ATL08 Product Data Dictionary Date Generated: 2020-10-21T15:57:01 | description | (Attribute) | This data set (ATL08) contains along-track heights above the WGS84 ellipsoid (ITRF2014 reference frame) for the ground and canopy surfaces. The canopy and ground surfaces are processed in fixed 100 m data segments, which typically contain more than 100 sig | |-----------------------------------|-------------|--| | level | (Attribute) | L3A | | short_name | (Attribute) | ATL08 | | title | (Attribute) | SET_BY_META | | Group: / | | This data set (ATL08) contains along-track heights above the WGS84 ellipsoid (ITRF2014 reference frame) for the ground and canopy surfaces. The canopy and ground surfaces are processed in fixed 100 m data segments, which typically contain more than 100 sig | | Conventions | (Attribute) | CF-1.6 | | citation | (Attribute) | SET_BY_META | | contributor_name | (Attribute) | Thomas E Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (david.w.hancock@nasa.gov) | | contributor_role | (Attribute) | Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer | | creator_name | (Attribute) | SET_BY_META | | date_created | (Attribute) | SET_BY_PGE | | date_type | (Attribute) | итс | | featureType | (Attribute) | trajectory | | geospatial_lat_max | (Attribute) | 0.0 | | geospatial_lat_min | (Attribute) | 0.0 | | geospatial_lat_units | (Attribute) | degrees_north | | geospatial_lon_max | (Attribute) | 0.0 | | geospatial_lon_min | (Attribute) | 0.0 | | geospatial_lon_units | (Attribute) | degrees_east | | granule_type | (Attribute) | ATL08 | | hdfversion | (Attribute) | SET_BY_PGE | | history | (Attribute) | SET_BY_PGE | | identifier_file_uuid | (Attribute) | SET_BY_PGE | | identifier_product_doi | (Attribute) | 10.5067/ATLAS/ATL08.001 | | identifier_product_doi_authority | (Attribute) | http://dx.doi.org | | identifier_product_format_version | (Attribute) | SET_BY_PGE | | identifier_product_type | (Attribute) | ATL08 | | institution | (Attribute) | SET_BY_META | | instrument | (Attribute) | SET_BY_META | | keywords | (Attribute) | SET_BY_META | | keywords_vocabulary | (Attribute) | SET_BY_META | | license | (Attribute) | Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of the ICESat-2 Science Project Office at NASA/GSFC. | | naming_authority | (Attribute) | http://dx.doi.org | | platform | (Attribute) | SET_BY_META | | processing_level | (Attribute) | L3A | | | |--------------------------------|-----------------------------|---|--|--| | project | (Attribute) | SET_BY_META | | | | publisher_email | (Attribute) | SET_BY_META | | | | publisher_name | (Attribute) | SET_BY_META | | | | publisher_url | (Attribute) | SET_BY_META | | | | references | (Attribute) | SET_BY_META | | | | source | (Attribute) | SET_BY_META | | | | spatial_coverage_type | (Attribute) | Horizontal | | | | standard_name_vocabulary | (Attribute) | CF-1.6 | | | | summary | (Attribute) | SET_BY_META | | | | time_coverage_duration | (Attribute) | SET_BY_PGE | | | | time_coverage_end | (Attribute) | SET_BY_PGE | | | | time_coverage_start | (Attribute) | SET_BY_PGE | | | | time_type | (Attribute) | CCSDS UTC-A | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | ds_geosegments
CONTIGUOUS | INTEGER_1([5]) | Geosegments
None | 1 | Dimension scale for geosegments within land segments. (Source: Dim Scale); (Meanings: [1 2 3 4 5]) (Values: ['geosegments1' 'geosegments2' 'geosegments3' 'geosegments4' 'geosegments5']) | | ds_metrics
CONTIGUOUS | INTEGER_1([18]) | Metrics
None | 1 | Dimension scale for metrics. (Source: Dim Scale); (Meanings: [1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18]) (Values: ['metrics1' 'metrics2' 'metrics3' 'metrics4' 'metrics5' 'metrics6' 'metrics7' 'metrics8' 'metrics9' 'metrics10' 'metrics11' 'metrics12' 'metrics13' 'metrics14' 'metrics15' 'metrics16' 'metrics17' 'metrics18']) | | ds_surf_type
COMPACT | INTEGER([5]) | Surface Type
Dimension Scale
None | 1 | Dimension scale indexing the surface type array. Index=1 corresponds to Land; index = 2 corresponds to Ocean; Index = 3 corresponds to Sealce; Index=4 corresponds to LandIce; Index=5 corresponds to InlandWater (Source: Dim Scale); (Meanings: [1 2 3 4 5]) (Values: ['land' 'ocean' 'seaice' 'landice' 'inland_water']) | | Group: /ancillary_data | <u>'</u> | | n ancillary to the data pr
eristics and/or processing | oduct. This may include product characteristics, g constants. | | data_rate | (Attribute) | Data within this gro | up pertain to the granule | in its entirety. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | atlas_sdp_gps_epoch
COMPACT | DOUBLE([1]) | ATLAS Epoch
Offset
None | seconds since 1980-
01-
06T00:00:00.000000Z | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. (Source: Operations) | | control
CONTIGUOUS | STRING([1]) | Control File
None | 1 | PGE-specific control file used to generate this granule. To re-use, replace breaks (BR) with linefeeds. | | | | | | (Source: Operations) | |---------------------------|--------------|--|------------------------------|---| | data_end_utc
COMPACT | STRING([1]) | End UTC Time of
Granule (CCSDS-
A, Actual)
None | 1 | UTC (in CCSDS-A format) of the last data point within the granule. (Source: Derived) | | data_start_utc
COMPACT | STRING([1]) | Start UTC Time of
Granule (CCSDS-
A, Actual)
None | 1 | UTC (in CCSDS-A format) of the first data point within the granule. (Source: Derived) | | end_cycle
COMPACT | INTEGER([1]) | Ending Cycle
None | 1 | The ending cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | end_delta_time
COMPACT | DOUBLE([1]) | ATLAS End Time
(Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | end_geoseg
COMPACT | INTEGER([1]) | Ending
Geolocation
Segment
None | 1 | The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | end_gpssow
COMPACT | DOUBLE([1]) | Ending GPS SOW
of Granule
(Actual)
None | seconds | GPS seconds-of-week of the last data point in the granule. (Source: Derived) | | end_gpsweek
COMPACT | INTEGER([1]) | Ending GPSWeek
of Granule
(Actual)
None | weeks from 1980-01-
06 | GPS week number of the last data point in the granule. (Source: Derived) | | end_orbit
COMPACT | INTEGER([1]) | Ending Orbit
Number
None | 1 | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | end_region
COMPACT | INTEGER([1]) | Ending Region
None | 1 | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by
geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment | | | | | | locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | |------------------------------|--------------|---|------------------------------|---| | end_rgt
COMPACT | INTEGER([1]) | Ending Reference
Groundtrack
None | 1 | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | granule_end_utc
COMPACT | STRING([1]) | End UTC Time of
Granule (CCSDS-
A, Requested)
