ATL12 Product Data Dictionary Date Generated: 2020-10-21T15:57:06 | description | (Attribute) | Sea Surface Height (SSH) of the global open ocean including the ice-free seasonal ice zone (SIZ) and near-coast regions. | | | |-----------------------------------|-------------|---|--|--| | level | (Attribute) | L3A | | | | short_name | (Attribute) | ATL12 | | | | title | (Attribute) | SET_BY_META | | | | Group: / | | Sea Surface Height (SSH) of the global open ocean including the ice-free seasonal ice zone (SIZ) and near-coast regions. | | | | Conventions | (Attribute) | CF-1.6 | | | | citation | (Attribute) | SET_BY_META | | | | contributor_name | (Attribute) | Thomas E Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (david.w.hancock@nasa.gov) | | | | contributor_role | (Attribute) | Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer | | | | creator_name | (Attribute) | SET_BY_META | | | | date_created | (Attribute) | SET_BY_PGE | | | | date_type | (Attribute) | итс | | | | featureType | (Attribute) | trajectory | | | | geospatial_lat_max | (Attribute) | 0.0 | | | | geospatial_lat_min | (Attribute) | 0.0 | | | | geospatial_lat_units | (Attribute) | degrees_north | | | | geospatial_lon_max | (Attribute) | 0.0 | | | | geospatial_lon_min | (Attribute) | 0.0 | | | | geospatial_lon_units | (Attribute) | degrees_east | | | | granule_type | (Attribute) | ATL12 | | | | hdfversion | (Attribute) | SET_BY_PGE | | | | history | (Attribute) | SET_BY_PGE | | | | identifier_file_uuid | (Attribute) | SET_BY_PGE | | | | identifier_product_doi | (Attribute) | 10.5067/ATLAS/ATL12.001 | | | | identifier_product_doi_authority | (Attribute) | http://dx.doi.org | | | | identifier_product_format_version | (Attribute) | SET_BY_PGE | | | | identifier_product_type | (Attribute) | ATL12 | | | | institution | (Attribute) | SET_BY_META | | | | instrument | (Attribute) | SET_BY_META | | | | keywords | (Attribute) | SET_BY_META | | | | keywords_vocabulary | (Attribute) | SET_BY_META | | | | license | (Attribute) | Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of the ICESat-2 Science Project Office at NASA/GSFC. | | | | naming_authority | (Attribute) | http://dx.doi.org | | | | platform | (Attribute) | SET_BY_META | | | | processing_level | (Attribute) | L3A | | | | project | (Attribute) | SET_BY_META | | | | | |--------------------------------|-----------------------------|---|---|---|--|--| | publisher_email | (Attribute) | SET_BY_META | | | | | | publisher_name | (Attribute) | SET_BY_META | | | | | | - | , , | | | | | | | publisher_url | (Attribute) | SET_BY_META | | | | | | references | (Attribute) | SET_BY_META | | | | | | source | (Attribute) | SET_BY_META | | | | | | spatial_coverage_type | (Attribute) | Horizontal | | | | | | standard_name_vocabulary | (Attribute) | CF-1.6 | | | | | | summary | (Attribute) | SET_BY_META | | | | | | time_coverage_duration | (Attribute) | SET_BY_PGE | | | | | | time_coverage_end | (Attribute) | SET_BY_PGE | | | | | | time_coverage_start | (Attribute) | SET_BY_PGE | | | | | | time_type | (Attribute) | CCSDS UTC-A | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | ds_a
CHUNKED | INTEGER(['Unlimited']) | Wave Number
Dimension Scale
None | 1 | Dimension scale for harmonic coefficients. (Source: Dim Scale) | | | | ds_surf_type
COMPACT | INTEGER([5]) | Surface Type
Dimension Scale
None | 1 | Dimension scale indexing the surface type array. Index=1 corresponds to Land; index = 2 corresponds to Ocean; Index = 3 corresponds to Sealce; Index=4 corresponds to Landlce; Index=5 corresponds to InlandWater (Source: Dim Scale); (Meanings: [1 2 3 4 5]) (Values: ['land' 'ocean' 'seaice' 'landice' 'inland_water']) | | | | ds_wn
CHUNKED | INTEGER(['Unlimited']) | Wave Number
Dimension Scale
None | 1 | Dimension scale for harmonic wave numbers. (Source: Dim Scale) | | | | ds_xbin
CHUNKED | FLOAT(['Unlimited']) | 10m bin centers
None | meters | Bin center values for the 10m bin averaged data from the SSB calculation. (Source: Dim Scale) | | | | ds_y_bincenters
CHUNKED | FLOAT(['Unlimited']) | Y bins center
None | meters | Bin center values for the y histogram. Ranges -14.995 to 14.995 meters in 1 centimeter bin size steps. (Source: Dim Scale) | | | | Group: /ancillary_data | 1 | | ion ancillary to the data μ
teristics and/or processir | product. This may include product characteristics, and constants. | | | | data_rate | (Attribute) | Data within this gr | oup pertain to the granul | le in its entirety. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | atlas_sdp_gps_epoch
COMPACT | DOUBLE([1]) | ATLAS Epoch
Offset
None | seconds since 1980-
01-
06T00:00:00.0000000Z | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. (Source: Operations) | | | | control
CONTIGUOUS | STRING([1]) | Control File
None | 1 | PGE-specific control file used to generate this granule. To re-use, replace breaks (BR) with linefeeds. (Source: Operations) | | | | data_end_utc | STRING([1]) | End UTC Time of | 1 | UTC (in CCSDS-A format) of the last data point | | | | COMPACT | | Granule
(CCSDS-A,
Actual)
None | | within the granule.
