Cooler conditions, slower melt

A cooler than average first half of the month kept ice loss at a sluggish pace with little change in the ice edge within the eastern Arctic. Retreat was mostly confined to the western Beaufort and northern Chukchi seas. Ice extent remains above that seen in 2012 and 2007.

Overview of conditions

Figure 1. Arctic sea ice extent for August 21, 2017 was 5.27 million square kilometers (2.03 million square miles). The orange line shows the 1981 to 2010 average extent for that day. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

On August 21, 2017, ice extent stood at 5.27 million square kilometers (2.03 million square miles). This was 1.82 million square kilometers (703,000 square miles) below the 1981 to 2010 median extent for the same day, and 804,000 square kilometers (310,000 square miles) and 221,000 square kilometers (85,000 square miles) above the 2012 and 2007 extents for the same day, respectively. The ice edge remained nearly constant through the first half of the month in the Barents and Kara Seas, and retreated only slightly within the East Greenland Sea. The ice edge also remained stable in the Laptev and East Siberian Seas through the first half of the month. Ice retreat occurred primarily within the Chukchi and western Beaufort Seas as well as near the New Siberian Islands. Some ice continues to block the Northern Sea Route near Severnaya Zemlya. Both McClure Strait and the Amundsen Gulf routes within the Northwest Passage remain blocked by ice. On August 17, the Russian nuclear powered icebreaker 50 let pobedy reached the North Pole in just 79 hours, the fastest time yet.

Conditions in context

Figure 2. The graph above shows Arctic sea ice extent as of August 21, 2017, along with daily ice extent data for five previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, 2013 in purple, and 2012 as a dashed line. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Ice retreat from August 1 to August 21 averaged 73,000 square kilometers (28,000 square miles) per day. This was faster than the 1981 to 2010 average rates of ice loss of 57,300 square kilometers (22,000 square miles) per day, but slower than in 2012, which exhibited the fastest rate of ice loss compared to any other August in the passive microwave satellite data record. Normally the rate of ice retreat slows in August as the sun starts to dip lower in the sky. The rate of ice loss was more rapid at the beginning of August, slowing down considerably starting on August 17.

Air temperatures the first two weeks of August were 1 to 3 degrees Celsius (2 to 5 degrees Fahrenheit) cooler than the 1981 to 2010 average throughout the Arctic Ocean and over Greenland and the North Atlantic. The lowest air temperatures relative to the long-term average were found in coastal regions of the Kara and Barents Seas, continuing the pattern seen throughout much of this summer. Cooler than average conditions within the Central Arctic were a result of persistent cold-core cyclones. These cyclones have not been as large or as strong as the Great Arctic Cyclones of 2012 and 2016, despite the central pressure of one of these systems dropping down to 974 hPa on August 10. In addition, these cyclones are located closer towards the pole within the consolidated ice pack, where they are less likely to cause significant ice loss, as did the 2012 Great Arctic Cyclone in the Chukchi Sea.

While air temperatures start to drop in August, ice melt continues through the month as heat gained in the ocean mixed layer during summer continues to melt the ice from below and from the sides. Sea surface temperatures have been up to 5 degrees Celsius (9 degrees Fahrenheit) above average near the coastal regions, but generally near average or slightly below average along the ice edge in the Beaufort and Chukchi Seas.

NASA Operation IceBridge conducts summer flights

Figure 3. This photograph, taken during NASA Operation IceBridge on July 25, 2017, shows melt ponds on the surface of Arctic sea ice.

Credit: Eric Fraim/NASA
High-resolution image

NASA’s Operation IceBridge (OIB) airborne campaign flew several missions over the Greenland ice sheet this summer to study changes in Greenland outlet glaciers, as well as to observe sea ice. A recent mission collected laser altimeter data to investigate sea ice thickness changes resulting from the piling up of sea ice (or convergence) as ice motion pushes the ice up against the coast. Flights were completed on July 17 and July 25. High-resolution visible imagery collected on the flights also provides close-up looks of melt pond development.

