ATL09 Product Data Dictionary Date Generated: 2020-02-03T22:48:10 | Group: / | | | |-----------------------------------|-------------|--| | Conventions | (Attribute) | CF-1.6 | | citation | (Attribute) | SET_BY_META | | contributor_name | (Attribute) | Thomas E Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (david.w.hancock@nasa.gov) | | contributor_role | (Attribute) | Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer | | creator_name | (Attribute) | SET_BY_META | | date_created | (Attribute) | SET_BY_PGE | | date_type | (Attribute) | UTC | | description | (Attribute) | This data set (ATL09) contains calibrated, attenuated backscatter profiles, layer integrated attenuated backscatter, and other parameters including cloud layer height and atmospheric characteristics obtained from the data. The data were acquired by the Adv | | featureType | (Attribute) | trajectory | | geospatial_lat_max | (Attribute) | 0.0 | | geospatial_lat_min | (Attribute) | 0.0 | | geospatial_lat_units | (Attribute) | degrees_north | | geospatial_lon_max | (Attribute) | 0.0 | | geospatial_lon_min | (Attribute) | 0.0 | | geospatial_lon_units | (Attribute) | degrees_east | | granule_type | (Attribute) | ATL09 | | hdfversion | (Attribute) | SET_BY_PGE | | history | (Attribute) | SET_BY_PGE | | identifier_file_uuid | (Attribute) | SET_BY_PGE | | identifier_product_doi | (Attribute) | 10.5067/ATLAS/ATL09.001 | | identifier_product_doi_authority | (Attribute) | http://dx.doi.org | | identifier_product_format_version | (Attribute) | SET_BY_PGE | | identifier_product_type | (Attribute) | ATL09 | | institution | (Attribute) | SET_BY_META | | instrument | (Attribute) | SET_BY_META | | keywords | (Attribute) | SET_BY_META | | keywords_vocabulary | (Attribute) | SET_BY_META | | level | (Attribute) | L3A | | license | (Attribute) | Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of the ICESat-2 Science Project Office at NASA/GSFC. | | naming_authority | (Attribute) | http://dx.doi.org | | platform | (Attribute) | SET_BY_META | | processing_level | (Attribute) | L3A | | project | (Attribute) | SET_BY_META | | publisher_email | (Attribute) | SET_BY_META | | | | | | publisher_name | (Attribute) | SET_BY_META | | | | | |--------------------------------|--------------------------|--|---|---|--|--| | publisher_url | (Attribute) | SET_BY_META | | | | | | references | (Attribute) | SET_BY_META | | | | | | short_name | (Attribute) | ATL09 | | | | | | source | (Attribute) | SET_BY_META | | | | | | spatial_coverage_type | (Attribute) | Horizontal | | | | | | standard_name_vocabulary | (Attribute) | CF-1.6 | | | | | | summary | (Attribute) | SET_BY_META | | | | | | time_coverage_duration | (Attribute) | SET_BY_PGE | | | | | | time_coverage_end | (Attribute) | SET_BY_PGE | | | | | | time_coverage_start | (Attribute) | SET_BY_PGE | | | | | | time_type | (Attribute) | CCSDS UTC-A | | | | | | title | (Attribute) | SET_BY_META | | | | | | Label
(Layout) | Datatype
(Dimensions) | long_name
(standard_name) | units
source | description | | | | ds_surf_type
COMPACT | INTEGER
(5) | Surface Type Dimension Scale | 1 | Dimension scale indexing the surface type array. Index=1 corresponds to Land; index = 2 corresponds to Ocean; Index = 3 corresponds to Sealce; Index=4 corresponds to Landlce; Index=5 corresponds to InlandWater | | | | | | | | Flag Values: ['1', '2', '3', '4', '5'] Flag Meanings: ['land', 'ocean', 'seaice', | | | | Group: /ancillary_data | ı | | | | | | | Description | (Attribute) | Contains information ancillary to th characteristics and/or processing c | | r include product characteristics, instrument | | | | data_rate | (Attribute) | Data within this group pertain to the | e granule in its entirety. | | | | | Label
(Layout) | Datatype
(Dimensions) | long_name
(standard_name) | units
source | description | | | | atlas_sdp_gps_epoch
COMPACT | DOUBLE
(1) | ATLAS Epoch Offset | seconds since 1980-
01-
06T00:00:00.000000Z
Operations | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. | | | | control
CONTIGUOUS | STRING | Control File | 1 | PGE-specific control file used to generate this | | | | | (1) | | Operations | granule. To re-use, replace breaks (BR) with linefeeds. | | | | data_end_utc
COMPACT | STRING (1) | End UTC Time of Granule
(CCSDS-A, Actual) | Operations 1 Derived | granule. To re-use, replace breaks (BR) with | | | | | STRING | | 1 | granule. To re-use, replace breaks (BR) with linefeeds. UTC (in CCSDS-A format) of the last data | | | | COMPACT data_start_utc | STRING
(1)
STRING | (CCSDS-A, Actual) Start UTC Time of Granule | 1
Derived | granule. To re-use, replace breaks (BR) with linefeeds. UTC (in CCSDS-A format) of the last data point within the granule. UTC (in CCSDS-A format) of the first data | | | | | | | | number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | |----------------------------|---------------|--|--------------------------------------|---| | end_geoseg
COMPACT | INTEGER (1) | Ending Geolocation Segment | 1
Derived | The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. | | end_gpssow
COMPACT | DOUBLE (1) | Ending GPS SOW of Granule (Actual) | seconds
Derived | GPS seconds-of-week of the last data point in the granule. | | end_gpsweek
COMPACT | INTEGER (1) | Ending GPSWeek of Granule (Actual) | weeks from 1980-01-
06
Derived | GPS week number of the last data point in the granule. | | end_orbit
COMPACT | INTEGER (1) | Ending Orbit Number | 1
Derived | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. | | end_region
COMPACT | INTEGER (1) | Ending Region | 1
Derived | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. | | end_rgt
COMPACT | INTEGER (1) | Ending Reference Groundtrack | 1
Derived | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. | | granule_end_utc
COMPACT | STRING
(1) | End UTC Time of Granule (CCSDS-A, Requested) | 1
Derived | Requested end time (in UTC CCSDS-A) of this granule. | | granule_start_utc COMPACT | STRING
(1) | Start UTC Time of Granule (CCSDS-A, Requested) | 1
Derived | Requested start time (in UTC CCSDS-A) of this granule. | | qa_at_interval
COMPACT | DOUBLE (1) | QA Along-Track Interval | 1
control | Statistics time interval for along-track QA data. | | release
COMPACT | STRING
(1) | Release Number | 1
Operations | Release number of the granule. The release number is incremented when the software or ancillary