(Source: Derived) | |---------------------------|--------------|--|------------------------------|---| | data_start_utc
COMPACT | STRING([1]) | Start UTC Time
of Granule
(CCSDS-A,
Actual)
None | 1 | UTC (in CCSDS-A format) of the first data point within the granule. (Source: Derived) | | end_cycle
COMPACT | INTEGER([1]) | Ending Cycle
None | 1 | The ending cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | end_delta_time
COMPACT | DOUBLE([1]) | ATLAS End Time
(Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | end_geoseg
COMPACT | INTEGER([1]) | Ending
Geolocation
Segment
None | 1 | The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | end_gpssow
COMPACT | DOUBLE([1]) | Ending GPS
SOW of Granule
(Actual)
None | seconds | GPS seconds-of-week of the last data point in the granule. (Source: Derived) | | end_gpsweek
COMPACT | INTEGER([1]) | Ending
GPSWeek of
Granule (Actual)
None | weeks from 1980-01-
06 | GPS week number of the last data point in the granule. (Source: Derived) | | end_orbit
COMPACT | INTEGER([1]) | Ending Orbit
Number
None | 1 | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | end_region
COMPACT | INTEGER([1]) | Ending Region
None | 1 | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products
are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely | | | | | | independent.
(Source: Derived) | |------------------------------|--------------|---|------------------------------|---| | end_rgt
COMPACT | INTEGER([1]) | Ending
Reference
Groundtrack
None | 1 | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | granule_end_utc
COMPACT | STRING([1]) | End UTC Time of
Granule
(CCSDS-A,
Requested)
None | 1 | Requested end time (in UTC CCSDS-A) of this granule. (Source: Derived) | | granule_start_utc
COMPACT | STRING([1]) | Start UTC Time
of Granule
(CCSDS-A,
Requested)
None | 1 | Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived) | | qa_at_interval
COMPACT | DOUBLE([1]) | QA Along-Track
Interval
None | 1 | Statistics time interval for along-track QA data. (Source: control) | | release
COMPACT | STRING([1]) | Release Number
None | 1 | Release number of the granule. The release number is incremented when the software or ancillary data used to create the granule has been changed. (Source: Operations) | | start_cycle
COMPACT | INTEGER([1]) | Starting Cycle
None | 1 | The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | start_delta_time
COMPACT | DOUBLE([1]) | ATLAS Start
Time (Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | start_geoseg
COMPACT | INTEGER([1]) | Starting
Geolocation
Segment
None | 1 | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | start_gpssow
COMPACT | DOUBLE([1]) | Start GPS SOW of Granule | seconds | GPS seconds-of-week of the first data point in the granule. | | | | (Actual)
None | | (Source: Derived) | |----------------------------|-----------------------------|--|---------------------------|--| | start_gpsweek
COMPACT | INTEGER([1]) | Start GPSWeek
of Granule
(Actual)
None | weeks from 1980-01-
06 | GPS week number of the first data point in the granule. (Source: Derived) | | start_orbit
COMPACT | INTEGER([1]) | Starting Orbit
Number
None | 1 | The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | start_region
COMPACT | INTEGER([1]) | Starting Region
None | 1 | The starting product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | start_rgt
COMPACT | INTEGER([1]) | Starting
Reference
Groundtrack
None | 1 | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | version
COMPACT | STRING([1]) | Version
None | 1 | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current release. (Source: Operations) | | Group: /ancillary_data/oce | an | Contains general | ancillary parameters. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | cld_thres
COMPACT | FLOAT([1]) | Cloud Threshold
None | percent | Data associated with cloud percentages above this threshold are not processed. (Source: Operations) | | coarse_interval
COMPACT | DOUBLE([1]) | Coarse selection interval None | seconds | The number of seconds of data used for coarse selection (normally equivalent to 400 laser pulses). (Source: Operations) | | conf_lim
COMPACT | INTEGER([1]) | Minimum
Confidence
Level
None | 1 | Minimum confidence level to be included in moving average. Typically 3 or 4. (Source: Operations) | | conf_lim_min
COMPACT | INTEGER([1]) | Fallback
Minimum
Confidence
Level
None | 1 | Minimum fallback confidence level to be used in moving average. Typically 2 or 3. (Source: Operations) | | depth_shore
COMPACT | FLOAT([1]) | Depth Shore
None | meters | If ocean depth is less than depth_shore, then the current ocean segment is too close to land for ocean processing. (Source: Control File Override (Defined in Ocean ATBD section 4.2.1.2 Coarse selection)) | | fine_max_secs
COMPACT | DOUBLE([1]) | Maximum
Integration Time | seconds | Maximum fine segment duration of fine selection segment (equivalent to required number of tx | | | | None | | pulses).
