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Algorithm Theoretical Basis Documents (ATBDs) provide the physical and mathematical 
descriptions of the algorithms used in the generation of science data products. The ATBDs include a 
description of variance and uncertainty estimates and considerations of calibration and validation, 
exception control and diagnostics.  Internal and external data flows are also described.  
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1 INTRODUCTION 

This document is the Algorithm Theoretical Basis Document (ATBD) for the surface soil 
moisture data product created by combining the SMAP L-band (~1.4 GHz) radiometer and the 
Copernicus Sentinel-1A/1B C-band (~5.405 GHz) radar observations, respectively.  

    SMAP Requirement: Baseline Science Mission 
 

a) The baseline science mission shall provide estimates of soil moisture in the top 5 cm of soil 
with an error of no greater than 0.04 [m3 m-3] volumetric (one sigma) at 10 km spatial 
resolution and 3-day average intervals over the global land area excluding regions of snow 
and ice, frozen ground, mountainous topography, open water, urban areas, and vegetation 
with water content greater than 5 [kg m-2] (averaged over the spatial resolution scale); 

 
The SMAP-Sentinel active-passive soil moisture product (L2_SM_SP) is not mandated to meet 

the SMAP Baseline Science Mission requirement. However, a best effort will be made for the 
L2_SM_SP product to meet the accuracy requirement at 9 km spatial resolution. This document 
provides the theoretical basis and technical description of the L2_SM_SP product. 
 

 

1.1 Overview and Background 

The important role of surface soil moisture as a terrestrial hydrology state variable is well 
recognized. Various applications like weather forecasting, climate change prediction, agricultural 
production, water resources management, drought prediction, flood area mapping, and ecosystem 
health monitoring require information on surface soil moisture for skillful modeling and forecasting. 
The outcomes from these applications have direct impact on human society and the management of 
our environment. Therefore, mapping surface soil moisture with sufficient accuracy over the required 
ranges of spatial and temporal scales is imperative to fulfill the needs of these applications. 

 
Surface soil moisture can be measured over a range of scales from point scale (in situ) to 

coarse scale at various temporal resolutions. At point scale soil moisture measurements are conducted 
using in situ measurement networks (e.g., SCAN sites and Oklahoma Mesonet in the continental 
United States) that can have high accuracy but are spatially very sparse. Coarse scale (> 40 km) soil 
moisture measurements are obtained from satellite-based footprints using L-, C- and X-band 
radiometers (e.g., SMOS, AMSR-E, and WindSat) [1-2]. The satellite-based C- and X-band 
radiometers have shallow sensing depth (< 2 cm) and also have significantly reduced sensitivity to 
soil moisture for even small amounts of vegetation, leading to high retrieval errors in soil moisture 
estimates over vegetated regions [1].  Satellite-based C-band radars such as the ERS scatterometer 
also have coarse resolution (~50 km) and have been used to retrieve surface soil moisture over 
sparsely vegetated regions with moderate accuracy. The European Space Agency’s (ESA) Soil 
Moisture and Ocean Salinity (SMOS) mission, launched in November, 2009, is the first wide-swath 
L-band soil moisture mission, and has retrieved soil moisture over a much higher range of vegetation 
conditions at a spatial resolution of ~40 km with a sensing depth of ~5 cm [2], an improvement over 
the C-band radiometers of AMSR-E and WindSat.  

 
All these measurement technologies only partially satisfy the required criteria of high spatial 

and temporal resolution, wide spatial coverage, optimal sensing depth and desired accuracy in 
retrieved soil moisture over moderate vegetation conditions. Surface soil moisture retrieved using 
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these approaches is not suitable for hydrometeorology, ecology, water resource management, and 
agronomy because these applications require high spatial (< 10 km) and temporal (< 3 days) 
resolution soil moisture information. Recognizing the importance of fine spatial and temporal 
resolution surface soil moisture measurements with global coverage, the Soil Moisture Active Passive 
(SMAP) mission focused on producing a high spatial resolution (<=9 km) soil moisture using the 
Active-Passive ( radar + radiometer)  approach/algorithm that benefits the fields of hydrology, 
meteorology and ecology for potential geophysical applications and scientific advances. 

 

1.2 The Soil Moisture Active Passive (SMAP) Mission 

1.2.1 Science Objectives  

The National Research Council’s (NRC) Decadal Survey, Earth Science and Applications 
from Space: National Imperatives for the Next Decade and Beyond, was released in 2007 after a two 
year study commissioned by NASA, NOAA, and USGS to provide them with prioritized 
recommendations for space-based Earth observation programs [3].  Factors including scientific value, 
societal benefit and technical maturity of mission concepts were considered as criteria. The NRC 
recommended SMAP data products that have high science value and provide data towards improving 
many natural hazards applications. Furthermore, SMAP draws on the significant design and risk-
reduction heritage of the Hydrosphere State (Hydros) mission [4]. For these reasons, the NRC report 
placed SMAP in the first tier of missions in its survey. In 2008 NASA announced the formation of 
the SMAP project as a joint effort of NASA’s Jet Propulsion Laboratory (JPL) and Goddard Space 
Flight Center (GSFC), with project management responsibilities at JPL. The target launch date was 
late 2014 [5].  SMAP actually launched on January 31, 2015. 

The SMAP science and applications objectives are to: 

• Understand processes that link the terrestrial water, energy and carbon cycles; 
• Estimate global water and energy fluxes at the land surface; 
• Quantify net carbon flux in boreal landscapes; 
• Enhance weather and climate forecast skill; 
• Develop improved flood prediction and drought monitoring capability; 
• Improve the agricultural applications. 

 

1.2.2 Measurement Approach 

Table 1 is a summary of the SMAP instrument functional requirements derived from its 
science measurement needs. The goal is to combine the attributes of the radar and radiometer 
observations (in terms of their spatial resolution and sensitivity to soil moisture, surface roughness, 
and vegetation) to estimate soil moisture at a resolution of 10 km, and freeze-thaw state at a resolution 
of 1-3 km. An active-passive (radar + radiometer) approach/algorithm [5] was considered to provide 
high spatiotemporal resolution soil moisture product to meet the SMAP science and applications 
objectives. 

 
The SMAP instrument originally incorporated an L-band radar and an L-band radiometer that 

shared a single feedhorn and parabolic mesh reflector. As shown in Figure 1, the reflector is offset 
from nadir and rotates about the nadir axis at 14.6 rpm (nominal), providing a conically scanning 
antenna beam with a surface incidence angle of approximately 40°. The provision of constant 
incidence angle across the swath simplifies the data processing and enables accurate repeat-pass 
estimation of soil moisture and freeze/thaw change. The reflector has a diameter of 6 m, providing a 
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radiometer 3 dB antenna footprint of 40 km (root-ellipsoidal-area). The real-aperture radar footprint 
was 30 km, defined by the two-way antenna beamwidth. SMAP real-aperture radar and radiometer 
data were planned to be collected globally during both ascending and descending passes.  

 
To obtain the desired high spatial resolution the radar employs range and Doppler 

discrimination. The radar data can be processed to yield resolution enhancement to 1-3 km spatial 
resolution over the 70% outer parts of the 1000 km swath. Data volume prohibits the downlink of the 
entire radar data acquisition.  Radar measurements that allow high-resolution processing will be 
collected during the morning overpass over all land regions and extending one swath width over the 
surrounding oceans.  During the evening overpass data poleward of 45° N will be collected and 
processed as well to support robust detection of landscape freeze/thaw transitions. 

 
The baseline orbit parameters are: 

▪ Orbit Altitude: 685 km (2-3 days average revisit and 8-days exact repeat) 
▪ Inclination: 98 degrees, sun-synchronous 
▪ Local Time of Ascending Node: 6 pm 

 
Table 1. SMAP Mission Requirements 

Scientific Measurement Requirements Instrument Functional Requirements 

Soil Moisture: 
~0.04 m3m-3 volumetric accuracy(1-sigma)  in the 
top 5 cm for vegetation water content ≤ 5 kg m-2; 
Hydrometeorology at ~10 km resolution; 
Hydroclimatology at ~40 km resolution 

L-Band Radiometer (1.41 GHz): 
Polarization: V, H, T3 and T4 

Resolution: 40 km 
Radiometric Uncertainty*: 1.3 K 
L-Band Radar (1.26 and 1.29 GHz): 
Polarization: VV, HH, HV (or VH) 
Resolution: 10 km 
Relative accuracy*: 0.5 dB (VV and HH) 
Constant incidence angle** between 35° and 
50° 

Freeze/Thaw State: 
Capture freeze/thaw state transitions in integrated 
vegetation-soil continuum with two-day precision, 
at the spatial scale of land-scape variability (~3 
km). 

L-Band Radar (1.26 GHz and 1.29 GHz):   
Polarization: HH 
Resolution: 3 km 
Relative accuracy*: 0.7 dB (1 dB per channel 
if 2 channels are used) 
Constant incidence angle** between 35° and 
50° 

Sample diurnal cycle at consistent time of day 
(6am/6pm Equator crossing); 
Global, ~3 day (or better) revisit; 
Boreal, ~2 day (or better) revisit 

Swath Width: ~1000 km 
 
Minimize Faraday rotation (degradation factor 
at L-band) 

Observation over minimum of three annual cycles Baseline three-year mission life 
* Includes precision and calibration stability     
** Defined without regard to local topographic variation 

 
 
The SMAP radiometer measures the four Stokes parameters, V, H and T3, and T4 at 1.41 GHz.  