data used to create the granule has been changed. | | start_cycle | INTEGER | Starting Cycle | 1 | The starting cycle number associated with | | COMPACT | (1) | | Derived | the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. | |-----------------------------|----------------|-----------------------------------|---|---| | start_delta_time
COMPACT | DOUBLE
(1) | ATLAS Start Time (Actual) time | seconds since 2018-
01-01
Derived | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | | start_geoseg
COMPACT | INTEGER (1) | Starting Geolocation Segment | 1
Derived | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. | | start_gpssow
COMPACT | DOUBLE (1) | Start GPS SOW of Granule (Actual) | seconds
Derived | GPS seconds-of-week of the first data point in the granule. | | start_gpsweek
COMPACT | INTEGER (1) | Start GPSWeek of Granule (Actual) | weeks from 1980-01-
06
Derived | GPS week number of the first data point in the granule. | | start_orbit
COMPACT | INTEGER
(1) | Starting Orbit Number | 1
Derived | The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. | | start_region
COMPACT | INTEGER
(1) | Starting Region | 1
Derived | The starting product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. | | start_rgt
COMPACT | INTEGER
(1) | Starting Reference Groundtrack | 1
Derived | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. | | version
COMPACT | STRING
(1) | Version | 1
Operations | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current | | | | | | release. | |---------------------------------|--------------------------|---|--|---| | Group: /ancillary_data/atmos | sphere | | | | | Description | (Attribute) | Contains general ancillary parame | ters. | | | data_rate | (Attribute) | Data within this group pertain to th | e granule in its entirety. | | | Label
(Layout) | Datatype
(Dimensions) | long_name
(standard_name) | units
source | description | | a_m1
COMPACT | FLOAT
(3) | a_m1 | meters
Atmosphere ATBD | a_m, anisotropy factor, to use for pass 1 (day, night, twilight) | | a_m2
COMPACT | FLOAT
(3) | a_m2 | meters
Atmosphere ATBD | a_m, anisotropy factor, to use for pass 2 (day, night, twilight) | | aclr_use_atlas
COMPACT | INTEGER
(1) | ALR Use ATLAS Flag | 1
Operations | Flag to control the computation of the aclr_true parameter. | | | | | | Flag Values: ['0', '1'] Flag Meanings: ['non_water_uses_gnome', 'non_water_uses_ATLAS_ASR'] | | alpha_day_pce1
COMPACT | FLOAT (1) | Molecular Folding Scaling Factor
Day PCE1 | 1
Atmosphere ATBD,
part 1, section 3.3.2 | Molecular Folding Scaling Factor (PCE1/day) | | alpha_day_pce2
COMPACT | FLOAT (1) | Molecular Folding Scaling Factor
Day PCE2 | 1
Atmosphere ATBD,
part 1, section 3.3.2 | Molecular Folding Scaling Factor (PCE2/day) | | alpha_day_pce3
COMPACT | FLOAT (1) | Molecular Folding Scaling Factor
Day PCE3 | 1
Atmosphere ATBD,
part 1, section 3.3.2 | Molecular Folding Scaling Factor (PCE3/day) | | alpha_night_pce1
COMPACT | FLOAT (1) | Molecular Folding Scaling Factor
Night PCE1 | 1
Atmosphere ATBD,
part 1, section 3.3.2 | Molecular Folding Scaling Factor (PCE1/night) | | alpha_night_pce2
COMPACT | FLOAT (1) | Molecular Folding Scaling Factor
Night PCE2 | 1
Atmosphere ATBD,
part 1, section 3.3.2 | Molecular Folding Scaling Factor (PCE2/night) | | alpha_night_pce3
COMPACT | FLOAT (1) | Molecular Folding Scaling Factor
Night PCE3 | 1
Atmosphere ATBD,
part 1, section 3.3.2 | Molecular Folding Scaling Factor (PCE3/night) | | alpha_twilight_pce1
COMPACT | FLOAT (1) | Molecular Folding Scaling Factor
Twilight PCE1 | 1
Atmosphere ATBD,
part 1, section 3.3.2 | Molecular Folding Scaling Factor (PCE1/twilight) | | alpha_twilight_pce2
COMPACT | FLOAT (1) | Molecular Folding Scaling Factor
Twilight PCE2 | 1
Atmosphere ATBD,
part 1, section 3.3.2 | Molecular Folding Scaling Factor (PCE2/twilight) | | alpha_twilight_pce3 COMPACT | FLOAT (1) | Molecular Folding Scaling Factor
Twilight PCE3 | 1
Atmosphere ATBD,
part 1, section 3.3.2 | Molecular Folding Scaling Factor (PCE3/twilight) | | asr_cal_factor
COMPACT | FLOAT
(1) | ASR CAL factor | 1
Atmosphere ATBD | Calibration factor for ASR computation | | atlas_bandpass_fw COMPACT | FLOAT
(1) | ATLAS Bandpass Filter Width | nm
Atmosphere ATBD | The ATLAS bandpass filter width. | | atlas_tele_fov
COMPACT | FLOAT
(1) | ATLAS Telescope Field of View | radians
Atmosphere ATBD | The ATLAS telescope field of view. | | backg_max_solar_elev
COMPACT | FLOAT
(1) | Background maximum solar elevation angle | degrees
Atmosphere ATBD
section 3.3.4 | Background maximum solar elevation angle in Method 1 bkgd comp | | backg_min_solar_elev
COMPACT | FLOAT
(1) | Background minimum solar elevation angle | degrees
Atmosphere ATBD
section 3.3.4 | Background minimum solar elevation angle in Method 1 bkgd comp | | backg_select
COMPACT | INTEGER
(1) | background method used | 1
Atmosphere ATBD
section 3.3.4 | The background method used in calculation of NRB Flag Values: ['1', '2', '3'] Flag Meanings: ['method1', 'method2', 'method3'] | |--------------------------------|----------------|--|---|---| | bs_extinc_backs COMPACT | FLOAT | Blowing Snow to Extinction Backscatter Ratio | sr
Atmosphere ATBD | blowing snow extinct to backscatter ratio | | bs_lay_max_size
COMPACT | FLOAT (1) | blowing snow maximum layer size | m
Atmosphere ATBD | blowing snow maximum layer size | | bs_thresh_scale
COMPACT | FLOAT
(1) | scale factor for blowing snow threshold | 1
Atmosphere ATBD | scale factor for blowing snow threshold | | bs_top_scale
COMPACT | FLOAT
(1) | scale factor for layer top threshold | 1
Atmosphere ATBD | scale factor for layer top threshold | | bs_wind_thres
COMPACT | FLOAT
(1) | scale factor for layer top threshold | m/s
Atmosphere ATBD | minimum windspeed for blowing snow | | cal_bot_ht
COMPACT | FLOAT
(1) | cal_bot_ht | m
Atmosphere ATBD | Bottom height of calibration zone (m) | | cal_default
COMPACT | FLOAT
(1) | Default calibration value | 1
Atmosphere ATBD | Calibration constant default if it cannot be calculated from the data. | | cal_lat_bound
COMPACT | DOUBLE
(1) | cal_lat_bound | degrees_north
Atmosphere ATBD | Calibration constant latitude bound (deg_north) | | cal_select
COMPACT | INTEGER (1) | calibration method used | 1
Atmosphere ATBD | The calibration method used in calculation of NRB | | | | | section 3.3.4 | Flag Values: ['1', '2', '3'] Flag Meanings: ['method1', 'method2', 'method3'] | | cal_top_ht
COMPACT | FLOAT (1) | cal_top_ht | m
Atmosphere ATBD | Top height of calibration zone (m) | | cutoff1
COMPACT | FLOAT
(3) | cutoff1 |
1
Atmosphere ATBD | cutoff to use for pass 1 (day, night, twilight) | | cutoff2
COMPACT | FLOAT
