ATL07 Product Data Dictionary Date Generated: 2020-10-21T15:56:59 | description | (Attribute) | The data set (ATL07) contains along-track heights for sea ice and open water leads (at varying length scales) relative to the WGS84 ellipsoid (ITRF2014 reference frame) after adjustment for geoidal and tidal variations, and inverted barometer effects. Heig | |-----------------------------------|-------------|--| | level | (Attribute) | L3A | | short_name | (Attribute) | ATL07 | | title | (Attribute) | SET_BY_META | | Group: / | | The data set (ATL07) contains along-track heights for sea ice and open water leads (at varying length scales) relative to the WGS84 ellipsoid (ITRF2014 reference frame) after adjustment for geoidal and tidal variations, and inverted barometer effects. Heig | | Conventions | (Attribute) | CF-1.6 | | citation | (Attribute) | SET_BY_META | | contributor_name | (Attribute) | Thomas E Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (david.w.hancock@nasa.gov) | | contributor_role | (Attribute) | Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer | | creator_name | (Attribute) | SET_BY_META | | date_created | (Attribute) | SET_BY_PGE | | date_type | (Attribute) | итс | | featureType | (Attribute) | trajectory | | geospatial_lat_max | (Attribute) | 0.0 | | geospatial_lat_min | (Attribute) | 0.0 | | geospatial_lat_units | (Attribute) | degrees_north | | geospatial_lon_max | (Attribute) | 0.0 | | geospatial_lon_min | (Attribute) | 0.0 | | geospatial_lon_units | (Attribute) | degrees_east | | granule_type | (Attribute) | ATL07 | | hdfversion | (Attribute) | SET_BY_PGE | | history | (Attribute) | SET_BY_PGE | | identifier_product_doi | (Attribute) | 10.5067/ATLAS/ATL07.001 | | identifier_product_doi_authority | (Attribute) | http://dx.doi.org | | identifier_product_format_version | (Attribute) | SET_BY_PGE | | identifier_product_type | (Attribute) | ATL07 | | institution | (Attribute) | SET_BY_META | | instrument | (Attribute) | SET_BY_META | | keywords | (Attribute) | SET_BY_META | | keywords_vocabulary | (Attribute) | SET_BY_META | | license | (Attribute) | Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of the ICESat-2 Science Project Office at NASA/GSFC. | | naming_authority | (Attribute) | http://dx.doi.org | | platform | (Attribute) | SET_BY_META | | processing_level | (Attribute) | L3A | | project | (Attribute) | SET_BY_META | | | | |--------------------------------|-----------------------------|---|--|--|--| | publisher_email | (Attribute) | SET_BY_META | | | | | publisher_name | (Attribute) | SET_BY_META | | | | | publisher_url | (Attribute) | SET_BY_META | | | | | references | (Attribute) | SET_BY_META | | | | | source | (Attribute) | SET_BY_META | | | | | spatial_coverage_type | (Attribute) | Horizontal | | | | | standard_name_vocabulary | (Attribute) | CF-1.6 | | | | | summary | (Attribute) | SET_BY_META | | | | | time_coverage_duration | (Attribute) | SET_BY_PGE | | | | | time_coverage_end | (Attribute) | SET_BY_PGE | SET_BY_PGE | | | | time_coverage_start | (Attribute) | SET_BY_PGE | | | | | time_type | (Attribute) | CCSDS UTC-A | | | | | Group: /ancillary_data | | Contains information and instrument characteristic | • | t. This may include product characteristics, stants. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | atlas_sdp_gps_epoch
COMPACT | DOUBLE([1]) | ATLAS Epoch Offset
None | seconds since 1980-
01-
06T00:00:00.0000000Z | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. (Source: Operations) | | | control
CONTIGUOUS | STRING([1]) | Control File
None | 1 | PGE-specific control file used to generate this granule. To re-use, replace breaks (BR) with linefeeds. (Source: Operations) | | | data_end_utc
COMPACT | STRING([1]) | End UTC Time of
Granule (CCSDS-A,
Actual)
None | 1 | UTC (in CCSDS-A format) of the last data point within the granule. (Source: Derived) | | | data_start_utc
COMPACT | STRING([1]) | Start UTC Time of
Granule (CCSDS-A,
Actual)
None | 1 | UTC (in CCSDS-A format) of the first data point within the granule. (Source: Derived) | | | end_cycle
COMPACT | INTEGER([1]) | Ending Cycle
None | 1 | The ending cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | | end_delta_time
COMPACT | DOUBLE([1]) | ATLAS End Time
(Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to | | | | | | | delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | |------------------------------|--------------|--|---------------------------|---| | end_geoseg
COMPACT | INTEGER([1]) | Ending Geolocation
Segment
None | 1 | The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | end_gpssow
COMPACT | DOUBLE([1]) | Ending GPS SOW of
Granule (Actual)
None | seconds | GPS seconds-of-week of the last data point in the granule. (Source: Derived) | | end_gpsweek
COMPACT | INTEGER([1]) | Ending GPSWeek of
Granule (Actual)
None | weeks from 1980-01-
06 | GPS week number of the last data point in the granule. (Source: Derived) | | end_orbit
COMPACT | INTEGER([1]) | Ending Orbit Number
None | 1 | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | end_region
COMPACT | INTEGER([1]) | Ending Region
None | 1 | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | end_rgt
COMPACT | INTEGER([1]) | Ending Reference
Groundtrack
None | 1 | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | granule_end_utc
COMPACT | STRING([1]) | End UTC Time of
Granule (CCSDS-A,
Requested)
None | 1 | Requested end time (in UTC CCSDS-A) of this granule. (Source: Derived) | | granule_start_utc
COMPACT | STRING([1]) | Start UTC Time of Granule (CCSDS-A, | 1 | Requested start time (in UTC CCSDS-A) of this granule. | | | | Requested)
None | | (Source: Derived) | |-----------------------------|--------------|--|------------------------------