The T3-channel measurement can be used to correct for possible Faraday rotation caused by the 
ionosphere, although such Faraday rotation is minimized by the selection of the 6am/6pm sun-
synchronous SMAP orbit.   
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At L-band anthropogenic Radio Frequency Interference (RFI), principally from ground-
based surveillance radars, can contaminate both radar and radiometer measurements. Early 
measurements and results from the SMOS mission indicate that in some regions RFI is present and 
detectable. The SMAP radar and radiometer electronics and algorithms have been designed to include 
features to mitigate the effects of RFI. To combat this, the SMAP radar utilizes selective filters and 
an adjustable carrier frequency in order to tune to pre-determined RFI-free portions of the spectrum 
while on orbit. The SMAP radiometer will implement a combination of time and frequency diversity, 
kurtosis detection, and use of T4 thresholds to detect and where possible mitigate RFI.   

 
            The SMAP current data products are listed in Table 2. Level 1B and 1C data products are 
calibrated and geolocated instrument measurements of surface radar backscatter cross-section and 
brightness temperatures derived from antenna temperatures. Level 2 products are geophysical 
retrievals of soil moisture on a fixed Earth grid based on Level 1 products and ancillary information; 
the Level 2 products are output on half-orbit basis. Level 3 products are daily composites of Level 2 
surface soil moisture and freeze/thaw state data. Level 4 products are model-derived value-added data 
products that support key SMAP applications and more directly address the driving science questions.  

 
 

 
 

Figure 1: The SMAP observatory is a dedicated spacecraft with a rotating 6-m light-weight 
deployable mesh reflector. The radar and radiometer share a common feed. 
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Table 2. SMAP Data Products Table. 

 
 
Currently, SMAP has a non-functioning L-band radar, although the L-band radiometer 

continues to operate nominally producing high-quality global data. On July 7th, 2015, the SMAP radar 
malfunctioned and ceased transmitting. Consequently, the production of high-resolution active-
passive algorithm-based soil moisture products (L2_SM_AP and L3_SM_AP) became impossible, 
and only ~2.5 months (April 15th, 2015 to July 7th, 2015) of SMAP radar data are available [6]. 
Therefore, during the SMAP post-radar phase, many ways were examined to restart the high-
resolution soil moisture product generation of the SMAP mission. One of the feasible approaches was 
to substitute - other available SAR data for the SMAP radar. The Copernicus Sentinel-1A and 
Sentinel-1B SAR data were found most suitable for combining with the SMAP radiometer data 
because of their  similar orbit configuration that allows overlapping of the SMAP/Sentinel swaths 
with a minimal time difference, a key feature/requirement for the SMAP active-passive algorithm. 
The Sentinel-1A/1B interferometric wide swath (IW) mode acquisition also provides the co-polarized 
and cross-polarized observations required for the SMAP active-passive algorithm. However, some 
differences do exist between the SMAP and Sentinel-1A/1B SAR data. They are mainly: 1) Sentinel 
has a C-band SAR whereas SMAP operates at L-band; 2) Sentinel has multiple incidence angles 
within its swath, and SMAP has one single incidence angle; and 3) Sentinel-1A/1B Interferometric 
Wide (IW) swath width is ~250 km as compared to SMAP with 1000 km swath width. On any given 
day, the narrow swath width of the Sentinel-1A/1B observations significantly reduces the overlap 
spatial coverage between SMAP and Sentinel as compared to the original SMAP radar and radiometer 
swath coverage. Hence, the temporal resolution (revisit interval) suffers due to narrow overlapped 
swath width and degrades from 3 days to 12 days. One advantage of using very high-resolution 
resolution Sentinel-1A/1B data in the SMAP active-passive algorithm is the potential of obtaining the 
disaggregated brightness temperature and thus soil moisture at a much finer spatial resolution of 3 
km and 1 km at global extent. Assessment of the high-resolution product at 3 km and 1 km using 
SMAP’s soil moisture calibration and validation sites shows reasonable accuracy of ~0.05 m3/m3 
volumetric soil moisture. The SMAP-Sentinel active-passive high-resolution product is now available 
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to the public (new version released in October 2018) through NSIDC (NASA DAAC). The duration 
of this product is from April 2015 to current date. 

 
 

1.3 Product Objectives 

SMAP radiometer measurements in the L-band frequency range are sensitive to surface (~0-
5 cm) soil moisture, but with the SMAP 6 m reflector antenna, the effective ground resolution is about 
40 km. The Copernicus Sentinel-1A/1B C-band SAR provides higher resolution (~30 m) backscatter 
measurements. The high-resolution advantage of radar is diminished for soil moisture sensing by the 
higher sensitivity of radar to surface roughness and vegetation scattering. 

Soil moisture variations lead to a dynamic range in brightness temperature that can be tens of 
degrees Kelvin [7, 8, 9].  The SMAP radiometer can map the surface to within a few degrees of Kelvin 
accuracy. Soil moisture variations cause only about 5 to 10 dB range in the Sentinel-1A/1B radar 
backscatter cross-section. With a typical instrument sensitivity of about 1 dB and a distributed target 
ambiguity of -22 dB, this leads to relatively less soil moisture sensitivity for the instrument. 
Furthermore, the presence of a vegetation canopy reduces the dynamic range of radar backscatter 
cross-section faster than radiometer brightness temperature.  

 
For the above reasons, neither the SMAP radiometer nor the Sentinel-1A/1B radar can 

individually meet the SMAP Level 1 requirements for soil moisture spatial resolution (10 km) and 
accuracy (0.04 cm3/cm3). This ATBD proposes a high-resolution soil moisture by merging the active 
(Sentinel-1A/1B radar) and passive (SMAP radiometer) measurements to derive 1 km and 3 km 
products (L2_SM_SP) that meets the L1 spatial resolution requirements of the SMAP mission; 
however, meeting the SMAP L1 temporal resolution requirement is not possible through this product 
because of the ~6-12 day revisit interval of the Sentinel-1A/1B spacecrafts. 

 
Relative to one another, the SMAP radiometer brightness temperature measurements are 

coarser resolution but with higher sensitivity to soil moisture, while the Sentinel-1A/1B radar 
backscatter cross-section measurements are higher-resolution but with reduced sensitivity to soil 
moisture especially over densely vegetated land surfaces. The L2_SM_SP soil moisture product 
merges the two measurements to produce soil moisture retrievals with 3 km and 1 km resolution. 

1.4 Historical Perspective 

In the past, numerous studies [11, 12, 13, 14] have attempted to obtain high-resolution soil 
moisture by downscaling coarse resolution (~50 km) soil moisture products from satellite-based 
microwave radiometers. These studies used fine scale ancillary geophysical information like 
topography, vegetation, soil type, and precipitation that exert physical control over the evolution of 
soil moisture. High-resolution thermal infrared data from MODIS and soil parameters were utilized 
in a deterministic approach to disaggregate SMOS ~40 km soil moisture product to ~10 km soil 
moisture estimate [15]. From all these approaches, one common aspect is the use of static and 
dynamic ancillary geophysical data in the downscaling/disaggregation process. The ancillary 
geophysical data come from different sources with inherent systematic and random errors, as well as 
registration mismatches that affect the accuracy of the downscaled soil moisture estimates. Also, the 
physics of interactions between soil moisture and some geophysical parameters at different scales is 
not well understood.  
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Few studies have been conducted to merge high-resolution radar and coarse resolution 

radiometer measurements in order to obtain an intermediate resolution product. Change detection 
techniques have demonstrated potential to monitor temporal evolution of soil moisture by taking 
advantage of the approximately linear dependence of radar backscatter and brightness temperature 
change on soil moisture change. The feasibility of a change detection approach using the Passive and 
Active L-band System airborne sensor (PALS) radar and radiometer data obtained during the SGP99 
campaign is presented in [16]; a similar approach is used to downscale PALS data using AIRSAR 
data from the SMEX02 campaign. The limitation of this technique is the estimation of soil moisture 
relative change and not the absolute value of soil moisture; errors also accumulate over time. A totally 
different approach is presented in [17], where a Bayesian method is used to downscale radiometer 
observations using radar measurements. Kim et al. [18] developed a time-series algorithm based on a 
linear model of backscatter and soil moisture. For estimating soil moisture at intermediate resolution 
(9 km), they determine the two unknowns of the linear model for each pixel within the coarse 
radiometer pixel. Piles et al. [19] presented a change detection scheme within a SMAP-like context 
that uses the approximately linear dependence of change in radar backscatter to soil moisture change 
at radiometer resolution, temporal change in backscatter at radar resolution and previous day soil 
moisture data to estimate soil moisture at ~9 km. Like [19], this approach also suffers from 
accumulation of errors over time. A spatial variability technique developed by [20] to blend SMAP 
radar measurement and radiometer-based soil moisture data also takes advantage of the approximately 
linear dependence of backscatter change to soil moisture change at the radiometer resolution which 
constraints the relative backscatter difference within the coarse radiometer footprint to estimate soil 
moisture at ~9 km resolution. Unlike [16] and [18], the spatial variability technique used in [20] does 
not require the previous satellite overpass observations to estimate the current soil moisture value. A 
new active-passive algorithm is developed by [21] that draws from all the above algorithms and 
techniques ([16], [18], [19], and [20]). The new active-passive algorithm [21] downscales the coarse-
scale radiometer-based gridded brightness temperature using the fine resolution radar backscatter, 
and then near surface soil moisture is retrieved from the downscaled brightness temperature. The 
algorithm presented by [21] is the baseline active-passive algorithm to produce the SMAP-only 
active-passive product (L2_SM_AP) for the ~2.5 months during which the SMAP radar was 
operational. An article describing the L2_SM_AP algorithm and product was also published by Das 
et al., [22]. With the failure of SMAP L-band radar, the L2_SM_AP product was discontinued. 
Therefore, during the SMAP post-radar phase, many ways were examined to restart the high-
resolution soil moisture product generation of the SMAP mission. One of the feasible approaches was 
to substitute the SMAP radar with other available SAR data. The Copernicus Sentinel-1A/1B SAR 
data were found most suitable for combining with the SMAP radiometer data because of the  similar 
Sentinel orbit configuration that allows overlapping with SMAP swaths with a minimal time 
difference, a key feature/requirement for the algorithm. The SMAP active-passive algorithm 
presented in [21] and [22] was further modified to accommodate Sentinel-1A/1B C-band SAR data 
to produce new enhanced high-resolution (3 km and 1 km) soil moisture data at global extent [23]. 
The modified SMAP active-passive algorithm is now described in detail in Section 3.2. 
 