(Source: Operations) | |--------------------------|----------------|---|---------|--| | fine_min_sig
COMPACT | INTEGER([1]) | Minimum Signal
Photons
None | counts | Minimum number of signal photons required to perform fine selection. (Source: Operations) | | gapfilldx
COMPACT | FLOAT([1]) | Pseudo photon spacing None | meters | Spacing of pseudo photons for harmonic analysis. (Source: Control File Override (Defined in Ocean ATBD section 4.2.1.2 Coarse selection)) | | gaplimit
COMPACT | FLOAT([1]) | Min Gap for
Normal
Harmonic
Analysis
None | meters | Largest data gap for harmonic analysis. (Source: Control File Override (Defined in Ocean ATBD section 4.2.1.2 Coarse selection)) | | hist_bin_size
COMPACT | FLOAT([1]) | Histogram Bin
Size
None | meters | Height histogram and impulse response bin size in meters. (Source: Operations) | | hist_bot
COMPACT | FLOAT([1]) | Histogram
Bottom
None | meters | Bottom (minimum height) of the coarse and fine select histograms. (Source: Operations) | | hist_nbins
COMPACT | INTEGER([1]) | Number of histogram bins. None | counts | Number of bins in each histogram.
(Source: Derived) | | hist_top
COMPACT | FLOAT([1]) | Histogram Top
None | meters | Top (maximum height) of the coarse and fine select histograms. (Source: Operations) | | layer_switch
COMPACT | INTEGER_1([1]) | layer_switch
None | 1 | Switch to enable usage of layer_flag from ATL09. 0 - Ignore layer_flag when processing ocean data (default); 1 - Process a 14 geoseg ocean segment only if layer_flag is also 1. (Source: Control File Override (
Defined in Ocean ATBD section 4.2.1.2 Coarse selection)); (Meanings: [0 1]) (Values: ['ignore_layer_flag' 'use_layer_flag']) | | min_ph_pcnt
COMPACT | FLOAT([1]) | Minimum Photon
Percentage
None | percent | Minimum percentage of the selected coarse photons being selected in fine_sel to continue processing. (Source: Operations) | | min_sigconf
COMPACT | INTEGER([1]) | Minimum
Confidence
Level in
coarse_sel
None | 1 | Minimum confidence level to be used in coarse_sel. Typically 1. (Source: Operations) | | nharms
COMPACT | INTEGER([1]) | Number of
Harmonics for Fit
None | 1 | Number of harmonics to fit to selected surface photons. (Source: Operations) | | nphoton
COMPACT | INTEGER([1]) | Half Number
Photons For
Average
None | 1 | Number of photons either side of central photon to consider averaging 5 for an 11 point average. (Source: Operations) | | oc_region
COMPACT | INTEGER([1]) | Ocean Region
Index
None | 1 | The ocean region covered within this granule. (Source: Operations) | | ocseg_min_sig
COMPACT | INTEGER([1]) | Ocean Segment
Minimum Signal
Photons
None | counts | Minimum number of signal photons required to process an ocean segment. (Source: Ocean ATBD Sect. 5.2.6.2 step I.Sect. 5.2.4 step G) | | proc_interval
COMPACT | INTEGER([1]) | Processing interval None | counts | The number of 20 meter segments read at once from ATL03. (Source: Operations) | | pts2bin
COMPACT | INTEGER([1]) | Bins in Boxcar
Smoother
None | 1 | Defines the number of bins used in the boxcar smoother (Source: Control File Override (Defined in Ocean ATBD, section 5.3.2 step D and Table 5)) | |-------------------------------|-------------------------------------|---|------------------------------|--| | sig_thres
COMPACT | FLOAT([1]) | Signal Threshold
None | percent | Threshold for photons to be considered signal. (Source: Operations) | | sw_delta_t
COMPACT | DOUBLE([1]) | Strong-Weak
Delta Time
None | seconds | Approximate time differencebetween strong and weak beams for one segment_id. (Source: Operations) | | use_podppd_flag
COMPACT | INTEGER_1([1]) | use_podppd_flag
None | 1 | 0 - Ignore podppd_flag when processing ocean data; 1 - Skip data where podppd_flag is 1. (Source: Control File Override (Defined in Ocean ATBD section 4.2.1.2 Coarse selection)); (Meanings: [0 1]) (Values: ['ignore_podppd_flag' 'use_podppd_flag']) | | Group: /gtx | | This ground conta | ins parameters and sub | groups related a specific groundtrack. | | data_rate | (Attribute) | Each subgroup ide | entifies its particular data | a rate. | | Group: /gtx/ssh_segments | | Contains paramet | ers relating to the calcula | ated surface height. | | data_rate | (Attribute) | Data within this gr | oup are stored at the va | riable ocean processing segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | delt_seg
CHUNKED | DOUBLE(['Unlimited']) | Ocean Segment
Duration
None | seconds | Time duration segment (Source: Ocean ATBD Sect. 5.2.4 step N.) | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Mean time for the ocean surface segment in number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: telemetry) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Mean latitude of surface segment latitude | degrees_north | Mean latitude of surface photons in segment (Source: Ocean ATBD) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Mean longitude of surface segment longitude | degrees_east | Mean longitude of surface photons in segment (Source: Ocean ATBD) | | Group: /gtx/ssh_segments/heig | ghts | Contains paramet | ers including and relating | g to the calculated sea surface height. | | data_rate | (Attribute) | Data within this gr | oup are stored at the val | riable ocean processing segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | a
CHUNKED | DOUBLE(['Unlimited', 'Unlimited']) | Harmonic
Coefficients
None | meters | Vector of 2 x nharms + 1 coefficients for each harmonic component in the harmonic analysis of heights. a(1,oc_seg) is the coefficient for wavenumber equal zero. a(even index j, oc_seg) is the sine coefficient for wn(j/2), and a(odd index j, oc_seg) is the cosine coefficient for wn((j-1)/2) (Source: Ocean ATBD, Section 5.3.3.2, step 4) | | bin_ssbias
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Sea State Bias
None | meters | Mean of linear fit removed from surface photon height (4.3.1) (Source: Ocean ATBD) | | dxbar | FLOAT(['Unlimited']) | Mean Dist | meters | Mean distance between signal photons. | | CHUNKED | INVALID_R4B | Between Signal
Photons
None | | (Source: Ocean ATBD) | |-----------------------|--|---|---------------|--| | dxskew
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Skewness of Dist
Between Sig
Photons
None | meters | Skewness of distance between signal photons. (Source: Ocean ATBD) | | dxvar
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Variance of Dist
Between Sig
Photons
None | meters | Variance of distance between signal photons.