None | 1 | Requested end time (in UTC CCSDS-A) of this granule. (Source: Derived) | | granule_start_utc
COMPACT | STRING([1]) | Start UTC Time of
Granule (CCSDS-
A, Requested)
None | 1 | Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived) | | qa_at_interval
COMPACT | DOUBLE([1]) | QA Along-Track
Interval
None | 1 | Statistics time interval for along-track QA data. (Source: control) | | release
COMPACT | STRING([1]) | Release Number
None | 1 | Release number of the granule. The release number is incremented when the software or ancillary data used to create the granule has been changed. (Source: Operations) | | start_cycle
COMPACT | INTEGER([1]) | Starting Cycle
None | 1 | The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | start_delta_time COMPACT | DOUBLE([1]) | ATLAS Start Time
(Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | start_geoseg
COMPACT | INTEGER([1]) | Starting
Geolocation
Segment
None | 1 | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | start_gpssow
COMPACT | DOUBLE([1]) | Start GPS SOW
of Granule
(Actual)
None | seconds | GPS seconds-of-week of the first data point in the granule. (Source: Derived) | |-----------------------------|-----------------------------|--|---------------------------|--| | start_gpsweek
COMPACT | INTEGER([1]) | Start GPSWeek of
Granule (Actual)
None | weeks from 1980-01-
06 | GPS week number of the first data point in the granule. (Source: Derived) | | start_orbit
COMPACT | INTEGER([1]) | Starting Orbit
Number
None | 1 | The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | start_region
COMPACT | INTEGER([1]) | Starting Region
None | 1 | The starting product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | start_rgt
COMPACT | INTEGER([1]) | Starting
Reference
Groundtrack
None | 1 | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | version
COMPACT | STRING([1]) | Version
None | 1 | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current release. (Source: Operations) | | Group: /ancillary_data/land | | Constants used in the land_vegetation ATBD | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | atl08_region
CHUNKED | INTEGER(['Unlimited']) | atl08 region
atl08_region | 1 | ATL08 region(s) encompassed by ATL03 granule being processed (Source: Land ATBD 29March2019, Table 2.4) | | bin_size_h
COMPACT | FLOAT([1]) | neighbor
histogram bin size
None | 1 | Histogram bin size for the alternative DRAGANN algorithm. (Default = 1.0) (Source: ATBD (section 4.2.1 step 3)) | | bin_size_n
COMPACT | INTEGER([1]) | neighbor
histogram bin size
None | 1 | Size of neighbor histogram bins in number of neighbors in DRAGANN. (Default = 1) (Source: ATBD (section 4.2 step 4)) | | bright_thresh
COMPACT | FLOAT([1]) | brightness flag
average ph per
shot
None | 1 | Threshold to set brightness_flag, average ground photons per shot. (Default = 3.0) (Source: ATBD section 2.4.21) | | ca_class
COMPACT | INTEGER([1]) | Canopy class
value
None | 1 | Canopy classification flag value. (Default = 2) (Source: ATBD section 4.12 step 1) | | can_noise_thresh
COMPACT | INTEGER([1]) | Threshold for reclassification of canopy as noise None | 1 | Threshold, as a number of canopy photons in the CAN_FILT_SEG, used for the reclassification of canopy signal photons. (Default = 75) (Source: ATBD section 4.11 step 6) | | L | | | | | |--------------------------------------|--------------|---|---------|--| | can_stat_thresh
COMPACT | FLOAT([1]) | Threshold for canopy statistics None | 1 | Minimum percentage of canopy photons to compute statistics upon. (Default =0.05) (Source: ATBD section 4.14.1 step 1) | | canopy_flag_switch
COMPACT | INTEGER([1]) | canopy_flag
switch
None | 1 | Controls entrance to the canopy flag subroutine . (Default = 1) (Source: ATBD section 4.3) | | canopy_seg
COMPACT | INTEGER([1]) | segment size in canopy filter None | 1 | Segment in number of signal photons for filtering sparse canopy cover. (Default = 500) (Source: ATBD section 4.11 step 6) | | class_thresh
COMPACT | INTEGER([1]) | Threshold flag value for classification of photons as signal via input from ATL03 | 1 | Threshold flag value for classification of photons as signal via input from ATL03. (Default =3) (Source: ATBD section 4.2 step 17) | | cloud_filter_switch
COMPACT | INTEGER([1]) | cloud_filter switch
None | 1 | Controls entrance to the cloud_filter subroutine. (Default = 0) (Source: ATBD section 4.1.1) | | del_amp
COMPACT | FLOAT([1]) | Step Gaussian
Amplitude
optimization
None | 1 | Step size for optimizing the amplitude variable of Gaussian function. (Default = 1.0) (Source: ATBD section 4.2 step 7) | | del_mu
COMPACT | FLOAT([1]) | Step size for optimizing the mean parameter of Gaussian function. | 1 | Step size for optimizing the mean parameter of Gaussian function. (Default = 0.2) (Source: ATBD section 4.2 step 7) | | del_sigma
COMPACT | FLOAT([1]) | Step size for optimizing the standard deviation parameter of Gaussian function. | 1 | Step size for optimizing the standard deviation parameter of Gaussian function. (Default = 0.5) (Source: ATBD section 4.2 step 7) | | dem_filter_switch
COMPACT |
INTEGER([1]) | dem_filter switch
None | 1 | Controls filtering based on DEM. (Default = 1) (Source: ATBD section 4.5 step 5) | | dem_removal_percent_limit
COMPACT | FLOAT([1]) | dem_removal_flag
set threshold
None | percent | Percent of photons in land segment failing DEM test to set dem_removal_flag. (default = 20.0) (Source: ATBD section 2.4.11) | | dragann_switch
COMPACT | INTEGER([1]) | DRAGANN switch
None | 1 | Controls entrance to the DRAGANN subroutine. (Default =1) (Source: ATBD section 4.2) | | dseg
COMPACT | INTEGER([1]) | DRAGANN
segment size
None | 1 | DRAGANN segment length in 20m geolocated segments along ground track. (Default=170) (Source: ATBD section 4.2.1 step 1) | | dseg_buf
COMPACT | INTEGER([1]) | DRAGANN
segment buffer
size
None | 1 | DRAGANN segment buffer length in 20m geolocated segments along ground track. (Default=10) (Source: ATBD section 4.2.1 step 1) | | fnlgnd_filter_switch
COMPACT | INTEGER([1]) | finalground filter
switch
None | 1 | Controls filtering based on FINALGROUND. (Default = 1) (Source: ATBD section 4.13 step 2) | | gnd_stat_thresh
COMPACT | FLOAT([1]) | Threshold for terrain statistics None | 1 | Minimum percentage of terrain photons to compute statistics upon. (Default =0.05) (Source: ATBD section 4.13 step 2) | | gthresh_factor
COMPACT | FLOAT([1]) | threshold for
Gaussian | 1 | Controls threshold for Gaussian Elimination. (Default = 0.1) | | | | Elimination
None | | (Source: ATBD sGaussian Rejection section of Appendix A) | |---------------------------|--------------|---|--------|--| | h_canopy_perc
COMPACT | FLOAT([1]) | h_canopy
percentile
None | 1 | Percentile component of h_canopy parameter. (Default =0.95) (Source: ATBD section 2.2.3) | | iter_gnd
