ATL04 Product Data Dictionary Date Generated: 2020-10-21T15:56:55 | description | (Attribute) | ATL04 contains along-track normalized relative backscatter profiles of the atmosphere. The product includes full 532 nm (14 km) uncalibrated attenuated backscatter profiles at 25 times per second for vertical bins of approximately 30 meters. Calibration co | |-----------------------------------|-------------|--| | level | (Attribute) | L2 | | short_name | (Attribute) | ATL04 | | title | (Attribute) | SET_BY_META | | Group: / | (misute) | ATL04 contains along-track normalized relative backscatter profiles of the atmosphere. The product includes full 532 nm (14 km) uncalibrated attenuated backscatter profiles at 25 times per second for vertical bins of approximately 30 meters. Calibration co | | Conventions | (Attribute) | CF-1.6 | | citation | (Attribute) | SET_BY_META | | contributor_name | (Attribute) | Thomas E Neumann (thomas.neumann@nasa.gov), Thorsten Markus (thorsten.markus@nasa.gov), Suneel Bhardwaj (suneel.bhardwaj@nasa.gov) David W Hancock III (david.w.hancock@nasa.gov) | | contributor_role | (Attribute) | Instrument Engineer, Investigator, Principle Investigator, Data Producer, Data Producer | | creator_name | (Attribute) | SET_BY_META | | date_created | (Attribute) | SET_BY_PGE | | date_type | (Attribute) | UTC | | featureType | (Attribute) | trajectory | | geospatial_lat_max | (Attribute) | 0.0 | | geospatial_lat_min | (Attribute) | 0.0 | | geospatial_lat_units | (Attribute) | degrees_north | | geospatial_lon_max | (Attribute) | 0.0 | | geospatial_lon_min | (Attribute) | 0.0 | | geospatial_lon_units | (Attribute) | degrees_east | | granule_type | (Attribute) | ATL04 | | hdfversion | (Attribute) | SET_BY_PGE | | history | (Attribute) | SET_BY_PGE | | identifier_file_uuid | (Attribute) | SET_BY_PGE | | identifier_product_doi | (Attribute) | 10.5067/ATLAS/ATL04.001 | | identifier_product_doi_authority | (Attribute) | http://dx.doi.org | | identifier_product_format_version | (Attribute) | SET_BY_PGE | | identifier_product_type | (Attribute) | ATL04 | | institution | (Attribute) | SET_BY_META | | instrument | (Attribute) | SET_BY_META | | keywords | (Attribute) | SET_BY_META | | keywords_vocabulary | (Attribute) | SET_BY_META | | license | (Attribute) | Data may not be reproduced or distributed without including the citation for this product included in this metadata. Data may not be distributed in an altered form without the written permission of the ICESat-2 Science Project Office at NASA/GSFC. | | naming_authority | (Attribute) | http://dx.doi.org | | platform | (Attribute) | SET_BY_META | | | (411.11.1.) | Lion | | | | |--------------------------------|-----------------------------|---|--|---|--| | processing_level | (Attribute) | L2A | | | | | project | (Attribute) | SET_BY_META | | | | | publisher_email | (Attribute) | SET_BY_META | | | | | publisher_name | (Attribute) | SET_BY_META | | | | | publisher_url | (Attribute) | SET_BY_META | | | | | references | (Attribute) | SET_BY_META | | | | | source | (Attribute) | SET_BY_META | | | | | spatial_coverage_type | (Attribute) | Horizontal | | | | | standard_name_vocabulary | (Attribute) | CF-1.6 | | | | | summary | (Attribute) | SET_BY_META | | | | | time_coverage_duration | (Attribute) | SET_BY_PGE | | | | | time_coverage_end | (Attribute) | SET_BY_PGE | | | | | time_coverage_start | (Attribute) | SET_BY_PGE | | | | | time_type | (Attribute) | CCSDS UTC-A | | | | | Label (Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | ds_surf_type
COMPACT | INTEGER([5]) | Surface Type Dimension Scale
None | 1 | Dimension scale indexing the surface type array. Index=1 corresponds to Land; index = 2 corresponds to Ocean; Index = 3 corresponds to Sealce; Index=4 corresponds to Landlce; Index=5 corresponds to InlandWater (Source: Dim Scale); (Meanings: [1 2 3 4 5]) (Values: ['land' 'ocean' 'seaice' 'landice' 'inland_water']) | | | Group: /ancillary_data | | Contains information ancillary to the data product. This may include product characteristics, instrument characteristics and/or processing constants. | | | | | data_rate | (Attribute) | Data within this group pertain to the | ne granule in its entirety. | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | atlas_sdp_gps_epoch
COMPACT | DOUBLE([1]) | ATLAS Epoch Offset
None | seconds since 1980-
01-
06T00:00:00.0000000Z | Number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS Standard Data Product (SDP) epoch (2018-01-01:T00.00.00.000000 UTC). Add this value to delta time parameters to compute full gps_seconds (relative to the GPS epoch) for each data point. (Source: Operations) | | | control
CONTIGUOUS | STRING([1]) | Control File
None | 1 | PGE-specific control file used to generate this granule. To re-use, replace breaks (BR) with linefeeds. (Source: Operations) | | | data_end_utc
COMPACT | STRING([1]) | End UTC Time of Granule
(CCSDS-A, Actual)
None | 1 | UTC (in CCSDS-A format) of the last data point within the granule. (Source: Derived) | | | data_start_utc
COMPACT | STRING([1]) | Start UTC Time of Granule
(CCSDS-A, Actual)
None | 1 | UTC (in CCSDS-A format) of the first data point within the granule. (Source: Derived) | | | end_cycle
COMPACT | INTEGER([1]) | Ending Cycle
None | 1 | The ending cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day | | | | | | | repeat cycles completed by the mission. (Source: Derived) | |---------------------------|--------------|---|------------------------------|---| | end_delta_time
COMPACT | DOUBLE([1]) | ATLAS End Time (Actual) time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the last data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | end_geoseg
COMPACT | INTEGER([1]) | Ending Geolocation Segment None | 1 | The ending geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to-orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | | end_gpssow
COMPACT | DOUBLE([1]) | Ending GPS SOW of Granule
(Actual)
None | seconds | GPS seconds-of-week of the last data point in the granule. (Source: Derived) | | end_gpsweek
COMPACT | INTEGER([1]) | Ending GPSWeek of Granule
(Actual)
None | weeks from 1980-01-
06 | GPS week number of the last data point in the granule. (Source: Derived) | | end_orbit
COMPACT | INTEGER([1]) | Ending Orbit Number
None | 1 | The ending orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | end_region
COMPACT | INTEGER([1]) | Ending Region
None | 1 | The ending product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. | | | Ī | | | (Source: Derived) | |------------------------------|--------------|---|------------------------------
--| | end_rgt
COMPACT | INTEGER([1]) | Ending Reference Groundtrack
None | 1 | The ending reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | granule_end_utc
COMPACT | STRING([1]) | End UTC Time of Granule
(CCSDS-A, Requested)
None | 1 | Requested end time (in UTC CCSDS-A) of this granule. (Source: Derived) | | granule_start_utc
COMPACT | STRING([1]) | Start UTC Time of Granule
(CCSDS-A, Requested)
None | 1 | Requested start time (in UTC CCSDS-A) of this granule. (Source: Derived) | | qa_at_interval
COMPACT | DOUBLE([1]) | QA Along-Track Interval
None | 1 | Statistics time interval for along-track QA data. (Source: control) | | release
COMPACT | STRING([1]) | Release Number
None | 1 | Release number of the granule. The release number is incremented when the software or ancillary data used to create the granule has been changed. (Source: Operations) | | start_cycle