(Source: Ocean ATBD) | | h
CHUNKED | FLOAT(['Unlimited']) | mean sea
surface height
None | meters | Mean sea surface height in meters computed as the mean of the distribution represented as an optimum 2-Gaussian mixture fit to the DOT plus the geoid and the mean removed in detrending the surface photon heights for analysis. (Source: Ocean ATBD Sect. 5.2.6.2 step I, equation 21) | | h_kurtosis
CHUNKED | FLOAT(['Unlimited']) | kurtosis of sea
surface height
None | 1 | Excess kurtosis of sea surface height of the distribution represented as an optimum 2-Gaussian mixture fit to the DOT. (Source: Ocean ATBD Sect. 5.2.6.2 step I, equation 24.) | | h_skewness
CHUNKED | FLOAT(['Unlimited']) | Skewness of sea
surface height
None | 1 | Skewness of photon sea surface height of the distribution represented as an optimum 2-Gaussian mixture fit to the DOT. (Source: Ocean ATBD Sect. 5.2.6.2 step I, equation 23) | | h_uncrtn
CHUNKED | FLOAT(['Unlimited']) | Uncertaintity in mean SSH None | 1 | Uncertainty in the mean sea surface height over an ocean segment (Source: Ocean ATBD, Section 5.3.6.1 c) | | h_var
CHUNKED | FLOAT(['Unlimited']) | Variance of fit
None | meters^2 | Variance in meters squared of the distribution represented as an optimum 2-Gaussian mixture fit to the DOT. (Source: Ocean ATBD Sect. 5.2.6.2 step I, equation 22.) | | htybin
CHUNKED | FLOAT(['Unlimited', 'Unlimited']) INVALID_R4B | Average 10m
height
None | meters | The 10-m bin averaged heights from the SSB calculation for each ocean segment. (Source: Ocean ATBD) | | latbind
CHUNKED | DOUBLE(['Unlimited', 'Unlimited']) INVALID_R8B | Average latitude for each 10m bin None | degrees north | Averages of latitudes in each 10-meter bin (Source: Ocean ATBD) | | length_seg
CHUNKED | DOUBLE(['Unlimited']) | Length of segment None | meters | Length of segment (m)
(Source: Ocean ATBD Sect. 5.2.4 step N.) | | lonbind
CHUNKED | DOUBLE(['Unlimited', 'Unlimited']) INVALID_R8B | Average
longitude for
each 10m bin
None | degrees east | Averages of longitudes in each 10-meter bin (Source: Ocean ATBD) | | meanoffit2
CHUNKED | FLOAT(['Unlimited']) | coarse Sea
surface height of
segment
None | meters | Average of the linear fit, P0+P1*X, where P0 and P1 are the coefficients of the linear fit to the initial choice of surface photons and X is the array of along-track positions of the final choice of surface photons (Source: Ocean ATBD Sect. 5.2.4 step G) | | mix_m1
CHUNKED | FLOAT(['Unlimited']) | Fraction of
component 1
Gaussian
mixture
None | 1 | Fraction of component 1 in 2-component
Gaussian mixture
(Source: Ocean ATBD Sect. 5.2.6.2 step I.) | | mix_m2
CHUNKED | FLOAT(['Unlimited']) | Fraction of
component 2
Gaussian
mixture
None | 1 | Fraction of component 2 in 2-component
Gaussian mixture
(Source: Ocean ATBD Sect. 5.2.6.2 step I.) | |------------------------|-------------------------------------|--|---------------------|--| | mix_mu1
CHUNKED | FLOAT(['Unlimited']) | Mean of
component 1
Gaussian
mixture
None | meters | Mean of component 1 in
2-component Gaussian mixture (Source: Ocean ATBD Sect. 5.2.6.2 step I.) | | mix_mu2
CHUNKED | FLOAT(['Unlimited']) | Mean of
component 2
Gaussian
mixture
None | meters | Mean of component 2 in 2-component Gaussian mixture (Source: Ocean ATBD Sect. 5.2.6.2 step I.) | | mix_sig1
CHUNKED | FLOAT(['Unlimited']) | Standard
deviation of
component 1
Gaussian
mixture