(3) | cutoff2 | 1
Atmosphere ATBD | cutoff to use for pass 2 (day, night, twilight) | | detector_efficiency
COMPACT | FLOAT
(1) | Detector Quantum Efficiency | 1
Atmosphere ATBD | Detector quantum efficiency (Qe) | | downsample1
COMPACT | FLOAT
(3) | downsample1 | bins
Atmosphere ATBD | downsample to use for pass 1 (day, night, twilight) | | downsample2
COMPACT | FLOAT
(3) | downsample2 | bins
Atmosphere ATBD | downsample to use for pass 2 (day, night, twilight) | | dtime_select
COMPACT | INTEGER
(1) | dead time factor used | 1
Control | Deadtime factor used. Flag Values: ['1', '2'] Flag Meanings: ['dtime_fact1', 'dtime_fact2'] | | grd_search_width
COMPACT | INTEGER (1) | Ground search width | bins
Atmosphere ATBD,
part 2 section 13.2 | Ground search width in DDA surface finding algorithm | | layer_flag_cp1
COMPACT | INTEGER
(1) | Layer Flag CP 1 | 1
Atmosphere ATBD | Cloud_flag_ASR value used in the computation of the consolidated layer flag during daytime when cloud layers were detected. | | layer_flag_cp2
COMPACT | INTEGER
(1) | Layer Flag CP 2 | 1
Atmosphere ATBD | Cloud_flag_ASR value used in the computation of the consolidated layer flag during daytime when no cloud layers were detected. | | layer_sep | INTEGER | minimum layer separation | bins | minimum layer separation | | СОМРАСТ | (1) | | Atmosphere ATBD | | |--|----------------|--------------------------------------|--|---| | layer_thick
COMPACT | INTEGER (1) | minimum layer thickness | bins
Atmosphere ATBD | minimum layer thickness | | lr_bsnow_fac
CHUNKED | FLOAT
(:) | Low rate blowing snow factor | 1
Atmosphere ATBD | Low rate blowing snow scaling factor | | max_layers
COMPACT | INTEGER
(1) | maximum cloud layers for a profile | bins
Atmosphere ATBD | maximum cloud layers for a profile | | neighborhood1
COMPACT | FLOAT
(1) | neighborhood1 | bins
Atmosphere ATBD | neighborhood to use for pass 1 | | neighborhood2
COMPACT | FLOAT | neighborhood2 | bins
Atmosphere ATBD | neighborhood to use for pass 2 | | normalization1
COMPACT | INTEGER_1 (1) | normalization1 | 1
Atmosphere ATBD | normalization flag to use for pass 1 Flag Values: ['0', '1'] Flag Meanings: ['true', 'false'] | | normalization2
COMPACT | INTEGER_1 (1) | normalization2 | 1
Atmosphere ATBD | normalization flag to use for pass 2 Flag Values: ['0', '1'] Flag Meanings: ['true', 'false'] | | num_passes
COMPACT | INTEGER_1 (3) | number of passes | 1
Atmosphere ATBD | Flag indicating if cloud detection algorithm does one pass or two passes (day, night, twilight) | | | | | | Flag Values: ['0', '1'] Flag Meanings: ['one', 'two'] | | phi_land
COMPACT | FLOAT
(1) | phi land | 1
Atmosphere ATBD,
part 1, section 4.6.2.3 | Factor for correcting the potential clear sky ASR biases for land | | phi_ocean
COMPACT | FLOAT
(1) | phi ocean | 1
Atmosphere ATBD,
part 1, section 4.6.2.3 | Factor for correcting the potential clear sky ASR biases for ocean | | planck_const
COMPACT | DOUBLE
(1) | Planck constant (h) | Js
Atmosphere ATBD
section 2 | Planck constant (h) | | proc_interval
COMPACT | DOUBLE
(1) | amount of data processed at one time | s
Atmosphere ATBD | amount of data processed at one time | | quantile1
COMPACT | FLOAT
(3) | quantile1 | 1
Atmosphere ATBD | quantile to use for pass 1 (day, night, twilight) | | quantile2
COMPACT | FLOAT
(3) | quantile2 | 1
Atmosphere ATBD | quantile to use for pass 2 (day, night, twilight) | | receiver_optical_throughput
COMPACT | FLOAT
(1) | Receiver Optics Throughput | 1
Atmosphere ATBD | Nominal Receiver Optics Throughput | | sigma1
COMPACT | FLOAT
(3) | sigma1 | meters
Atmosphere ATBD | sigma to use for pass 1 (day, night, twilight) | | sigma2
COMPACT | FLOAT | sigma2 | meters
Atmosphere ATBD | sigma to use for pass 2 (day, night, twilight) | | size_threshold1
COMPACT | FLOAT | size_threshold1 | bins
Atmosphere ATBD | size_threshold, minimum cluster size, to use for pass 1 (day, night, twilight) | | size_threshold2
COMPACT | FLOAT | size_threshold2 | bins
Atmosphere ATBD | size_threshold, minimum cluster size, to use for pass 2 (day, night, twilight) | | snow_age
COMPACT | FLOAT | Snow Age | hours
Atmosphere ATBD | Age of the snow on the ground. | | solar_flux
COMPACT | FLOAT | Solar Flux | W/(m^2 nm))
Atmosphere ATBD | Solar flux at the top of the atmosphere at 532nm. | | surf_min | INTEGER | minimum count for a surface type | counts | minimum count for a surface type to be | | COMPACT | (1) | to be considered separate surface type | Atmosphere ATBD | considered separate surface type | |--------------------------------------|--------------------------|--|---|--| | surface_signal_source
COMPACT | INTEGER
(1) | Signal Source Flag | 1
Atmosphere ATBD | Indicates the source of signal information used by ASR. | | | | | | Flag Values: ['1', '2'] Flag Meanings: ['use_atl04', 'use_atl03'] | | telescope_area
COMPACT | DOUBLE
(1) | Telescope Effective Area | sq meters
Atmosphere ATBD | Effective collection area of telescope (At) | | thresh_bias1
COMPACT | FLOAT (3) | thresh_bias1 | photons* square
meter/Joule
Atmosphere ATBD | thresh_bias to use for pass 1 (day, night, twilight) | | thresh_bias2
COMPACT | FLOAT
(3) | thresh_bias2 | photons* square
meter/Joule
Atmosphere ATBD | thresh_bias to use for pass 2 (day, night, twilight) | | thresh_sensitivity1
COMPACT | FLOAT
(3) | thresh_sensitivity1 | 1
Atmosphere ATBD | thresh_sensitivity to use for pass 1 (day, night, twilight) | | thresh_sensitivity2
COMPACT | FLOAT
(3) | thresh_sensitivity2 | 1
Atmosphere ATBD | thresh_sensitivity to use for pass 2 (day, night, twilight) | | threshold_segment_length1
COMPACT | FLOAT
(3) | threshold_segment_length1 | bins
Atmosphere ATBD | threshold_segment_length to use for pass 1 (day, night, twilight) | | threshold_segment_length2
COMPACT | FLOAT
(3) | threshold_segment_length2 | bins
Atmosphere ATBD | threshold_segment_length to use for pass 2 (day, night, twilight) | | Group: /orbit_info | | | | | | Description | (Attribute) | Contains orbit information. | | | | data_rate | (Attribute) | Varies. Data are only provided who | en one of the stored valu | es (besides time) changes. | | Label
(Layout) | Datatype
(Dimensions) | long_name
(standard_name) | units
source | description | | crossing_time
CHUNKED | DOUBLE
(:) | Ascending Node Crossing Time time | seconds since 2018-
01-01
POD/PPD | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | | cycle_number
CHUNKED | INTEGER_1 (:) | Cycle Number | 1
Operations | A count of the number of exact repeats of this reference orbit. | | lan