---| | qa_at_interval
COMPACT | DOUBLE([1]) | QA Along-Track
Interval
None | 1 | Statistics time interval for along-track QA data. (Source: control) | | release
COMPACT | STRING([1]) | Release Number
None | 1 | Release number of the granule. The release number is incremented when the software or ancillary data used to create the granule has been changed. (Source: Operations) | | start_cycle
COMPACT | INTEGER([1]) | Starting Cycle
None | 1 | The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | start_delta_time
COMPACT | DOUBLE([1]) | ATLAS Start Time
(Actual)
time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | start_geoseg
COMPACT | INTEGER([1]) | Starting Geolocation
Segment
None | 1 | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | start_gpssow
COMPACT | DOUBLE([1]) | Start GPS SOW of
Granule (Actual)
None | seconds | GPS seconds-of-week of the first data point in the granule. (Source: Derived) | | start_gpsweek
COMPACT | INTEGER([1]) | Start GPSWeek of
Granule (Actual)
None | weeks from 1980-01-
06 | GPS week number of the first data point in the granule. (Source: Derived) | | start_orbit
COMPACT | INTEGER([1]) | Starting Orbit Number
None | 1 | The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | start_region | INTEGER([1]) | Starting Region | 1 | The starting product-specific region | | COMPACT | | None | | number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | |------------------------------|-----------------------------|--|-------------------------|---| | start_rgt
COMPACT | INTEGER([1]) | Starting Reference
Groundtrack
None | 1 | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | version
COMPACT | STRING([1]) | Version
None | 1 | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current release. (Source: Operations) | | Group: /ancillary_data/coars | se_surface_finding | Contains ancillary param | neters related to the c | coarse surface finding algorithm. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | bin_c
COMPACT | FLOAT([1]) | bin size coarse
histogram
None | meters | bin size of coarse histogram
(Source: Sea Ice ATBD) | | coarse_lb_wins
COMPACT | FLOAT([1]) | Coarse_LowerrBounds
None | meters | Lower bound for signal photons when performing coarse tracking (Source: Sea Ice ATBD) | | coarse_ub_wins
COMPACT | FLOAT([1]) | Coarse_UpperBounds
None | meters | Upper bound for signal photons when performing coarse tracking (Source: Sea Ice ATBD) | | I
COMPACT | FLOAT([1]) | segment length coarse
None | meters | along track segment length coarse (Source: Sea Ice ATBD) | | n_ph_min
COMPACT | INTEGER([1]) | Minimum Number of
Photons
None | 1 | Minimum number of photons required for coarse track segment (Source: Sea Ice ATBD) | | si_conc_min
COMPACT | FLOAT([1]) | Min SI Concentration
Thresh
None | 1 | Minimum sea ice concentration percentage value for which to process data. (Source: Sea Ice ATBD) | | th_d_bot
COMPACT | FLOAT([1]) | Bottom threshold
distance from mode
coarse
None | meters | Bottom distance from mode coarse (Source: Sea Ice ATBD) | | th_d_top
COMPACT | FLOAT([1]) | Top threshold distance from mode coarse None | meters | Top distance from mode coarse (Source: Sea Ice ATBD) | | th_fm
COMPACT | FLOAT([1]) | threshold fraction of
peak coarse
None | 1 | fraction of histogram peak coarse
(Source: Sea Ice ATBD) | | th_pc | FLOAT([1]) | threshold percentage | 1 | percentage cloud cover coarse | | COMPACT | | cloud cover coarse
None | | (Source: Sea Ice ATBD) | |--------------------------------|-----------------------------|---|-------------------------|---| | th_tc
COMPACT | FLOAT([1]) | Threshold height deviations None | 1 | height deviations from surface or adjacent
strong beam
(Source: Sea Ice ATBD) | | Group: /ancillary_data/fine | _surface_finding | Contains ancillary param | neters related to the f | ine surface finding algorithm. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | bin_f
COMPACT | FLOAT([1]) | bin size of fine
histogram
None | meters | bin size of fine histogram along track
segment length
(Source: Sea Ice ATBD) | | delta_h_tab
COMPACT | FLOAT([1]) | h table spacing
None | meters | the waveform table spacing for the height (h) dimension (Source: Sea Ice ATBD) | | delta_w_tab
COMPACT | FLOAT([1]) | w table spacing
None | meters | the waveform table spacing for the width (w) dimension (Source: Sea Ice ATBD) | | h_diff_limit
COMPACT | FLOAT([1]) | Max Ht Difference
None | meters | Maximum height difference between the two weighted Gaussian mean from the initial tracked height (units = meters) (Source: Sea Ice ATBD) | | lb_h_tab
COMPACT | FLOAT([1]) | lower bound of h table
None | meters | lower bound of h table (Source: Sea Ice ATBD) | | lb_oc_switch_strong
COMPACT | FLOAT([1]) | Lower bound of overlapping control for strong beam None | photons/shot | Lower bound of photon rate overlapping control for strong beam when overlap is turned off (Source: ATBD section 4.2.2.4) | | lb_oc_switch_weak
COMPACT | FLOAT([1]) | Lower bound of overlapping control for weak beam None | photons/shot | Lower bound of photon rate overlapping control for weak beam when overlap is turned off (Source: ATBD section 4.2.2.4) | | lb_w_tab
COMPACT | FLOAT([1]) | lower bound of w table
None | meters | lower bound of w table (Source: Sea Ice ATBD) | | lb_win_s
COMPACT | FLOAT([1]) | lower bound window
signal
None | meters | window (Ws) containing signal photons (Source: Sea Ice ATBD) | | n_photon_min
COMPACT | FLOAT([1]) | Minimum number of photons None | 1 | Minimum fraction of photons needed for tracking (Source: Sea Ice ATBD) | | n_photon_trim
COMPACT | INTEGER([1]) | Min Photons
None | 1 | Minimum number of photons for trimming leading/trailing bins (Source: Sea Ice ATBD) | | n_s