None | meters | Standard deviation of component 1 in 2-component Gaussian mixture (Source: Ocean ATBD Sect. 5.2.6.2 step I.) | | mix_sig2
CHUNKED | FLOAT(['Unlimited']) | Standard
deviation of
component 2
Gaussian
mixture
None | meters | Standard deviation of component 2 in 2-component Gaussian mixture (Source: Ocean ATBD Sect. 5.2.6.2 step I.) | | n_pulse_seg
CHUNKED | FLOAT(['Unlimited']) | Number laser
pulses segment
None | counts | Number of laser pulses in segment (Source: Ocean ATBD) | | np_effect
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Degrees of
Freedom
None | 1 | Effective degrees of freedom of the average sea surface height for the ocean segment (Source: Ocean ATBD, Section 5.3.6.1 c) | | p0
CHUNKED | FLOAT(['Unlimited']) | Intercept of
Linear Fit
None | meters | Zero intercept of the linear fit used to detrend the photon heights before going into the second round of surface finding (Source: Ocean ATBD) | | p1
CHUNKED | FLOAT(['Unlimited']) | Slope of Linear
Fit
None | meters/meter | Slope of linear fit versus along-track distance to surface photon height (Source: Ocean ATBD) | | slope_seg
CHUNKED | DOUBLE(['Unlimited']) | Sea surface
slope of segment
None | meters/meters | Sea surface slope equal to the linear coefficient, P1, of the linear fit used to detrend the photon heights before going into the second round of surface finding. (Source: Ocean ATBD Sect. 5.2.6.2 step I.Sect. 5.2.4 step G) | | snr_harm
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Harmonic SNR
None | meters**2/meters**2 | Signal to noise ratio of harmonic fit with coefficients in a to the surface reflected photons including meanoffit2 and with data gaps greater than gaplimit filled with Gaussian white noise about meanoffit2 (Source: Ocean ATBD) | | swh
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | swh
None | meters | Significant wave height estimated as 4 times the standard deviation of along track 10-m bin averaged surface height (Source: Ocean ATBD) | | wn
CHUNKED | DOUBLE(['Unlimited', 'Unlimited']) | Harmonic Wave
Numbers
None | 1/meters | nharms wavenumbers, equal to the inverse of wavelengths for each harmonic component in harmonic analysis of heights. (Source: Ocean ATBD, Section 5.3.3.2 step 1) | | xbind | FLOAT(['Unlimited', | Average distance | meters | Averages of along-track distance in each 10- | | CHUNKED | 'Unlimited'])
INVALID_R4B | for each 10m bin
None | | meter bin
(Source: Ocean ATBD) | | |-----------------------------------|---|---|--------------------------|---|--| | xrbin
CHUNKED | FLOAT(['Unlimited', 'Unlimited']) INVALID_R4B | Average 10m photon rate None | photons/meter | The 10-m bin averaged photon rate from the SSB calculation for each ocean segment. (Source: Ocean ATBD) | | | y
CHUNKED | FLOAT(['Unlimited', 'Unlimited']) | PDF of Height
None | 1/meter | Probability density function of photon surface height (Source: Ocean ATBD) | | | ykurt
CHUNKED | FLOAT(['Unlimited']) | ykurt
None | 1 | Excess Kurtosis = (fourth moment of Y)/ Yvar squared, all -3. The fourth moment of Y is calculated as the integral of Y(z) times z to the fourth, all divided by the integral of Y(z). (Source: Ocean ATBD) | | | ymean
CHUNKED | FLOAT(['Unlimited']) | ymean
None | meters | Mean=first moment of Y calculated as the integral of $Y(z)$ times z all divided by the integral of $Y(z)$. This, should be \sim 0 = h -meanoffit2 (Source: Ocean ATBD) | | | yskew