CHUNKED | DOUBLE
(:) | Ascending Node Longitude | degrees_east
POD/PPD | Longitude at the ascending node crossing. | | orbit_number
CHUNKED | UINT_2_LE
(:) | Orbit Number | 1
Operations | Unique identifying number for each planned ICESat-2 orbit. | | rgt
CHUNKED | INTEGER_2 (:) | Reference Ground track | 1
POD/PPD | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT3 and GT4. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. | | sc_orient
CHUNKED | INTEGER_1 (:) | Spacecraft Orientation | 1
POD/PPD | This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is | | | | | | considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. Flag Values: ['0', '1', '2'] Flag Meanings: ['backward', 'forward', 'transition'] | |--|--|--
--|--| | sc_orient_time
CHUNKED | DOUBLE
(:) | Time of Last Spacecraft Orientation Change time | seconds since 2018-
01-01
POD/PPD | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | | Group: /profile_x | | | | | | | | т | | | | Description | (Attribute) | sequential transmit pulses illumina approximately 14m. The Atmosphere | te six ground tracks on the profiles are only reporting in the direction of space | one Pair Track. As ICESat-2 orbits the earth, he surface of the earth. The track width is reted for the strong beam. Profiles are craft travel as: 1 for the left-most pair of beams of beams. | | Description data_rate | (Attribute) | sequential transmit pulses illumina approximately 14m. The Atmosphenumbered from the left to the right | te six ground tracks on the profiles are only reporting in the direction of space 13 for the right-most pair | he surface of the earth. The track width is
rted for the strong beam. Profiles are
craft travel as: 1 for the left-most pair of beams; | | | (Attribute) | sequential transmit pulses illumina
approximately 14m. The Atmosphe
numbered from the left to the right
2 for the center pair of beams; and | te six ground tracks on the profiles are only reporting in the direction of space 13 for the right-most pair | he surface of the earth. The track width is
rted for the strong beam. Profiles are
craft travel as: 1 for the left-most pair of beams; | | data_rate
Group: /profile_x/bckgrd_atl | (Attribute) | sequential transmit pulses illumina
approximately 14m. The Atmosphe
numbered from the left to the right
2 for the center pair of beams; and | te six ground tracks on the term of the term of the term of the direction of space in the direction of space in the right-most pair rates. | he surface of the earth. The track width is orted for the strong beam. Profiles are craft travel as: 1 for the left-most pair of beams; of beams. | | data_rate | (Attribute) | sequential transmit pulses illumina approximately 14m. The Atmosphe numbered from the left to the right 2 for the center pair of beams; and See subgroups for individual data | te six ground tracks on the term of the term of the term of the direction of space in the direction of space in the right-most pair rates. | he surface of the earth. The track width is orted for the strong beam. Profiles are craft travel as: 1 for the left-most pair of beams; of beams. | | data_rate Group: /profile_x/bckgrd_atl Description Label (Layout) bckgrd_counts | (Attribute) (Attribute) (Attribute) Datatype | sequential transmit pulses illumina approximately 14m. The Atmosphe numbered from the left to the right 2 for the center pair of beams; and See subgroups for individual data at Contains the ATLAS 50-shot backglong_name | te six ground tracks on the term of the direction of space in the direction of space in 3 for the right-most pair rates. Ground data and derivation units | he surface of the earth. The track width is orted for the strong beam. Profiles are craft travel as: 1 for the left-most pair of beams; of beams. | | data_rate Group: /profile_x/bckgrd_atl Description Label | (Attribute) las (Attribute) Datatype (Dimensions) INTEGER | sequential transmit pulses illumina approximately 14m. The Atmosphe numbered from the left to the right 2 for the center pair of beams; and See subgroups for individual data at Contains the ATLAS 50-shot backglong_name (standard_name) | te six ground tracks on the six ground tracks on the profiles are only reported in the direction of space of 3 for the right-most pair rates. Ground data and derivation units source counts ATL03 ATBD Section 7.3 | he surface of the earth. The track width is orted for the strong beam. Profiles are craft travel as: 1 for the left-most pair of beams of beams. ons. description Onboard 50 shot background (200 Hz) sum of photon events within the altimetric range | | data_rate Group: /profile_x/bckgrd_atl Description Label (Layout) bckgrd_counts CHUNKED bckgrd_counts_reduced | (Attribute) (Attribute) Datatype (Dimensions) INTEGER (:) | sequential transmit pulses illumina approximately 14m. The Atmosphe numbered from the left to the right 2 for the center pair of beams; and See subgroups for individual data at Contains the ATLAS 50-shot backglong_name (standard_name) ATLAS 50-shot background count | te six ground tracks on tere profiles are only repoin the direction of space 3 for the right-most pair rates. ground data and derivation units source counts ATL03 ATBD Section 7.3 counts ATL03 ATBD Section | he surface of the earth. The track width is pred for the strong beam. Profiles are craft travel as: 1 for the left-most pair of beams of beams. Ons. Onboard 50 shot background (200 Hz) sum of photon events within the altimetric range window. Number of photon counts in the 50-shot sum after subtracting the number of signal photon events, defined as in ATBD Section 5, in that | | bckgrd_int_height_reduced
CHUNKED | FLOAT
(:) | Altimetric range window height - reduced | meters
ATL03 ATBD Section
7.3 | The height of the altimetric range window after subtracting the height span of the signal photon events in the 50-shot span. | |--------------------------------------|--------------------------|---|---|---| | bckgrd_rate
CHUNKED | FLOAT
(:) | Background count rate based on
the ATLAS 50-shot sum | counts / second
ATL03 ATBD Section
7.3 | The background count rate from the 50-shot altimetric histogram after removing the number of likely signal photons based on Section 5. | | delta_time
CHUNKED | DOUBLE
(:) | Elapsed GPS seconds time | seconds since 2018-
01-01
Derived via Time
Tagging | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | | pce_mframe_cnt
CHUNKED | UINT_4_LE
(:) | PCE Major frame counter | counts