1.5 Product Characteristics 

The L2_SM_SP product is based on the merger of the SMAP radiometer and processed 
Sentinel-1A/1B SAR observations at two discrete grid resolutions, i.e., ~33 km and ~1 km, 
respectively. The Equal-Area-Scalable-Earth 2.0 (EASE2) grid cells of the SMAP radiometer product 
and processed Sentinel-1A/1B SAR product nest perfectly. The grid definition used in the algorithms 
is illustrated in Fig. 2 (Section 3.1). The modified SMAP active-passive algorithm disaggregates the 
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coarse resolution radiometer brightness temperature product based on the spatial variation in high-
resolution Sentinel-1A/1B SAR backscatter. In addition, the algorithms require static and dynamic 
ancillary data. These ancillary data are resampled to the same EASE2 grid prior to ingestion in the 
L2_SM_SP processing. The dynamic ancillary data used to retrieve soil moisture for particular 1 km 
and 3 km EASE2 grid cells at a specific point in time are listed in the SMAP L2_SM_SP output files 
for the benefit of end users. 

 

1.6 Document Outline 

This document contains the following sections: Section 2 describes the basic physics of 
combining passive microwave and active microwave remote sensing (this Section is similar to the 
Section in the SMAP-only active-passive ATBD [24]; Section 3 provides description and formulation 
of the L2_SM_SP algorithm; Section 4 presents the test of the L2_SM_SP active-passive algorithm; 
Section 5 discusses the practical consideration for implementing the algorithm and generating the 
L2_SM_SP product; Section 6 provides description of calibration and validation, quality control, and   
other practical considerations; Section 7 the product specifications table; Section 8 describes possible 
future work on the algorithm, and; Section 9 provides a list of references. 

 

2  PHYSICS OF THE PROBLEM 

The SMAP active-passive algorithm is essentially focused on the disaggregation of the 
radiometer brightness temperature using the radar backscatter spatial patterns within the radiometer 
footprint that are inferred from the radar measurements. The spatial patterns need to account for the 
different levels of radar backscatter cross-section sensitivity to soil moisture owing to the variability 
in the density of vegetation cover and surface roughness. For this reason the radar measurements 
within the radiometer footprint are scaled by parameters that are derived from the temporal 
fluctuations in the radar and radiometer measurements. Because the radiometer and the radar make 
measurements over the same location within a given time window, the co-variations over specified 
periods of time (short relative to plant phenology) are mostly related to surface soil moisture changes 
rather than contributions of vegetation and surface roughness. The latter two factors change gradually 
over long time periods such as monthly/seasonally. 
 

The basis for the brightness temperature disaggregation based on radar measurements begins 
with relating the radiometer measurements with the radar backscatter cross-section measurements in 
a simple conceptual framework as outlined in this section. This analysis is meant to simply 
demonstrate the dependencies and it is not directly (i.e., algebraically) part of the SMAP active-
passive algorithm formulation. 

 
The brightness temperature at polarization p at L-band and its dependency on surface 

characteristics may be demonstrated using the  model (refer to the SMAP ATBD: L2 & L3 
Radiometer Soil Moisture (Passive) Products. SMAP Project, JPL D-66480, Jet Propulsion 
Laboratory): 
 
𝑇𝐵𝑝

= 𝑇𝑠 .  𝑒−𝜏𝑝/𝑐𝑜𝑠𝜃 ∙ 𝑒𝑝 + 𝑇𝑐 ∙ (1 − 𝜔) ∙ (1 − 𝑒−𝜏𝑝/𝑐𝑜𝑠𝜃) ∙ (1 + 𝑟𝑝 ∙ 𝑒−𝜏𝑝/𝑐𝑜𝑠𝜃)  (1) 
 
where Ts is the soil effective temperature, Tc is the vegetation temperature, p is the nadir vegetation 
opacity, p is the vegetation single scattering albedo, and rp is the soil reflectivity [10]. 
 

 −
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At the morning nodal crossing overpass time, near subsurface-to-surface-canopy thermal 
conditions are expected to be nearly isothermal so that 𝑇𝑠 ≈ 𝑇𝑐 ≡ 𝑇. Under low vegetation cover 
conditions, with the assumption that the single-scattering albedo can be neglected so that  𝜔 ≪ 1. 
The polarized emissivity and reflectivity are related by 𝑒𝑝 = 1 − 𝑟𝑝. Using these assumptions and 
identities, (1) becomes simply: 
 

𝑇𝐵𝑝
= 𝑇(1 − 𝑟𝑝)𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃      (2) 

 
The surface reflectivity can be decomposed into a component for smooth surfaces 𝑟𝑠𝑝

 corrected for 
roughness as in 𝑟𝑝 = 𝑟𝑠𝑝

𝑒−ℎ𝑐𝑜𝑠2𝜃 where h is a roughness parameter related to the root-mean-square 
(RMS) deviations of surface roughness. Now (2) becomes: 
 
 𝑇𝐵𝑝

= 𝑇 ∙ (1 − 𝑟𝑠𝑝
∙ 𝑒−ℎ𝑐𝑜𝑠2𝜃) 𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃                               (3) 

 
The radar backscatter cross-section for co-polarization pp at (L-band or C-band) is: 
 
 𝜎𝑝𝑝

𝑡 = 𝜎𝑝𝑝∙
𝑠𝑢𝑟𝑓𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃 + 𝜎𝑝𝑝

𝑣𝑜𝑙 + 𝜎𝑝𝑝
𝑖𝑛𝑡      (4) 

 
The first term is the surface backscatter, 𝜎𝑝𝑝

𝑠𝑢𝑟𝑓 , modified by the two-way attenuation through a 
vegetation layer of nadir opacity p. The second term represents the backscatter from the vegetation 
volume, 𝜎𝑝𝑝

𝑣𝑜𝑙. The third term represents interactions between vegetation and the soil surface, 𝜎𝑝𝑝
𝑖𝑛𝑡. 

 
From the empirical models presented in [22] and [23], the surface contribution 𝜎𝑝𝑝

𝑠𝑢𝑟𝑓  is 

conceptualized as the product of polarization magnitude |𝛼𝑝𝑝|
2
 and surface roughness characteristics 

as captured in a function 𝑓1(𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠) as in: 
 
 𝜎𝑝𝑝

𝑠𝑢𝑟𝑓 = 𝑓1(𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠) ∙ |𝛼𝑝𝑝|
2
      (5) 

 
The polarization magnitude |𝛼𝑝𝑝|

2
 is a function of soil dielectric properties and incidence angle.  It 

is related to the soil reflectivity 𝑟𝑠𝑝
 in the horizontal co-polarization if the center-frequency of the 

radar and radiometer are close. In the vertical co-polarization, the polarization magnitude and soil 
reflectivity are near-linearly proportional but not equivalent. Given the proportionality |𝛼𝑝𝑝|

2
∝ 𝑟𝑠𝑝

 
through conservation of energy, the linear coefficients of the relationship may be absorbed in the 
empirical function 𝑓1(𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠) so that: 
 
 𝜎𝑝𝑝

𝑠𝑢𝑟𝑓
= 𝑓1(𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠) ∙ 𝑟𝑠𝑝

       (6) 
 
The interaction term 𝜎𝑝𝑝

𝑖𝑛𝑡  is a complex function of vegetation properties, soil roughness 
characteristics as well as surface reflectivity.  The interaction term may be written as: 
 
 𝜎𝑝𝑝

𝑖𝑛𝑡 = 𝑓2(𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛) ∙ 𝑟𝑠𝑝
     (7) 

 
using a function 𝑓2(𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛) that depends on surface roughness and vegetation in 
complex ways.  The vegetation volume scattering 𝜎𝑝𝑝

𝑣𝑜𝑙  is a complex function of vegetation alone 
through a third function 𝑓3(𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛) as in: 



 JPL D-104870 
Oct 31, 2019 SMAP-Sentinel L2 Soil Moisture (Active/Passive) ATBD 
 

 16 

  
 𝜎𝑝𝑝

𝑣𝑜𝑙 = 𝑓3(𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛)        (8) 
 
Now the radar backscatter cross-section for co-polarization pp is: 
 
 𝜎𝑝𝑝

𝑡 = 
        𝑓1(𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠) ∙ 𝑟𝑠𝑝

∙ 𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃 
       +𝑓2(𝑟𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠, 𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛) ∙ 𝑟𝑠𝑝

 
       +𝑓3(𝑣𝑒𝑔𝑒𝑡𝑎𝑡𝑖𝑜𝑛) 
 
Solve for 𝑟𝑠𝑝

: 
 
 𝑟𝑠𝑝

=
1

𝑓1∙𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃+𝑓2
∙ (𝜎𝑝𝑝

𝑡 − 𝑓3)      (9) 

 
The dependencies of the functions 𝑓1 , 𝑓2  and 𝑓3  are not carried forward in order to simplify the 
notation in (9).  They depend on surface roughness, vegetation characteristics and incidence angle in 
complex ways.  Owing to the conical scan strategy adopted by SMAP, they are, however, not 
dependent on incidence angle which is usually a confounding factor in radar backscatter modeling 
and retrievals.  
 