COMPACT | INTEGER([1]) | Starting Cycle
None | 1 | The starting cycle number associated with the data contained within this granule. The cycle number is the counter of the number of 91-day repeat cycles completed by the mission. (Source: Derived) | | start_delta_time COMPACT | DOUBLE([1]) | ATLAS Start Time (Actual) time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch at the first data point in the file. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived) | | start_geoseg
COMPACT | INTEGER([1]) | Starting Geolocation Segment
None | 1 | The starting geolocation segment number associated with the data contained within this granule. ICESat granule geographic regions are further refined by geolocation segments. During the geolocation process, a geolocation segment is created approximately every 20m from the start of the orbit to the end. The geolocation segments help align the ATLAS strong a weak beams and provide a common segment length for the L2 and higher products. The geolocation segment indices differ slightly from orbit-to- | | | | | | orbit because of the irregular shape of the Earth. The geolocation segment indices on ATL01 and ATL02 are only approximate because beams have not been aligned at the time of their creation. (Source: Derived) | |--------------------------------|-----------------------------|--|---------------------------|--| | start_gpssow
COMPACT | DOUBLE([1]) | Start GPS SOW of Granule
(Actual)
None | seconds | GPS seconds-of-week of the first data point in the granule. (Source: Derived) | | start_gpsweek
COMPACT | INTEGER([1]) | Start GPSWeek of Granule
(Actual)
None | weeks from 1980-01-
06 | GPS week number of the first data point in the granule. (Source: Derived) | | start_orbit
COMPACT | INTEGER([1]) | Starting Orbit Number
None | 1 | The starting orbit number associated with the data contained within this granule. The orbit number increments each time the spacecraft completes a full orbit of the Earth. (Source: Derived) | | start_region
COMPACT | INTEGER([1]) | Starting Region
None | 1 | The starting product-specific region number associated with the data contained within this granule. ICESat-2 data products are separated by geographic regions. The data contained within a specific region are the same for ATL01 and ATL02. ATL03 regions differ slightly because of different geolocation segment locations caused by the irregular shape of the Earth. The region indices for other products are completely independent. (Source: Derived) | | start_rgt
COMPACT | INTEGER([1]) | Starting Reference Groundtrack
None | 1 | The starting reference groundtrack (RGT) number associated with the data contained within this granule. There are 1387 reference groundtrack in the ICESat-2 repeat orbit. The reference groundtrack increments each time the spacecraft completes a full orbit of the Earth and resets to 1 each time the spacecraft completes a full cycle. (Source: Derived) | | version
COMPACT | STRING([1]) | Version
None | 1 | Version number of this granule within the release. It is a sequential number corresponding to the number of times the granule has been reprocessed for the current release. (Source: Operations) | | Group: /ancillary_data/atmosph | nere | Contains general ancillary parame | ters. | | | data_rate | (Attribute) | Data within this group pertain to the | - | | | Label (Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | aer_scat_rat
COMPACT | FLOAT([1]) | Aerosol Scattering Ratio
None | 1 | Aerosol Scattering Ratio in the calibration zone (11 (Source: Atmosphere ATBD) | | alpha_day_pce1
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
None | 1 | Molecular Folding Scaling Factor (PCE1/day) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_day_pce2 | FLOAT([1]) | Molecular Folding Scaling Factor | 1 | Molecular Folding Scaling Factor | | СОМРАСТ | | None | | (PCE2/day)
(Source: Atmosphere ATBD, part 1, section 3.3.2) | |-------------------------------------|--------------|--|-----------|--| | alpha_day_pce3
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
None | 1 | Molecular Folding Scaling Factor (PCE3/day) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_night_pce1
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
None | 1 | Molecular Folding Scaling Factor (PCE1/night) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_night_pce2
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
None | 1 | Molecular Folding Scaling Factor (PCE2/night) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_night_pce3
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
None | 1 | Molecular Folding Scaling Factor (PCE3/night) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_twilight_pce1
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
None | 1 | Molecular Folding Scaling Factor (PCE1/twilight) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_twilight_pce2
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
None | 1 | Molecular Folding Scaling Factor (PCE2/twilight) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | alpha_twilight_pce3
COMPACT | FLOAT([1]) | Molecular Folding Scaling Factor
None | 1 | Molecular Folding Scaling Factor (PCE3/twilight) (Source: Atmosphere ATBD, part 1, section 3.3.2) | | atlas_atm_hist_binsize
COMPACT | FLOAT([1]) | Histogram bin size (m)
None | meters | Nominal size of each ATM histogram bin, in meters (Source: Atmosphere ATBD) | | atlas_atm_hist_binsize_s
COMPACT | DOUBLE([1]) | Histogram bin size (s)
None | seconds | Nominal size of each ATM histogram bin, in seconds (Source: Atmosphere ATBD) | | atlas_atm_shot_sum_25hz
COMPACT | INTEGER([1]) | Number of shots at 25hz
None | counts | Number of shots summed to compute an ATM histogram at 25 hz (nominal) (Source: Atmosphere ATBD) | | atlas_atm_shot_sum_50hz
COMPACT | INTEGER([1]) | Number of shots at 50hz
None | counts | Number of shots summed to compute an ATM histogram at 50 hz (diagnostic) (Source: Atmosphere ATBD) | | atlas_n_atm_hist_bins
COMPACT | INTEGER([1]) | Number of histogram bins
None | counts | Number of ATM histogram bins (Source: Atmosphere ATBD) | | atlas_n_pce
COMPACT | INTEGER([1]) | Number of ATLAS PCEs
None | 1 | Number of ATLAS PCE boards
(Source: Atmosphere ATBD) | | atm_laser_wavelength_m
COMPACT | DOUBLE([1]) | Laser Wavelength (m)
None | meters | ATLAS Laser wavelength, in meters (Source: Atmosphere ATBD) | | atm_laser_wavelength_nm
COMPACT | FLOAT([1]) | Laser Wavelength (nm)
None | nm | ATLAS Laser wavelength, in nanometers (Source: Atmosphere ATBD) | | atm_processing_interval
COMPACT | DOUBLE([1]) | Seconds of ATM data processed in one chunk. None | seconds | The number of seconds of ATM data processed in one chunk. (Source: Control) | | atm_pulse_ns
COMPACT | DOUBLE([1]) | Pulse Time
None | sq meters | The time between ATLAS pulses. (Source: Atmosphere ATBD) | | atm_tep_start
COMPACT | DOUBLE([1]) | TEP Window Start
None | ns | The start time of the TEP removal window. (Source: Atmosphere ATBD) |
--|--------------|--|-----------|---| | atm_tep_width
COMPACT | DOUBLE([1]) | TEP Window Width
None | sq meters | The width of the TEP removal window. (Source: Atmosphere ATBD) | | back_f2
COMPACT | FLOAT([1]) | Background Fact method2
None | 1 | Scaling factor in Method 2
background computation
(Source: Atmosphere ATBD section
3.3.4) | | backg_day_exp_factor