Influence of warm Pacific water

Figure 4. This plot shows measurements of sea surface temperature from drifting buoys, along with satellite-derived sea surface temperature from NOAA and ice concentration from NSIDC for August 6, 2017. Buoy positions as of August 6 are indicated with circles. A gray dot indicates that the buoy is reporting a temperature value outside the range of -2 to 10 degrees Celsius. Red, orange, and yellow indicate higher temperatures, while blues and purples indicate lower temperatures. Whites indicate higher sea ice concentration, and grays indicate lower concentration.

Credit: University of Washington Polar Science Center
High-resolution image

This May, sea ice in the Chukchi Sea was at a record low for the satellite data record. The early retreat of ice in this region may partially be a result of unusually warm ocean temperatures in the region. As reported by Rebecca Woodgate of the University of Washington, Seattle, the Research Vessel Norseman II spent eight days in the Bering Strait and southern Chukchi Sea region to recover oceanographic moorings and whale acoustic instruments, in addition to deploying new instruments. The mooring data indicated early arrival of warm water in the strait, about a month earlier than the average, resulting in June ocean temperatures that were 3 degrees Celsius (5 degrees Fahrenheit) above average. Early intrusion of warm water in the Bering Strait back in May helped to melt sea ice from below, and may have been one of the factors for early development of open water in the region.

Arctic air temperatures and the Paris Climate Accord target

Figure 5. The bar graph, top, shows the Berkeley Earth evaluation of the ten warmest years since 1979 in the Arctic north of 80°N; the plot, middle, shows Arctic average temperatures for the period 1900 to 2016, relative to a 1951 to 1980 reference period; bottom, a map of Arctic temperature differences, in degrees Celsius, for the 2012 to 2016 period (5 years) relative to a 1981 to 2010 reference period.

Credit: National Snow and Ice Data Center
High-resolution image

Our past reports, and many other sources, have noted that the Arctic region is warming faster than the rest of the globe. This warming has accelerated in recent years, particularly since 2005. The ten warmest years on record for the Arctic are within the past twelve years, and 2016 was by far the warmest in the record since 1900. These observations are supported by both NOAA National Centers for Environmental Prediction (NCEP) reanalysis climate data, and by our colleagues at Berkeley Earth. Berkeley Earth is an independent climate fact- and analysis-checking group dedicated to an objective evaluation of the main claims and data sets used to support climate trends and forecasts.

One of the major statements of the recent Paris Climate Accord, dealing with heat-trapping ga reductions, is a target to hold the increase in the global average temperature to well below 2 degrees Celsius (3.6 degrees Fahrenheit) above the pre-industrial average. While this reference for the increase (pre-industrial average) is somewhat ambiguous, using reference average temperatures of either 1951 to 1980 or 1980 to 2010 for the Arctic shows that much of the area north of 80°N is already above this guideline over the past five years (2012 to 2016). As the Arctic will likely continue to warm above 2 degrees Celsius, other areas will need to warm less than that if the threshold is not to be exceeded. In general, land warms about 30 percent faster than oceans in the models, so in a global-average 2 degree Celsius warmer world, much of the global land area would have warmed more than 2 degrees Celsius.

The annual average air temperature for 2016 for the Arctic north of 80°N was more than 3.5 degrees Celsius (6.3 degrees Fahrenheit) above the 1951 to 1980 reference period, the warmest year yet, and most years during the past decade had annual average temperatures between 2 to  2.5 degrees Celsius (3.6 to 4.5 degrees Fahrenheit) above the reference period. Geographically, the NOAA NCEP reanalysis shows that recent warming is primarily located over the Arctic Ocean, and smaller warming trends are seen in the circum-Arctic land areas.

Further reading

Hawkins, E., Ortega, P., Suckling, E., Schurer, A., Hegerl, G., Jones, P., Joshi, M., Osborn, T.J., Masson-Delmotte, V., Mignot, J. and Thorne, P. 2017. Estimating changes in global temperature since the pre-industrial period. Bulletin of the American Meteorological Society, doi:10.1175/BAMS-D-16-0007.1.

Which August will we get?

Average sea ice extent for July 2017 ended up fifth lowest in the satellite record. This reflects weather conditions that were not favorable for ice loss. It will be important to monitor August 2017, as weather conditions and storm events during this month have been closely related to the seasonal minimum sea ice extent in the recent years.