Substituting (9) into (3) yields: 
 

 𝑇𝐵𝑝
= 𝑇 (1 −

𝑒−ℎ𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃

𝑓1∙𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃+𝑓2
∙ (𝜎𝑝𝑝

𝑡 − 𝑓3))      

 
or: 
 

 
𝑇𝐵𝑝

𝑇
= [1 +

𝑒−ℎ𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃

𝑓1∙𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃+𝑓2
∗ 𝑓3] + [−

𝑒−ℎ𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃

𝑓1∙𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃+𝑓2

]   ∙ 𝜎𝑝𝑝   (10) 

 
which suggests a linear functional dependence of brightness temperature and radar backscatter cross-

section in the presence of vegetation canopy. The slope [𝛽 ≡ −
𝑒−ℎ𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃

𝑓1∙𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃+𝑓2

] and intercept 𝛼 ≡

[1 +
𝑒−ℎ𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃

𝑓1 ∙𝑒−2𝜏𝑝/𝑐𝑜𝑠𝜃+𝑓2
∗ 𝑓3] are dependent on vegetation, surface roughness characteristics, and viewing 

angle.   
 
 

3 RETRIEVAL ALGORITHM 

3.1 Grid Definition 

Figure 2 shows the nested grid topology of the EASE2 grid radiometer brightness temperature 
(33 km), EASE2 grid radar backscatter cross-section (1 km), and desired merged active-passive 
L2_SM_SP (3 km) products.  For convenience in mathematical formulation, the naming convention 
of ‘C’ (coarse), ‘F’ (fine), and ‘M’ (medium) for the L3_SM_P_E (33 km resolution, however, 
gridded at 9 km), S0_HiRes (Sentinel-1A/1B processed and upscaled to 1 km), and L2_SM_SP  grid 
scales, respectively, is used throughout the following sections. It is evident from the grid topology 
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(Fig. 2) that within a single (nc = 1) 33 km x 33 km grid cell of C there are nm = 121 grid cells of M, 
and nf = 1089 grid cells of F.  
 

 
Figure 2: Grid definition of radiometer, radar, and merge product where nf and nm are the number 
of area pixels of radar and merged product, respectively, within one radiometer area pixel nc. 

 

3.2 Formulation of SMAP-Sentinel L2_SM_SP Algorithm 

The SMAP L-band radiometer will measure the natural microwave emission in the form of 
the brightness temperature (𝑇𝐵𝑝

) of the land surface, while the C-band radar will measure the energy 
backscattered (𝜎𝑝𝑝) from the land surface after transmission of an electromagnetic pulse. With both 
SMAP radiometer and Sentinel-1A/1B radar data over a particular region on the Earth over a short 
period of time, an increase of surface soil moisture or soil dielectric constant will lead to a decrease 
in radiometer TB [10] and an increase in radar σ [11] measurements, and vice-versa. During this short 
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time period TB and σ are negatively correlated due to soil moisture variations in time. The time period 
is generally shorter than seasonal phenology of vegetation. The land surface vegetation and surface 
roughness factors vary on time scales longer that those associated with soil moisture. It should be 
noted that in some agricultural land use regions the vegetation can grow and change attributes rapidly 
over a few days that may be a source of error. Also, precipitation and associated surface disturbances 
can change the soil roughness characteristics that may introduce another source of error. Despite these 
sources of uncertainty, within this region of interest over a short period of time the SMAP measured 
𝑇𝐵𝑝

 and Sentinel-1A/1B 𝜎𝑝𝑝 are expected to have a functional relationship, which based on (10) is 
likely a linear functional relationship: 

 
𝑇𝐵𝑝

 =  𝛼 +   𝛽 ∙  𝜎𝑝𝑝                                          (11) 
 
The unknown parameters α and β are dependent on the dominant vegetation and soil roughness 
characteristics (see discussion following Equation 10). Energy conservation that yields the linear 
dependence in (11) is based on units of power for the radar backscatter cross-section. However, the 
linear functional relationship also holds when 𝜎𝑝𝑝 is expressed in decibel (dB). The TB polarization 
can either be v or h and the σ polarization is either vv or hh. Equation (1) evaluated at scale C (33 km) 
is: 
 
𝑇𝐵𝑝

(𝐶) = 𝛼(𝐶) + 𝛽(𝐶) ∙ 𝜎𝑝𝑝(𝐶)                                                    (12) 
 
Here 𝜎𝑝𝑝(𝐶) = 

1

𝑛𝑓
 ∑ 𝜎𝑝𝑝(𝐹𝑖)𝑛𝑓

𝑖=1 , where F = 1 km grid resolution and nf is the number of F grid cell 
within C (Fig. 2). Equation 12 is based on the assumption that the linear relationship between the 
𝑇𝐵𝑝

(𝐶) and 𝜎𝑝𝑝(𝐶)  holds. Therefore, it is also important to demonstrate that the similar linear 
relationship is found between the SMAP radiometer 𝑇𝐵𝑝

(𝐶) and spatially-averaged Sentinel radar 
data 𝜎𝑝𝑝(𝐶). Figure 3 illustrates the scatters between the SMAP 𝑇𝐵𝑝

(𝐶) and Sentinel 𝜎𝑝𝑝(𝐶) from 
various regions of the world with different land covers having varying amounts of vegetation water 
content (VWC).  
 



 JPL D-104870 
Oct 31, 2019 SMAP-Sentinel L2 Soil Moisture (Active/Passive) ATBD 
 

 19 

 
Figure 3: Scatter plots between the SMAP L-band radiometer 𝑇𝐵𝑝

(𝐶) and spatially-averaged Sentinel 
C-band radar data 𝜎𝑝𝑝(𝐶) from various regions of the world. 
 
   Two years (2017 and 2018) of data are used to create the plots in Fig. 3 wherever there is overlap 
between the SMAP 𝑇𝐵𝑝

(𝐶) and Sentinel 𝜎𝑝𝑝(𝐶). The slope of the correlation between L-band 𝑇𝐵𝑝
(𝐶) 

and the C-band 𝜎𝑝𝑝(𝐶) depends on the level of VWC and the surface roughness. As expected the 
slope is ~0 for very highly vegetated regions such as West Virginia (Fig. 3j). It is obvious from Fig. 
3 that the nearly linear relationship is valid for most of the world. However, low correlation is also 
visible over the dry and arid Sahara desert because the dynamic range in 𝑇𝐵𝑝

(𝐶) and 𝜎𝑝𝑝(𝐶) is not 
observed during the two year period. The number of samples for any given site of Fig. 3 is dependent 
on the availability of the Sentinel-1A/1B granules. With the current global coverage configuration 
from 2016 October onwards including Sentinel-1A and Sentinel-1B, the revisit interval is nearly 12 
days over most parts of the world except Europe. In Europe, the Sentinel-1A and Sentinel-1B 
combination acquires observations at a 6-day revisit interval. Therefore, over the European sites in 
Figure 3 more samples are available. The number of samples also suffers from the SMAP and the 
Sentinel overlap restriction of +/- 24 hours. 
 

To develop the SMAP-Sentinel Active-Passive algorithm further, (11) can also be 
conceptually evaluated at the scale M (3 km) within the radiometer footprint C:   
 
𝑇𝐵𝑝

(𝑀𝑗) = 𝛼(𝑀𝑗) + 𝛽(𝑀𝑗) ∙ 𝜎𝑝𝑝(𝑀𝑗)               (13) 
 
where 𝜎𝑝𝑝(𝑀𝑗) = ∑ 𝜎𝑝𝑝(𝐹𝑖)

𝑛𝑚𝑗

𝑖=1  obtained from the SMAP high-resolution (3 km) radar data product.  
 

Here 𝑇𝐵𝑝
(𝑀𝑗)  is the unknown brightness temperature at scale 𝑀𝑗 . This scale brightness 

temperature is not available given the SMAP radiometer instrument resolution. In fact this variable 
is the target of the algorithm and it is referred to as the disaggregated brightness temperature.  
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The first step in developing the algorithm is to subtract (12) from (13): 
 
𝑇𝐵𝑝

(𝑀𝑗) −  𝑇𝐵𝑝
(𝐶) = {𝛼(𝑀𝑗) − 𝛼(𝐶) } + {[𝛽(𝑀𝑗) ∙ 𝜎𝑝𝑝(𝑀𝑗)] − [𝛽(𝐶) ∙ 𝜎𝑝𝑝(𝐶)] }         (14) 

 
Because 𝑇𝐵𝑝

(𝑀𝑗)   is not available, we cannot estimate the parameters 𝛼(𝑀𝑗)  and 𝛽(𝑀𝑗) in the 
manner that was followed at scale C. The path forward to incorporate the effects of the variations of 
these parameters at scale 𝑀𝑗  with respect to the coarser scale C begins with algebraically rewriting 
(14) as: 
 
  𝑇𝐵𝑝

(𝑀𝑗) 
  = 𝑇𝐵𝑝

(𝐶) +        RHS Term I 
  {𝛽(𝐶) ∙ [𝜎𝑝𝑝(𝑀𝑗) − 𝜎𝑝𝑝(𝐶)]}        RHS Term II 
  +{[𝛼(𝑀𝑗) − 𝛼(𝐶)] + [𝛽(𝑀𝑗) − 𝛽(𝐶)] ∙ 𝜎𝑝𝑝(𝑀𝑗)} RHS Term III          (15) 
 
 
The left-hand-side of (15) is the target variable of the Active-Passive algorithm, i.e. the disaggregated 
brightness temperature at the 3 km scale 𝑀𝑗 .  
 