COMPACT | FLOAT([1]) | Background daytime exponent factor None | 1 | Background daytime exponent factor in Method 1 bkgd comp (Source: Atmosphere ATBD section 3.3.4) | | backg_day_scale_factor1
COMPACT | FLOAT([1]) | Background daytime scaling factor 1
None | 1 | Background daytime scaling factor 1 in Method 1 bkgd comp (Source: Atmosphere ATBD section 3.3.4) | | backg_day_scale_factor2
COMPACT | FLOAT([1]) | Background daytime scaling factor 2
None | 1 | Background daytime scaling factor 2 in Method 1 bkgd comp (Source: Atmosphere ATBD section 3.3.4) | | backg_max_solar_elev
COMPACT | FLOAT([1]) | Background maximum solar elevation angle None | degrees | Background maximum solar elevation angle in Method 1 bkgd comp (Source: Atmosphere ATBD section 3.3.4) | | backg_min_solar_elev
COMPACT | FLOAT([1]) | Background minimum solar elevation angle None | degrees | Background minimum solar elevation angle in Method 1 bkgd comp (Source: Atmosphere ATBD section 3.3.4) | | backg_night_bkgd
COMPACT | FLOAT([1]) | Background nighttime background None | 1 | Background nighttime background in
Method 1 bkgd comp
(Source: Atmosphere ATBD section
3.3.4) | | backg_night_scale_factor
COMPACT | FLOAT([1]) | Background nighttime scaling factor None | 1 | Background nighttime scaling factor in Method 1 bkgd comp (Source: Atmosphere ATBD section 3.3.4) | | backg_nseg
COMPACT | INTEGER([1]) | Number of background segments in method 1 None | counts | Number of background segments in method 1 (Source: Atmosphere ATBD section 3.3.4) | | backg_response_time
COMPACT | FLOAT([1]) | Background response time None | 1 | Background response time in
Method 1 bkgd comp
(Source: Atmosphere ATBD section
3.3.4) | | backg_select
COMPACT | INTEGER([1]) | background method used
None | 1 | The background method used in calculation of NRB (Source: Atmosphere ATBD section 3.3.4); (Meanings: [1 2 3]) (Values: ['method1' 'method2' 'method3']) | | backg_twilight_scale_factor
COMPACT | FLOAT([1]) | Background twilight scaling factor None | 1 | Background twilight scaling factor in
Method 1 bkgd comp
(Source: Atmosphere ATBD section
3.3.4) | | boltzmann_const
COMPACT | FLOAT([1]) | Boltzmann Constant
None | erg/K | Boltzmann constant
(Source: Atmosphere ATBD section
2) | | cal_atm_trans | FLOAT([1]) | Cal Atm Trans | 1 | Particulate transmission from top of | | COMPACT | | None | | atmosphere to the calibration height (13 km) (Source: Atmosphere ATBD section 2) | |----------------------------------|--------------|---|---------------------|--| | cal_bot_ht
COMPACT | FLOAT([1]) | Bottom height of Cal zone
None | meters | Bottom height of the calibration zone (Source: Atmosphere ATBD section 2) | | cal_cloud_thres
COMPACT | FLOAT([1]) | Cal Cloud Threshold
None | counts | Threshold for excluding NRB data in calibration zone. (Source: Atmosphere ATBD section 2) | | cal_day_pce1
COMPACT | FLOAT([1]) | Daytime PCE1 CAL
None | 1 | Daytime calibration constant for pce1 in method 2 (Source: Control) | | cal_day_pce2
COMPACT | FLOAT([1]) | Daytime PCE2 CAL
None | 1 | Daytime calibration constant for pce2 in method 2 (Source: Control) | | cal_day_pce3
COMPACT | FLOAT([1]) | Daytime PCE3 CAL
None | 1 | Daytime calibration constant for pce3 in method 2 (Source: Control) | | cal_default
COMPACT | FLOAT([1]) | Default CAL Constant
None | Photons*m^3 *sr / J | Default atmosphere calibration constant. Used by default when no calibration data have been computed for an ATL04 granule. (Source: Atmosphere ATBD section 2) | | cal_integ_time
COMPACT | FLOAT([1]) | Cal Integ Time
None | seconds | Calibration integration time (Source: Atmosphere ATBD section 2) | | cal_lat_bound
COMPACT | DOUBLE([1]) | Cal Latitude Bound
None | degrees | The latitude boundary for calibration calculation (Source: Atmosphere ATBD section 2) | | cal_night_pce1
COMPACT | FLOAT([1]) | CAL Night PCE1
None | 1 | Nighttime calibration constant for pce1 in method 2 (Source: Control) | | cal_night_pce2
COMPACT | FLOAT([1]) | CAL Night PCE2
None | 1 | Nighttime calibration constant for pce2 in method 2 (Source: Control) | | cal_night_pce3
COMPACT | FLOAT([1]) | CAL Night PCE3
None | 1 | Nighttime calibration constant for pce3 in method 2 (Source: Control) | | cal_scat_ratio
COMPACT | FLOAT([1]) | Cal Scat Ratio
None | 1 | Calibration Zone (13 to 11 km)
aerosol scattering ratio
(Source: Atmosphere ATBD section
2) | | cal_select
COMPACT | INTEGER([1]) | Calibration Algorithm Used
None | 1 | Calibration algorithm used.
(Source: Control); (Meanings: [1 2 3])
(Values: ['method1' 'method2'
'method3']) | | cal_solar_angle_limit
COMPACT | FLOAT([1]) | Cal Solar Angle Limit
None | degrees | Minimum solar zenith angle for calibration calculation (Source: Atmosphere ATBD section 2) | | cal_solar_elev_max
COMPACT | FLOAT([1]) | Maximim Solar Elevation
None | degrees | Maximum solar elevation angle in calibration method 2. (Source: Control) | | cal_solar_elev_min
COMPACT | FLOAT([1]) | Minimum Solar Elevation for CAL
None | degrees | Minimum solar elevation angle in calibration method 2. (Source: Control) | | | 1 | ļ | 1 | + | |---------------------------------|--------------|--------------------------------------|------------------|--| | cal_top_ht
COMPACT | FLOAT([1]) | Top height of Cal zone
None | meters | Top height of the calibration zone (Source: Atmosphere ATBD section 2) | | cal_twilight_pce1
COMPACT | FLOAT([1]) | Twilight PCE1 CAL
None | 1 | Twilight calibration constant for pce1 in method 2 (Source: Control) | | cal_twilight_pce2
COMPACT | FLOAT([1]) | Twilight PCE2 CAL
None | 1 | Twilight calibration constant for pce2 in method 2 (Source: Control) | | cal_twilight_pce3 COMPACT | FLOAT([1]) | Twilight PCE3 CAL
None | 1 | Twilight calibration constant for pce3 in method 2 (Source: Control) | | chappius_coef
COMPACT | FLOAT([1]) | Chappius Coefficient
None | 1 | Chappius ozone absorption coefficient (Source: Atmosphere ATBD) | | dead_time_sfac
COMPACT | FLOAT([1]) | Dead Time Signal Factor
None | 1 | Dead time signal factor
(Source: Atmosphere ATBD section
2) | | default_nrb_day
COMPACT | FLOAT([3]) | Daytime NRB Defaults
None | Photons m2/Joule | Default value for daytime NRB used to replace NRB values that are out of range for each pce for calibration method 3 (Source: Atmosphere ATBD) | | default_nrb_night
COMPACT | FLOAT([3]) | Nighttime NRB Defaults
None | Photons m2/Joule | Default value for nighttime NRB -
used to replace NRB values that are
out of range for each pce for
calibration method 3
(Source: Atmosphere ATBD) | | default_nrb_saa
COMPACT | FLOAT([3]) | Default NRB in SAA
None | Photons m2/Joule | Default value for NRB used to replace NRB values that are out of range when in the South Atlantic Anomaly during nighttime for each pce for calibration method 3 (Source: Atmosphere ATBD) | | default_nrb_twilight
COMPACT | FLOAT([3]) | Twilight NRB Defaults
None | Photons m2/Joule | Default value for twilight NRB - used to replace NRB values that are out of range for each pce for calibration method 3 (Source: Atmosphere ATBD) | | deg2rad
COMPACT | DOUBLE([1]) | Degree to radians conversion
None | 1 | Degrees to radians conversion factor (Source: Globals) | | detector_efficiency
COMPACT | FLOAT([1]) | Detector Quantum Efficiency
None | 1 | Detector quantum efficiency (Qe) (Source: Atmosphere ATBD) | | dtime_select
COMPACT | INTEGER([1]) | dead time factor used
None | 1 | Deadtime factor used.