Overview of conditions

Figure 1. Arctic sea ice extent for July 2017 was 8.2 million square kilometers (3.2 million square miles). The magenta line shows the 1981 to 2010 average extent for that month.

Figure 1. Arctic sea ice extent for July 2017 was 8.21 million square kilometers (3.17 million square miles). The magenta line shows the 1981 to 2010 average extent for that month. Sea Ice Index data. About the data

Credit: National Snow and Ice Data Center
High-resolution image

Arctic sea ice extent for July 2017 averaged 8.21 million square kilometers (3.17 million square miles), the fifth lowest July in the 1979 to 2017 satellite record. The average July extent was 1.58 million square kilometers (610,000 square miles) below the 1981 to 2010 long-term average, and 270,000 square kilometers (104,000 square miles) above the previous record low July set in 2011. July 2017 tracked 250,000 square kilometers (97,000 square miles) above the July 2012 extent and 20,000 square kilometers (7,700 square miles) above the July 2007 extent.

Ice extent was lower than average over most of the Arctic, particularly on the Pacific side where the ice retreated throughout July in the Beaufort, Chukchi, and East Siberian Seas. In the eastern Beaufort Sea on the other hand, extent slightly expanded during July. This may relate to the cyclonic (counterclockwise) pattern of winds favoring the drift of sea ice into the region.

Conditions in context

Figure 2a. The graph above shows Arctic sea ice extent as of August 1, 2017, along with daily ice extent data for five previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, 2013 in purple, and 2012 in dotted red. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data

Figure 2a. The graph above shows Arctic sea ice extent as of August 1, 2017, along with daily ice extent data for five previous years. 2017 is shown in blue, 2016 in green, 2015 in orange, 2014 in brown, 2013 in purple, and 2012 in dotted red. The 1981 to 2010 median is in dark gray. The gray areas around the median line show the interquartile and interdecile ranges of the data. Sea Ice Index data.

Credit: National Snow and Ice Data Center
High-resolution image

Figure 2b. The plot shows differences from average for Arctic air temperatures at the 925 hPa level (about 2,500 feet above sea level) in degrees Celsius. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Figure 2b. The plot shows Arctic air temperature differences relative to the 1981 to 2010 long-term average at the 925 hPa level (about 2,500 feet above sea level) in degrees Celsius. Yellows and reds indicate higher than average temperatures; blues and purples indicate lower than average temperatures.

Credit: NSIDC courtesy NOAA Earth System Research Laboratory Physical Sciences Division
High-resolution image

The air temperature pattern over the Arctic was rather complex in July. Temperatures were above average over Alaska, extending into the Beaufort Sea (1 to 2 degrees Celsius or 2 to 4 degrees Fahrenheit) and the Kara and Barents Seas (2 to 4 degrees Celsius or 4 to 7 degrees Fahrenheit). By contrast, temperatures were 2 to 4 degrees Celsius (4 to 7 degrees Fahrenheit) lower than average over Greenland, East Central Siberia, and the Laptev Sea. The air pressure pattern at sea level was dominated by a broad area of low pressure covering most of the Arctic Ocean, with the lowest pressures centered just south of the Pole and west of the date line. Another locus of low pressure was centered over the southern Canadian Arctic Archipelago.

A cyclonic circulation over the central Arctic Ocean is generally viewed as unfavorable for rapid summer ice loss. Ice loss rates tend to be higher when the central Arctic Ocean is dominated by high pressure during summer.

July 2017 compared to previous years

Figure 3. Monthly July ice extent for 1979 to 2017 shows a decline of 7.4 percent per decade.

Figure 3. Monthly July ice extent for 1979 to 2017 shows a decline of 7.4 percent per decade.

Credit: National Snow and Ice Data Center
High-resolution image

The linear rate of decline for July 2017 was 72,500 square kilometers (28,000 square miles) per year, or 7.4 percent per decade.

Onset of surface melt

Figure 4. The plot on the left shows melt onset dates in day of the year (left). Warm colors indicate early melt onset and cooler colors indicate a later melt onset. The plot on the right shows departures from the average melt onset dates in number of days. Warmer colors indicate later than average melt onset and cooler colors indicate later than average melt onset.