COMPACT | INTEGER([1]) | Iterations of smoothing of interpolated ground surface for ground estimate. None | 1 | Iterations of smoothing of interpolated ground surface for refinement. (Default = 10) (Source: ATBD section 4.10 step 1) | | iter_max
COMPACT | INTEGER([1]) | Maximum number of iterations for optimizing the Gaussian parameters for fitting of histogram. | 1 | Maximum number of iterations for optimizing the Gaussian parameters for fitting of histogram. (Default = 10) (Source: ATBD section 4.2 step 7) | | Iseg
COMPACT | INTEGER([1]) | Long segment size None | 1 | Long segment size in number of 20 meter segments along ground track. (Default=500) (Source: ATBD section 4.1 step 1) | | lseg_buf
COMPACT | INTEGER([1]) | Long segment
buffer size
None | 1 | Overlapping long segment buffer size in 20m geosegments along ground track. (Default=10) (Source: ATBD section 4.1 step 2) | | lw_filt_bnd
COMPACT | INTEGER([1]) | Proportionality coefficient for controlling the bounds of the filter window size as a function of number of signal photons. None | 1 | Lower bound of the filter window size function. (Default = 5) (Source: ATBD section 4.4 step 2) | | lw_gnd_bnd
COMPACT | FLOAT([1]) | Lower bound restricting the search of a ground surface in canopy cases. | meters | Lower bound restricting the search of a ground surface in canopy cases. (Default = -4.0) (Source: ATBD section 4.7 step 3) | | lw_toc_bnd
COMPACT | FLOAT([1]) | Lower bound restricting the search of a top of canopy surface. None | meters | Lower bound restricting the search of a top of canopy surface. (Default = -4.0) (Source: section 4.7 step 3 entered from section 4.8) | | lw_toc_cut
COMPACT | FLOAT([1]) | Lower cutoff for top of canopy None | meters | Lower cutoff for top of canopy surface. (Default = 2.0) (Source: ATBD section 4.8 step 10) | | max_atl03files
COMPACT | INTEGER([1]) | Maximum number
of input ATL03s
None | 1 | Maximum number of input ATL03 files. (Default = 200)
(Source: Operations) | | max_atl09files
COMPACT | INTEGER([1]) | Maximum number
of input ATL09s
None | 1 | Maximum number of input ATL09 files. (Default = 200)
(Source: Operations) | | max_peaks
COMPACT | INTEGER([1]) | Maximum number of Gaussian peaks to fit in the data set None | 1 | Maximum number of Gaussian peaks to fit in the data set in DRAGANN. (Default =10) (Source: ATBD section 4.2 step 9) | | max_try
COMPACT | INTEGER([1]) | Maximum try count | 1 | Maximum number of tries to compute a P value in alternative DRAGANN | | | | None | l | (Source: ATBD section 4.2.1 step 17) | |-------------------------------------|--------------|--|----------|---| | min_nphs
COMPACT | INTEGER([1]) | Minimum input photons None | 1 | Minimum number of input photons from ATL03 to process. (default=1) (Source: Operations) | | n_dec_mode
COMPACT | INTEGER([1]) | Mode decimal parameter None | 1 | Number of decimal places to consider in mode computation. (Default =1) (Source: ATBD needed for section 4.13 step 3(h_te_mode)) | | night_thresh
COMPACT | FLOAT([1]) | Threshold for night None | 1 | Solar elevation threshold for determining night time conditions. (Default =0.0) (Source: ATBD section 2.4.9) | | noise_class
COMPACT | INTEGER([1]) | Noise class value
None | 1 | Noise classification flag value. (Default = 0) (Source: ATBD section 4.12 step 1) | | outlier_filter_switch
COMPACT | INTEGER([1]) | outlier_filter switch
None | 1 | Controls entrance to the outlier filter subroutine. (Default = 1) (Source: ATBD section 4.6) | | p_static
COMPACT | FLOAT([1]) | Dragann
Parameter
None | 1 | Parameter for controlling the search radius in nearest neighbor search in DRAGANN. (Default = 20) (Source: ATBD section 4.2 step 1) | | ph_removal_percent_limit
COMPACT | FLOAT([1]) | ph_removal_flag
set threshold
None | percent | Percent of photons in land segment removed to set ph_removal_flag. (default = 50.0) (Source: ATBD section 4.13 step 4) | | proc_geoseg
COMPACT | INTEGER([1]) | Geosegment
process interval
length
None | 1 | Geosegment process interval length. This controls the amount read from ATL03 and ATL09 at a time. (Default = 500000). (Source: Operations) | | psf
COMPACT | FLOAT([1]) | Point Spread
Function
None | meters | Parameter controlling identification of photons around an interpolated surface. (Default = 0.5) (Source: ATBD section 4.7 step 12) | | ref_dem_limit
COMPACT | FLOAT([1]) | DEM threshold
None | meters | Reference DEM limit used to reclassify signal as noise. (default = 120.0) (Source: ATBD section 4.5 step 4) | | ref_finalground_limit
COMPACT | FLOAT([1]) | finalground
threshold
None | meters | Reference finalground limit used to reclassify signal as noise. (default = 150.0) (Source: ATBD section 4.13 step 2) | | relief_hbot
COMPACT | FLOAT([1]) | lower relief
percentile
None | meters | The approximate relief of the L-km segment uses the percentile height values, relief_htop and relief_hbot. (Default=0.05) (Source: ATBD (section 4.5 step 6)) | | relief_htop
COMPACT | FLOAT([1]) | Upper relief
percentile
None | meters | The approximate relief of the L-km segment uses the percentile height values, relief_htop and relief_hbot. (Default=0.95) (Source: ATBD (section 4.5 step 6)) | | shp_param
COMPACT | FLOAT([1]) | Exponential coefficient for controlling the exponential decay of the filter window size as a function of number of signal photons. | 1 | Exponential coefficient of the filter window size as a function. (Default = 21.0E-06) (Source: ATBD section 4.4 step 2) | | sig_rsq_search
COMPACT | FLOAT([1]) | Square Radius of filter for canopy None | meters^2 | Top of canopy refinement square search radius. (Default = 225.0) (Source: ATBD section 4.8 step 6) | | sseg
COMPACT | FLOAT([1]) | Short Segment
Length | meters | Short segment length in meters. (Default = 100.0) | | | | None | | (Source: ATBD section 4.13 step 1) | |---------------------------|-------------------------------------|--|--|--| | stat_thresh
COMPACT | INTEGER([1]) | Threshold for land statistics None | 1 | Minimum number of photons to compute statistics upon. (Default =50) (Source: ATBD section 2 intro paragraph) | | tc_thresh
COMPACT | FLOAT([1]) | Canopy Flag
threshold
None | 1 | Percentage threshold for average L-km segment tree cover to be considered canopy. (Default = 5.0) (Source: ATBD section 4.3 steps 6 and 7) | | te_class
COMPACT | INTEGER([1]) | Terrain class
value
None | 1 | Terrain classification flag value. (Default = 1) (Source: ATBD section 4.12 step 1) | | toc_class
COMPACT | INTEGER([1]) | Top of canopy class value None | 1 | Top of canopy classification flag value. (Default = 3) (Source: ATBD section 4.12 step 1) | | up_filt_bnd