ATL02 | Major Frame ID - The major frame ID is read from the DFC and starts counting at DFC POR. The counter is used to identify individual major frames across diag and science packets. This counter can go for about 2.7 years before rolling over. It is in the first time tag science packet. Used as part of the photon ID | | Group: /profile_x/high_rate | | | | | | Description | (Attribute) | Contains parameters related to Ca | librated Attenuated Back | sscatter at 25 hz | | data_rate | (Attribute) | Data in this group is stored at a 25 | hz (25 per second) rate. | | | Label
(Layout) | Datatype
(Dimensions) | long_name
(standard_name) | units
source | description | | aclr_true
CHUNKED | FLOAT
(:) | Clear sky ASR | 1
Atmosphere ATBD | Clear sky initial surface reflectance based on GOME climatology or Cox-Munk model: see Fig 3.6.5 of the Atmosphere ATBD. | | apparent_surf_reflec
CHUNKED | FLOAT
(:) | Apparent Surface Reflectance | 1
Atmosphere ATBD | Apparent Surface Reflectance (ASR): Eqn 4.7 | | asr_cloud_probability
CHUNKED | INTEGER
(:) | ASR cloud probablity | 1
Atmosphere ATBD
part 1 (section
4.6.2.3) | Probability of the occurrence of cloud based on the magnitude of the apparent surface reflectivity. | | backg_c
CHUNKED | FLOAT
(:) | Background | counts
Atmosphere ATBD | Background, in photons/bin, used in the NRB Computation. | |
backg_theoret
CHUNKED | FLOAT
(:) | Background (Theoretical) | photons/bin
Atmosphere ATBD | The theoretical background, in photons/bin. | | beam_azimuth
CHUNKED | FLOAT
(:) | beam azimuth | degrees_east
ATL03 ATBD | Beam azimuth | | beam_elevation
CHUNKED | FLOAT
(:) | beam elevation | degrees
ATL03 ATBD | Beam elevation | | bsnow_con
CHUNKED | INTEGER_1 (:) | Blowing snow confidence | 1
Atmosphere ATBD | Blowing snow confidence3=surface not detected; -2=no surface wind;-1=no scattering layer found; 0=no top layer found; 1=none-little; 2=weak; 3=moderate; 4=moderate-high; 5=high; 6=very high | | | | | | Flag Values: ['-3', '-2', '-1', '0', '1', '2', '3', '4', '5', '6'] Flag Meanings: ['surface_not_detected', 'no_surface_wind', 'no_scattering_layer_found', | | | | | | 'no_top_layer_found', 'none_little', 'weak', 'moderate', 'moderate_high', 'high', 'very_high'] | |-----------------------------|--------------------|---|--|--| | bsnow_dens
CHUNKED | FLOAT
(:) | Blowing snow density | 1
Atmosphere ATBD | Blowing snow layer density | | bsnow_h
CHUNKED | FLOAT
(:) | Blowing Snow layer thickness | meters
Atmosphere ATBD | Blowing Snow layer thickness (height of top above surface) | | bsnow_h_dens
CHUNKED | FLOAT
(:) | Blowing Snow layer thickness from density | meters
Atmosphere ATBD | Blowing Snow layer thickness from density (height of top above surface) | | bsnow_intensity
CHUNKED | FLOAT
(:) | Blowing snow intensity | meters/second
Atmosphere ATBD
part I (section 4.5.3) | Blowing snow intensity defined as the average scattering ratio within the blowing snow layer times the 10 m wind speed. | | bsnow_od
CHUNKED | FLOAT
(:) | Blowing snow OD | 1
Atmosphere ATBD | Blowing snow layer optical depth | | bsnow_psc
CHUNKED | INTEGER_1 (:) | Blowing snow PSC flag | 1
Atmosphere ATBD
Section 4.5 | Blowing snow PSC flag. Indicates the potential for polar stratospheric clouds to affect the blowing snow retrieval, where 0=none and 3=maximum. This flag is a function of month and hemisphere and is only applied poleward of 60 north and south. | | | | | | Flag Values: ['0', '1', '2', '3'] Flag Meanings: ['none', 'slight', 'moderate', 'maximum_bsnow_PSC_affected'] | | cab_prof
CHUNKED | FLOAT
(: x 700) | Calibrated Attenuated Backscatter | 1
Atmosphere ATBD | Calibrated Attenuated Backscatter from 20 to -1 km with vertical resolution of 30m (eqn 4.1) | | cloud_flag_asr
CHUNKED | INTEGER_1 (:) | Cloud Flag ASR | 1
Atmosphere ATBD | Cloud flag (probability) from apparent surface reflectance. 0=clear with high confidence; 1=clear with medium confidence; 2=clear with low confidence; 3=cloudy with low confidence; 4=cloudy with medium confidence; 5=cloudy with high confidence | | | | | | Flag Values: ['0', '1', '2', '3', '4', '5'] Flag Meanings: ['clear_with_high_confidence', 'clear_with_medium_confidence', 'clear_with_low_confidence', 'cloudy_with_low_confidence', 'cloudy_with_medium_confidence', 'cloudy_with_high_confidence'] | | cloud_flag_atm
CHUNKED | INTEGER_1 (:) | Cloud Flag Atm | 1
Atmosphere ATBD | Number of layers found from the backscatter profile using the DDA layer finder. | | cloud_fold_flag
CHUNKED | INTEGER_1
(:) | Cloud Folding Flag | 1
Atmosphere ATBD | Flag that indicates this profile likely contains cloud signal folded down from above 15 km to the last 2-3 km of the profile. See ATBD Table 3.9 for detailed flag value meanings | | | | | | Flag Values: ['0', '1', '2', '3'] Flag Meanings: ['no_folding', 'goes5_indicates', 'profile_indicates', 'both_indicate'] | | column_od_asr
CHUNKED | FLOAT
(:) | Optical depth from ASR | 1
Atmosphere ATBD | Optical depth of atmosphere column based on apparent surface reflectance and the assumed actual surface reflectance. | | column_od_asr_qf
CHUNKED | INTEGER_1 (:) | Optical depth ASR quality | 1
Atmosphere ATBD | Total column optical depth from ASR quality flag. The total atmosphere column particulate optical depth can be computed from the apparent surface reflectance if the actual surface reflectance is well known. The flag indicates the surface type over which the flag | | | | | | is computed in the order from unable to compute (0 - no_surface_signal) to best quality (4=water). | |----------------------------|-----------------------|--|---|---| | | | | | Flag Values: ['0', '1', '2', '3', '4'] Flag Meanings: ['no_signal', 'land', 'sea_ice', 'land_ice', 'water'] | | delta_time
CHUNKED | DOUBLE
(:) | Elapsed GPS seconds time | seconds since 2018-
01-01
Atmosphere ATBD | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | | dem_flag
CHUNKED | INTEGER_1 (:) | dem source flag | 1
Atmosphere ATBD | Indicates source of the DEM height. Values: 0=None, 1=Arctic, 2=GMTED, 3=MSS, 4=Antarctic. | | | | | | Flag Values: ['0', '1', '2', '3', '4'] Flag Meanings: ['none', 'arctic', 'gmted', 'mss', 'antarctic'] | | dem_h
CHUNKED | FLOAT
(:) | DEM Height | meters
Atmosphere ATBD | Best available DEM (in priority of Arctic/Antarctic/GMTED/MSS) value at the geolocation point. | | density_pass1
CHUNKED | FLOAT
(: x 700) | Density profile - pass1 | 1
Atmosphere ATBD
Part II | Density profiles from pass 1. | | density_pass2
CHUNKED | FLOAT
(: x 700) | Density profile - pass2 | 1