COMPACT | INTEGER([1]) | number photons in W_s
None | 1 | photons in W_s
(Source: Sea Ice ATBD) | | n_spec_scale
COMPACT | FLOAT([1]) | Specular Scaling Value
None | 1 | Scalling parameter used for scaling value of N_SPECULAR for the weak beam. Specular returns for weak beam are defined as a shot having more photons than
(N_SPECULAR/N_SPEC_SCALE) (Source: Sea Ice ATBD) | | n_specular
COMPACT | FLOAT([1]) | number photons
Specular returns
None | 1 | Specular returns limits
(Source: Sea Ice ATBD) | | n_w
COMPACT | INTEGER([1]) | number of standard
deviations
None | 1 | number of standard deviations
(Source: Sea Ice ATBD) | | overlap_switch | INTEGER([1]) | Overlap Segments | 1 | Use of overlapping height segments (1 = | | COMPACT | | None | | yes, 0 = no)
(Source: Sea Ice ATBD); (Meanings: [0
1]) (Values: ['no' 'yes']) | |--------------------------------|-----------------------------|--|---------------------------|---| | tep_used_gt1_strong
COMPACT | INTEGER([1]) | TEP Table
PCE1_Strong
None | 1 | TEP used in table generation for strong beam of ground track 1 (1 or 3) (Source: Sea Ice ATBD) | | tep_used_gt1_weak
COMPACT | INTEGER([1]) | TEP Table
PCE1_Weak
None | 1 | TEP used in table generation for weak beam of ground track 1 (1 or 3) (Source: Sea Ice ATBD) | | tep_used_gt2_strong
COMPACT | INTEGER([1]) | TEP Table
PCE2_Strong
None | 1 | TEP used in table generation for strong beam of ground track 2 (1 or 3) (Source: Sea Ice ATBD) | | tep_used_gt2_weak
COMPACT | INTEGER([1]) | TEP Table
PCE2_Weak
None | 1 | TEP used in table generation for weak beam of ground track 2 (1 or 3) (Source: Sea Ice ATBD) | | tep_used_gt3_strong
COMPACT | INTEGER([1]) | TEP Table
PCE3_Strong
None | 1 | TEP used in table generation for strong beam of ground track 3 (1 or 3) (Source: Sea Ice ATBD) | | tep_used_gt3_weak
COMPACT | INTEGER([1]) | TEP Table
PCE3_Weak
None | 1 | TEP used in table generation for weak beam of ground track 3 (1 or 3) (Source: Sea Ice ATBD) | | ub_h_tab
COMPACT | FLOAT([1]) | upper bound of h table
None | meters | the waveform upper bound for the height (h) dimension (Source: Sea Ice ATBD) | | ub_length_strong
COMPACT | INTEGER([1]) | upper bound segment
length strong
None | 1 | upper bound of segment length strong
beam
(Source: Sea Ice ATBD) | | ub_length_weak
COMPACT | INTEGER([1]) | upper bound segment
length weak
None | 1 | upper bound of segment length weak
beam
(Source: Sea Ice ATBD) | | ub_oc_switch_strong
COMPACT | FLOAT([1]) | Upper bound of
overlapping control for
strong beam
None | photons/shot | Upper bound of photon rate overlapping control for strong beam when overlap is turned off (Source: ATBD section 4.2.2.4) | | ub_oc_switch_weak
COMPACT | FLOAT([1]) | Upper bound of overlapping control for weak beam None | photons/shot | Upper bound of photon rate overlapping control for weak beam when overlap is turned off (Source: ATBD section 4.2.2.4) | | ub_w_tab
COMPACT | FLOAT([1]) | upper bound of w table
None | meters | the waveform upper bound for the width (w) dimension (Source: Sea Ice ATBD) | | ub_win_s
COMPACT | FLOAT([1]) | upper bound window
signal
None | meters | window (Ws) containing signal photons
(Source: Sea Ice ATBD) | | Group: /ancillary_data/sea_ice | | Contains ancillary param | eters related to sea ice. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | geoseg_max
COMPACT | INTEGER([1]) | Maximum Segment Id
None | 1 | Indicates the maximum segment_id to process (if specified in control). The actual maximum processed may be greater than specified. (Source: Operations) | | geoseg_min
COMPACT | INTEGER([1]) | Minimum Segment ID
None | 1 | Indicates the minimum segment_id to process (if specified in control) (Source: Operations) | | min_segs_count
COMPACT | INTEGER([1]) | Minimum Segments
Count
None | 1 | ATL07 granules with less than this number of strong beam sea ice segments will be marked as failed. | | | | | | (Source: Sea Ice ATBD) | |----------------------------|-----------------------------|---|---------------------------|---| | proc_beam_pair1
COMPACT | INTEGER([1]) | Processing Flag for
Beam Pair 1
None | 1 | Indicates if beam pair 1 was processed. (Source: Operations); (Meanings: [0 1]) (Values: ['not_processed' 'processed']) | | proc_beam_pair2
COMPACT | INTEGER([1]) | Processing Flag for
Beam Pair 2
None | 1 | Indicates if beam pair 2 was processed. (Source: Operations); (Meanings: [0 1]) (Values: ['not_processed' 'processed']) | | proc_beam_pair3
COMPACT | INTEGER([1]) | Processing Flag for
Beam Pair 3
None | 1 | Indicates if beam pair 3 was processed. (Source: Operations); (Meanings: [0 1]) (Values: ['not_processed' 'processed']) | | proc_interval
COMPACT | INTEGER([1]) | Processing interval
None | 1 | The number of 20 meter segments of data processed in one chunk (Source: Operations) | | region
COMPACT | INTEGER([1]) | Region Index
None | 1 | The index to the geographic region covered within this granule (0=no region boundaries enforced). (Source: Operations) | | Group: /ancillary_data/sur | face_classification | Contains ancillary param | neters related to the sur | face classification algorithm. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | b1
COMPACT | FLOAT([1]) | max backgr (gray ice)
None | 1 | max backgr (gray ice)
(Source: Sea Ice ATBD) | | beam_gain
COMPACT | FLOAT([6]) | relative beam gain for
beams 1 through 6
None | 1 | Relative gains for beams 1 through 6 where N is the beam number (Note: Beams 1, 3, and 5 are the strong beams) (Source: Sea Ice ATBD) | | height_pct
COMPACT | FLOAT([1]) | Percentile Hts
None | percentile | Percentile of sorted heights (Source: Sea Ice ATBD) | | p1
COMPACT | FLOAT([1]) | pr (clouds)