(Source: Control); (Meanings: [1 2])
(Values: ['dtime_fact1' 'dtime_fact2']) | | fold_nbins
COMPACT | INTEGER([1]) | 1
None | bins | Number of bins starting from end of
raw profile to compute mean of
signal to test for presence of cloud
folding
(Source: Atmosphere ATBD) | | fold_thresh_day
COMPACT | FLOAT([1]) | Daytime Folding Threshold
None | photons/bin | Raw signal level above which the mean of the last fold_nbins indicates the presence of cloud folding for daytime data (Source: Atmosphere ATBD) | | fold_thresh_night
COMPACT | FLOAT([1]) | Nighttime Folding Threshold
None | photons/bin | Raw signal level above which the mean of the last fold_nbins indicates the presence of cloud folding for nighttime data | | | | | | (Source: Atmosphere ATBD) | |-------------------------------|--------------|---|------------------|--| | gas_const_r
COMPACT | DOUBLE([1]) | Ideal gas constant R
None | 1 | Ideal gas constant (R)
(Source: Globals) | | grd_search_width
COMPACT | INTEGER([1]) | Ground Search Width
None | bins |
Ground detection search width (Source: Atmosphere ATBD section 3.3.5) | | grd_thres_atl03
COMPACT | FLOAT([1]) | Ground Threshold using ATL03 signal None | photons/bin | Threshold for Ground detection (photons/bin) when using ATL03-classified signal (Source: Atmosphere ATBD section 2) | | grd_thres_sfac1
COMPACT | FLOAT([1]) | grd_thres_sfac1
None | 1 | Ground detection signal factor 1
(Source: Atmosphere ATBD Section
3.3.5) | | grd_thres_sfac2
COMPACT | FLOAT([1]) | grd_thres_sfac2
None | 1 | Ground detection signal factor 2
(Source: Atmosphere ATBD Section
3.3.5) | | ht_min
COMPACT | FLOAT([1]) | Minimum height to use in ATM profile None | meters | Minimum height to use in ATM profile (Source: Atmosphere ATBD) | | king_fact
COMPACT | FLOAT([1]) | KING factor
None | 1 | King factor for molecular transmission. (Source: Atmosphere ATBD) | | max_calib_day
COMPACT | FLOAT([3]) | Maximum Daytime Calibration
None | Photons*m3sr/J | Maximum calculated calibration value allowed for daytime for each pce for calibration method 3 (Source: Atmosphere ATBD) | | max_calib_night
COMPACT | FLOAT([3]) | Maximum Nighttime Calibration
None | Photons*m3sr/J | Maximum calculated calibration value allowed for nighttime for each pce for calibration method 3 (Source: Atmosphere ATBD) | | max_calib_twilight
COMPACT | FLOAT([3]) | Maximum Twilight Calibration
None | Photons*m3sr/J | Maximum calculated calibration value allowed for twilight for each pce for calibration method 3 (Source: Atmosphere ATBD) | | max_nrb_day
COMPACT | FLOAT([3]) | Maximum Daytime NRB
None | Photons m2/Joule | Maximum daytime NRB accepted for filtered NRB data for each pce for calibration method 3 (Source: Atmosphere ATBD) | | max_nrb_night
COMPACT | FLOAT([3]) | Maximum Nighttime NRB
None | Photons m2/Joule | Maximum nighttime NRB accepted for filtered NRB array for each pce for calibration method 3 (Source: Atmosphere ATBD) | | max_nrb_saa
COMPACT | FLOAT([3]) | Maximum NRB in SAA
None | Photons m2/Joule | Maximum NRB accepted for filtered NRB data when in the South Atlantic Anomaly during nighttime for each pce for calibration method 3 (Source: Atmosphere ATBD) | | max_nrb_twilight
COMPACT | FLOAT([3]) | Maximum Twilight NRB
None | Photons m2/Joule | Maximum twilight NRB accepted for filtered NRB array for each pce for calibration method 3 (Source: Atmosphere ATBD) | | max_photon
COMPACT | INTEGER([1]) | 1
None | photons/bin | The photon level that the average of bin 50 to 200 of the raw profiles must exceed to be categorized as bad data. (Source: Atmosphere ATBD) | | min_calib_day
COMPACT | FLOAT([3]) | Minimum Daytime Calibration
None | Photons*m3sr/J | Minimum calculated calibration allowed for daytime for each pce for calibration method 3 | | | | | | (Source: Atmosphere ATBD) | |--|--------------|---|------------------|---| | min_calib_night
COMPACT | FLOAT([3]) | Minimum Nighttime Calibration
None | Photons*m3sr/J | Minimum calculated calibration value allowed for nighttime for each pce for calibration method 3 (Source: Atmosphere ATBD) | | min_calib_twilight COMPACT | FLOAT([3]) | Minimum Twilight Calibration
None | Photons*m3sr/J | Minimum calculated calibration value allowed for twilight for each pce for calibration method 3 (Source: Atmosphere ATBD) | | min_nrb_day
COMPACT | FLOAT([3]) | Minimum Daytime NRB
None | Photons m2/Joule | Minimum daytime NRB accepted for filtered NRB data for each pce for calibration method 3 (Source: Atmosphere ATBD) | | min_nrb_night
COMPACT | FLOAT([3]) | Minimum Nighttime NRB
None | Photons m2/Joule | Minimum nighttime NRB accepted
for filtered NRB data for each pce for
calibration method 3
(Source: Atmosphere ATBD) | | min_nrb_twilight COMPACT | FLOAT([3]) | Minimum Twilight NRB
None | Photons m2/Joule | Minimum twilight NRB accepted for filtered NRB data for each pce for calibration method 3 (Source: Atmosphere ATBD) | | molec_top_ht
COMPACT | FLOAT([1]) | Top height of molecular profile None | meters | Top height of molecular profile. (Source: Atmosphere ATBD) | | night_thresh_min
COMPACT | FLOAT([1]) | Night threshold minimum
None | 1 | Night threshold 1 minimum (Source: Atmosphere ATBD) | | nrb_average_period
COMPACT | INTEGER([1]) | NRB Averaging Period
None | seconds | Number of seconds to average the smoothed and filtered NRB array before computing the calibration constant for calibration method 3 (Source: Atmosphere ATBD) | | nrb_smooth
COMPACT | INTEGER([1]) | NRB Smoothing
None | 1 | Number of points to average the NRB data for calibration method 3 (Source: Atmosphere ATBD) | | num_molec_bins
COMPACT | INTEGER([1]) | Number of bins in molecular profile
None | counts | Number of bins in molecular profile (Source: Atmosphere ATBD) | | num_va_bins
COMPACT | INTEGER([1]) | Number of vertically aligned bins
None | counts | Number of vertically aligned bins (Source: Atmosphere ATBD) | | ozone_const
COMPACT | FLOAT([1]) | Ozone column density constant
None | 1 | Ozone column density constant (Source: Atmosphere ATBD) | | pi
COMPACT | DOUBLE([1]) | PI
None | counts | PI
(Source: Globals) | | planck_const
COMPACT | DOUBLE([1]) | Planck constant (h)
None | Js | Planck constant (h)
(Source: Atmosphere ATBD section
2) | | receiver_optical_throughput
COMPACT | FLOAT([1]) | Receiver Optics Throughput
None | 1 | Nominal Receiver Optics Throughput (Source: Atmosphere ATBD) | | saa_cal_fac
COMPACT | FLOAT([1]) | SAA Calibration Factor
None | 1 | Factor to multiply the calibration constants by when within the SAA and the solar elevation angle is < calib_solar_elev_max in calibration method 3 (Source: Atmosphere ATBD) | | saa_latmax
COMPACT | FLOAT([1]) | SAA Maximum Latitude
None | degrees_north | Latitude maximum of box that encompasses the area affected by the South Atlantic Anomaly (SAA) (Source: Atmosphere ATBD) | | saa_latmin | FLOAT([1]) | SAA Minimum Latitude | degrees_north | Latitude minimum of box that | | СОМРАСТ | | None | | encompasses the area affected by
the South Atlantic Anomaly (SAA)
(Source: Atmosphere ATBD) | | |----------------------------------|----------------------------------|--|------------------------------|---|--| | saa_lonmax
