2582148.

Hai, G. , et al. 2017. Experimental DEM Extraction from ASTER Stereo Pairs and 3D Registration Based on ICESat Laser Altimetry Data in Upstream Area of Lambert Glacier, Antarctica. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 42(2/W7): 1517-1520. doi: http://dx.doi.org/10.5194/isprs-archives-XLII-2-W7-1517-2017.

Hajj, M. E., et al. 2017. Interest of Integrating Spaceborne LiDAR Data to Improve the Estimation of Biomass in High Biomass Forested Areas. Remote Sensing 9(3): Art. #213. doi: http://dx.doi.org/10.3390/rs9030213.

Holm, Sören, Ross Nelson, and Göran Ståhla. 2017. Hybrid three-phase estimators for large-area forest inventory using ground plots, airborne lidar, and space lidar. Remote Sensing of Environment 197: 85-97. doi: http://dx.doi.org/10.1016/j.rse.2017.04.004.

Huang, Huabing, et al. 2017. Mapping vegetation heights in China using slope correction ICESat data, SRTM, MODIS-derived and climate data. ISPRS Journal of Photogrammetry and Remote Sensing 129: 189-199. doi: http://dx.doi.org/10.1016/j.isprsjprs.2017.04.020.

Huang, Tianjin, et al. 2017. A New Method to Estimate Changes in Glacier Surface Elevation Based on Polynomial Fitting of Sparse ICESat—GLAS Footprints. Sensors 17(8). Art. #1803. doi: http://dx.doi.org/10.3390/s17081803.

Huber, Jacqueline, et al. 2017. A complete glacier inventory of the Antarctic Peninsula based on Landsat 7 images from 2000 to 2002 and other preexisting data sets. Earth System Science Data 9(1): 115-131. doi: http://dx.doi.org/10.5194/essd-9-115-2017.

Jin, Shuanggen, T. Y. Zhang, and F. Zou. 2017. Glacial density and GIA in Alaska estimated from ICESat, GPS and GRACE measurements. Journal of Geophysical Research - Earth Surface 122(1): 76-90. doi: http://dx.doi.org/10.1002/2016JF003926.

Landy, Jack C., et al. 2017. Sea ice thickness in the Eastern Canadian Arctic: Hudson Bay Complex & Baffin Bay. Remote Sensing of Environment 200: 281-294. doi: http://dx.doi.org/10.1016/j.rse.2017.08.019.

Li, Chunlan, et al. 2017. ICESat/GLAS-derived changes in the water level of Hulun Lake, Inner Mongolia, from 2003 to 2009. Frontiers of Earth Science: 1-11. doi: http://dx.doi.org/10.1007/s11707-017-0666-8.

Li, Guoyuan, et al. 2017. Vertical Accuracy Assessment of ZY-3 Digital Surface Model using ICESat/GLAS Laser Altimeter Data . ISPRS Hannover Workshop: HRIGI 17 – CMRT 17 – ISA 17 – EuroCOW 17, 6–9 June 2017, Hannover, Germany XLII-1/W1: 23-28. doi: http://dx.doi.org/10.5194/isprs-archives-XLII-1-W1-23-2017.

Li, H. W., et al. 2017. Water level monitoring on Tibetan Lakes based on ICESat and ENVISAT data series. ISPRS Geospatial Week 2017, 18–22 September 2017, Wuhan, China Proceedings XLII-2/W7: 1529-1533. doi: http://dx.doi.org/10.5194/isprs-archives-XLII-2-W7-1529-2017.

Liu, Guang, et al. 2017. Monitoring elevation change of glaciers on Geladandong Mountain using TanDEM-X SAR interferometry. Journal of Mountain Science 14(5): 859-869. doi: http://dx.doi.org/10.1007/s11629-016-3992-5.

Liu, Kaili, et al. 2017. Comparison and Evaluation of Three Methods for Estimating Forest above Ground Biomass Using TM and GLAS Data. 9(4): Art. #341. doi: http://dx.doi.org/10.3390/rs9040341.

Liu, Ying, and Hui Yue. 2017. Estimating the fluctuation of Lake Hulun, China, during 1975–2015 from satellite altimetry data. Environmental Monitoring and Assessment 189. Art. #630. doi: http://dx.doi.org/10.1007/s10661-017-6346-z.

Ma, Yue, et al. 2017. A New Wind Speed Retrieval Method for an Ocean Surface Using the Waveform Width of a Laser Altimeter. Canadian Journal of Remote Sensing 43(4): 309-317. doi: http://dx.doi.org/10.1080/07038992.2017.1342208.