Figure 4. The plot on the left shows the average melt onset dates in day of the year. Warm colors indicate early melt onset and cooler colors indicate a later melt onset. The plot on the right shows departures from the average melt onset dates in number of days. Warmer colors indicate later than average melt onset and cooler colors indicate earlier than average melt onset.

Credit: National Snow and Ice Data Center
High-resolution image

One important influence on the pace of summer sea ice retreat is the timing of the onset of surface melt. Surface melt drops the albedo, allowing more solar radiation to be absorbed at the surface. The onset of surface melt in 2017 was quite early in the Chukchi and Eastern Beaufort Seas—as much as 35 days earlier than the 1981 to 2010 average. Early melt was also seen in the Kara Sea, Baffin Bay, and Canadian Arctic Archipelago (10 to 20 days earlier than average). However, over a large portion of the Arctic Ocean’s central ice pack, melt onset was a few days later than average. Melt onset was up to ten days later than average in the polar areas at the northern extents of the Beaufort and East Siberian Seas. The spatial pattern in the timing of melt onset reflects the combination of the warm winter and early spring conditions along the edge of the pack on the Pacific side, very warm winter conditions in the Barents and Kara Sea areas, and relatively cool late spring to early summer conditions over the central Arctic Ocean.

Sea ice predictions for the 2017 minimum

Figure 5. This chart summarizes the 2017 summer September minimum forecasts from 36 different models and approaches to predicting the evolution of the Arctic pack.

Figure 5. This chart summarizes the 2017 summer September minimum forecasts from 36 different models and approaches to predicting the evolution of the Arctic pack.

Credit: SIPN/ARCUS
High-resolution image

A report released by the Sea Ice Prediction Network (SIPN), an activity of the Arctic Research Council of the United States (ARCUS), compiled 36 forecasts of September average sea ice extent that were submitted during July. Additionally, SIPN produces estimates for sea ice extent in the Alaska region and, new this year, for the Antarctic sea ice maximum (not shown). The September Arctic extent forecasts range from a new record low of 3.1 million square kilometers (1.2 million square miles) to an eleventh lowest extent of 5.5 million square kilometers (2.1 million square miles). The median of the estimates is slightly below the September 2016 value, currently the fifth lowest. A variety of methods are used to make these forecasts, ranging from coupled ice-ocean-atmospheric models to statistical approaches and heuristic guesses. NSIDC scientists Julienne Stroeve, Walt Meier, Andrew Barrett, Mark Serreze, and the late Drew Slater have regularly contributed to several separate estimations for the SIPN.

Sea ice retreat may be changing the AMOC

In the far northern Atlantic, warm water flowing northward from the tropics is cooled by the atmosphere, becomes denser, and eventually sinks to great depths. The descending water is key in driving a sub-surface and surface ocean circulation system called the Atlantic Meridional Overturning Circulation (AMOC), which is part of the global ocean conveyor belt of heat and salinity. Where the Atlantic water sinks has a very important effect on the climate of Northern Europe; the heat that the ocean loses to the atmosphere is what keeps Northern Europe quite warm relative to its latitude. For example, Amsterdam is at the same latitude as Winnipeg, Canada, but experiences much warmer winters.

Based on a recent modeling study, Florian Sévellec and colleagues propose that the ongoing loss of Arctic sea ice may disrupt the AMOC. The sea ice loss leads to a freshening of the northern North Atlantic and stronger heat absorption at the surface. This means that waters in the northern North Atlantic are less dense than they used to be, which has the effect of providing a cap, or lid, that may inhibit the northward flow of warm waters at the surface and the eventual sinking of these waters. The authors suggest that the Arctic sea ice decline may help to explain observations suggesting that the AMOC may be slowing down, and why there is a regional minimum in warming (sometimes called the Warming Hole) over the subpolar North Atlantic.

Further reading

Sea Ice Prediction Network. “2017: July Report.” Arctic Research Council of the United States. https://www.arcus.org/sipn/sea-ice-outlook/2017/july.

Sévellec, F., A. V. Fedorov, and W. Liu. 2017. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nature Climate Change, doi:10.1038/nclimate3353.