None | 1 | photon rate (clouds)
(Source: Sea Ice ATBD) | | p2
COMPACT | FLOAT([1]) | pr (snow)
None | 1 | photon rate (snow)
(Source: Sea Ice ATBD) | | p3
COMPACT | FLOAT([1]) | pr (shadow)
None | 1 | photon rate (shadow)
(Source: Sea Ice ATBD) | | p4
COMPACT | FLOAT([1]) | pr (specular)
None | 1 | photon rate (specular)
(Source: Sea Ice ATBD) | | ssh_proc_length
COMPACT | FLOAT([1]) | sea surface height process length None | m | length in meters of processing interval when performing surface classification (Source: Sea Ice ATBD) | | theta_cntl
COMPACT | FLOAT([1]) | Solar elevation for use of background rate None | 1 | Solar elevation for controlling use of background rate (Source: Sea Ice ATBD) | | theta_nlb
COMPACT | FLOAT([1]) | Solar elevation
normalization lower
bound
None | degrees | Solar elevation normalization lower bound for use of normalized background rate (Source: ATBD section 4.3.1.4) | | theta_ref
COMPACT | FLOAT([1]) | Solar elevation normalization angle None | degrees | Solar elevation normalization angle for use of normalized background rate (Source: ATBD section 4.3.1.4) | | w1
COMPACT | FLOAT([1]) | max width (dark smooth lead)
None | meters | max width (dark smooth lead)
(Source: Sea Ice ATBD) | | w2
COMPACT | FLOAT([1]) | max width (dark rough
lead)
None | meters | max width (dark rough lead)
(Source: Sea Ice ATBD) | | w2 | | None max width (dark rough lead) None | | max width (dark rough lead) | | | | Echo Pulse (TEP) data fo | or the two PCEs that cor | ntain TEP events. | |---------------------------------|-----------------------------|--|------------------------------|--| | Group: /atlas_impulse_response/ | pcex_spotx | Contains parameters to c
Echo Pulse data for a sir | | pulse shape, derived from the Transmitter | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | tep_bckgrd
CHUNKED | INTEGER(['Unlimited']) | TEP Background
None | counts | The average number of counts in the TEP histogram bins, after excluding bins that likely contain the transmit pulse. (Source: ATL03) | | tep_duration
CHUNKED | DOUBLE(['Unlimited']) | TEP Duration
None | seconds | The duration (or width) of data in the TEP histogram. Will generally be greater than 10 seconds. (Source: ATL03) | | tep_hist
CHUNKED | DOUBLE(['Unlimited']) | TEP Histogram
None | counts | The normalized number of counts in each bin of the TEP histogram. (Source: ATL03) | | tep_hist_sum
CHUNKED | INTEGER_8(['Unlimited']) | TEP Histogram Sum
None | counts | The total number of counts in the TEP histogram, after removing the background. (Source: ATL03) | | tep_hist_time
CHUNKED | DOUBLE(['Unlimited']) | TEP Histogram Time
None | seconds | The times associated with the TEP histogram bin centers, measured from the laser transmit time. (Source: ATL03) | | tep_tod
CHUNKED | DOUBLE(['Unlimited']) | TEP Time Of Day time | seconds since 2018-
01-01 | The time of day at of the start of the data within the TEP histogram, in seconds since the ATLAS SDP GPS Epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z
UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: ATL03) | | Group: /gtx | | This ground contains par | rameters and subgroups | related a specific groundtrack. | | data_rate | (Attribute) | Each subgroup identifies | its particular data rate. | | | Group: /gtx/sea_ice_segments | | Top group for sea ice segments as computed by the ATBD aglorithm | | | | data_rate | (Attribute) | Data within this group are | e stored at the variable s | segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: telemetry) | | geoseg_beg
CHUNKED | INTEGER(['Unlimited']) | Beginning GEOSEG
None | 1 | Geolocation segment (geoseg) ID associated with the first photon used in this sea ice segment (Source: Sea Ice ATBD) | |-------------------------------------|-------------------------------------|---|--------------------------|---| | geoseg_end
CHUNKED | INTEGER(['Unlimited']) | Ending GEOSEG
None | 1 | Geolocation segment (geoseg) ID associated with the last photon used in this sea ice segment (Source: Sea Ice ATBD) | | height_segment_id
CHUNKED | INTEGER(['Unlimited']) | Identifier of each height segment None | 1 | Identifier of each height segment (Source: ATBD, section 5.2) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Latitude
latitude | degrees_north | Latitude, WGS84, North=+, Lat of segment center (Source: ATBD, section 4.4) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Longitude
longitude | degrees_east | Longitude, WGS84, East=+,Lon of segment center (Source: ATBD, section 4.4) | | seg_dist_x
CHUNKED | DOUBLE(['Unlimited']) | Along track distance
None | meters | Along-track distance from the equator crossing to the segment center. (Source: Sea Ice ATBD) | | Group: /gtx/sea_ice_segments/ | geolocation | Contains parameters rela | ated to geolocation. | | | data_rate | (Attribute) | Data within this group are | e stored at the sea_ice_ | height segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | beam_azimuth
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | beam azimuth
None | degrees_east | The direction, eastwards from north, of the laser beam vector as seen by an observer at the laser ground spot viewing toward the spacecraft (i.e., the vector from the ground to the spacecraft). When the spacecraft is precisely at the geodetic zenith, the value will be 99999 degrees. (Source: Sea Ice ATBD) | | beam_coelev
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | beam co-elevation
None | degrees | Co-elevation (CE) is direction from vertical of the laser beam as seen by an observer located at the laser ground spot. (Source: Sea Ice ATBD) | | ref_atm_delay
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Reference Photon Atm.