Ma, Yue, et al. 2017. Waveform width of a satellite laser altimeter illuminating on the sea surface . Applied Optics 56(22): 6130-6137. doi: http://dx.doi.org/10.1364/AO.56.006130.

Madson, Austin, Yongwei Sheng, and Chunqiao Song. 2017. ICESat-derived lithospheric flexure as caused by an endorheic lake’s expansion on the Tibetan Plateau and the comparison to modeled flexural responses. Journal of Asian Earth Sciences 148: 142-152. doi: http://dx.doi.org/10.1016/j.jseaes.2017.08.028.

Mahoney, Craig, et al. 2017. Estimating Canopy Gap Fraction Using ICESat GLAS within Australian Forest Ecosystems. Remote Sensing 9(1). Art #59. doi: http://dx.doi.org/10.3390/rs9010059.

Mahoney, Craig, et al. 2017. Continental Estimates of Canopy Gap Fraction by Active Remote Sensing. Canadian Journal of Remote Sensing 43(4): 345-359. doi: http://dx.doi.org/10.1080/07038992.2017.1346469.

Montesano, Paul M., et al. 2017. The use of sun elevation angle for stereogrammetric boreal forest height in open canopies. Remote Sensing of Environment 196: 76-88. doi: http://dx.doi.org/10.1016/j.rse.2017.04.024.

Neelmeijer, Julia, Mahdi Motagh, and Bodo Bookhagen. 2017. High-resolution digital elevation models from single-pass TanDEM-X interferometry over mountainous regions: A case study of Inylchek Glacier, Central Asia. ISPRS Journal of Photogrammetry and Remote Sensing 130: 108-121. doi: http://dx.doi.org/10.1016/j.isprsjprs.2017.05.011.

Nelson, Ross, et al. 2017. Lidar-based estimates of aboveground biomass in the continental US and Mexico using ground, airborne, and satellite observations. Remote Sensing of Environment 188: 127-140. doi: http://dx.doi.org/10.1016/j.rse.2016.10.038.

Ni, Xiliang, et al. 2017. Estimation of Forest Biomass Patterns across Northeast China Based on Allometric Scale Relationship. Forests 8(8). Art. #288. doi: http://dx.doi.org/10.3390/f8080288.

Phan, Vu Hien, Roderik Lindenbergh, and Massimo Menenti. 2017. Assessing Orographic Variability in Glacial Thickness Changes at the Tibetan Plateau Using ICESat Laser Altimetry. Remote Sensing 9(2). Art. #160. doi: http://dx.doi.org/10.3390/rs9020160.

Price, Stephen F., et al. 2017. An ice sheet model validation framework for the Greenland ice sheet . Geoscientific Model Development 10(1): 255-270. doi: http://dx.doi.org/10.5194/gmd-10-255-2017.

Qiao, Baojin, and Liping Zhu. 2017. Differences and cause analysis of changes in lakes of different supply types in the north-western Tibetan Plateau. Hydrological Processes 31(15): 2752–2763. doi: http://dx.doi.org/10.1002/hyp.11215.

Qureshi, Muhammad Ateeq, et al. 2017. Glacier status during the period 1973–2014 in the Hunza Basin, Western Karakoram. Quaternary International 444A: 125-136. doi: http://dx.doi.org/10.1016/j.quaint.2016.08.029.

Rius, Antonio, et al. 2017. Feasibility of GNSS-R Ice Sheet Altimetry in Greenland Using TDS-1. Remote Sensing 9(7): Art. #742. doi: http://dx.doi.org/10.3390/rs9070742.

Rizzoli, Paola, et al. 2017. Characterization of Snow Facies on the Greenland Ice Sheet Observed by TanDEM-X Interferometric SAR Data. Remote Sensing 9(4): Art. #315. doi: http://dx.doi.org/10.3390/rs9040315.

Semakova, Eleonora, and Yves Bühler. 2017. TerraSAR-X/TanDEM-X data for natural hazards research in mountainous regions of Uzbekistan. Journal of Applied Remote Sensing 11(3). Art. #036024. doi: http://dx.doi.org/10.1117/1.JRS.11.036024.

Shu, Liu, et al. 2017. Potential and limitations of satellite laser altimetry for monitoring water surface dynamics: ICESat for US lakes. International Journal of Agricultural and Biological Engineering; 10(5): 154-165. doi: http://dx.doi.org/10.25165/j.ijabe.20171005.3426.

Su, Yanjun, Qin, and Qinghua Guo. 2017. The Use of LiDAR in Multi-Scale Forestry Applications. . Ph. D. U. of California, Merced.