CHUNKED | FLOAT(['Unlimited']) | yskew
None | 1 | Skewness = (third moment of Y)/ Yvar to the 3/2 power. The third moment of Y is calculated as the integral of Y(z) times z cubed, all divided by the integral of Y(z). (Source: Ocean ATBD) | | | yvar
CHUNKED | FLOAT(['Unlimited']) | yvar
None | meter^2 | Variance= second moment of Y calculated as the integral of Y(z) times z squared, all divided by the integral of Y(z). (Source: Ocean ATBD) | | | Group: /gtx/ssh_segments/stats | | Contains parameters related to quality and corrections on the sea surface height parameters | | | | | data_rate | (Attribute) | Data within this gr | oup are stored at the va | riable ocean processing segment rate. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | backgr_seg
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | ATL03
background
None | 1/meters | backgrd_atlas/bckgrd_rate from ATL03 averaged over the segment (Source: Ocean ATBD) | | | cloudcover_percent_seg
CHUNKED | FLOAT(['Unlimited']) | Percent
Cloudcover
None | 1 | The percentage of geosegs in the ocean segment with layer_flag=1 (Source: Ocean ATBD) | | | dac_seg
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Dynamic
Atmosphere
Correction
None | meters | Ocean segment average of dynamic atmospheric correction (DAC) includes inverted barometer (IB) affect (Source: ATL03) | | | depth_ocn_seg
CHUNKED | FLOAT(['Unlimited']) | Ocean depth
None | meters | The average of depth_ocn of geo-segments used in the ocean segment (Source: Ocean ATBD) | | | first_geoseg
CHUNKED | INTEGER(['Unlimited']) | ATL03
Geolocation
Segment
None | 1 | The first of the geosegment ids (segment_id) for each ocean segment (Source: Ocean ATBD) | | | first_pce_mframe_cnt
CHUNKED | UINT_4_LE(['Unlimited']) | First PCE Major frame ID None | counts | First Major Frame ID in the SSH segment (Source: I1a/atlas/pcex/altimeter/photons_s and photons_w) | | | first_tx_pulse
CHUNKED | INTEGER(['Unlimited']) | First Transmit
Pulse
None | counts | First Transmit pulse in along-track segment (Source: Ocean ATBD) | | | fpb_corr
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | first photon bias
correction
None | meters | Estimated first-photon bias correction to mean segment height = 0 pending findings to the contrary for the ocean (Source: Ocean ATBD) | | | fpb_corr_stdev | FLOAT(['Unlimited']) | fpb_corr_stdev | meters | Estimated error in fpb_corr = 0 pending findings | | | CHUNKED | INVALID_R4B | None | | to the contrary
(Source: Ocean ATBD) | |-----------------------------------|-------------------------------------|---|----------|---| | full_sat_fract_seg
CHUNKED | FLOAT(['Unlimited']) | Fraction Fully
Saturated
None | 1 | Fraction of all pulses in all geosegs used that were fully saturated (Source: ATL03) | | geoid_free2mean_seg
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Geoid Free-to-
Mean conversion
None | meters | Ocean segment average additive value to convert geoid heights from the tide-free system to the mean-tide system. (Subtract from geoid_seg to get the geoid heights in the free-tide system.) (Source: ATL03) | | geoid_seg
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Geoid (Mean
Tide System)
None | meters | Ocean segment average of mean tide system geoid height above the WGS 84 reference ellipsoid (range -107 to 86 m). (Source: ATL03) | | last_geoseg
CHUNKED | INTEGER(['Unlimited']) | ATL03
geolocation
segment ID
number.