Path Delay
None | meters | Atmospheric path delay, in range, for the reference photon. (Source: Sea Ice ATBD) | | ref_atm_delay_derivative
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Derivative of Atm. Path
Delay
None | meters/meter | Atmospheric path delay derivative with respect to ellipsoid for the reference photon, in meters per meter. (Source: Sea Ice ATBD) | | rgt
CHUNKED | INTEGER_2(['Unlimited']) | Reference Ground
track
None | 1 | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT3 and GT4. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: Sea Ice ATBD) | | sigma_h
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | height uncertainty
None | 1 | Estimated uncertainty for the reference photon bounce point ellipsoid height: 1-sigma (m). Error estimates for all other photons in the group are computed with the scale defined below. (Source: Sea Ice ATBD) | | sigma_lat
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | latitude uncertainty
None | 1 | Estimated uncertainty for the reference photon bounce point geodetic latitude: 1-sigma (degrees). Applies to all other photons in the group (Source: Sea Ice ATBD) | |---|-------------------------------------|--|---------------------------|---| | sigma_lon
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | longitude uncertainty
None | degrees | Estimated uncertainty for the reference photon bounce point east longitude: 1-sigma (degrees). Applies to all other photons in the group. (Source: Sea Ice ATBD) | | solar_azimuth
CHUNKED | FLOAT(['Unlimited']) | solar azimuth
None | degrees_east | The direction, eastwards from north, of the sun vector as seen by an observer at the laser ground spot. (Source: Sea Ice ATBD) | | solar_elevation
CHUNKED | FLOAT(['Unlimited']) | solar elevation
None | degrees | Solar Angle above or below the plane tangent to the ellipsoid surface at the laser spot. Positive values mean the sun is above the horizon, while negative values mean it is below the horizon. The effect of atmospheric refraction is not included. This is a low precision value, with approximately TBD degree accuracy. (Source: Sea Ice ATBD) | | Group: /gtx/sea_ice_segments/ge | ophysical | Contains geophysical pa
geophysical effects, such | | s used to correct photon heights for | | data_rate | (Attribute) | Data within this group are | e stored at the sea_ice_l | height segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | height_segment_dac
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Dynamic Atmosphere
Correction
None | meters | Dynamic Atmospheric Correction (DAC) includes inverted barometer (IB) effect. (Source: Sea Ice ATBD) | | height_segment_earth
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Earth Tide
None | meters | Solid Earth Tide. The solid earth tide height is in the tide-free system. (Source: Sea Ice ATBD) | | height_segment_earth_free2mean
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Earth Tide Free-to-
Mean conversion
None | meters | Additive value to convert solid earth tide from the tide-free system to the mean-tide system. (Add to height_segment_eath to get the solid earth tides in the mean-tide system.) (Source: Sea Ice ATBD) | | height_segment_geoid
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | EGM2008 Geoid
None | meters | Geoid height above WGS-84 reference ellipsoid (range -107 to 86m), based on the EGM2008 model. The geoid height is in the tide-free system. (Source: Sea Ice ATBD) | | height_segment_geoid_free2mean
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | EGM2008 Geoid Free-
to-Mean conversion
None | meters | Additive value to convert geoid heights from the tide-free system to the mean-tide system. (Add to height_segment_geoid to get the geoid heights in the mean-tide system.) (Source: Sea Ice ATBD) | | height_segment_ib
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Inverted barometer effect None | meters | Inverted barometer effect calculated from surface pressure (Source: ATBD, section 4.2) | | height_segment_load
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Load Tide
None | meters | Load Tide - Local displacement due to
Ocean Loading (-6 to 0 cm).