The first term on the right-hand-side (RHS Term I), 𝑇𝐵𝑝
(𝐶), is the radiometer-measured 

brightness temperature at 33 km or scale 𝐶. This is the brightness temperature corrected for water 
body contributions that is produced during the L2_SM_P_E processing and it is primarily based on 
the radiometer measurement. 

 
The RHS Term II, {𝛽(𝐶) ∙ [𝜎𝑝𝑝(𝑀𝑗) − 𝜎𝑝𝑝(𝐶)]}, can be calculated based on the regression 

parameter 𝛽(𝐶)  that is estimated through the time-series of radiometer brightness temperature 
measurements and radar measurements aggregated to scale 𝐶. The remainder of this second RHS 
term ([𝜎𝑝𝑝(𝑀𝑗) − 𝜎𝑝𝑝(𝐶)]) is also based on the radar measurements aggregated to scales 𝑀𝑗  and 𝐶.  

 
The RHS Term III accounts for the deviations of the parameters α and β within the grid cell 𝐶. 

The term {[𝛼(𝑀𝑗) − 𝛼(𝐶)] + [𝛽(𝑀𝑗) − 𝛽(𝐶)] ∙ 𝜎𝑝𝑝(𝑀𝑗)} is in units of brightness temperature and 
represents subgrid scale (relative to C) heterogeneity effects. The parameters α and β depend on 
vegetation and surface roughness. For a perfectly homogeneous region, the parameters 𝛼(𝑀𝑗) =

𝛼(𝐶) and 𝛽(𝑀𝑗) = 𝛽(𝐶), and the subgrid heterogeneity term becomes zero. However, in nature 
homogeneity within C rarely exists. 
 

The SMAP radar also provided high-resolution cross-polarization radar backscatter 
measurements at scale F which are principally sensitive to vegetation and surface characteristics. The 
subgrid deviation/heterogeneity patterns in vegetation and roughness as captured by the cross-
polarization backscatter at scale 𝑀𝑗  is [𝜎𝑝𝑞(𝐶) − 𝜎𝑝𝑞(𝑀𝑗)] . This indicator can be converted to 
variations in co-polarization backscatter through multiplications by a sensitivity parameter 

[
𝜕𝜎𝑝𝑝(𝑀𝑗)

𝜕𝜎𝑝𝑞(𝑀𝑗)
]

𝐶

. This sensitivity, denoted by the scale 𝐶  variable 𝛤 ≡ [
𝜕𝜎𝑝𝑝(𝑀𝑗)

𝜕𝜎𝑝𝑞(𝑀𝑗)
]

𝐶

, is specific to the 

particular grid cell 𝐶 and the particular season for grid cell 𝐶. It is estimated based on the collection 
of co-polarization and cross-polarization radar backscatter cross-section within each grid cell 𝐶. 

 
The term 𝛤 ∙ [𝜎𝑝𝑞(𝐶) − 𝜎𝑝𝑞(𝑀𝑗)]  is the projection of the cross-polarization subgrid 

deviation onto the co-polarization space. These variations are due to the heterogeneity in parameters 
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α and β in the radar co-polarization space. It can be converted to brightness temperature units for use 
in (15) through multiplication by 𝛽(𝐶) , the particular radiometer grid scale 𝐶  conversion factor 
relating co-polarization backscatter variations to brightness temperature variations. Thus the product 
𝛽(𝐶) ∙ 𝛤 ∙ [𝜎𝑝𝑞(𝐶) − 𝜎𝑝𝑞(𝑀𝑗)] is the contribution of subgrid (subgrid to scale C) variations in α and 
β to the brightness temperature at scale 𝑀𝑗 . The SMAP Active-Passive brightness temperature 
disaggregation algorithm is completed by substituting the term 𝛽(𝐶) ∙ 𝛤 ∙ [𝜎𝑝𝑞(𝐶) − 𝜎𝑝𝑞(𝑀𝑗)] to 
RHS Term III in (15), 
 

𝑇𝐵𝑝
(𝑀𝑗) = 𝑇𝐵𝑝

(𝐶) + 
{𝛽(𝐶) ∙ [𝜎𝑝𝑝(𝑀𝑗) − 𝜎𝑝𝑝(𝐶)]} 

+𝛽(𝐶) ∙ 𝛤 ∙ [𝜎𝑝𝑞(𝐶) − 𝜎𝑝𝑞(𝑀𝑗)]                       (16) 
 
which can be written more compactly as 
 
𝑇𝐵𝑝

(𝑀𝑗) = 𝑇𝐵𝑝
(𝐶) +  𝛽(𝐶) ∙ {[𝜎𝑝𝑝(𝑀𝑗) − 𝜎𝑝𝑝(𝐶)] + 𝛤 ∙ [𝜎𝑝𝑞(𝐶) − 𝜎𝑝𝑞(𝑀𝑗)]}                 (17) 

 
Equation (17) is similar to the originally developed SMAP Active-Passive algorithm ([18], [19], [20]). 
 

For the SMAP-Sentinel1 Active-Passive algorithm, (17) is further modified to work in 
emissivity space instead of brightness temperature space and the Sentinel backscatter are in linear 
scale [-]. 
 
𝑇𝐵𝑝

(𝑀𝑗) = [
𝑇𝐵𝑝(𝐶)

𝑇𝑠
+  𝛽′(𝐶) ∙ {[𝜎𝑝𝑝(𝑀𝑗) − 𝜎𝑝𝑝(𝐶)] + 𝛤 ∙ [𝜎𝑝𝑞(𝐶) − 𝜎𝑝𝑞(𝑀𝑗)]}]  ∙ 𝑇𝑠                                 (18) 

 
where Ts [K] is the emission temperature of the surface soil. The parameter 𝛤 [-] is estimated the 
same way as mentioned above, although in a linear scale. The parameter 𝛽′(𝐶)  [-] is estimated 
through a snapshot approach because the Sentinel revisit interval of 12 days makes the time series of 
the Sentinel 𝜎𝑝𝑝(𝑀) [-] and 𝜎𝑝𝑞(𝑀)  [-] data very sparse. Certain aspects of implementation are 
changed to estimate the 𝛽′(𝐶) to make it more effective and applicable to accommodate the 12- day 
revisit interval of the Sentinel satellite. This modification is essential as with the 12-day Sentinel 
revisit, the  𝑇𝐵𝑝

(𝐶) and 𝜎𝑝𝑝(𝐶) time series is too sparse, and parameter estimation through the time 
series approach is ineffective/unfeasible. With time-series sampling for the 12-day repeat cycle, 
accumulation of enough data pairs is too low to allow the statistical estimation of β(C) over periods 
when the vegetation or soil roughness conditions are changing with seasons, and this does not satisfy 
the basic assumption of the SMAP Active-Passive algorithm. To overcome the limitation of sparse 
times series, a snapshot retrieval approach is adopted to estimate the co-variation parameter from the 
SMAP radiometer and the Sentinel radar observations. The snapshot 𝛽′(𝐶)  is retrieved at each coarse 
grid cell (𝐶) for every overlap between the SMAP and Sentinel observations, and is computed as 
([25] and [26]): 
 

𝛽′(𝐶) =  

𝑇𝐵𝑝
(𝐶)

𝑇𝑠
−(𝛾+(1− 𝜔) (1− 𝛾)) 

 |𝑆𝑝𝑝(𝑀𝑗)|
2

− 𝜇𝑝𝑝−𝑝𝑞∙ |𝑆𝑝𝑞(𝑀𝑗)|
2                                                                                     (19) 

 
where 𝜔 [-] is the effective single scattering albedo, 𝛾 =  𝑒−𝜏 𝑐𝑜𝑠𝜃⁄  [-] is the vegetation loss term, and 
𝜃𝑖  [rad] is the incidence angle. 𝛽′(𝐶)  in (19) results from eliminating smooth surface Fresnel 
reflectivity from the tau-omega model and variations in co-polarized backscatter that are due to soil 
moisture and not vegetation. The numerator is the measured surface emission minus the vegetation 
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volume scattering and emission. The denominator is similarly the co-polarized backscatter minus the 
volume scattering. The volume scattering component in the co-polarized backscatter is the total co-
polarized backscatter minus the projection of the cross-polarized backscatter onto the co-polarized 
backscatter. The projection is 
 
  𝜇𝑝𝑝−𝑝𝑞 = 𝜕|𝑆𝑝𝑝(𝑀𝑗)|

2
𝜕|𝑆𝑝𝑞(𝑀𝑗)|

2
⁄                                                                                           (20) 