COMPACT | INTEGER([1]) | Proportionality coefficient for controlling the bounds of the filter window size as a function of number of signal photons. None | 1 | Lower bound of the filter window size function. (Default = 46) (Source: ATBD section 4.4 step 2) | | up_gnd_bnd
COMPACT |
FLOAT([1]) | Upper bound restricting the search of a ground surface in canopy cases. | meters | Upper bound restricting the search of a ground surface in canopy cases. (Default = 1.0) (Source: ATBD (section 4.7 step 3)) | | up_toc_bnd
COMPACT | FLOAT([1]) | Upper bound restricting the search of a top of canopy surface. | meters | Upper bound restricting the search of a top of canopy surface. (Default=1.0) (Source: ATBD section 4.7 step 3 entered from section 4.8) | | up_toc_cut
COMPACT | FLOAT([1]) | upper cutoff of top of canopy surface. None | meters | Upper cutoff for top of canopy surface. (Default = 150.0) (Source: ATBD section 4.8 step 10) | | Group: /gtx | | sequential transmit
width is approximat
number that genera
right in the direction | pulses illuminate six gro
rely 14m. Each ground trates a given ground track
n of spacecraft travel as: | Ground Track. As ICESat-2 orbits the earth, und tracks on the surface of the earth. The track ack is numbered, according to the laser spot Ground tracks are numbered from the left to the 1L, 1R in the left-most pair of beams; 2L, 2R for right-most pair of beams. | | Group: /gtx/land_segments | | Contains data cate | gorized as land at 100 m | eter intervals. | | data_rate | (Attribute) | Data are stored as | aggregates of 100 meter | rs. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | asr
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | apparent surface
reflectance
None | 1 | Apparent surface reflectance (Source: ATL09) | | atlas_pa
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | atlas pointing
angle
None | radians | Off nadir pointing angle (in radians) of the satellite to increase spatial sampling in the non-polar regions. ATLAS_PA =90degs-beam_coelev. (Source: ATL03) | | beam_azimuth CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | beam azimuth
None | radians | Azimuth(in radians) of the unit pointing vector for the reference photon in the local ENU frame in radians. The angle is measured from north and positive towards East. | | | | | | (Source: ATL03) | |----------------------------|---|----------------------------|------------------------------|---| | beam_coelev
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | beam co-elevation
None | radians | Co-elevation (CE) is direction from vertical of the laser beam as seen by an observer located at the laser ground spot. (Source: ATL03) | | brightness_flag
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | brightness flag
None | 1 | Flag indicating that the ground surface is bright (e.g. snow-covered or other bright surfaces) (Source: Land ATBD section 2.4.21); (Meanings: [0 1]) (Values: ['not_bright_surface' 'bright_surface']) | | cloud_flag_atm
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | cloud flag atm
None | 1 | Cloud confidence flag from ATL09 that indicates the number of cloud or aerosol layers identified in each 25Hz atmospheric profile. If the flag is greater than 0, aerosols or clouds could be present. Valid range is 0 - 10. (Source: ATL09) | | cloud_fold_flag
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | cloud folding flag
None | 1 | Flag that indicates this profile likely contains cloud signal folded down from above 15 km to the last 2-3 km of the profile. See ATL09 ATBD Table 3.9 for detailed flag value meanings. (Source: ATL09); (Meanings: [0 1 2 3]) (Values: ['no_folding' 'goes5_indicates' 'profile_indicates' 'both_indicate']) | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | mean_pass_time time | seconds since 2018-
01-01 | Mean time for the segment in number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Land ATBD section 2.4) | | delta_time_beg
CHUNKED | DOUBLE(['Unlimited']) | delta time begin
None | seconds since 2018-
01-01 | Time of the first photon contained within the data segment, in seconds since the ATLAS SDP GPS Epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived (gps_seconds-gps_sec_offset)) | | delta_time_end
CHUNKED | DOUBLE(['Unlimited']) | delta time end
None | seconds since 2018-
01-01 | Time of the last photon contained within the data segment, in seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived (gps_seconds-gps_sec_offset)) | | dem_flag
CHUNKED | INTEGER_1(['Unlimited'])
INVALID_I1B | dem source flag
None | 1 | Indicates source of the DEM height. Values: 0=None, 1=Arctic, 2=Global, 3=MSS, 4=Antarctic. | | | | | | (Source: Atmosphere ATBD); (Meanings: [0 1 2 3 4]) (Values: ['none' 'arctic' 'global' 'mss' 'antarctic']) | |-----------------------------|--------------------------------------|---|------------|--| | dem_h
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | dem height
None | meters | Best available DEM (in priority of Arctic/Antarctic/Global/MSS) value at the geolocation point. Height is in meters above the WGS84 Ellipsoid. (Source: Arctic, Antarctic, Global, MSS DEM) | | dem_removal_flag
CHUNKED | INTEGER_1(['Unlimited']) | dem removal flag
None | 1 | Flag indicating more than dem_removal_percent_limit (default 20.0) removed from land segment due to failing DEM-QA tests (Source: ATBD section 2.4.11); (Meanings: [0 1]) (Values: ['below_threshold' 'above_threshold']) | | h_dif_ref
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | h dif from
reference
None | meters | Difference between h_te_median and ref_DEM (Source: Land ATBD section 2.4) | | last_seg_extend
CHUNKED | FLOAT(['Unlimited']) | last segment
extended
last_seg_extend | kilometers | The distance (km) that the last ATL08 processing segment in a file is either extended or overlapped with the previous ATL08 processing segment. (Source: Land ATBD 13March2019, Section 2.4.20) | | latitude
CHUNKED | FLOAT(['Unlimited']) | latitude
latitude | degrees | Latitude of the center-most signal photon within each segment. (Source: Land ATBD section 2.4) | | layer_flag
CHUNKED | INTEGER_1(['Unlimited']) | consolidated
cloud flag
None | 1 | This flag is a combination of multiple flags (cloud_flag_atm, cloud_flag_asr, and bsnow_con) and takes daytime/nighttime into consideration. A value of 1 means clouds or blowing snow are likely present. A value of 0 indicates the likely absence of clouds or blowing snow. (Source: ATL09); (Meanings: [0 1]) (Values: ['likely_clear' likely_cloudy']) | | longitude
CHUNKED | FLOAT(['Unlimited']) | longitude
longitude | degrees | Longitude of the center-most signal photon within each segment. (Source: Land ATBD section 2.4) | | msw_flag
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | multiple scattering
warning flag