(Source: Sea Ice ATBD) | | height_segment_lpe
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Equilibrium Tide
None | meters | Long period equilibrium tide self-
consistent with ocean tide model
(+-0.04m). (dependent only on time and | | | | | | latitude)
(Source: Sea Ice ATBD) | |---|--|--|---------------------------|---| | height_segment_mss
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | DTU13 Mean Sea
Surface
None | meters | Mean sea surface height above WGS-84 reference ellipsoid (range: -105 to 87m), based on the DTU13 model. The MSS height (from ANC15) is adjusted to be relative to the tide
free system. (Source: Sea Ice ATBD) | | height_segment_ocean
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Ocean Tide
None | meters | Ocean Tides including diurnal and semi-
diurnal (harmonic analysis), and longer
period tides (dynamic and self-consistent
equilibrium)
(Source: Sea Ice ATBD) | | height_segment_pole
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Pole Tide
None | meters | Pole Tide -Rotational deformation due to polar motion (-1.5 to 1.5 cm). (Source: Sea Ice ATBD) | | height_segment_ps
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | sea level pressure pressure | Pa | Sea Level Pressure (Pa)
(Source: ATL09) | | height_segment_t2m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | temperature_at_2m
temperature | К | Temperature at 2m above the displacement height (K) (Source: ATL09) | | height_segment_u2m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Eastward_wind_at_2m eastward_wind | m s-1 | Eastward wind at 2m above the displacement height (m/s-1) (Source: ATL09) | | height_segment_v2m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Northward_wind_at_2m
northward_wind | m s-1 | Northward wind at 2m above the displacement height (m/s-1) (Source: ATL09) | | Group: /gtx/sea_ice_segments/he | eights | | | urface height for one Ground Track. As ses illuminate six ground tracks on the | | data_rate | (Attribute) | Data within this group are | e stored at the sea_ice_l | height segment rate. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | | | | | across_track_distance
CHUNKED | FLOAT(['Unlimited']) | Across Track Distance
None | meters | Across track distance of photons averaged over the sea ice height segment. (Source: ATBD, section 4.2.4) | | | FLOAT(['Unlimited']) FLOAT(['Unlimited']) INVALID_R4B | | meters | averaged over the sea ice height segment. | | CHUNKED height_segment_asr_calc | FLOAT(['Unlimited']) | None Calculated Apparent Surface Reflectivity | | averaged over the sea ice height segment. (Source: ATBD, section 4.2.4) Computed apparent surface reflectance for the sea ice segment. | | height_segment_asr_calc CHUNKED height_segment_confidence | FLOAT(['Unlimited']) INVALID_R4B FLOAT(['Unlimited']) | None Calculated Apparent Surface Reflectivity None Surface height confidence | 1 | averaged over the sea ice height segment. (Source: ATBD, section 4.2.4) Computed apparent surface reflectance for the sea ice segment. (Source: Sea Ice ATBD) Confidence level in the surface height estimate based on the number of photons; the background noise rate; and the error analysis | | | | None | | sea ice height is relative to the tide-free MSS. (Source: ATBD, section 4.2.2.4) | | |--|-------------------------------------|---|--|--|--| | height_segment_htcorr_skew
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Height Correction for
Skew
None | meters | height corection for skew
(Source: ATBD, section 4.2.6) | | | height_segment_length_seg
CHUNKED | FLOAT(['Unlimited']) | length of segment
None | meters | along-track length of segment containing n_photons_actual (Source: ATBD, section 4.2.2.4) | | | height_segment_n_pulse_seg
CHUNKED | INTEGER(['Unlimited']) | number of laser pulses
None | 1 | number of laser pulses
(Source: ATBD, section 4.2.2.4) | | | height_segment_quality
CHUNKED | INTEGER_1(['Unlimited']) | Height Segment Quality
Flag
None | 1 | Height segment quality flag, 1 is good quality, 0 is bad depending on fit, wguassian, or layer flag (Source: ATBD, section 4.2.4); (Meanings: [0 1]) (Values: ['bad_quality' 'good_quality']) | | | height_segment_rms
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | height rms
None | meters | RMS difference between sea ice modeled and observed photon height distribution (Source: ATBD, section 4.2.2.4) | | | height_segment_ssh_flag
CHUNKED | INTEGER_1(['Unlimited']) | Sea Surface Flag
None | 1 | Identifies the height segments that are candidates for use as sea surface reference in freeboard calculations in ATL10. 0 = sea ice; 1 = sea surface (Source: ATBD, section 4.3); (Meanings: [0 1]) (Values: ['sea_ice' 'sea_surface']) | | | height_segment_surface_error_est CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | h surface error est
None | meters | Error estimate of the surface height (Source: ATBD, section 4.2.2.4) | | | height_segment_type
CHUNKED | INTEGER_1(['Unlimited']) | Segment surface type
None | 1 | Value that indicates segment surface type as sea ice or different types of sea surface. 0=cloud covered: rsurf (Source: ATBD, section 4.3); (Meanings: [0 1 2 3 4 5 6 7 8 9]) (Values: ['cloud_covered' 'other' 'specular_lead_low_w_bkg' 'specular_lead_low' 'specular_lead_low' 'specular_lead_high_w_bkg' 'specular_lead_high' 'dark_lead_smooth_w_bkg' 'dark_lead_smooth' 'dark_lead_rough_w_bkg' 'dark_lead_rough_w_bkg' 'dark_lead_rough]) | | | height_segment_w_gaussian
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | width of best fit
gaussian
None | meters | width of best fit gaussian
(Source: ATBD, section 4.2.4) | | | Group: /gtx/sea_ice_segments/sta | Group: /gtx/sea_ice_segments/stats | | Contains parameters related to quality and corrections on the sea ice height paramters | | | | data_rate | (Attribute) | Data within this group are stored at the sea_ice_height segment rate. | | height segment rate. | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | asr_25