 
   The nadir vegetation opacity 𝜏 [-] is related to the physical characteristics of the vegetation 

layer, such as the VWC. |𝑆𝑝𝑝(𝑀𝑗)|
2
 is co-polarized backscatter, where |𝑆𝑝𝑝(𝑀𝑗)|

2
≡  𝜎𝑝𝑝(𝑀𝑗), and 

|𝑆𝑝𝑝(𝑀𝑗)|
2
 is cross-polarized backscatter, where |𝑆𝑝𝑞(𝑀𝑗)|

2
≡  𝜎𝑝𝑞(𝑀𝑗). 𝜇𝑝𝑝−𝑝𝑞 is the same as 𝛤 in 

(2), except using a linear regression of backscattering coefficients (𝜎𝑝𝑝(𝑀𝑗) [-], 𝜎𝑝𝑞(𝑀𝑗) in linear 
units) at fine scale (1 km) within each coarse-resolution TB grid cell (𝑇𝐵𝑝

(𝐶)). This approach to 
estimate 𝛽′(𝐶)  and 𝜇𝑝𝑝−𝑝𝑞  does not require time series of 𝑇𝐵𝑝

(𝐶)  and 𝜎𝑝𝑝(𝐶) . The snapshot 

approach Eq. (19) ([25] and [26]) is capable of accommodating L-band, C-band and X-band 
combinations of the radiometer and SAR observations at different incident angles. On any given 
day, the snapshot estimate of the covariance parameter (𝛽′) is unique and is dependent on the 
radiometer 𝑇𝐵𝑝

 (emissivity), SAR backscatter, 𝜔 [-] (the effective single scattering albedo), and 
γ =  e−τ cosθ⁄  [-] the vegetation loss term (τ  is vegetation optical density and θ is incident angle 
of TB). 

 
   For evaluation of 𝛽′(𝐶) retrieved by the snapshot approach, a comparison was made with 

𝛽(𝐶) derived from the time series purely obtained from data of the SMAP mission (SMAP radar and 
radiometer). Both approaches converge with the 𝛽′(𝐶) values similar to 𝛽(𝐶) as shown in Fig. 4, 
except over dryland regions across the Sahara, parts of the Middle East and Central Asia. These 
dryland regions do not have enough soil moisture variability during the April 1 to July 7 Summer 
season of 2015 (when the SMAP radar data are available) to induce variations in 𝑇𝐵𝑝

(𝐶) and 𝜎𝑝𝑝(𝐶) 
to allow valid time-series estimation of 𝛽(𝐶) . Outside of these regions, the magnitudes and 
distribution of the covariation parameter are similar between the statistical time-series and snapshot 
approaches [26].  
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Figure 4: Comparison of snapshot-retrieved 𝛽′(𝐶) and time series-retrieved 𝛽(𝐶) at global extent 
for the SMAP Active-Passive period (~2.5 months in 2015). 

 
   The baseline SMAP L2_SM_SP algorithm has two parameters (𝛽′(𝐶) and 𝛤), as shown in 

(18). The performance of the brightness temperature disaggregation that results in the 3 km and 1 km 
soil moisture retrievals is heavily dependent on robust estimates of the parameters 𝛽′(𝐶) and 𝛤 .  
Figure 5 shows the mean and coefficient of variation (CV) of 𝛽′(𝐶) at global extent using SMAP 
radiometer and Sentinel-1A/B backscatter data from May 1, 2015 to April 30, 2017.  The global 
evolution of mean 𝛽′(𝐶) (Fig. 5) shows the typical feature of reducing magnitude (approaching zero) 
with increasing VWC [23]. However, the CV in Fig. 5 represents high variability except over very 
arid regions. This is a clear indication of seasonality/variability in 𝛽′(𝐶) and the gradually changing 
values with the surface conditions, especially VWC. Some low absolute values are also observed over 
the Sahara desert because of local variation in roughness values leading to high backscatter even for 
the very dry surface. 
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Figure 5: 𝛽′(𝐶) mean and CV computed using all the available SMAP radiometer data and Sentinel-
1A/Sentinel-1B 𝜎𝑝𝑝 data from May 01, 2015 to April 30, 2017.  
 

   The estimation of 𝛽′(𝐶) through (19) does not require time series of 𝑇𝐵𝑝
(𝐶) and 𝜎𝑝𝑝(𝐶). 

Therefore, space-borne radar and radiometer acquisitions with varying incidence angle can be used 
and the covariation parameter 𝛽′(𝐶) is dependent on the angle. The range of incidence angles for 
Sentinel-1A/1B observations within the C scale (C-scale is 33 km resolution) is ~1 deg. Therefore, 
linearly averaging the Sentinel-1A/1B backscatter is quantitatively possible and valid. In Fig. 6 from 
[26], the dynamics of the covariation estimation with variation of incidence angle (Sentinel-1A/B: 
34° – 44°) is presented for four different ranges of vegetation water content (VWC) within the African 
continent. The covariation parameter 𝛽′(𝐶) from low to moderate amounts of vegetation (VWC < 5 
[kg/m2]), gradually decreases in magnitude with increasing plant moisture. However, the largest 
change in magnitude of 𝛽′(𝐶) along incidence angle (for the lowest VWC-range in Fig. 6) is around 
0.5 [23]. As expected, 𝛽′(𝐶) shows minimum sensitivity to incidence angle variations for strongly 
vegetated areas (VWC > 6 [kg/m2]) leveling around -1.5 [-]. This might be due to the insensitivity of 
both the SMAP radiometer (L-band) and Sentinel-1A/B radar (C-band) to soil moisture variations 
under highly moist vegetation. One interpretation is that the incidence angle variation of Active-
Passive microwave covariation is increasingly masked/gets absorbed by denser/thicker vegetation 
[26]. 
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Figure 6. Time-averaged (04/2015-04/2017) 𝛽′(𝐶) [-] along Sentinel-1A/B incidence angle [°] for 
four VWC ranges in Africa; circles indicate median values for each VWC range, sourced from [26]. 
 
 

   The parameter 𝛤 is determined statistically for any particular overpass using the Sentinel-
1A/1B radar backscatters 𝜎𝑝𝑝 and 𝜎𝑝𝑞 at the finest available resolution (in this case at 1 km) that are 
encompassed within the 33 km 𝑇𝐵𝑝

(𝐶) grid cell.  The parameter 𝛤 is the projection of Sentinel-1A/1B 
𝜎𝑝𝑞 space into the 𝜎𝑝𝑝 space. It is the slope of covariance between the Sentinel-1A/1B 𝜎𝑝𝑞 and the 

𝜎𝑝𝑝 (𝛤 is estimated as ≡ [
𝜕𝜎𝑝𝑝(𝑀𝑗)

𝜕𝜎𝑝𝑞(𝑀𝑗)
]

𝐶

).  𝛤 shows that the heterogeneity is captured through the spatial 

deviation of 𝜎𝑝𝑞 backscatter from its mean at (C) scale. The 𝛤 value projects this spatial deviation in 
𝜎𝑝𝑞 backscatter in the 𝜎𝑝𝑝 backscatter space. The projection of spatial deviation in 𝜎𝑝𝑞 backscatter 
can be additive or negative with the 𝜎𝑝𝑝 backscatter depending on the vegetation and surface 
roughness. Therefore, one 𝛤 value is sufficient to capture the heterogeneity of the scene within the 
(C) scale. In Figure 7, the values of 𝛤 for all arid regions of the Earth surface are between 4 and 5. 
This is because the range of the 𝜎𝑝𝑞 backscatter response is much lower in the arid region than any 
other land cover type. Figure 7 illustrates the mean and Coefficient of Variation (CV) of 𝛤 values 
over the global extent using all data from May 1, 2015 to April 30, 2017.  The 𝛤 parameter is spatially 
and temporally more stable than 𝛽′(𝐶).  At a global extent, the mean values range from 2.5 to 4.5. 
The CV in 𝛤 is also very low for any given location, indicating temporal stability of this parameter. 
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Figure 7: 𝛤 mean and CV computed using all the available SMAP radiometer data and Sentinel-
1A/Sentinel-1B 𝜎𝑝𝑝 data (1 km resolution) from May 01, 2015 to April 30, 2017.  
 
 
 
 

3.3 Process Flow of the L2_SM_SP Algorithm  

   A simplified process flow chart/processing scheme of the SMAP-Sentinel1 Active-Passive 
algorithm implementation is shown in Fig. 8. The input data are the Sentinel-1A/1B Interferometric 
Wide (IW) Swath mode backscatter 𝜎𝑝𝑝  (co-pol vv) and 𝜎𝑝𝑞  (cross-pol vh) at 1 km EASE2 grid 
resolution and the brightness temperature 𝑇𝐵𝑝

(𝐶)  from the SMAP Level-2 Enhanced product 
(L2_SM_P_E) at about 33 km spatial resolution in EASE2 9 km grid.  
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Figure 8: Process flow scheme of the SMAP-Sentinel-1A/1B Active-Passive (L2_SM_SP) algorithm 
in the JPL SDS. 
 
 

   The native resolution of Sentinel-1A/1B IW swath mode backscatter 𝜎𝑝𝑝 (co-pol vv) and 
𝜎𝑝𝑞  (cross-pol vh) is ~25 meters. The high-resolution Sentinel-1A/1B SAR backscatter data are 
processed for calibration, noise subtraction, terrain correction (with SRTM DEM) using the ESA 
Sentinel 1 toolbox (SNAP). Thereafter, the high-resolution Sentinel-1A/1B SAR backscatter data 
(both  𝜎𝑝𝑝 and 𝜎𝑝𝑞),  were subjected to filtering and aggregation (linear averaging) to 1 km. Before 
aggregation of 𝜎𝑝𝑝 and 𝜎𝑝𝑞 from ~25 meters to 1 km, spatial filtering (hybrid spatial filtering tool) 
was conducted to remove the effect of urban and manmade structures from the backscatter 
observations. The customized hybrid spatial filtering tool was developed at NASA JPL and is not 
available in the SNAP toolbox.   