None | 1 | A 7 digit number identifying the last along-track ATL03 geolocation segment number in the ocean height segment (Source: ATL03) | | last_pce_mframe_cnt
CHUNKED | UINT_4_LE(['Unlimited']) | Last PCE Major frame ID None | counts | Last Major Frame ID in the SSH segment (Source: I1a/atlas/pcex/altimeter/photons_s and photons_w) | | last_tx_pulse
CHUNKED | INTEGER(['Unlimited']) | Last Transmit
Pulse
None | counts | Last Transmit pulse in along-track segment (Source: Ocean ATBD) | | layer_flag_seg
CHUNKED | INTEGER(['Unlimited']) | Layer Flag
None | 1 | The layer flag from ATL09 that is in effect over 50% of the ocean segment, 0 indicating absence of clouds and forward scattering, and 1 indicating possibility of forward scattering as in ATL09 (Source: Ocean ATBD) | | n_photons
CHUNKED | INTEGER_8(['Unlimited']) | Number surface photons segment None | counts | Number of surface photons found for the segment (Source: Ocean ATBD) | | n_ttl_photon
CHUNKED | INTEGER_8(['Unlimited']) | Number photons
segment
None | counts | Number of photons in the 15-m ocean downlink band (Source: Ocean ATBD Sect. 5.2.4 step N.) | | near_sat_fract_seg
CHUNKED | FLOAT(['Unlimited']) | Fraction Nearly
Saturated
None | 1 | Fraction of all pulses in all geosegs used that were nearly saturated (Source: ATL03) | | neutat_delay_total_seg
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Total Neutral
Atmospheric
Delay
None | meters | Ocean segment average of total neutral atmosphere delay correction (wet + dry) (Source: ATL03) | | orbit_number
CHUNKED | INTEGER_2(['Unlimited']) | Orbit Number
None | 1 | Unique identifying number for each planned ICESat-2 orbit (Source: ATL03) | | photon_rate
CHUNKED | FLOAT(['Unlimited']) | Photon count
rate, averaged
over the segment
None | 1/meters | Photon count rate,
averaged over the segment (Source: Ocean ATBD Sect. 5.2.4 step N.) | | photonns_rate
CHUNKED | FLOAT(['Unlimited']) | Noise photon
count rate,
averaged over
the segment
None | 1/meters | Noise photon count rate, averaged over the segment (Source: Ocean ATBD Sect. 5.2.4 step N.Sect. 5.2.4 step N) | | ref_azimuth_seg
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Azimuth
azimuth | radians | Ocean segment average of azimuth of the unit pointing vector for the reference photon in the local ENU frame in radians. The angle is measured from North and positive towards East | | | | | | (Source: ATL03) | |-------------------------------------|-------------------------------------|---|--------------|--| | ref_elev_seg
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | elevation
elevation | radians | Ocean segment average of elevation of the unit pointing vector for the reference photon in the local ENU frame in radians. The angle is measured from the East-North plane and positive towards Up (Source: ATL03) | | seg_dist_x_seg
CHUNKED | DOUBLE(['Unlimited']) | Distance along-
track
None | meters | Ocean segment average of the along-track distance from the equator crossing to the start of the 20-m geolocation segments included in the ocean segment (Source: Ocean ATBD) | | solar_azimuth_seg
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | solar azimuth
None | degrees_east | Ocean segment average of the azimuth of the sun position vector from the reference photon bounce point position in the local ENU frame. The angle is measured from North and is positive towards East. The average is provided in degrees. (Source: ATL03) | | solar_elevation_seg
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | solar elevation
None | degrees | Ocean segment average of the elevation of the sun position vector from the reference photon bounce point position in the local ENU frame. The angle is measured from the East-North plane and is positive towards Up. The average is provided in degrees. (Source: ATL03) | | ss_corr
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | subsurface
scattering
correction
None | meters | Subsurface scattering correction, placeholder = zero pending further findings to the contrary (Source: Ocean ATBD) | | ss_corr_stdev
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | ss_corr_stdev
None | meters | Estimated error of subsurface scattering correction, placeholder = zero pending further findings to the contrary (Source: Ocean ATBD) | | surf_type_prcnt
CHUNKED | FLOAT(['Unlimited', 5]) | Percent Surface
Type