Atmosphere ATBD
Part II | Density profiles from pass 2. | | ds_layers
COMPACT | INTEGER
(10) | Cloud Layers Dimension Scale | counts
Atmosphere ATBD | Dimension scale indexing the cloud layers. | | ds_va_bin_h
COMPACT | FLOAT
(700) | VA Bin Height Dimension Scale | meters
Atmosphere ATBD | Dimension scale containing the heights of the vertically-aligned bins. | | dtime_fac1
CHUNKED | FLOAT
(:) | dead_time_factor1 | 1
Atmosphere ATBD | Dead time correction factor for surface signal computed from radiometric lookup table. | | dtime_fac2
CHUNKED | FLOAT
(:) | dead_time_factor2 | 1
Atmosphere ATBD | Dead time correction factor for surface signal computed from ATBD equation 2.1. | | latitude
CHUNKED | DOUBLE
(:) | Latitude of the ATM histogram latitude | degrees_north
ATL03g ATBD | Latitude at the the top of the ATM histogram, WGS84, North=+, Derived from the geolocation of the ATM range window. | | layer_attr
CHUNKED | INTEGER_1
(: x 10) | Layer attribute flag | 1
Atmosphere ATBD | Layer attribute flag for each of the possible 10 layers. Indicates (0) no_layer (1) cloud, (2) aerosol or (3) unknown. | | | | | | Flag Values: ['0', '1', '2', '3'] Flag Meanings: ['no_layer', 'cloud', 'aerosol', 'unknown'] | | layer_bot
CHUNKED | FLOAT
(: x 10) | Height layer bottoms | meter
Atmosphere ATBD | Height of bottom of detected layers | | layer_con
CHUNKED | INTEGER
(: x 10) | Layer confidence flag | 1
Atmosphere ATBD | Layer confidence flag for each layer | | layer_conf_dens
CHUNKED | FLOAT
(: x 10) | Layer confidence from density | 1
Atmosphere ATBD
Part II, Section 11 | The measure layer confidence from density-
dimension algorithm is calculated for each
detected cloud layer, quantifies the
confidence of detection of a given layer from | | | | | | the density values. Layer_conf_dens fall between zero and 1. Confidence close to 1 is high, close to zero is low. | |------------------------------|-------------------|--|---------------------------------------|--| | layer_dens
CHUNKED | FLOAT
(: x 10) | Layer Density | 1
Atmosphere ATBD | Layer Density | | layer_flag
CHUNKED | INTEGER_1 (:) | Consolidated cloud flag | 1
Atmosphere ATBD | This flag is a combination of multiple flags
(cloud_flag_atm, cloud_flag_asr, and bsnow_con) and takes daytime/nighttime into consideration. A value of 1 means clouds or blowing snow are likely present. A value of 0 indicates the likely absence of clouds or blowing snow. | | | | | | Flag Values: ['0', '1'] Flag Meanings: ['likely_clear', 'likely_cloudy'] | | layer_ib
CHUNKED | FLOAT
(: x 10) | Layer integrated backscatter | 1
Atmosphere ATBD | Layer integrated backscatter | | layer_top
CHUNKED | FLOAT
(: x 10) | Height layer tops | meters
Atmosphere ATBD | Height of top of detected layers | | longitude
CHUNKED | DOUBLE
(:) | Longitude of the ATM histogram longitude | degrees_east
ATL03g ATBD | Longitude at the the top of the ATM histogram, WGS84, East=+, derived from the geolocation of the ATM range window. | | msw_flag
CHUNKED | INTEGER_1 (:) | Multiple Scattering Warning Flag | 1
Atmosphere ATBD | Multiple Scattering warning flag. The multiple scattering warning flag (ATL09 parameter msw_flag) has values from -1 to 5 where zero means no multiple scattering and 5 the greatest. If no layers were detected, then msw_flag = 0. If blowing snow is detected and its estimated optical depth is greater than or equal to 0.5, then msw_flag = 5. If the blowing snow optical depth is less than 0.5, then msw_flag = 4. If no blowing snow is detected but there are cloud or aerosol layers detected, the msw_flag assumes values of 1 to 3 based on the height of the bottom of the lowest layer: < 1 km, msw_flag = 3; 1-3 km, msw_flag = 2; > 3km, msw_flag = 1. A value of -1 indicates that the signal to noise of the data was too low to reliably ascertain the presence of cloud or blowing snow. We expect values of -1 to occur only during daylight. Flag Values: ['-1', '0', '1', '2', '3', '4', '5'] Flag Meanings: ['cannot_determine', 'no_layers', 'layer_gt_3km', 'layer_between_1_and_3_km', 'layer_lt_1km', 'blow_snow_od_lt_0.5', 'blow_snow_od_gt_0.5'] | | ocean_surf_reflec
CHUNKED | FLOAT
(:) | Ocean Surface Reflectance | 1
Atmosphere ATBD | Ocean Surface Reflectance from Eqn 4.10 based on the Cox-Munk model. | | pce_mframe_cnt CHUNKED | UINT_4_LE
(:) | PCE Major frame counter | counts
ATL02 | Major Frame Counter - The major frame counter is read from the DFC and starts counting at DFC POR. The counter is used to identify individual major frames across diag and science packets. This counter can go for about 2.7 years before rolling over. It is in the first time tag science packet. Used as part of the photon ID | | prof_dist_x
CHUNKED | DOUBLE
(:) | Along Track Distance | meters
ATL03g ATBD,
Section 3.4 | Along-track distance from the equator crossing. | | prof_dist_y | FLOAT | Across Track Distance from RGT | meters | Across-Track distance from the reference | | CHUNKED | (:) | | ATL03g ATBD,
Section 3.4 | ground track. | |----------------------------|----------------|----------------------------------|------------------------------------|--| | range_to_top
CHUNKED | FLOAT
(:) | Range | meters
Atmosphere ATBD | Range from the spacecraft to the top of the atmosphere range window. | | segment_id
CHUNKED | INTEGER
(:) | along-track segment ID number. | 1
ATL03 ATBD, Section
3.1 | A 7 digit number identifiying the along-track geolocation segment number. These are sequential, starting with 1 for the first segment after an ascending equatorial crossing node. | | sig_count_hi
CHUNKED | INTEGER (:) | Count of Signa Heightsl - High | counts
ATL03 ATBD, Section
5 | Count of high-confidence signal photons | | sig_count_low
CHUNKED | INTEGER
(:) | Count of Signal Heights - Low | counts
ATL03 ATBD, Section
5 | Count of low-confidence signal photons | | sig_count_med
CHUNKED | INTEGER (:) | Count of Signal Heights - Medium | counts
ATL03 ATBD, Section
5 | Count of medium-confidence signal photons | | sig_h_mean_hi
CHUNKED | FLOAT
(:) | Mean of SignalHeights - High | meters
ATL03 ATBD, Section
5 | Mean height of high-confidence signal photons | | sig_h_mean_low
CHUNKED | FLOAT
(:) | Mean of Signal Heights - Low | meters
ATL03 ATBD, Section
5 | Mean height of low-confidence signal photons | | sig_h_mean_med
CHUNKED | FLOAT
(:) | Mean of Signa Heightsl - Med | meters
ATL03 ATBD, Section
5 | Mean height of medium-confidence signal photons | | sig_h_sdev_hi
CHUNKED | FLOAT
(:) | SDev of Signal Heights -High | meters
ATL03 ATBD, Section