Sun, Xiaoli, et al. 2017. ICESAT/GLAS Altimetry Measurements: Received Signal Dynamic Range and Saturation Correction. IEEE Transactions on Geoscience and Remote Sensing 55(10): 5440 - 5454. doi: http://dx.doi.org/10.1109/TGRS.2017.2702126.

Tang, Hao, and Ralph Dubayah. 2017. Light-driven growth in Amazon evergreen forests explained by seasonal variations of vertical canopy structure. PNAS 14(10): 2640-2644. doi: http://dx.doi.org/10.1073/pnas.1616943114.

Treichler, Désirée and Andreas Kääb. 2017. Snow depth from ICESat laser altimetry — A test study in southern Norway. Remote Sensing of Environment 191: 389-401. doi: http://dx.doi.org/10.1016/j.rse.2017.01.022.

Wang, Qiuyu, et al. 2017. Large-Scale Seasonal Changes in Glacier Thickness Across High Mountain Asia. Geophysical Research Letters 44(20): 10,427-10,435. doi: http://dx.doi.org/10.1002/2017GL075300.

Wang, Xianwei, David M.Holland, and G. Hilmar Gudmundsson. 2017. Accurate coastal DEM generation by merging ASTER GDEM and ICESat/GLAS data over Mertz Glacier, Antarctica. Remote Sensing of Environment 206: 218-230. doi: http://dx.doi.org/10.1016/j.rse.2017.12.041.

Xiong, Siting, Jan-Peter Muller, and Gang Li. 2017. The Application of ALOS/PALSAR InSAR to Measure Subsurface Penetration Depths in Deserts. Remote Sensing 9(6). Art. #638. doi: http://dx.doi.org/10.3390/rs9060638.

Ye, Zhaoxia, et al. 2017. Analysis of water level variation of lakes and reservoirs in Xinjiang, China using ICESat laser altimetry data (2003–2009). PLOSone 12(9). Art. #e0183800. doi: http://dx.doi.org/10.1371/journal.pone.0183800.

Yue, Linwei, et al. 2017. High-quality seamless DEM generation blending SRTM-1, ASTER GDEM v2 and ICESat/GLAS observations. ISPRS Journal of Photogrammetry and Remote Sensing 123: 20-34. doi: http://dx.doi.org/10.1016/j.isprsjprs.2016.11.002.

Zhang, Guoqing, et al. 2017. Lake volume and groundwater storage variations in Tibetan Plateau's endorheic basin. Geophysical Research Letters 44(11): 5550–5560. doi: http://dx.doi.org/10.1002/2017GL073773.

2016

Alley, Karen E., et al. 2016. Impacts of warm water on Antarctic ice shelf stability through basal channel formation. Nature Geoscience 9(4): 290-293. doi: http://dx.doi.org/10.1038/ngeo2675.

Christianson, Knut, et al. 2016. Basal conditions at the grounding zone of Whillans Ice Stream, West Antarctica, from ice-penetrating radar. Journal of Geophysical Research - Earth Surface 121(11): 1954–1983. doi: http://dx.doi.org/10.1002/2015JF003806.

Crétaux, J. F., et al. 2016. Lake Volume Monitoring from Space. Surveys in Geophysics 37(2): 269-305. doi: http://dx.doi.org/10.1007/s10712-016-9362-6.

de Moura, Yhasmin Mendes, et al. 2016. Scaling estimates of vegetation structure in Amazonian tropical forests using multi-angle MODIS observations. International Journal of Applied Earth Observation and Geoinformation 52: 580-590. doi: http://dx.doi.org/10.1016/j.jag.2016.07.017.

Du, Xiaoping, et al. 2016. Vertical accuracy assessment of freely available digital elevation models over low-lying coastal plains. International Journal of Digital Earth 9(3): 252-271. doi: http://dx.doi.org/10.1080/17538947.2015.1026853.

Fayad, Ibrahim, et al. 2016. Regional Scale Rain-Forest Height Mapping Using Regression-Kriging of Spaceborne and Airborne LiDAR Data: Application on French Guiana. Remote Sensing 8(3). Art. #240. doi: http://dx.doi.org/10.3390/rs8030240.

Fayad, Ibrahim, et al. 2016. Aboveground biomass mapping in French Guiana by combining remote sensing, forest inventories and environmental data. International Journal of Applied Earth Observation and Geoinformation 52: 502-514. doi: http://dx.doi.org/10.1016/j.jag.2016.07.015.

Feng, L., and J.-P. Muller. 2016. Icesat validation of tandem-X I-DEMs. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic XLI-B4: 129-136. doi: http://dx.doi.org/10.5194/isprsarchives-XLI-B4-129-2016.