COMPACT | FLOAT([1]) | SAA Maximum Longitude
None | degrees_east | Longitude maximum of box that encompasses the area affected by the South Atlantic Anomaly (SAA) (Source: Atmosphere ATBD) | | | saa_lonmin
COMPACT | FLOAT([1]) | SAA Minimum Longitude
None | degrees_east | Longitude minimum of box that encompasses the area affected by the South Atlantic Anomaly (SAA) (Source: Atmosphere ATBD) | | | saa_scale_fac
COMPACT | FLOAT([1]) | SAA Scale Factor
None | 1 | Scale factor for computing the background in method 1 within the south Atlantic anomaly box (Source: Atmosphere ATBD) | | | speed_of_light
COMPACT | DOUBLE([1]) | Speed of light (c)
None | meters/second | Speed of light (c)
(Source: Globals) | | | telescope_area
COMPACT | DOUBLE([1]) | Telescope Effective Area
None | sq meters | Effective collection area of telescope (At) (Source: Atmosphere ATBD) | | | va_top_ht
COMPACT | FLOAT([1]) | Top height of vertically aligned profile None | meters | Top height of vertically aligned profile (Source: Atmosphere ATBD) | | | Group: /meteorology_molec_bkscat | | Contains sampled GEOS5_FPIT meteorological model data and molecular backscatter. This data is created from the time/locations of the center profile. | | | | | data_rate | (Attribute) | Data in this group is stored at a 1hz (1 per second) rate. | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Atmosphere ATBD) | | | ds_va_bin_h
COMPACT | FLOAT([700]) | VA Bin Height Dimension Scale
None | meters | Dimension scale containing the heights of the vertically-aligned bins. (Source: Atmosphere ATBD) | | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Latitude of the ATM histogram latitude | degrees_north | Latitude at the the top of the ATM histogram, WGS84, North=+, Derived from the geolocation of the ATM range window. (Source: ATL03g ATBD) | | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Longitude of the ATM histogram longitude | degrees_east | Longitude at the the top of the ATM histogram, WGS84, East=+, derived from the geolocation of the ATM range window. (Source: ATL03g ATBD) | | | met_cldprs
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B |
cloud_top_pressure
pressure | Pa | Pressure of the highest cloud top at this location from GEOS5 data (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | | met_ps
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Surface Pressure pressure | Pa | Surface Pressure (Pa)
(Source: GEOS5 FPIT 3D
DFPITI3NVASM) | |-----------------------|-------------------------------------|---|---------|--| | met_qv10m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | specific_humidity_at_10m
specific_humidity | kg kg-1 | Specific humidity at 10 m above the displacement height (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_qv2m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | specific_humidity_at_2m
specific_humidity | kg kg-1 | Specific humidity at 2 m above the displacement height (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_slp
CHUNKED | FLOAT(['Unlimited']) | sea_level_pressure
sea_level_pressure | Pa | sea-level pressure (Pa)
(Source: GEOS5 FPIT 3D
DFPITI3NVASM) | | met_t10m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | temperature_at_10m
temperature | К | Temperature at 10m above the displacement height (K) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_t2m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | temperature_at_2m temperature | К | Temperature at 2m above the displacement height (K) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_tqi
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | cloud_ice
None | kg m-2 | Total column cloud ice (Kg/m2)
(Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | | met_tql
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | cloud_liquid_water
None | kg m-2 | Total column cloud liquid water (kg/m2) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_troppb
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | blended_tropopause_pressure pressure | Pa | Blended tropopause pressure (pa)
(Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | | met_tropt
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | blended_tropopause_temperature temperature | К | Tropopause temperature (k)
(Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | | met_ts
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | surface_temperature temperature | К | Surface skin temperature (K)
(Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | | met_u10m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Eastward_wind_at_10m eastward_wind | m s-1 | Eastward wind at 10m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_u2m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Eastward_wind_at_2m eastward_wind | m s-1 | Eastward wind at 2m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_u50m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Eastward_wind_at_50m eastward_wind | m s-1 | Eastward wind at 50m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_v10m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Northward_wind_at_10m
northward_wind | m s-1 | Northward wind at 10m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_v2m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Northward_wind_at_2m
northward_wind | m s-1 | Northward wind at 2m above the displacement height (m/s-1) (Source: GEOS5 FPIT 2D DFPITT1NXSLV) | | met_v50m
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | northward_wind_at_50m
northward_wind | m s-1 | Northward wind at 50m above the displacement height (m/s-1) | | | | | | (Source: GEOS5 FPIT 2D
DFPITT1NXSLV) | |-----------------------------|-----------------------------|--|------------------------------|---| | mol_backs_folded
CHUNKED | FLOAT(['Unlimited', 700]) | Folded molecular transmission profile None | m-1 sr-1 | Folded molecular transmission profile, 30 m resolution, , m-1 sr-1; 20 km to -1 km (equation 3.17) (Source: Atmosphere ATBD) | | mol_backscatter
CHUNKED | FLOAT(['Unlimited', 700]) | Molecular backscatter profile
None | m-1 sr-1 | Molecular backscatter profile, 30 m resolution, 20 km to -1 km (Source: Atmosphere ATBD) | | molec_bkscat_p
CHUNKED | FLOAT(['Unlimited', 700]) | Pressure profile
None | Pa | Pressure profiles from 20 km to -1 km (Source: Atmosphere ATBD) | | molec_bkscat_rh CHUNKED | FLOAT(['Unlimited', 700]) | Relative humidity profiles
None | percentage | Relative humidity profiles from 20 km to -1 km (Source: Atmosphere ATBD) | | molec_bkscat_t
CHUNKED | FLOAT(['Unlimited', 700]) | Temperature profile
None | К | Temperature profiles from 20 km to -1 km (Source: Atmosphere ATBD) | | molec_trans
CHUNKED | FLOAT(['Unlimited', 700]) | Molecular transmission profile
None | 1 | Molecular transmission profile, 30 m resolution, 20 km to -1 km (Source: Atmosphere ATBD) | | ozone_trans
CHUNKED | FLOAT(['Unlimited', 700]) | Ozone transmission profile
None | 1 | Ozone transmission profile, 30 m resolution, 20 km to -1 km (Source: Atmosphere ATBD) | | segment_id
CHUNKED | INTEGER(['Unlimited']) | along-track segment ID number.