5 | SDev of the heights of high-confidence signal photons | | sig_h_sdev_low
CHUNKED | FLOAT
(:) | SDev of Signal Heights -Low | meters
ATL03 ATBD, Section
5 | SDev of the heights of low-confidence signal photons | | sig_h_sdev_med
CHUNKED | FLOAT
(:) | SDev of Signa Heights -Med | meters
ATL03 ATBD, Section
5 | SDev of the heights of medium-confidence signal photons | | snow_ice
CHUNKED | INTEGER
(:) | Snow Ice Flag | 1
Atmosphere ATBD | NOAA snow-ice flag. 0=ice free water;
1=snow free land; 2=snow; 3=ice
Flag Values: ['0', '1', '2', '3']
Flag Meanings: ['ice_free_water',
'snow_free_land', 'snow', 'ice'] | | solar_azimuth
CHUNKED | FLOAT
(:) | solar azimuth | degrees_east
ATL03g ATBD | The direction, eastwards from north, of the sun vector as seen by an observer at the laser ground spot. | | solar_elevation
CHUNKED | FLOAT
(:) | solar elevation | degrees
ATL03g ATBD | Solar Angle above or below the plane tangent to the ellipsoid surface at the laser spot. Positive values mean the sun is above the horizon, while negative values mean it is below the horizon. The effect of atmospheric refraction is not included. This is a low precision value, with approximately TBD degree accuracy. | | surf_refl_true
CHUNKED | FLOAT
(:) | Estimated Surface Reflectance | 1
Atmosphere ATBD | The value of the clear-sky surface reflectivity to use in the computation of total column optical depth and cloud detection from the measures apparent surface reflectance (ASR). | | surf_type | INTEGER_1 | surface type | 1 | Flags describing which surface types this | | CHUNKED | (: x 5) | | ATL03 ATBD, Section 4 | interval is associated with. 0=not type, 1=is type. Order of array is land, ocean, sea ice, land ice, inland water. Flag Values: ['0', '1'] Flag Meanings: ['not_type', 'is_type'] | |----------------------------|--------------------------|--------------------------------------|--|---| | surf_type_igbp
CHUNKED | INTEGER_1 (:) | IGBP Surface Type | 1
Atmosphere ATBD,
IGBP Surface Type | IGBP Surface Type | | surface_bin
CHUNKED | INTEGER
(:) | Surface bin | 1
Atmosphere ATBD
section 3.3.5 | Vertially aligned, NRB bin number of the detected surface return. | | surface_h_dens
CHUNKED | FLOAT
(:) | Surface h from density | meters
Atmosphere ATBD | Surface height from density | | surface_height
CHUNKED | FLOAT
(:) | Surface height | meters
Atmosphere ATBD
section 3.3.5 | Height of the detected surface bin. | | surface_sig
CHUNKED | FLOAT
(:) | Surface signal count | counts
Atmosphere ATBD
section 3.3.5 | Number of photons in the detected surface bin. | | tx_pulse_energy
CHUNKED | FLOAT
(:) | Transmit Pulse Energy | Joules
ATL02 ATBD, Section
7.2 | Transmit energy, from the laser internal energy monitor, split into per-beam measurements. | | Group: /profile_x/low_rate | | | | | | Description | (Attribute) | Contains parameters related to at | mosphere characteristic a | at 1 hz | | data_rate | (Attribute) | Data in this group is stored at a 11 | nz (1 per second) rate. | | | Label
(Layout) | Datatype
(Dimensions) | long_name
(standard_name) | units
source | description | | bsnow_con
CHUNKED | INTEGER_1 (:) | Blowing snow confidence | 1
Atmosphere ATBD | Blowing snow confidence3=surface not detected; -2=no surface wind;-1=no scattering layer found; 0=no top layer found; 1=none-little; 2=weak; 3=moderate; 4=moderate-high; 5=high; 6=very high Flag Values: ['-3', '-2', '-1', '0', '1', '2', '3', '4', '5', '6'] | | | | | | Flag Meanings: ['surface_not_detected', 'no_surface_wind', 'no_scattering_layer_found', 'no_top_layer_found', 'none_little', 'weak', 'moderate', 'moderate_high', 'high', 'very_high'] | | bsnow_h
CHUNKED | FLOAT
(:) | Blowing Snow layer thickness | meters
Atmosphere ATBD | Blowing Snow layer thickness (height of top above surface) | | bsnow_intensity
CHUNKED | FLOAT
(:) | Blowing Snow Intensity | meters/second
Atmosphere ATBD | Blowing snow intensity defined as the average scattering ratio within the blowing snow layer times the 10 m wind speed. | | bsnow_od
CHUNKED | FLOAT
(:) | Blowing snow OD | 1
Atmosphere ATBD | Blowing snow layer optical depth | | bsnow_prob
CHUNKED | FLOAT
(:) | Blowing Snow Probability | 1
Atmosphere ATBD
Section 4.5.1 | The probability of blowing snow based on meteorological data. | | bsnow_psc
CHUNKED | INTEGER_1 (:) | Blowing snow PSC flag | 1
Atmosphere ATBD
Section 4.5 | Blowing snow PSC flag. Indicates the potential for polar stratospheric clouds to affect the blowing snow retrieval, where 0=none and 3=maximum. This flag is a function of month and hemisphere and is only applied poleward of 60 north and south. | | | | | | Flag Values: ['0', '1', '2', '3'] Flag Meanings: ['none', 'slight',
'moderate', 'maximum_bsnow_PSC_affected'] | |------------------------|----------------|---|---|---| | cal_c
CHUNKED | FLOAT
(:) | Calibration Constant | Photons*m^3 *sr / J
Atmosphere ATBD | Calibration Constant (for each beam at 1 Hz) | | delta_time
CHUNKED | DOUBLE
(:) | Elapsed GPS seconds time | seconds since 2018-
01-01
telemetry | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | | ds_va_bin_h
COMPACT | FLOAT
(700) | VA Bin Height Dimension Scale | meters
Atmosphere ATBD | Dimension scale containing the heights of the vertically-aligned bins. | | latitude
CHUNKED | DOUBLE (:) | Latitude of the ATM histogram latitude | degrees_north
ATL03g ATBD | Latitude at the the top of the ATM histogram, WGS84, North=+, Derived from the geolocation of the ATM range window. | | longitude
CHUNKED | DOUBLE (:) | Longitude of the ATM histogram longitude | degrees_east
ATL03g ATBD | Longitude at the the top of the ATM histogram, WGS84, East=+, derived from the geolocation of the ATM range window. | | met_cldprs
CHUNKED | FLOAT
(:) | cloud_top_pressure
pressure | Pa
GEOS5 FPIT 2D
DFPITT1NXSLV | Pressure of the highest cloud top at this location from GEOS5 data | | met_ps
CHUNKED | FLOAT
(:) | Surface Pressure pressure | Pa
GEOS5 FPIT 3D
DFPITI3NVASM | Surface Pressure (Pa) | | met_qv10m
CHUNKED | FLOAT
(:) | specific_humidity_at_10m
specific_humidity | kg kg-1
GEOS5 FPIT 2D
DFPITT1NXSLV | Specific humidity at 10 m above the displacement height | | met_qv2m
CHUNKED | FLOAT
(:) | specific_humidity_at_2m
specific_humidity | kg kg-1
GEOS5 FPIT 2D
DFPITT1NXSLV | Specific humidity at 2 m above the displacement height | | met_slp
CHUNKED | FLOAT
(:) | sea_level_pressure
sea_level_pressure | Pa
GEOS5 FPIT 3D
DFPITI3NVASM | sea-level pressure (Pa) | | met_t10m
CHUNKED | FLOAT
(:) | temperature_at_10m
temperature | K