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Apparent Surface
Reflectance 25hz
None | 1 | Apparent surface reflectance at 25 hz, averaged to the sea ice segment. (Source: Sea Ice ATBD) | | | backgr_calc
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | background count rate
calculated
None | hz | Calculated background count rate based on sun angle, surface slope, unit reflectance (Source: ATBD, section 4.2.3) | | | backgr_r_200
CHUNKED | FLOAT(['Unlimited']) | Background rate 200 hz
None | hz | Background count rate, averaged over the segment based on ATLAS 50 pulse counts | | | | | | I | (Source: ATL09) | |----------------------------------|---|--|--------|--| | backgr_r_25
CHUNKED | FLOAT(['Unlimited']) | Background rate 25hz
None | hz | Background count rate, averaged over the segment based on 25 hz atmosphere (Source: ATL09) | | background_int_height
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Height of column used in background calculation None | meters | The height of the altimetric range window after subtracting the height span of the signal photon events in the 50-shot span (Source: ATBD, section 7.3) | | background_r_norm
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Normalized background
(50-shot)
None | hz | Background rate normalized to a fixed solar elevation angle (Source: ATBD section 4.3.1.3) | | bsnow_con
CHUNKED | INTEGER_1(['Unlimited'])
INVALID_I1B | Blowing snow
confidence
None | 1 | Blowing snow confidence
(Source: ATL09) | | bsnow_h
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Blowing snow top h
None | meters | Blowing snow layer top height (Source: ATL09) | | cloud_flag_asr
CHUNKED | INTEGER_2(['Unlimited']) | Cloud Flag ASR
None | 1 | Cloud flag (probability) from apparent surface reflectance. 0=clear with high confidence; 1=clear with medium confidence; 2=clear with low confidence; 3=cloudy with low confidence; 4=cloudy with medium confidence; 5=cloudy with high confidence; 6=unknown (Source: Atmosphere ATBD); (Meanings: [0 1 2 3 4 5 6]) (Values: ['clear_with_high_confidence' 'clear_with_medium_confidence' 'clear_with_low_confidence' 'cloudy_with_low_confidence' 'cloudy_with_medium_confidence' 'cloudy_with_high_confidence' 'unknown']) | | cloud_flag_atm
CHUNKED | INTEGER_1(['Unlimited']) | Cloud Flag Atm
None | 1 | Number of layers found from the backscatter profile using the DDA layer finder. (Source: Atmosphere ATBD) | | ds_si_hist_bins
CHUNKED | INTEGER(['Unlimited']) | Sea Ice Histogram Bins
Dimension Scale
None | 1 | Dimension scale indexing the sea ice histogram bins. The bin heights must be computed from information contained within the same group as the histogram. (Source: Sealce ATBD) | | exmax_mean_1
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Exmax Mean 1
None | meters | exmax height mean 1
(Source: sea ice ATBD Appendix E) | | exmax_mean_2
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Exmax Mean 2
None | meters | exmax height mean 2
(Source: sea ice ATBD Appendix E) | | exmax_mix
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Exmax Mix
None | meters | exmax height mix ratio (Source: sea ice ATBD Appendix E) | |
exmax_stdev_1
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Exmax Stdev 1
None | meters | exmax height standard deviation 1 (Source: sea ice ATBD Appendix E) | | exmax_stdev_2
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Exmax Stdev 2
None | meters | exmax height standard deviation 2
(Source: sea ice ATBD Appendix E) | | fpb_avg_dt
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | fpb correction average
deadtime
None | ns | FPB correction average dead time (Source: Sea Ice ATBD) | | fpb_corr
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | first photon bias
correction
None | meters | Estimated first-photon bias(fpb) correction to mean segment height (Source: Sea Ice ATBD) | | fpb_corr_width
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | fpb correction width
None | ns | FPB correction width (Source: Sea Ice ATBD) | | fpb_strength | FLOAT(['Unlimited']) | fpb correction strength | photons/shot | FPB correction strength | |---------------------------------|---------------------------------------|---|--------------|---| | CHUNKED height_coarse_mn | INVALID_R4B FLOAT(['Unlimited']) | None Coarse Track Height | meters | (Source: Sea Ice ATBD) height mean of coarse tracker | | CHUNKED | | Mean
None | | (Source: sea ice ATBD , sect 4.2.1.2) | | height_coarse_stdev
CHUNKED | FLOAT(['Unlimited']) | Coarse Height Sdev
None | meters | height standard deviation of coarse tracker (Source: sea ice ATBD , sect 4.2.1.2) | | height_filter_05
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Height Filter 5th
Percentile
None | meters | height fifth percentile used in the ssh
height filter
(Source: sea ice ATBD, sect 4.2.1.2) | | height_filter_min
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Height Filter Min
None | meters | height minimum used in the ssh height filter (Source: sea ice ATBD, sect 4.2.1.2) | | hist_mean_h
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | photon heights mean
None | meters | Mean of the n_fit_photons heights (Source: ATBD, section 4.2.2.4) | | hist_median_h
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | trimmed photon heights
median
None | meters | Median of the n_fit_photons heights (Source: ATBD, section 4.2.3.1) | | hist_photon_bin_size
CHUNKED | FLOAT(['Unlimited']) | height histogram bin
size
None | meters | bin size of photon height histogram (Source: ATBD, section 4.2.2.4) | | hist_photon_bottom
CHUNKED | FLOAT(['Unlimited']) | height histogram
minimum
None | meters | lower bound of height histogram (Source: ATBD, section 4.2.2.4) | | hist_photon_heights
CHUNKED | INTEGER_2(['Unlimited', 'Unlimited']) | photon heights
histogram
None | 1 | Histogram of the n_fit_photons heights (Source: ATBD, section 4.2.2.4) | | hist_photon_top