None | 1 | A 7 digit number identifiying the along-track geolocation segment number. These are sequential, starting with 1 for the first segment after an ascending equatorial crossing node. (Source: ATL03 ATBD, Section 3.1) | | surf_type
CHUNKED | INTEGER_1(['Unlimited', 5]) | surface type
None | 1 | Flags describing which surface types this interval is associated with. 0=not type, 1=is type. Order of array is land, ocean, sea ice, land ice, inland water. (Source: ATL03 ATBD, Section 4); (Meanings: [0 1]) (Values: ['not_type' 'is_type']) | | Group: /orbit_info | | Contains orbit information. | | | | data_rate | (Attribute) | Varies. Data are only provided who | en one of the stored valu | es (besides time) changes. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | crossing_time CHUNKED | DOUBLE(['Unlimited']) | Ascending Node Crossing Time time | seconds since 2018-
01-01 | The time, in seconds since the ATLAS SDP GPS Epoch, at which the ascending node crosses the equator. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | cycle_number | INTEGER_1(['Unlimited']) | Cycle Number | 1 | A count of the number of exact | | CHUNKED | | None | | repeats of this reference orbit. (Source: Operations) | |-------------------------|--------------------------|--|------------------------------|--| | lan
CHUNKED | DOUBLE(['Unlimited']) | Ascending Node Longitude
None | degrees_east | Longitude at the ascending node crossing. (Source: POD/PPD) | | orbit_number
CHUNKED | UINT_2_LE(['Unlimited']) | Orbit Number
None | 1 | Unique identifying number for each planned ICESat-2 orbit. (Source: Operations) | | rgt
CHUNKED | INTEGER_2(['Unlimited']) | Reference Ground track
None | 1 | The reference ground track (RGT) is the track on the earth at which a specified unit vector within the observatory is pointed. Under nominal operating conditions, there will be no data collected along the RGT, as the RGT is spanned by GT3 and GT4. During slews or off-pointing, it is possible that ground tracks may intersect the RGT. The ICESat-2 mission has 1387 RGTs. (Source: POD/PPD) | | sc_orient
CHUNKED | INTEGER_1(['Unlimited']) | Spacecraft Orientation
None | 1 | This parameter tracks the spacecraft orientation between forward, backward and transitional flight modes. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. (Source: POD/PPD); (Meanings: [0 1 2]) (Values: ['backward' 'forward' 'transition']) | | sc_orient_time CHUNKED | DOUBLE(['Unlimited']) | Time of Last Spacecraft Orientation Change time | seconds since 2018-
01-01 | The time of the last spacecraft orientation change between forward, backward and transitional flight modes, expressed in seconds since the ATLAS SDP GPS
Epoch. ICESat-2 is considered to be flying forward when the weak beams are leading the strong beams; and backward when the strong beams are leading the weak beams. ICESat-2 is considered to be in transition while it is maneuvering between the two orientations. Science quality is potentially degraded while in transition mode. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: POD/PPD) | | Group: /profile_x | | Each group contains the segments earth, sequential transmit pulses ill | | one Pair Track. As ICESat-2 orbits the as on the surface of the earth. The | | | | Profiles are numbered from the lef | t to the right in the direct | s are only reported for the strong beam.
ion of spacecraft travel as: 1 for the
1 3 for the right-most pair of beams. | |----------------------------|--------------------------------------|---|------------------------------|---| | data_rate | (Attribute) | Data in this group is stored at a 25 | hz (25 per second) rate | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | atm_rw_width_m
CHUNKED | FLOAT(['Unlimited']) | Atmospheric Range Window
Width
None | seconds | The range, in meters, from the Atmospheric range window start to the range window stop. (Source: ATL02) | | atm_tw_top
CHUNKED | FLOAT(['Unlimited']) | Atmospheric Telemetry Window
Top
None | meters | The geolocated ellipsoidal height at the top of the Atmospheric range window (Source: ATL03g ATBD) | | backg_mean2
CHUNKED | FLOAT(['Unlimited']) | Signal mean
None | counts | Signal mean from method 2 (pb2 defined in Atmosphere ATBD part 1 section 2.3.4) (Source: Atmosphere ATBD section 3.3.4) | | backg_method1
CHUNKED | FLOAT(['Unlimited']) | Background method 1
None | counts | Background from method 1in photons/bin. (pb1 Defined in Atmosphere ATBD section 2.3.2) (Source: Atmosphere ATBD section 3.3.4) | | backg_method2
CHUNKED | FLOAT(['Unlimited']) | Background method 2
None | counts | Background from method 2 in photons/bin. (pb2 Defined in Atmosphere ATBD section 2.3.2) (Source: Atmosphere ATBD section 3.3.4) | | backg_method3
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Background method 3
None | counts | Background from method 3 in photons/bin. (Defined in Atmosphere ATBD section 3.3.4) (Source: Atmosphere ATBD section 3.3.4) | | backg_std_dev2
CHUNKED | FLOAT(['Unlimited']) | Background standard deviation 2
None | counts | Background standard deviation from
the selected method used (Sstd2
Defined in Atmosphere ATBD
section 2.3.2)
(Source: Atmosphere ATBD section
3.3.4) | | beam_azimuth
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | beam azimuth
None | degrees_east | Beam azimuth
(Source: ATL03 ATBD) | | beam_elevation
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | beam elevation
None | degrees | Beam elevation
(Source: ATL03 ATBD) | | bg_sensitivity
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Background Sensitivity
None | events/sec | Receiver response per watt of continuous illumination in the passband from a diffuse source larger than the field of view, in the absence of any dead time effects. (Source: ATL02 ATBD, Section 5.5.2) | | cloud_fold_flag
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | Cloud Folding Flag
None | 1 | Flag that indicates this profile likely contains cloud signal folded down from above 15 km to the last 2-3 km of the profile. See ATBD Table 3.9 for detailed flag value meanings (Source: Atmosphere ATBD); (Meanings: [0 1 2 3]) (Values: ['no_folding' 'goes5_indicates' 'profile_indicates' 'both_indicate']) | | delta_time | DOUBLE(['Unlimited']) | Elapsed GPS seconds | seconds since 2018- | Number of GPS seconds since the | | CHUNKED | | time | 01-01 | ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Atmosphere ATBD) | |------------------------|--|--|---------------|--| | dem_flag
CHUNKED | INTEGER_1(['Unlimited']) INVALID_I1B | dem source flag
None | 1 | Indicates source of the DEM height. Values: 0=None, 1=Arctic, 2=Global, 3=MSS, 4=Antarctic. (Source: Atmosphere ATBD); (Meanings: [0 1 2 3 4]) (Values: ['none' 'arctic' 'global' 'mss' 'antarctic']) | | dem_h
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | DEM Height
None | meters | Best available DEM (in priority of Arctic/Antarctic/Global/MSS) value at the geolocation point. (Source: Atmosphere ATBD) | | ds_va_bin_h
COMPACT | FLOAT([700]) | VA Bin Height Dimension Scale
None | meters | Dimension scale containing the heights of the vertically-aligned bins. (Source: Atmosphere ATBD) | | dtime_fac1
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | dead_time_factor1
None | 1 | Dead time correction factor for surface signal computed from radiometric lookup table. (Source: Atmosphere ATBD) | | dtime_fac2
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | dead_time_factor2
None | 1 | Dead time correction factor for
surface signal computed from ATBD
equation 2.1.