 
   Several factors were addressed by the hybrid spatial filtering tool: a) the tool should not 

affect latency; b) the tool should remove most of the unwanted measurements; c) excessive averaging 
should not occur, and d) image details should be preserved. Several techniques were studied. 
Techniques based on standard distribution threshold were efficient but for narrow distributions they 
showed that some desired features could be lost.  Moving window median filter techniques were also 
efficient in removing undesired measurements, but they were computationally expensive and 
produced excessive averaging when a large size window was used. To overcome all the issues 
mentioned above, a hybrid filter (combination of median filter and filter based on standard deviation 
thresholds) was implemented as follows: 
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1) For each 1 km2 grid cell within a given Sentinel granule the mean (mi) and the standard deviation 
(si) of the Sentinel backscatter values were computed,  i =1…Nc, where Nc is the number of 1 km 
grid cells within the Sentinel granule. 

2) The tool then computed the mean standard deviation MStd over all the si with i =1…Nc. 
3) For all 1 km2 cells with si >  MStd  a moving window median filter with a 9x9 samples window 

size was applied. 
4) For all 1 km cells with  si <= MStd, we eliminated all the Sentinel samples outside the ±1 standard 

deviation range [mi - MStd: mi + MStd] (Note that the threshold  MStd  is used to avoid affecting 
areas with narrow distribution). 

 
      Figure 9 illustrates the Sentinel-1A 𝜎𝑣𝑣 data aggregated to 1 km over Southern Iowa. The high 
values of 𝜎𝑣𝑣, as highlighted in Fig. 9A, are due to non-natural scatterers (urban areas or manmade 
structures).   These undesired high backscatter observations were filtered for the entire Sentinel 
granule, and then aggregated to 1 km. The filtered Sentinel-1A 𝜎𝑣𝑣 granule is illustrated in Fig. 9B. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 9: Sentinel-1A 𝜎𝑣𝑣 granule from Southern Iowa 
on May 05, 2018. (A) 𝜎𝑣𝑣  unprocessed data; and (B) 
𝜎𝑣𝑣 data after calibration, noise subtraction, terrain 
correction (using SRTM DEM), filtering, and 
aggregation to 1 km. 
 

 
 
       As shown in the algorithm scheme/flow (Fig. 8), the processed Sentinel-1A and Sentinel-1B data 
are overlapped with the SMAP observations (descending ~6:00 AM overpasses) that are closest to 
the Sentinel overpass within +/-24 hrs time difference. The time difference between the Sentinel-
1A/1B (ascending and descending) and SMAP descending is an average of ~12 hrs. It is expected 
that the spatial distribution and pattern of the soil moisture does not change significantly because of 
the inherent memory of the soil moisture over the  short period of the time difference. 
 
      The disaggregated/downscaled brightness temperature (𝑇𝐵𝑝

(𝑀𝑗)) is then obtained by using the 
algorithm (2) on the overlapped Sentinel-1A/B (𝜎𝑣𝑣 and 𝜎𝑣ℎ) and 𝑇𝐵𝑣

(𝐶). The implementation of (18) 
is conducted at 33 km resolution (𝐶). The 𝑇𝐵𝑣

(𝐶) values in L2_SM_P_E are gridded at/to 9 km,  but 
keeping its inherent spatial resolution of 33 km. Therefore, the overlapped Sentinel-1A/1B data, that 
form a grid of 33 rows and 33 columns at 1 km resolution, is used in the process to first compute the 
snapshot 𝛽′(𝐶) and then in (18) to obtain downscaled brightness temperature 𝑇𝐵𝑣

(𝑀𝑗), as illustrated 
in Fig 2.  
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      The downscaled brightness temperature 𝑇𝐵𝑣

(𝑀𝑗) is then injected into the tau-omega model [7, 8, 
9] to retrieve surface soil moisture. Various ancillary data and lookup tables are used in the tau-omega 
model to retrieve soil moisture. Prominent ancillary data are NDVI climatology from MODIS, clay 
fraction from global soil database, and land surface temperature (LST) from NASA GMAO, and the 
parameters are albedo (), surface roughness (h), and vegetation coefficient (b) detailed for IGBP 
landcover classes. These ancillary data and parameters are similar to that used in the 
L2_SM_P/L2_SM_P_E product, however, at much finer resolutions (1 km and 3 km). The following 
sections describe tests of the L2_SM_SP algorithm and the L2_SM_SP soil moisture product and its 
characteristics. 
 

4 TESTS OF L2_SM_SP ALGORITHM 

       The assessment of the L2_SM_SP was performed by comparing the disaggregated/downscaled 
brightness temperature with the high-resolution brightness temperature observed through an airborne 
platform. 
 
Assessment of L2_SM_SP Downscaled Brightness Temperature 

       A primary part of the assessment for the L2_SM_SP algorithm is the comparison of 
disaggregated high-resolution brightness temperatures with L-band airborne remote sensing data. 
This assessment was done using airborne data from the SMAPEx 2015 campaign conducted in 
Southeastern Australia [27].  The brightness temperature data from SMAPEx 2015 has a resolution 
of ~1 km with varying incidence angles. For better comparison with SMAP satellite data, the 
SMAPEx airborne data are subjected to normalization to bring all the observations to a uniform 40°  
incidence angle [27]. This process introduced an error of ~4-5 K in the SMAPEx airborne data [27].  
The normalized data are actually used for assessment of the L2_SM_SP disaggregated high-resolution 
brightness temperature.  There were 2 overlapping days (May 5th, 2015 and September 13th, 2015) 
between the SMAP-Sentinel-1A/1B L2_SM_SP product and the Polarimetric L-band Microwave 
Radiometer (PLMR) airborne data from the SMAPEx field campaign. These concurrent acquisitions 
of data from different platforms provide an opportunity to validate the L2_SM_SP high-resolution 
disaggregated brightness temperatures. These specific dates of SMAPEx airborne data are also 
considered due to very different surface conditions in the observation domain: a) May 5th, 2015, low 
vegetation cover (~1 kg/m2), and b) September 13th, 2015, moderately high vegetation cover (~2.7 
kg/m2).  A map of the SMAPEx 2015 domain is shown in Fig. 10.  
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Figure 10: Study domain (white frame) of SMAPEx 
airborne campaign conducted in 2015 [27]. Red ovals 
in the figure indicate urban areas and water bodies. 
 
       As illustrated in Fig. 10, the SMAPEx study 
domain contains many urban areas, small manmade 
structures, and waterbodies. These urban areas and 
waterbodies were undesirable for assessment 
purposes. Therefore, such data need to be flagged or 
masked during L2_SM_SP assessments. 
 
       Figure 11a shows the PLMR airborne 𝑇𝐵𝑣

data, 
Fig. 11b shows the Sentinel 𝜎𝑣𝑣  data, and Fig. 11c 
shows the Sentinel 𝜎𝑣ℎ data from May 5, 2015 over 
the SMAPEx study area. It is apparent that PLMR 
𝑇𝐵𝑣

from SMAPEx are not impacted adversely by 
small urban areas or manmade structures, unlike the 
Sentinel 𝜎𝑣𝑣  and 𝜎𝑣ℎ  data. Figure 11b-c also show 
that in the Sentinel data, the large urban areas are 

masked and removed but the small urban areas and manmade structures are not identified and masked. 
These types of undesirable outliers in the Sentinel backscatter data created anomalies in the 
L2_SM_SP disaggregated 𝑇𝐵𝑣

data during a first assessment. However, the combined standard 
deviation and median spatial filter, as discussed in Section 3.3, was successfully implemented to 
remove the small urban areas, manmade structures and waterbodies.  

 
Figure 11: PLMR and the Sentinel-1A observations at EASE2 grid 1 km resolution over the SMAPEx 
study domain on May 5th, 2015 (prior to Sentinel filtering). 
 