None | 1 | Multiple Scattering warning flag. The multiple scattering warning flag (ATL09 parameter msw_flag) has values from -1 to 5 where zero means no multiple scattering and 5 the greatest. If no layers were detected, then msw_flag = 0. If blowing snow is detected and its estimated optical depth is greater than or equal to 0.5, then msw_flag = 5. If the blowing snow optical depth is less than 0.5, then msw_flag = 4. If no blowing snow is detected but there are cloud or aerosol layers detected, the msw_flag assumes values of 1 to 3 based on the height of the bottom of the lowest layer: < 1 km, msw_flag = 3; 1-3 km, msw_flag = 2; > 3km,
msw_flag = 1. A value of -1 indicates that the signal to noise of the data was too low to reliably ascertain the presence of cloud or blowing snow. We expect values of -1 to occur only during daylight. (Source: ATL09); (Meanings: [-1 0 1 2 3 4 5]) (Values: ['cannot_determine' 'no_layers' 'layer_gt_3km' 'layer_between_1_and_3_km' 'layer_lt_1km' 'blow_snow_od_lt_0.5' 'blow_snow_od_gt_0.5']) | | n_seg_ph
CHUNKED | INTEGER(['Unlimited']) | number of photons | 1 | Number of photons within each land segment. (Source: Derived) | | | | None | | | |------------------------------|---|--|---|---| | night_flag
CHUNKED | INTEGER(['Unlimited']) INVALID_I4B | night flag
None | 1 | Flag indicating the data were acquired in night conditions: 0=day, 1=night. Flag is derived from solar elevation at the geolocated segment. IF solar elevation is above threshold it is day, if not then it is night. Threshold is set in atlas_I3a_const_mod. (Source: Land ATBD section 2.4.8); (Meanings: [0 1]) (Values: ['day' 'night']) | | ph_ndx_beg
CHUNKED | INTEGER_8(['Unlimited']) | photon index
begin
None | 1 | Index (1-based) within the photon-rate data (/land_segments/photons) of the first photon within this each land segment. (Source: Derived) | | ph_removal_flag
CHUNKED | INTEGER_1(['Unlimited']) | ph removal flag
None | 1 | Flag indicating more than ph_removal_percent_limit (default 50.0) removed from land segment due to failing QA tests (Source: ATBD section 4.13); (Meanings: [0 1]) (Values: ['below_threshold' 'above_threshold')) | | psf_flag
CHUNKED | INTEGER_1(['Unlimited']) | point spread
function flag
None | 1 | Flag is set to 1 if the point spread function (computed as sigma_atlas_land) has exceeded the threshold (1 m) (Source: Land/Veg ATBD); (Meanings: [0 1]) (Values: ['below_threshold' 'above_threshold']) | | rgt
CHUNKED | INTEGER_2(['Unlimited']) | reference ground
track
None | 1 | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT3 and GT4. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: Operations) | | sat_flag
CHUNKED | INTEGER_1(['Unlimited'])
INVALID_I1B | saturation flag
None | 1 | Flag derived from full_sat_fract on the ATL03 data product, averaged over 5 geosegments in 100m land segment (Source: ATL03, Land ATBD 15Apr2020, section 2.5.23); (Meanings: [0 1 -1]) (Values: ['no_saturation_detected' 'saturation_detected' 'not_enough_valid_data']) | | segment_id_beg
CHUNKED | INTEGER(['Unlimited']) | begin geolocation
segment bin
None | 1 | Geolocation segment number of the first photon in the land segment. (Source: ATL03) | | segment_id_end
CHUNKED | INTEGER(['Unlimited']) | end geolocation
segment bin
None | 1 | Geolocation segment number of the last photon in the land segment. (Source: ATL03) | | segment_landcover
CHUNKED | INTEGER(['Unlimited'])
255 | segment
landcover
None | 1 | IGBP Land Cover Surface type classification as reference from MODIS Land Cover(ANC18) at the 0.5 arcsecond resolution. (Source: ATBD section 2.4.14); (Meanings: [0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16]) (Values: ['Water' 'Evergreen_Needleleaf_Forest' 'Evergreen_Broadleaf_Forest' 'Deciduous_Needleleaf_Forest' 'Deciduous_Broadleaf_Forest' 'Mixed_Forest' 'Closed_Shrublands' 'Open_Shrubland' 'Woody_Savanna' 'Savanna' 'Grassland' 'Wetland' 'Croplands' 'Urban' 'Crop_Mosaic' 'Permanent_Snow' 'Barren']) | | segment_snowcover
CHUNKED | INTEGER_1(['Unlimited'])
INVALID_I1B | segment
snowcover
None | 1 | Daily snow/ice cover from ATL09 at the 25 Hz rate(275m) indicating likely presence of snow and ice within each segment. 0=ice free water; 1=snow free land; 2=snow; 3=ice. | | | | | | (Source: ATBD section 4.2.16); (Meanings: [0 1 2 3]) (Values: ['ice_free_water' 'snow_free_land' 'snow' 'ice']) | |-----------------------------|-------------------------------------|----------------------------------|--------------|--| | segment_watermask CHUNKED | INTEGER(['Unlimited'])
255 | segment
watermask
None | 1 | Water mask(i.e. flag) indicating inland water as referenced from the Global Raster Water Mask(ANC33) at 250 m spatial resolution. (Source: ATBD section 2.4.15); (Meanings: [0 1]) (Values: ['no_water' 'water']) | | sigma_across
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | sigma atlas y
None | 1 | Total cross-track uncertainty due to PPD and POD knowledge. Read from ATL03 product gtx/geolocation/sigma_across. Sigma_atlas_y is reported on ATL08 as the uncertainty of the center-most reference photon of the 100m ATL08 segment. (Source: ATL03) | | sigma_along
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | sigma atlas x
None | 1 | Total along-track uncertainty due to PPD and POD knowledge. Read from ATL03 product gtx/geolocation/sigma_along. Sigma_atlas_x is reported on ATL08 as the uncertainty of the center-most reference photon of the 100m ATL08 segment. (Source: ATL03) | | sigma_atlas_land
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | sigma atlas land
None | 1 | Total vertical geolocation error due to ranging and local surface slope. The parameter is computed for ATL08 as described in equation 1.2. (Source: Land ATBD section 2.5.13) | | sigma_h
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | height uncertainty
None | 1 | Estimated uncertainty for the reference photon bounce point ellipsoid height: 1- sigma (m) provided at the geolocation segment rate on ATL03. Sigma_h is reported on ATL08 as the uncertainty of the center-most reference photon of the 100m ATL08 segment. (Source: ATL03) | | sigma_topo
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | sigma atlas topo
None | 1 | Total uncertainty that include sigma_h plus geolocation uncertainty due to local slope (equation 1.3). The local slope is multiplied by the geolocation uncertainty factor. This will be used to determine the total vertical geolocation error due to ranging and local slope. (Source: Land ATBD section 2.5.12) | | snr
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | signal to noise
ratio
None | 1 | The signal to noise ratio of geolocated photons as determined by the ratio of the superset of ATL03 signal and DRAGANN found signal photons used for processing the ATL08 segments to the background photons (i.e. noise) within the same ATL08 segments. (Source: ATBD section 2.5.14) | | solar_azimuth