(Source: Atmosphere ATBD) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Latitude of the ATM histogram latitude | degrees_north | Latitude at the the top of the ATM histogram, WGS84, North=+, Derived from the geolocation of the ATM range window. (Source: ATL03g ATBD) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Longitude of the ATM histogram longitude | degrees_east | Longitude at the the top of the ATM histogram, WGS84, East=+, derived from the geolocation of the ATM range window. (Source: ATL03g ATBD) | | nrb_bot_bin
CHUNKED | INTEGER(['Unlimited']) INVALID_I4B | NRB Profile bottom valid bin
None | 1 | The ending (bottom) bin number within the 20 to -1 km vertically aligned profile where data are valid. Bin number starts at 1. (Source: Atmosphere ATBD section 2.3) | | nrb_profile
CHUNKED | FLOAT(['Unlimited', 700])
INVALID_R4B | NRB Profile
None | 1 | Normalize relative backscatter (NRB) profile vertically aligned to 20 to -1 km with vertical resolution of 30 m. (Photons km2/Joule) (Source: Atmosphere ATBD section 2.3) | | nrb_top_bin
CHUNKED | INTEGER(['Unlimited']) INVALID_I4B | NRB Profile top valid bin
None | counts | The starting (top) bin number within the 20 to -1 km vertically aligned profile where data are valid. Bin number starts at 1. (Source: Atmosphere ATBD section 2.3) | | | 1 | 1 | I | I | |----------------------------|-------------------------------------|--|--------------|--| | pce_mframe_cnt CHUNKED | UINT_4_LE(['Unlimited']) | PCE Major frame counter
None | counts | Major Frame Counter - The major frame counter is read from the DFC and starts counting at DFC POR. The counter is used to identify individual major frames across diag and science packets. This counter can go for about 2.7 years before rolling over. It is in the first time tag science packet. Used as part of the photon ID (Source: ATL02) | | prof_dist_x
CHUNKED | DOUBLE(['Unlimited']) | Along Track Distance
None | meters | Along-track distance from the equator crossing. (Source: ATL03g ATBD, Section 3.4) | | prof_dist_y
CHUNKED | FLOAT(['Unlimited']) | Across Track Distance from RGT
None | meters | Across-Track distance from the reference ground track. (Source: ATL03g ATBD, Section 3.4) | | range_to_top
CHUNKED | FLOAT(['Unlimited']) | Range
None | meters | Range from the spacecraft to the top of the atmosphere range window. (Source: Atmosphere ATBD) | | ret_sensitivity
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Return Sensitivity
None | events/pulse | Receiver response per joule/return pulse in the field of view, in the absence of any deadtime effects. (Source: ATL02 ATBD, Section 5.5.2) | | sc_alt
CHUNKED | DOUBLE(['Unlimited']) | Altitude
None | meters | Height of the spacecraft above the WGS84 ellipsoid. (Source: ATL03g ATBD, Section 3.4) | | segment_id
CHUNKED | INTEGER(['Unlimited']) | along-track segment ID number.
None | 1 | A 7 digit number identifying the along-track geolocation segment number. These are sequential, starting with 1 for the first segment after an ascending equatorial crossing node.
(Source: ATL03 ATBD, Section 3.1) | | sig_count_hi
CHUNKED | INTEGER(['Unlimited']) | Count of Signa Heightsl - High
None | counts | Count of high-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_count_low
CHUNKED | INTEGER(['Unlimited']) | Count of Signal Heights - Low
None | counts | Count of low-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_count_med
CHUNKED | INTEGER(['Unlimited']) | Count of Signal Heights - Medium None | counts | Count of medium-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_h_mean_hi
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Mean of SignalHeights - High
None | meters | Mean height of high-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_h_mean_low
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Mean of Signal Heights - Low
None | meters | Mean height of low-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_h_mean_med
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Mean of Signa Heightsl - Med
None | meters | Mean height of medium-confidence signal photons (Source: ATL03 ATBD, Section 5) | | sig_h_sdev_hi
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | SDev of Signal Heights -High
None | meters | SDev of the heights of high-
confidence signal photons
(Source: ATL03 ATBD, Section 5) | | sig_h_sdev_low
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | SDev of Signal Heights -Low
None | meters | SDev of the heights of low-
confidence signal photons
(Source: ATL03 ATBD, Section 5) | | sig_h_sdev_med | FLOAT(['Unlimited']) | SDev of Signa Heights -Med | meters | SDev of the heights of medium- | | CHUNKED | INVALID_R4B | None | | confidence signal photons
(Source: ATL03 ATBD, Section 5) | |--------------------------------|---------------------------------------|-----------------------------------|----------------------------|--| | solar_azimuth
CHUNKED | FLOAT(['Unlimited']) | solar azimuth
None | degrees_east | The direction, eastwards from north, of the sun vector as seen by an observer at the laser ground spot. (Source: ATL03g ATBD) | | solar_elevation
CHUNKED | FLOAT(['Unlimited']) | solar elevation
None | degrees | Solar Angle above or below the plane tangent to the ellipsoid surface at the laser spot. Positive values mean the sun is above the horizon, while negative values mean it is below the horizon. The effect of atmospheric refraction is not included. This is a low precision value, with approximately TBD degree accuracy. (Source: ATL03g ATBD) | | surf_type
CHUNKED | INTEGER_1(['Unlimited', 5]) | surface type
None | 1 | Flags describing which surface types this interval is associated with. 0=not type, 1=is type. Order of array is land, ocean, sea ice, land ice, inland water. (Source: ATL03 ATBD, Section 4); (Meanings: [0 1]) (Values: ['not_type' 'is_type']) | | surf_type_igbp
CHUNKED | INTEGER_1(['Unlimited']) | IGBP Surface Type
None | 1 | IGBP Surface Type
(Source: Atmosphere ATBD, IGBP
Surface Type) | | surface_bin
CHUNKED | INTEGER(['Unlimited'])
INVALID_I4B | Surface bin
None | 1 | Vertially aligned, NRB bin number of
the detected surface return.
(Source: Atmosphere ATBD section
3.3.5) | | surface_conf
CHUNKED | FLOAT(['Unlimited']) | Surface signal confidence
None | 1 | The level of confidence in the surface signal magnitude and location for each beam. (1.0 - lowest confidence; 100.0 - highest confidence). (Source: Atmosphere ATBD section 3.3.5) | | surface_height
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Surface height
None | meters | Height of the detected surface bin. (Source: Atmosphere ATBD section 3.3.5) | | surface_sig
CHUNKED | FLOAT(['Unlimited']) | Surface signal count
None | counts | Number of photons in the detected surface bin. (Source: Atmosphere ATBD section 3.3.5) | | surface_thresh
CHUNKED | FLOAT(['Unlimited']) | Surface signal threshold
None | photons | Surface signal threshold
(Source: Atmosphere ATBD section
3.3.5) | | surface_width
CHUNKED | INTEGER(['Unlimited']) | Surface signal width
None | bins | The number of bins comprising the surface signal for each beam. (Source: Atmosphere ATBD section 3.3.5) | | tx_pulse_energy
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Transmit Pulse Energy
None | Joules | Transmit energy, from the laser internal energy monitor, split into perbeam measurements. (Source: ATL02 ATBD, Section 7.2) | | Group: /profile_x/bckgrd_atlas | | Contains the ATLAS 50-shot back | ground data and derivation | ons. | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | bckgrd_counts | INTEGER(['Unlimited']) | ATLAS 50-shot background count | counts | Onboard 50 shot background (200 | | CHUNKED | | None | | Hz) sum of photon events within the altimetric range window. (Source: ATL03 ATBD Section 7.3) | |--------------------------------------|-----------------------------|---|------------------------------|--| | bckgrd_counts_reduced
CHUNKED | INTEGER(['Unlimited']) | ATLAS 50-shot background count - reduced None | counts | Number of photon counts in the 50-shot sum after subtracting the number of signal photon events, defined as in ATBD Section 5, in that span. (Source: ATL03 ATBD Section 7.3) | | bckgrd_hist_top
CHUNKED | FLOAT(['Unlimited']) | Top of the altimetric range window None | meters | The height of the top of the altimetric histogram, in meters above the WGS-84 ellipsoid, with all geophysical corrections applied. Parameter is ingested at 50-Hz, and values are repeated to form a 200-Hz array. (Source: ATL03 ATBD Section 7.3) | | bckgrd_int_height
CHUNKED | FLOAT(['Unlimited']) | Altimetric range window width None | meters | The height of the altimetric range window. This is the height over which the 50-shot sum is generated. Parameter is ingested at 50-Hz, and values are repeated to form a 200-Hz array. (Source: ATL03 ATBD Section 7.3) | | bckgrd_int_height_reduced