GEOS5 FPIT 2D
DFPITT1NXSLV | Temperature at 10m above the displacement height (K) | | met_t2m
CHUNKED | FLOAT
(:) | temperature_at_2m temperature | K
GEOS5 FPIT 2D
DFPITT1NXSLV | Temperature at 2m above the displacement height (K) | | met_tqi
CHUNKED | FLOAT
(:) | cloud_ice | kg m-2
GEOS5 FPIT 2D
DFPITT1NXSLV | Total column cloud ice (Kg/m2) | | met_tql
CHUNKED | FLOAT
(:) | cloud_liquid_water | kg m-2
GEOS5 FPIT 2D
DFPITT1NXSLV | Total column cloud liquid water (kg/m2) | | met_troppb
CHUNKED | FLOAT
(:) | blended_tropopause_pressure pressure | Pa
GEOS5 FPIT 2D
DFPITT1NXSLV | Blended tropopause pressure (pa) | | met_tropt
CHUNKED | FLOAT
(:) | blended_tropopause_temperature temperature | K
GEOS5 FPIT 2D
DFPITT1NXSLV | Tropopause temperature (k) | | met_ts | FLOAT | surface_temperature | К | Surface skin temperature (K) | | CHUNKED | (:) | temperature | GEOS5 FPIT 2D
DFPITT1NXSLV | | |-----------------------------------|--------------------------|---|--|--| | met_u10m
CHUNKED | FLOAT
(:) | Eastward_wind_at_10m
eastward_wind | m s-1
GEOS5 FPIT 2D
DFPITT1NXSLV | Eastward wind at 10m above the displacement height (m/s-1) | | met_u2m
CHUNKED | FLOAT
(:) | Eastward_wind_at_2m eastward_wind | m s-1
GEOS5 FPIT 2D
DFPITT1NXSLV | Eastward wind at 2m above the displacement height (m/s-1) | | met_u50m
CHUNKED | FLOAT
(:) | Eastward_wind_at_50m
eastward_wind | m s-1
GEOS5 FPIT 2D
DFPITT1NXSLV | Eastward wind at 50m above the displacement height (m/s-1) | | met_v10m
CHUNKED | FLOAT
(:) | Northward_wind_at_10m
northward_wind | m s-1
GEOS5 FPIT 2D
DFPITT1NXSLV | Northward wind at 10m above the displacement height (m/s-1) | | met_v2m
CHUNKED | FLOAT
(:) | Northward_wind_at_2m
northward_wind | m s-1
GEOS5 FPIT 2D
DFPITT1NXSLV | Northward wind at 2m above the displacement height (m/s-1) | | met_v50m
CHUNKED | FLOAT
(:) | northward_wind_at_50m
northward_wind | m s-1
GEOS5 FPIT 2D
DFPITT1NXSLV | Northward wind at 50m above the displacement height (m/s-1) | | mol_backs_folded
CHUNKED | FLOAT
(: x 700) | Folded molecular transmission profile | m-1 sr-1
Atmosphere ATBD | Folded molecular transmission profile, 30 m resolution, , m-1 sr-1; 20 km to -1 km (equation 3.17) | | mol_backscatter
CHUNKED | FLOAT
(: x 700) | Molecular backscatter profile | m-1 sr-1
Atmosphere ATBD | Molecular backscatter profile, 30 m resolution, 20 km to -1 km | | molec_bkscat_p
CHUNKED | FLOAT
(: x 700) | Pressure profile | Pa
Atmosphere ATBD | Pressure profiles from 20 km to -1 km | | molec_bkscat_rh CHUNKED | FLOAT
(: x 700) | Relative humidity profiles | percentage
Atmosphere ATBD | Relative humidity profiles from 20 km to -1 km | | molec_bkscat_t
CHUNKED | FLOAT
(: x 700) | Temperature profile | K
Atmosphere ATBD | Temperature profiles from 20 km to -1 km | | molec_trans
CHUNKED | FLOAT
(: x 700) | Molecular transmission profile | 1
Atmosphere ATBD | Molecular transmission profile, 30 m resolution, 20 km to -1 km | | surf_type
CHUNKED | INTEGER_1
(: x 5) | surface type | 1
ATL03 ATBD, Section
4 | Flags describing which surface types this interval is associated with. 0=not type, 1=is type. Order of array is land, ocean, sea ice, land ice, inland water. | | | | | | Flag Values: ['0', '1'] Flag Meanings: ['not_type', 'is_type'] | | Group: /quality_assessment | | | | | | Description | (Attribute) | Contains quality assessment data. This may include QA counters, QA along-track data and/or QA summary data. | | unters, QA along-track data and/or QA | | Label
(Layout) | Datatype
(Dimensions) | long_name
(standard_name) | units
source | description | | qa_granule_fail_reason
COMPACT | INTEGER
(1) | Granule Failure Reason | 1
Operations | Flag indicating granule failure reason. 0=no failure; 1=processing error; 2=Insufficient output data was generated; 3=TBD Failure; 4=TBD_Failure; 5=other failure. | | | | | | Flag Values: ['0', '1', '2', '3', '4', '5'] Flag Meanings: ['no_failure', 'PROCESS_ERROR', 'INSUFFICIENT_OUTPUT', 'failure_3', 'failure_4', 'OTHER_FAILURE'] | | qa_granule_pass_fail
COMPACT | INTEGER
(1) | Granule Pass Flag | 1
Operations | Flag indicating granule quality. 0=granule passes automatic QA. 1=granule fails automatic QA. | | | | | | Flag Values: ['0', '1'] Flag Meanings: ['PASS', 'FAIL'] | |---------------------------|-----------------------|---|---|---| | Group: /quality_assessr | ment/profile_x | | | | | Description | (Attribute) | Contains per-profile quality assessment data. | | | | Label
(Layout) | Datatype (Dimensions) | long_name
(standard_name) | units
source | description | | asr_avg
CONTIGUOUS | FLOAT
(1) | ASR Average | 1
Atmosphere ATBD | Apparent surface reflectance average | | asr_max
CONTIGUOUS | FLOAT (1) | ASR Maximum | 1
Atmosphere ATBD | Apparent surface reflectance maximum | | asr_min
CONTIGUOUS | FLOAT (1) | ASR Minimum | 1
Atmosphere ATBD | Apparent surface reflectance minimum | | asr_std
CONTIGUOUS | FLOAT (1) | ASR Standard Deviation | 1
Atmosphere ATBD | Apparent surface reflectance stdev | | cab_mol_avg
CONTIGUOUS | FLOAT (1) | CAB molec Avg | 1
Atmosphere ATBD | CAB/molec average | | cld_asr_pct
CONTIGUOUS | FLOAT (1) | Cloud ASR Percent | percent
Atmosphere ATBD | Percent time clouds from ASR were detected | | cld_avg
CONTIGUOUS | FLOAT (1) | Cloud layer average | 1
Atmosphere ATBD | Cloud layer average | | cld_max
CONTIGUOUS | INTEGER (1) | Cloud layer max | 1
ATL04 | Cloud layer max | | cld_min
CONTIGUOUS | INTEGER (1) | Cloud layer min | 1
ATL04 | Cloud layer min | | cld_pct
CONTIGUOUS | FLOAT (1) | Cloud Percent | percent
Atmosphere ATBD | Percent time clouds were detected | | cod_avg
CONTIGUOUS | FLOAT (1) | COD Average | 1
Atmosphere ATBD | Cloud Optical Depth average | | cod_max
CONTIGUOUS | FLOAT (1) | COD Maximum | 1
Atmosphere ATBD | Cloud Optical Depth maximum | | cod_min
CONTIGUOUS | FLOAT (1) | COD Minimum | 1
Atmosphere ATBD | Cloud Optical Depth minimum | | delta_time
CONTIGUOUS | DOUBLE
(1) | Elapsed GPS seconds time | seconds since 2018-
01-01
telemetry | Number of GPS seconds since the ATLAS SDP epoch. The
ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | | osr_avg
CONTIGUOUS | FLOAT
(1) | OSR Average | 1
Atmosphere ATBD | Ocean surface reflectance average | | osr_max
CONTIGUOUS | FLOAT (1) | OSR Maximum | 1
Atmosphere ATBD | Ocean surface reflectance maximum | | osr_min
CONTIGUOUS | FLOAT (1) | OSR Minimum | 1
Atmosphere ATBD | Ocean surface reflectance minimum | | surf_pct
CONTIGUOUS | FLOAT (1) | Percent Surface | percent
ATL04 | Percent time surface height was detected |