Gwenzi, David, and Michael Andrew Lefsky. 2016. Spatial Modeling of Lidar-Derived Woody Biomass Estimates Collected Along Transects in a Heterogeneous Savanna Landscap. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 10(1): 372-384. doi: http://dx.doi.org/10.1109/JSTARS.2016.2582148.

Hansen, Matthew C., et al. 2016. Mapping tree height distributions in Sub-Saharan Africa using Landsat 7 and 8 data. Remote Sensing of Environment 185: 221–232. doi: http://dx.doi.org/10.1016/j.rse.2016.02.023.

Jawak, Shridhar D., and Alvarinho J. Luis. 2016. Generation of a precise DEM by interactive synthesis of multi-temporal elevation datasets: a case study of Schirmacher Oasis, East Antarctica . Proceedings of SPIE 9877. Art. #98772E. doi: http://dx.doi.org/10.1117/12.2223609.

Jawat, Shridhar D., and Alvarinho J. Luis. 2016. Generation of a Precise DEM by interactive synthesis of multitemporal elevation datasets: a case study of Schirmacher Oasis, East Antarctica. Land Surface and Cryosphere Remote Sensing III edited by Reza Khanbilvardi, Ashwagosh Ganju, A. S. Rajawat, Jing M. Chen. New Dehli: SPIE, Art. #98772E.. doi: http://dx.doi.org/10.1117/12.2223609.

Ke, Linghong, et al. 2016. Remote sensing of glacier distribution and change over the Qinghai-Tibet Plateau. Earth Observation and Remote Sensing Applications (EORSA), 2016 4th International Workshop on: 442-446. doi: http://dx.doi.org/10.1109/EORSA.2016.7552847.

Ke, Linghong. 2016. Remote sensing of mountain glaciers over the Qinghai-Tibet Plateau. . Ph. D. Hong Kong Polytechnic University.

Kern, Stefan, and Burcu Ozsoy-Çiçek. 2016. Satellite Remote Sensing of Snow Depth on Antarctic Sea Ice: An Inter-Comparison of Two Empirical Approaches. Remote Sensing 8(6). Art. #450. doi: http://dx.doi.org/10.3390/rs8060450.

Kern, Stefan, Burcu Ozsoy-Çiçek, and Anthony P. Worby. 2016. Antarctic Sea-Ice Thickness Retrieval from ICESat: Inter-Comparison of Different Approaches. Remote Sensing 8(7). Art. #538. doi: http://dx.doi.org/10.3390/rs8070538.

Khan, Shfaqat A., et al. 2016. Geodetic measurements reveal similarities between post–Last Glacial Maximum and present-day mass loss from the Greenland ice sheet. Science Advances 2(9). Art. #e1600931. doi: http://dx.doi.org/10.1126/sciadv.e1600931.

Kim, Byeong-Hoon, et al. 2016. Active subglacial lakes and channelized water flow beneath the Kamb Ice Stream. The Cryosphere 10(6): 2971–2980. doi: http://dx.doi.org/10.5194/tc-10-2971-2016.

Li, Guoyuan, et al. 2016. Improve the ZY-3 Accuracy Using ICESat/GLAS Laser Altimeter Data. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, Volume XLI-B1, 2016 XXIII ISPRS Congress, 12–19 July 2016, Prague, Czech Republic 41-B1. Prague: ISPRS, 37-42. doi: http://dx.doi.org/10.5194/isprs-archives-XLI-B1-37-2016.

Li, Guoyuan, et al. 2016. ZY-3 Block adjustment supported by glas laser altimetry data. Photogrammetric Record 31(153): 88-107. doi: http://dx.doi.org/10.1111/phor.12138.

Li, Rongxing, et al. 2016. Quality assessment of existing antarctic remote sensing products. 2016 IEEE International Geoscience and Remote Sensing Symposium (IGARSS), Beijing: 3481-3484. doi: http://dx.doi.org/10.1109/IGARSS.2016.7729900.

Li, Xiaolu, Kai Xu, and Lijun Xu. 2016. Within-footprint roughness measurements using ICESat/GLAS waveform and LVIS elevation. Measurement Science and Technology 27(12). Art. #125012. doi: http://dx.doi.org/10.1088/0957-0233/27/12/125012.

Li, Xiaolu, mand Lijun Xu. 2016. Surface slope and roughness measurement using ICESat/GLAS elevation and laser waveform. Measurement Science and Technology 27(9): Art. #095202. doi: http://dx.doi.org/10.1088/0957-0233/27/9/095202.