CHUNKED | FLOAT(['Unlimited']) | solar azimuth
None | degrees_east | The direction, eastwards from north, of the sun vector as seen by an observer at the laser ground spot. (Source: ATL03g ATBD) | | solar_elevation
CHUNKED | FLOAT(['Unlimited']) | solar elevation
None | degrees | Solar Angle above or below the plane tangent to the ellipsoid surface at the laser spot. Positive values mean the sun is above the horizon, while negative values mean it is below the horizon. The effect of atmospheric refraction is not included. This is a low precision value, with approximately TBD degree accuracy. (Source: ATL03g ATBD) | | surf_type
CHUNKED | INTEGER_1(['Unlimited', 5]) | surface type
None | 1 | Flags describing which surface types this interval is associated with. 0=not type, 1=is type. Order of array is land, ocean, sea ice, land ice, | | | | | | inland water.
(Source: ATL03 ATBD, Section 4); (Meanings: [0
1]) (Values: ['not_type' 'is_type']) | |---------------------------------|---|--|--------------------------|---| | terrain_flg
CHUNKED | INTEGER(['Unlimited']) INVALID_I4B | terrain flag
None | 1 | Terrain flag quality check to indicate a deviation above a threshold from the reference DEM height reported on the product. (Source: Land ATBD section 2.4.8); (Meanings: [0 1]) (Values: ['below_threshold' 'above_threshold']) | | urban_flag
CHUNKED | INTEGER(['Unlimited'])
INVALID_I4B | segment urban
flag
None | 1 | The urban flag indicates that a segment is likely located over an urban area. (Source: Land ATBD section 2.4.17); (Meanings: [0 1]) (Values: ['not_urban' 'urban']) | | Group: /gtx/land_segments/can | ору | Contains height par | rameters based on the la | and algorithm. | | data_rate | (Attribute) | Data are stored as | aggregates of 100 meter | rs. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | canopy_flag
CHUNKED | INTEGER(['Unlimited']) INVALID_I4B | canopy flag
None | 1 | Flag
indicating that canopy was detected using the Landsat Tree Cover Continuous Fields data product. If percent of canopy cover along the L-km segment is greater than 5%, then canopy is assumed to be present; else, no canopy is assumed present. (Source: Land ATBD section 2.2.22); (Meanings: [0 1]) (Values: ['no_canopy_present' 'canopy_present']) | | canopy_h_metrics
CHUNKED | FLOAT(['Unlimited', 18])
INVALID_R4B | canopy height
metrics
None | meters | Height metrics based on the cumulative distribution of relative canopy heights above the interpolated ground surface. The height metrics are calculated at the following percentiles: 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95%. (Source: Land ATBD 15May2020 section 2.2.4) | | canopy_h_metrics_abs
CHUNKED | FLOAT(['Unlimited', 18]) INVALID_R4B | canopy absolute
height metrics
None | meters | Height metrics based on the cumulative distribution of absolute canopy heights above the WGS84 Ellipsoid. The height metrics are calculated at the following percentiles: 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75, 80, 85, 90, 95%. (Source: Land ATBD section 2.2.3) | | canopy_openness
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | canopy openness
None | 1 | Standard Deviation of all photons classified as canopy photons within the segment to provide inference of canopy openness. (Source: Land ATBD section 4.12) | | canopy_rh_conf
CHUNKED | INTEGER_1(['Unlimited']) | canopy relative
height confidence
None | 1 | Canopy relative height confidence flag based on percentage of ground and canopy photons within a segment: 0 (<5% canopy), 1 (>5% canopy, <5% ground), 2 (>5% canopy, >5% ground). (Source: Land/Veg ATBD 13March2019, Section 2.2.21); (Meanings: [0 1 2]) (Values: ['<5%_canopy' '>=5%_canopy_<5%_ground' '>=5%_canopy_>=5%_ground']) | | centroid_height
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | centroid height
None | meters | Optical centroid of all photons classified as either canopy or ground points within the segment. The heights used in this calculation are absolute heights above the reference ellipsoid. This parameter is equivalent to the centroid height produced ICESat GLA14. (Source: Land ATBD section 2.2.22) | | h_canopy
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | height canopy
None | meters | 98% height of all the individual canopy relative heights for the segment above the estimated | | | | | | terrain surface. Relative canopy heights have been computed by differencing the canopy photon height from the estimated terrain surface. (Source: Land ATBD section 4.12) | |---------------------------------|-------------------------------------|---|--------|---| | h_canopy_abs
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | absolute segment
canopy height
None | meters | The 98% height of all the absolute individual canopy heights referenced above the WGS84 ellipsoid. (Source: Land ATBD section 2.2.2) | | h_canopy_quad
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | canopy quadratic
mean
None | meters | The quadratic mean height of individual classified relative canopy photon heights above the estimated terrain surface. (Source: Land ATBD section 4.12) | | h_canopy_uncertainty
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | segment canopy
height uncertainty
None | meters | Uncertainty of the relative canopy heights for the segment. Incorporates all systematic uncertainties as well as uncertainty from errors of identified photons. See section 1 and equations 1.4 and 1.5 in the Land ATBD (Source: Land ATBD section 1.5) | | h_dif_canopy
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | canopy diff to
median height
None | meters | Difference between h_canopy and h_median_canopy (Source: Land ATBD section 4.12) | | h_max_canopy
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | maximum canopy
height
None | meters | Relative maximum of individual canopy heights within segment. Relative canopy heights have been computed by differencing the canopy photon height from the estimated terrain surface. Should be equivalent to RH100 metric reported in the literature. (Source: Land ATBD section 2.2.12) | | h_max_canopy_abs
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | absolute
maximum canopy
height
None | meters | Maximum of individual absolute canopy heights within segment referenced above the WGS84 ellipsoid. (Source: Land ATBD section 2.2.11) | | h_mean_canopy
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | mean canopy
height
None | meters | Mean of individual relative canopy heights within segment. Relative canopy heights have been computed by differencing the canopy photon height from the estimated terrain surface. (Source: Land ATBD section 4.12) | | h_mean_canopy_abs
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | absolute mean
canopy height