CHUNKED | FLOAT(['Unlimited']) | Altimetric range window height - reduced None | meters | The height of the altimetric range window after subtracting the height span of the signal photon events in the 50-shot span. (Source: ATL03 ATBD Section 7.3) | | bckgrd_rate
CHUNKED | FLOAT(['Unlimited']) | Background count rate based on
the ATLAS 50-shot sum
None | counts / second | The background count rate from the 50-shot altimetric histogram after removing the number of likely signal photons based on Section 5. (Source: ATL03 ATBD Section 7.3) | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Elapsed GPS seconds time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived via Time Tagging) | | pce_mframe_cnt CHUNKED | UINT_4_LE(['Unlimited']) | PCE Major frame counter
None | counts | Major Frame ID - The major frame ID is read from the DFC and starts counting at DFC POR. The counter is used to identify individual major frames across diag and science packets. This counter can go for about 2.7 years before rolling over. It is in the first time tag science packet. Used as part of the photon ID (Source: ATL02) | | Group: /profile_x/calibration | | Contains calibration data associate | ed with a PCE strong bea | am. | | data_rate | (Attribute) | Data within this group stored at a low rate corresponding to the number of times ATLAS passes with the calibration boundary conditions (lat > 60 and solar_angle > 90)/ | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | cal_c
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Calculated Calibration constant
None | Photons*m^3 *sr / J | Calculated calibration constant (one per beam, Defined by Atmosphere ATBD eqn 3.27) (Source: Atmosphere ATBD) | |----------------------------|-------------------------------------|---|------------------------------|--| | cal_c_trans
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | total transmission used
None | 1 | The total
transmission used to compute cal_const. (Source: Atmosphere ATBD) | | cal_con
CHUNKED | INTEGER(['Unlimited']) INVALID_I4B | Calibration Confidence
None | 1 | Calibration Confidence
(Source: Atmosphere ATBD) | | cal_molec
CHUNKED | FLOAT(['Unlimited']) INVALID_R4B | Molecular Backscatter used
None | m-1 sr-1 | Molecular Backscatter value used to compute cal_const. (Source: Atmosphere ATBD) | | cal_nrb
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | NRB value used
None | 1 | NRB value used to compute cal_const. (Source: Atmosphere ATBD) | | cal_ozone_trans
CHUNKED | FLOAT(['Unlimited'])
INVALID_R4B | Ozone transmission used None | 1 | Ozone transmission term used to compute cal_const. (Source: Atmosphere ATBD) | | delta_time
CHUNKED | DOUBLE(['Unlimited']) | Calibration interval start time time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00:000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Derived via Time Tagging) | | delta_time_end CHUNKED | DOUBLE(['Unlimited']) | Calibration interval end time time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch where the cal interval ended. The corresponding start time of the interval is delta_time. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00.000000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. (Source: Atmosphere ATBD) | | latitude
CHUNKED | DOUBLE(['Unlimited']) | Calibration interval start Latitude latitude | degrees_north | Start Latitude of calibration interval. (Source: Atmosphere ATBD) | | latitude_end
CHUNKED | DOUBLE(['Unlimited']) | Calibration interval end latitude None | degrees_north | Stop Latitude of calibration interval. (Source: Atmosphere ATBD) | | longitude
CHUNKED | DOUBLE(['Unlimited']) | Calibration interval start longitude longitude | degrees_east | Start Longitude of calibration interval. (Source: Atmosphere ATBD) | | longitude_end
CHUNKED | DOUBLE(['Unlimited']) | Calibration interval end longitude None | degrees_east | Stop Longitude of calibration interval. (Source: Atmosphere ATBD) | | Group: /quality_assessment | | Contains quality assessment data. summary data. | This may include QA co | unters, QA along-track data and/or QA | | | | | | | | Label
(Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | |-----------------------------------|-----------------------------|---|------------------------------|---| | qa_granule_fail_reason
COMPACT | INTEGER([1]) | Granule Failure Reason
None | 1 | Flag indicating granule failure reason. 0=no failure; 1=processing error; 2=Insufficient output data was generated; 3=TBD Failure; 4=TBD_Failure; 5=other failure. (Source: Operations); (Meanings: [0 1 2 3 4 5]) (Values: ['no_failure' 'PROCESS_ERROR' 'INSUFFICIENT_OUTPUT' 'failure_3' 'failure_4' 'OTHER_FAILURE']) | | qa_granule_pass_fail
COMPACT | INTEGER([1]) | Granule Pass Flag
None | 1 | Flag indicating granule quality. 0=granule passes automatic QA. 1=granule fails automatic QA. (Source: Operations); (Meanings: [0 1]) (Values: ['PASS' 'FAIL']) | | Group: /quality_assessment/pro | ofile_x | Contains quality assessment data | for each profile | | | Label (Layout) | Datatype(Dims)
Fillvalue | long_name
standard_name | units | description | | back1_avg
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Background Method 1 Avg
None | counts | Background method 1 average (Source: Atmosphere ATBD) | | back1_max
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Background Method 1 Max
None | counts | Background method 1 max (Source: Atmosphere ATBD) | | back1_min
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Background Method 1 Min
None | counts | Background method 1 min (Source: Atmosphere ATBD) | | back2_avg
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Background Method 2 Avg
None | counts | Background method 2 average (Source: Atmosphere ATBD) | | back2_max
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Background Method 2 Max
None | counts | Background method 2 max (Source: Atmosphere ATBD) | | back2_min
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Background Method 2 Min
None | counts | Background method 2 min (Source: Atmosphere ATBD) | | back3_avg
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Background Method 3 Avg
None | counts | Background method 3 average (Source: Atmosphere ATBD) | | back3_max
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Background Method 3 Max
None | counts | Background method 3 max (Source: Atmosphere ATBD) | | back3_min
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Background Method 3 Min
None | counts | Background method 3 min (Source: Atmosphere ATBD) | | cal_c_avg
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Average of the Calibration constant None | Photons*m^3 *sr / J | Average of the calculated calibration constant (Defined by Atmosphere ATBD eqn 3.27) (Source: Atmosphere ATBD) | | cal_c_std
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Standard Deviation of the Calibration constant None | Photons*m^3 *sr / J | Standard Deviation of the calculated calibration constant (Defined by Atmosphere ATBD eqn 3.27) (Source: Atmosphere ATBD) | | delta_time
CONTIGUOUS | DOUBLE([1]) | QA start time time | seconds since 2018-
01-01 | Number of GPS seconds since the ATLAS SDP epoch. The ATLAS Standard Data Products (SDP) epoch offset is defined within /ancillary_data/atlas_sdp_gps_epoch as the number of GPS seconds between the GPS epoch (1980-01-06T00:00:00:00:00000Z UTC) and the ATLAS SDP epoch. By adding the offset contained within atlas_sdp_gps_epoch to delta time parameters, the time in gps_seconds relative to the GPS epoch can be computed. | | | • | | | | |----------------------------|---------------------------|---|---------|--| | | | | | (Source: Derived via Time Tagging) | | ht_diff_avg
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Ht Diff Avg
None | meters | Average of the surface height minus
the DEM height
(Source: Atmosphere ATBD) | | n_val_cal
CONTIGUOUS | INTEGER([1]) | Number valid calibration constants None | counts | Number valid calibration constants (Source: Atmosphere ATBD) | | surf_pct
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Surface Percentage
None | percent | Percent time surface height was detected (Source: Atmosphere ATBD) | | surf_sig_avg
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Surface signal average
None | photons | Surface signal average
(Source: Atmosphere ATBD) | | surf_sig_max
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Surface signal max
None | photons | Surface signal max
(Source: Atmosphere ATBD) | | surf_sig_min
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Surface signal min
None | photons | Surface signal min
(Source: Atmosphere ATBD) | | tx_nrg_avg
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Average of the laser energy
None | joules | Average of the laser energy (Source: Atmosphere ATBD) | | tx_nrg_std
CONTIGUOUS | FLOAT([1])
INVALID_R4B | Standard Deviation of the laser energy None | joules | Standard Deviation of the laser energy (Source: Atmosphere ATBD) |