None | 1 | Percent of each surface type (land, ocean, sea ice, land ice, inland water from masks) in the ocean segment (Source: ATL03) | | tide_earth_free2mean_seg
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Earth Tide Free-
to-Mean
conversion
None | meters | Ocean segment average additive value to convert solid earth tide from the tide-free system to the mean tide system. (Add to tide_earth to get solid earth tides in the mean-tide system.) (Source: ATL03) | | tide_earth_seg
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Earth Tide
None | meters | Ocean segment average of tide free system solid earth tides (Source: ATL03) | | tide_equilibrium_seg
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Equilibrium Tide
None | meters | Long period equilibrium tide self-consistent with ocean tide model (+-0.04m). (Source: ATL03) | | tide_load_seg
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Load Tide
None | meters | Ocean segment average of local displacement due to ocean loading (-6 to 0 cm) (Source: ATL03) | | tide_oc_pole_seg
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Ocean Pole Tide
None | meters | Ocean segment average of oceanic surface rotational deformation due to polar motion (-2 to +2 mm) (Source: ATL03) | | tide_ocean_seg
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Ocean Tide
None | meters | Ocean segment average of ocean tides including diurnal and semi-diurnal (harmonic analysis) and longer period tides (dynamic and self-consistent equilibrium) (Source: ATL03) | | tide_pole_seg
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Solid Earth Pole
Tide
None | meters | Solid Earth Pole Tide -Rotational deformation due to polar motion (-1.5 to 1.5 cm). (Source: ATL03) | |---------------------------|----------------------------------|--|------------------------------|--| | Group: /orbit_info | | Contains orbit information. | | | | data_rate | (Attribute) | Varies. Data are only provided when one of the stored values (besides time) changes. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | crossing_time
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node
Crossing Time
time | seconds since 2018-
01-01 | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | cycle_number
CHUNKED | INTEGER_1(['Unlimited']) | Cycle Number
None | 1 | A count of the number of exact repeats of this reference orbit. (Source: Operations) | | lan
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node
Longitude
None | degrees_east | Longitude at the ascending node crossing. (Source: POD/PPD) | | orbit_number
CHUNKED | UINT_2_LE(['Unlimited']) | Orbit Number
None | 1 | Unique identifying number for each planned ICESat-2 orbit. (Source: Operations) | | rgt
CHUNKED | INTEGER_2(['Unlimited']) | Reference
Ground track
None | 1 | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT3 and GT4. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: POD/PPD) | | sc_orient
CHUNKED | INTEGER_1(['Unlimited']) | Spacecraft
Orientation
None | 1 | This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. (Source: POD/PPD); (Meanings: [0 1 2]) (Values: ['backward' 'forward' 'transition']) | | sc_orient_time
CHUNKED | DOUBLE(['Unlimited']) | Time of Last
Spacecraft
Orientation
Change
time | seconds since 2018-
01-01 | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch | | | | | | (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | |--|-----------------------------|-----------------------------------|---|---|--| | Group: /quality_assessment | | • | Contains quality assessment data. This may include QA counters, QA along-track data and/or QA summary data. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | qa_granule_fail_reason
COMPACT | INTEGER([1]) | Granule Failure
Reason
None | 1 | Flag indicating granule failure reason. 0=no failure; 1=processing error; 2=Insufficient output data was generated; 3=TBD
Failure; 4=TBD_Failure; 5=other failure. (Source: Operations); (Meanings: [0 1 2 3 4 5]) (Values: ['no_failure' 'PROCESS_ERROR' 'INSUFFICIENT_OUTPUT' 'failure_3' 'failure_4' 'OTHER_FAILURE']) | | | qa_granule_pass_fail
COMPACT | INTEGER([1]) | Granule Pass
Flag
None | 1 | Flag indicating granule quality. 0=granule passes automatic QA. 1=granule fails automatic QA. (Source: Operations); (Meanings: [0 1]) (Values: ['PASS' 'FAIL']) | | | Group: /quality_assessment/along_track | | Along-track statist | Along-track statistics | | |