None | meters | Mean of the individual absolute canopy heights within segment referenced above the WGS84 Ellipsoid. (Source: Land ATBD section 2.2.4) | | h_median_canopy
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | median canopy
height
None | meters | The median of individual relative canopy heights within segment. Relative canopy heights have been computed by differencing the canopy photon height from the estimated terrain surface. This parameter should be equivalent to RH50 reported in the literature. (Source: Land ATBD section 2.2.8) | | h_median_canopy_abs
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | absolute segment
median canopy
height
None | meters | The median of individual absolute canopy heights within segment referenced above the WGS84 Ellipsoid. (Source: Land ATBD section 2.2.6) | | h_min_canopy
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | minimum canopy
height
None | meters | The minimum of relative individual canopy heights within segment. Relative canopy heights have been computed by differencing the canopy photon height from the estimated terrain surface. (Source: Land ATBD section 2.2.10) | | h_min_canopy_abs
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | absolute minimum
canopy height
None | meters | The minimum of absolute individual canopy heights within segment referenced above the WGS84 Ellipsoid. (Source: Land ATBD section 2.2.9) | | landsat_flag
CHUNKED | INTEGER(['Unlimited']) INVALID_I4B | landsat flag
None | 1 | Flag indicating that more than 50% of the Landsat Continuous Cover product have values > 100 for the L-Km segment. Canopy is assumed present along the L-km segment if landsat_flag is 1. (Source: Land ATBD section 2.2.25); (Meanings: [0 1]) (Values: ['canopy_not_assumed_present' 'canopy_assumed_present']) | |--------------------------------|---|---|-------------------------------------|---| | landsat_perc
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | landsat
percentage
canopy
None | 1 | Average percentage value of the valid (value <= 100) Landsat Tree Cover Continuous Fields product for each 100 m segment (Source: Land ATBD section 2.2.24) | | n_ca_photons
CHUNKED | INTEGER(['Unlimited']) | number canopy
photons
None | 1 | The number of photons classified as canopy within the segment. (Source: Land ATBD section 4.12) | | n_toc_photons
CHUNKED | INTEGER(['Unlimited']) | number top of canopy photons None | 1 | The number of photons classified as top of canopy within the segment. (Source: Land ATBD section 4.12) | | photon_rate_can
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Canopy photon rate None | s^-1 | Calculated photon rate of canopy photons within each 100m segment (Source: Land/Veg ATBD July 2020) | | subset_can_flag
CHUNKED | INTEGER_1(['Unlimited', 5]) INVALID_I1B | subset canopy
flag
None | 1 | Quality flag indicating the canopy photons populating the 100 m segment statistics are derived from less than 100 m worth of photons and/or less than 5 20m ATL03 segments. (Source: Land/Veg ATBD 15 Novemebr 2019, Section 2.2.25); (Meanings: [-1 0 1]) (Values: [no_photon_data_within_geosegment' 'no_canopy_photons_within_geosegment' 'canopy_photons_present_within_geosegment']) | | toc_roughness
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | top of canopy
roughness
None | meters | Standard deviation of the relative heights of all photons classified as top of canopy within the segment (Source: Land ATBD section 4.12) | | Group: /gtx/land_segments/tern | ain | Contains terrain pa | rameters at a 100m aggi | regation. | | data_rate | (Attribute) | Data are stored as | stored as aggregates of 100 meters. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | h_te_best_fit
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | segment terrain
height best fit
None | meters | The best fit terrain elevation at the the mid-point location of each 100m segment. The mid-segment terrain elevation is determined by selecting the best of three fits- linear, 3rd order and 4th order polynomials - to the terrain
photons and interpolating the elevation at the mid-point location of the 100 m segment. For the linear fit, a slope correction and weighting is applied to each ground photon based on the distance to the slope height at the center of the segment. (Source: Land ATBD section 2.1.15) | | h_te_interp
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | interpolated
terrain surface
height
None | meters | Interpolated terrain surface height above the WGS84 Ellipsoid at the midpoint of the segment. (Source: Land ATBD section 4.9) | | h_te_max
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | maximum terrain
height
None | meters | The maximum of the photon heights above the WGS84 Ellipsoid, classified as terrain within the segment. (Source: Land ATBD section 4.11) | | h_te_mean
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | mean terrain
height
None | meters | The mean of the photon heights above the WGS84 Ellipsoid, classified as terrain within the segment. | | | | | | (Source: Land ATBD section 4.11) | |-----------------------------|---|--|---------------------------|--| | h_te_median
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | median terrain
height
None | meters | The median of the photon heights above the WGS84 Ellipsoid, classified as terrain within the segment. (Source: Land ATBD section 4.11) | | h_te_min
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | minimum terrain
height
None | meters | The minimum of the photon heights above the WGS84 Ellipsoid, classified as terrain within the segment. (Source: Land ATBD section 4.11) | | h_te_mode
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | mode of terrain
heights
None | meters | The mode of the photon heights above the WGS84 Ellipsoid, classified as terrain within the segment. (Source: Land ATBD section 4.11) | | h_te_rh25
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Terrain height
25% percentile
None | meters | The terrain elevation from the 25% height. The classified ground photons are sorted into a cumulative distribution and the height associated with the 25% height for that segment is reported. (Source: Land/veg ATBD, September 2020) | | h_te_skew
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | skew of terrain
heights
None | meters | The skewness of the photon heights above the WGS84 Ellipsoid, classified as terrain within the segment. (Source: Land ATBD section 4.11) | | h_te_std
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | segment terrain
roughness
None | meters | The standard deviation of the photon heights above the WGS84 Ellipsoid, classified as terrain within the segment. (Source: Land ATBD section 4.11) | | h_te_uncertainty