Li, Zhiguo, et al. 2016. Changes in glacier extent and surface elevations in the Depuchangdake region of northwestern Tibet, China. Quaternary Research 85(1): 25-33. doi: http://dx.doi.org/10.1016/j.yqres.2015.12.005.

Liu, Caixia, et al. 2016. The importance of data type, laser spot density and modelling method for vegetation height mapping in continental China. International Journal of Remote Sensing 37(24): 6127-6148. doi: http://dx.doi.org/10.1080/01431161.2016.1252472.

Liu, Shijie, et al. 2016. An Alternative Approach for Registration of High-Resolution Satellite Optical Imagery and ICESat Laser Altimetry Data. Sensors 16(12). Art. #2008. doi: http://dx.doi.org/10.3390/s16122008.

Magruder, Lori, Holly Leigh, and Amy Neuenschwander. 2016. Evaluation of terrain and canopy height products in central African tropical forests. International Journal of Remote Sensing 37(22): 5365-5387. doi: http://dx.doi.org/10.1080/01431161.2016.1232870.

Mahoney, Craig, et al. 2016. Continental-Scale Canopy Height Modeling by Integrating National, Spaceborne, and Airborne LiDAR Data. Canadian Journal of Remote Sensing 42(5): 574-590. doi: http://dx.doi.org/10.1080/07038992.2016.1196580.

Marsh, Oliver J., et al. 2016. High basal melting forming a channel at the grounding line of Ross Ice Shelf, Antarctica. Geophysical Research Letters 43(1): 250-255. doi: http://dx.doi.org/10.1002/2015GL066612.

Montesano, Paul M., et al. 2016. Spaceborne potential for examining taiga–tundra ecotone form and vulnerability. Biogeosciences 13(13): 3847-3861. doi: http://dx.doi.org/10.5194/bg-13-3847-2016.

Muhammad, Sher, and Lide Tian. 2016. Changes in the ablation zones of glaciers in the western Himalaya and the Karakoram between 1972 and 2015. Remote Sensing of Environment 187: 505-512. doi: http://dx.doi.org/10.1016/j.rse.2016.10.034.

O'Loughlin, Fiachra, et al. 2016. ICESat-derived inland water surface spot heights. Water Resources Research 524): 3276–3284. doi: http://dx.doi.org/10.1002/2015WR018237.

O'Loughlin, Fiachra, et al. 2016. A multi-sensor approach towards a global vegetation corrected SRTM DEM product. Remote Sensing of Environment 182: 49-59. doi: http://dx.doi.org/10.1016/j.rse.2016.04.018.

Pandey, Pratima, et al. 2016. Qualitative and quantitative assessment of TanDEM-X DEM over western Himalayan glaciated terrain. Geocarta International. doi: http://dx.doi.org/10.1080/10106049.2016.1155655.

Satge, Frédéric, et al. 2016. Absolute and relative height-pixel accuracy of SRTM-GL1 over the South American Andean Plateau. ISPRS Journal of Photogrammetry and Remote Sensing 121: 157-166. doi: http://dx.doi.org/10.1016/j.isprsjprs.2016.09.003.

Seehaus, Thorsten C., et al. 2016. Dynamic Response of Sjögren Inlet Glaciers, Antarctic Peninsula, to Ice Shelf Breakup Derived from Multi-Mission Remote Sensing Time Series. Frontiers in Earth Science 14. doi: http://dx.doi.org/10.3389/feart.2016.00066.

Shean, David, et al. 2016. An automated, open-source pipeline for mass production of digital elevation models (DEMs) from very-high-resolution commercial stereo satellite imagery. SPRS Journal of Photogrammetry and Remote Sensing 116: 101-117. doi: http://dx.doi.org/10.1016/j.isprsjprs.2016.03.012.

Shuman, Christopher A., Ted Scambos, and Etienne Berthier. 2016. Ice loss processes in the Seal Nunataks ice shelf region from satellite altimetry and imagery. Annals of Glaciology 57(73): 94-104. doi: http://dx.doi.org/10.1017/aog.2016.29.

Song, Chunqiao, and Yongwei Sheng. 2016. Contrasting evolution patterns between glacier-fed and non-glacier-fed lakes in the Tanggula Mountains and climate cause analysis. Climatic Change 135(3): 493–507. doi: http://dx.doi.org/10.1007/s10584-015-1578-9.

Song, Chunqiao, et al. 2016. Glacial lake evolution in the southeastern Tibetan Plateau and the cause of rapid expansion of proglacial lakes linked to glacial-hydrogeomorphic processes. Journal of Hydrology 540: 504–514. doi: http://dx.doi.org/10.1016/j.jhydrol.2016.06.054.

Pages