CHUNKED | FLOAT(['Unlimited']) | height histogram
maximum
None | meters | upper bound of height histogram (Source: ATBD, section 4.2.2.4) | | hist_w
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Segment histogram
width estimate
None | meters | Segment histogram width estimate (Source: ATBD, section 4.2.2.4) | | ice_conc
CHUNKED | FLOAT(['Unlimited']) | sea ice concentration
None | 1 | sea ice concentration (Source: ATBD, section 3.1.4) | | layer_flag
CHUNKED | INTEGER_2(['Unlimited']) | Consolidated cloud flag
None | 1 | This flag is a combination of multiple flags (cloud_flag_atm, cloud_flag_asr, and bsnow_con) and takes daytime/nighttime into consideration. A value of 1 means clouds or blowing snow are likely present. A value of 0 indicates the likely absence of clouds or blowing snow. (Source: Atmosphere ATBD); (Meanings: [0 1]) (Values: ['likely_clear' 'likely_cloudy']) | | msw_flag
CHUNKED | INTEGER_1(['Unlimited']) | Multiple Scattering
Warning Flag
None | 1 | Multiple Scattering warning flag. The multiple scattering warning flag (ATL09 parameter msw_flag) has values from -1 to 5 where zero means no multiple scattering and 5 the greatest. If no layers were detected, then msw_flag = 0. If blowing snow is detected and its estimated optical depth is greater than or equal to 0.5, then msw_flag = 5. If the blowing snow optical depth is less than 0.5, then msw_flag = 4. If no blowing snow is detected but there are cloud or aerosol layers detected, the msw_flag assumes values of 1 to 3 based on the | | | | | | height of the bottom of the lowest layer: < 1 km, msw_flag = 3; 1-3 km, msw_flag = 2; > 3km, msw_flag = 1. A value of -1 indicates that the signal to noise of the data was too low to reliably ascertain the presence of cloud or blowing snow. We expect values of -1 to occur only during daylight. (Source: Atmosphere ATBD); (Meanings: [-1 0 1 2 3 4 5]) (Values: ['cannot_determine' 'no_layers' 'layer_gt_3km' 'layer_between_1_and_3_km' 'layer_between_1_and_3_km' 'layer_lt_1km' 'blow_snow_od_lt_0.5' 'blow_snow_od_gt_0.5']) | | | |-------------------------------|-------------------------------------|--|------------------------------|---|--|--| | n_photons_actual
CHUNKED | INTEGER_2(['Unlimited']) -1 | Number of photons
found for the segment
None | 1 | Number of photons gathered
(Source: ATBD, section 4.2.2.4) | | | | n_photons_define
CHUNKED | INTEGER_2(['Unlimited']) -1 | Number of photons
defining the segment
None | 1 | Number of photons to gather.
(Source: ATBD, section 4.2.2.4) | | | | n_photons_used
CHUNKED | INTEGER_2(['Unlimited']) -1 | Number of photons used for fit None | 1 | Number of photons in the trimmed histogram. (Source: ATBD, section 4.2.2.4) | | | | photon_rate
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | photon rate
None | photons/shot | photon count rate, averaged over
segment
(Source: ATBD, section 4.2.2.4) | | | | trim_height_bottom
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | minimum height of trimmed photons None | meters | minimum height of trimmed photons used in the surface calculation procedure (Source: ATBD, section 4.2.2.4) | | | | trim_height_top
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | maximum height of trimmed photons None | meters | maximum height of trimmed photons used in the surface calculation procedure (Source: ATBD, section 4.2.2.4) | | | | Group: /orbit_info | Group: /orbit_info | | Contains orbit information. | | | | | data_rate | (Attribute) | Varies. Data are only provided when one of the stored values (besides time) changes. | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | | crossing_time
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node
Crossing Time
time | seconds since 2018-
01-01 | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | | | cycle_number
CHUNKED | INTEGER_1(['Unlimited']) | Cycle Number
None | 1 | A count of the number of exact repeats of this reference orbit. (Source: Operations) | | | | lan
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node
Longitude
None | degrees_east | Longitude at the ascending node crossing. (Source: POD/PPD) | | | | orbit_number
CHUNKED | UINT_2_LE(['Unlimited']) | Orbit Number
None | 1 | Unique identifying number for each planned ICESat-2 orbit. (Source: Operations) | | | | rgt
CHUNKED | INTEGER_2(['Unlimited']) | Reference Ground
track
None | 1 | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT3 and GT4. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: POD/PPD) | |-----------------------------------|-----------------------------|--|------------------------------
--| | sc_orient
CHUNKED | INTEGER_1(['Unlimited']) | Spacecraft Orientation
None | 1 | This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. (Source: POD/PPD); (Meanings: [0 1 2]) (Values: ['backward' 'forward' 'transition']) | | sc_orient_time CHUNKED | DOUBLE(['Unlimited']) | Time of Last Spacecraft
Orientation Change
time | seconds since 2018-
01-01 | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | Group: /quality_assessment | | Contains quality assessment data. This may include QA counters, QA along-track dat and/or QA summary data. | | ude QA counters, QA along-track data | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | qa_granule_fail_reason
COMPACT | INTEGER([1]) | Granule Failure Reason
None | 1 | Flag indicating granule failure reason. 0=no failure; 1=processing error; 2=Insufficient output data was generated; 3=TBD Failure; 4=TBD_Failure; 5=other failure. (Source: Operations); (Meanings: [0 1 2 3 4 5]) (Values: ['no_failure' 'PROCESS_ERROR' 'INSUFFICIENT_OUTPUT' 'failure_3' 'failure_4' 'OTHER_FAILURE']) | | qa_granule_pass_fail
COMPACT | INTEGER([1]) | Granule Pass Flag
None | 1 | Flag indicating granule quality. 0=granule passes automatic QA. 1=granule fails | ATL07 Product Data Dictionary | | | automatic QA. (Source: Operations); (Meanings: [0 1]) | |--|--|---| | | | (Values: ['PASS' 'FAIL']) |