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | uncertainty of h_te_mean None | meters | Uncertainty of the mean terrain height for the segment. This uncertainty incorporates all systematic uncertainties(e.g. timing orbits, geolocation,etc.) as well as uncertainty from errors of identified photons. This parameter is described in section 1, equation 1.4 (Source: Land ATBD section 4.11) | | n_te_photons
CHUNKED | INTEGER(['Unlimited']) | number of ground photons None | 1 | The number of the photons classified as terrain within the segment. (Source: Land ATBD section 4.11) | | photon_rate_te
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Terrain photon rate None | s^-1 | Calculated photon rate of terrain photons within each 100m segment (Source: July 2020 Land/Veg ATBD) | | subset_te_flag
CHUNKED | INTEGER_1(['Unlimited', 5]) INVALID_I1B | subset terrain flag
None | 1 | Quality flag indicating the terrain photons populating the 100 m segment statistics are derived from less than 100 m worth of photons and/or less than 5 20m ATL03 segments. (Source: Land/Veg ATBD 15 Novemebr 2019, Section 2.1.15); (Meanings: [-1 0 1]) (Values: ['no_photon_data_within_geosegment' 'no_terrain_photons_within_geosegment') | | terrain_slope
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | segment terrain
slope
None | 1 | The along-track slope of terrain, within each segment; computed by a linear fit of terrain classified photons. Slope is in units of delta height over delta along track distance. (Source: Land ATBD section 4.11) | | Group: /gtx/signal_photons | | Contains parameters related to individual photons. | | hotons. | | data_rate | (Attribute) | Data are stored at t | the signal-photon classif | fication rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | classed_pc_flag
CHUNKED | INTEGER_1(['Unlimited']) | photon land atbd classification | 1 | Land Vegetation ATBD classification flag for each photon as either noise, ground, canopy, | | | | None | | and top of canopy. 0 = noise, 1 = ground, 2 = canopy, or 3 = top of canopy. (Source: Land ATBD section 4.10); (Meanings: [0 1 2 3]) (Values: ['noise' 'ground' 'canopy' 'top_of_canopy']) | |---------------------------|---------------------------------------|---|------------------------------|---| | classed_pc_indx CHUNKED | INTEGER(['Unlimited']) | indicies of classed
photons
None | 1 | Index (1-based) of the ATL08 classified signal photon from the start of the ATL03 geolocation segment specified on the ATL08 product at the photon rate in the corresponding parameter, ph_segment_id. This index traces back to specific photon within a 20m segment_id on ATL03. The unique identifier for tracing each ATL08 signal photon to the corresponding photon record on ATL03 is the segment_id, orbit, cycle, and classed_pc_indx. Orbit and cycle intervals for the granule are found in the /ancillary_data. The timestamp of each orbit transition is found in the /orbit_info group. (Source: Retained from prior a_alt_science_ph packet) | | d_flag
CHUNKED | INTEGER_1(['Unlimited']) | dragann flag
None | 1 | Flag indicating the labeling of DRAGANN noise filtering for a given photon. (Source: Land ATBD section 2.3.5); (Meanings: [0 1]) (Values: ['noise' 'signal']) | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | delta time
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: ATL03) | | ph_h
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | relative photon
height
height | meters | Height of photons above interpolated land surface (Source: land/veg ATBD, 15May2020, Section 2.3.4) | | ph_segment_id
CHUNKED | INTEGER(['Unlimited']) | segment id of
photon
None | 1 | Segment ID of photons tracing back to specific 20m segment_id on ATL03. The unique identifier for tracing each ATL08 signal photon to the photon on ATL03 is the segment_id, orbit, and classed_pc_indx. The unique identifier for tracing each ATL08 signal photon to the corresponding photon record on ATL03 is the segment_id, orbit, cycle, and classed_pc_indx. Orbit and cycle intervals for the granule are found in the /ancillary_data. The timestamp of each orbit transition is found in the /orbit_info group. (Source: Retained from prior a_alt_science_ph packet) | | Group: /orbit_info | (Attributo) | Contains orbit information. | | the stand values (hesides time) shanges | | data_rate Label (Layout) | (Attribute) Datatype(Dims) Fillvalue | long_name
standard_name | units | the stored values (besides time) changes. description | | crossing_time
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node
Crossing Time
time | seconds since 2018-
01-01 | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS | | | | | | epoch (1980-01-06T00:00:00.0000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | |-----------------------------------|-----------------------------|--|------------------------------
--| | cycle_number
CHUNKED | INTEGER_1(['Unlimited']) | Cycle Number
None | 1 | A count of the number of exact repeats of this reference orbit. (Source: Operations) | | lan
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node
Longitude
None | degrees_east | Longitude at the ascending node crossing. (Source: POD/PPD) | | orbit_number
CHUNKED | UINT_2_LE(['Unlimited']) | Orbit Number
None | 1 | Unique identifying number for each planned ICESat-2 orbit. (Source: Operations) | | rgt
CHUNKED | INTEGER_2(['Unlimited']) | Reference Ground
track
None | 1 | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT3 and GT4. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: POD/PPD) | | sc_orient
CHUNKED | INTEGER_1(['Unlimited']) | Spacecraft
Orientation
None | 1 | This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. (Source: POD/PPD); (Meanings: [0 1 2]) (Values: ['backward' 'forward' 'transition']) | | sc_orient_time CHUNKED | DOUBLE(['Unlimited']) | Time of Last
Spacecraft
Orientation
Change
time | seconds since 2018-
01-01 | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | Group: /quality_assessment | | Contains quality assessment data. This may include QA counters, QA along-track data and QA summary data. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | qa_granule_fail_reason
COMPACT | INTEGER([1]) | Granule Failure
Reason | 1 | Flag indicating granule failure reason. 0=no failure; 1=processing error; 2=Insufficient output | | | | None | | data was generated; 3=TBD Failure;
4=TBD_Failure; 5=other failure.
(Source: Operations); (Meanings: [0 1 2 3 4 5])
(Values: ['no_failure' 'PROCESS_ERROR'
'INSUFFICIENT_OUTPUT' 'failure_3' 'failure_4'
'OTHER_FAILURE']) | |---------------------------------|--------------|------------------------------|---|--| | qa_granule_pass_fail
COMPACT | INTEGER([1]) | Granule Pass
Flag
None | 1 | Flag indicating granule quality. 0=granule passes automatic QA. 1=granule fails automatic QA. (Source: Operations); (Meanings: [0 1]) (Values: ['PASS' 'FAIL']) |