       Examples of disaggregated high-resolution 3 km 𝑇𝐵𝑣

 from L2_SM_SP product are shown in Fig. 
12a and Fig. 12b, and compared against the SMAPEx PLMR data and the SMAP L2_SM_P_E (𝑇𝐵𝑣

 
data corrected for presence of water) product gridded at 9 km for May 5th, 2015 and Sep. 13th, 2015, 
respectively. The plots in Fig. 12 show the finer details captured by the L2_SM_SP Active-Passive 
algorithm by incorporating the Sentinel-1A backscatter observations. In addition, the finer spatial 
features are very similar to the PLMR 𝑇𝐵𝑣

data. To evaluate the SMAP-Sentinel1A/1B Active-Passive 
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algorithm performance, the L2_SM_SP high-resolution disaggregated 𝑇𝐵𝑣
 are compared against 

Minimum Performance criteria to determine the value of combining Sentinel-1A/1B SAR data with 
SMAP L2_SM_P_E brightness temperature data. The Minimum Performance is the SMAP 
L2_SM_P_E  𝑇𝐵𝑣

(𝐶) that is applied to all the 3 km EASE2 grid cells within the overlapping 9 km 
EASE2 grid cell; it can be obtained by setting 𝛽′(𝐶) = 0 in Eq. 18. Ideally, the slope and correlation 
between the L2_SM_SP downscaled brightness temperature and airborne high-resolution brightness 
temperature should be close to one (unity).  In Fig. 13, we show the slope and correlation between 
Minimum Performance and airborne data, between L2_SM_SP and airborne data and ideal 
performance.  In the two available airborne images (May 5th, 2015and Sep 13th, 2015) the slope and 
correlation between L2_SM_SP downscaled brightness temperature and airborne data are higher than 
the Minimum Performance.  A similar analysis conducted at EASE2 grid 9 km in Fig. 13b also shows 
that the L2_SM_SP 𝑇𝐵𝑣

(𝑀𝑗) aggregated to 9 km has better slopes and correlations when compared 
against L2_SM_P_E 𝑇𝐵𝑣

(𝐶). These results (Figs. 13a and 13b) clearly demonstrate that Sentinel-
1A/1B 𝜎𝑣𝑣 and 𝜎𝑣ℎ data add valuable information to disaggregate the coarse-resolution L2_SM_P_E  
𝑇𝐵𝑣

(𝐶) to obtain L2_SM_SP  𝑇𝐵𝑝
(𝑀𝑗) that matches better with the high-resolution spatial features 

observed by the SMAPEx PLMR platform. 
 

 
 

Figure 12: Output of L2_SM_SP compared against PLMR 𝑇𝐵𝑣
data from SMAPEx and the Minimum 

Performance (TBv from L2_SM_P_E at 9 km). 
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a) 

 
b) 

 
Figure 13: a) Bar plots of SMAPEx PLMR observations against L2_SM_SP 𝑇𝐵𝑝

 at 3 km and 
Minimum Performance (TBv from L2_SM_P_E) at 3 km. b) Bar plots of SMAPEx PLMR 
observations against L2_SM_SP 𝑇𝐵𝑣

 gridded at 9 km and Minimum Performance (TBv from 
L2_SM_P_E) gridded at 9 km.  
 
The overall RMSE of TBv is ~3.4 K for the L2_SM_SP product and ~4.6 K for the minimum 
performance L2_SM_P_E at 3 km resolution, and ~2.5 K for the L2_SM_SP product and ~3.3 K for 
the minimum performance L2_SM_P_E at gridded 9 km resolution. 
 
 

5 SMAP-SENTINEL-1 ACTIVE-PASSIVE (L2_SM_SP) PRODUCT 

   The L2_SM_SP data from April 15th, 2015 through current are available from the National Snow 
and Ice Data Center (NSIDC), the NASA Distributed Active Archive Center (DAAC) assigned to the 
SMAP mission at URL https://nsidc.org/data/spl2smap_s. The coverage/overlap of SMAP and 
Sentinel-1 platforms is from April 2015 onwards. Sentinel-1A is available from March 2015 to 
current, and Sentinel-1B is available from October 2016 to current. The 12-day global revisit is 
possible only when  Sentinel-1A and Sentinel-1B are composited with the present data feed from 
ESA. However, over Europe the revisit interval is ~ 6 days. 

 

5.1 Patterns and Features in the L2SMSP product 

       The L2_SM_SP product is available at 3 km and 1 km resolution. In this section, prior to the 
quantitative assessments that follow, the general features of global images are reviewed for the 

https://nsidc.org/data/spl2smap_s
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L2_SM_SP product. With the current orbit configuration and data acquisition plan in the IW swath 
mode, the Sentinel-1A and Sentinel-1B spacecraft have a revisit interval of 6 days to 12 days at 
different regions of the world. Therefore, the composite of L2_SM_SP for 12 days should cover most 
parts of the Earth.  Figure 14 shows a 12-day composite of L2_SM_SP granules from 1st May 2017 
to 12th May 2017 which illustrates the global coverage between  +60° and −60° latitudes. Figure 14 
also provides a complete global extent of soil moisture evolution over different biomes and landcovers. 
Assessment of global soil moisture from the SMAP-Sentinel-1A/1B Active-Passive retrievals shows 
consistency in the soil moisture range (0.02 m3/m3 to 0.6 m3/m3), and probable values. For example, 
the regions that are very dry (i.e., the Sahara desert) and wet (i.e., the Amazon Basin) reflect the 
nature of the soil moisture distribution and expected variability as influenced by geophysical factors 
(soil types, vegetation, weather, and terrain) and landcovers.  

 
Figure 14: Twelve-day coverage of SMAP-Sentinel1 L2_SM_SP high-resolution (3 km) soil 
moisture data from 1st May, 2017 to 12th May, 2017. 
 
       There are a number of quality flags that are applied to L2_SM_SP products.  These flags imply 
that the data should be used with caution while others indicate that the data should not be used in any 
geophysical application.  A complete description of the flags and flag thresholds used in L2_SM_SP 
processing can be found in the L2_SM_SP Product Specification Document  available at NSIDC 
[(https://nsidc.org/sites/nsidc.org/files/technical-
references/SMAP%20L2_SM_SP%20PSD_20180531.pdf)]. The reliability of soil moisture retrieval 
algorithms is known to decrease when the VWC exceeds a certain threshold. For the L2_SM_SP 
product, a 3 kg/m2 VWC value is used as a flag threshold to indicate areas of moderate vegetation 
where soil moisture retrievals are possibly less accurate (in comparison, the SMAP passive-only 
L2SMP and L2SMP_E products use a VWC threshold of 5 kg/m2). A quality flag value of 0 represents 
good quality and any value greater than 0 represents substandard quality due to surface flags or due 
to a quality flag associated with the disaggregated 𝑇𝐵𝑝

 or due to the quality of the input data (𝑇𝐵𝑝
(𝐶) 

and 𝜎𝑝𝑝 and 𝜎𝑝𝑞.  A surface flag is also associated with each and every soil moisture retrieval data 
field. The surface flags are stored in two byte integers. There are 16 bits in each two byte integer. For 
example, the first bit position indicates presence of a waterbody. The first bit position is set to 0 if the 
water fraction is less than or equal to a threshold value (<= 0.1); otherwise, the first bit position is set 
to 1 if the water fraction is greater than the threshold value (> 0.1). Similarly, the other bits are 
assigned 0 or 1 based on the threshold values of urban area, mountainous region, VWC, etc. 
 
        It is anticipated that some of the flag thresholds may be relaxed in time as the algorithms are 
improved for the presence of certain currently problematic surface conditions. Other areas that are 

https://nsidc.org/sites/nsidc.org/files/technical-references/SMAP%20L2_SM_SP%20PSD_20180531.pdf
https://nsidc.org/sites/nsidc.org/files/technical-references/SMAP%20L2_SM_SP%20PSD_20180531.pdf
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flagged include regions with varied topography features (for example, mountain ranges) and near 
large water bodies (coastal regions and areas near large lakes). 
 
        The variability within the radiometer coarse grid cell is mostly due to soil moisture, vegetation 
and soil roughness [7, 8], and is captured by high-resolution Sentinel-1A/Sentinel-1B backscatter 
values of 𝜎𝑣𝑣 and 𝜎𝑣ℎ at the finest available resolution (in this case at ~1 km).  For illustration, Fig. 
15 shows the primary inputs to the algorithm, the brightness temperature 𝑇𝐵𝑣

(𝐶)  values in 
L2_SM_P_E gridded at 9 km (~33 km resolution) and the Sentinel-1A/1B processed  𝜎𝑣𝑣 and 𝜎𝑣ℎ 
backscatter data at 1 km.  Figure 16 illustrates the L2_SM_SP algorithm’s capability to capture high-
resolution spatial features of soil moisture possible through Sentinel-1A/1B backscatter observations 
(Fig. 15b-15c) that disaggregate the brightness temperature 𝑇𝐵𝑣

(𝐶) values (Fig. 15a). Figure 17 shows 
another perspective to highlight the dynamic range of brightness temperature and soil moisture 
present in the SMAP-based soil moisture products. The plot clearly shows the increase in variability 
and dynamic range in the L2_SM_SP product at 3 km and 1 km resolution when compared to the 9 
km gridded L2_SM_P_E data that have an effective resolution of ~33 km. 
 

 
Figure 15: An example of primary inputs to the SMAP-Sentinel Active-Passive algorithm. From 
Southern Iowa, 5th May, 2018: a)SMAP radiometer brightness temperature 𝑇𝐵𝑣

(𝐶) at about 33 km 
resolution but gridded at 9 km; b) Sentinel-1A/B co-polarized backscatter (𝜎𝑣𝑣) at 1 km; c) Sentinel-
1A/B cross-polarized backscatter (𝜎𝑣ℎ)at 1 km; d) Parameter 𝛽′(𝐶); e) Parameter 𝛤, and; f) Clay 
fraction. 
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Figure 16: Comparison of L2_SM_SP product at 1 km and 3 km resolution with the corresponding 
L2_SM_P_E product gridded at 9 km. The L2_SM_SP image is from Southern Iowa, May 5th, 2018. 
 

 
 

 

 

 

 

Figure 17: Distribution of data in the soil 
moisture and the brightness temperature space 
for the L2_SM_SP product at 1 km and 3 km, 
and L2_SM_P_E product gridded at 9 km (~33 
km effective resolution) over the Southern part 
of Iowa on 5th May, 2018. 
 
 

 
 

5.2 Error Budget of L2_SM_SP Algorithm 

The algorithm (Section 3.2) error budget is estimated using the basic input uncertainty and 
parameter perturbations. The input data are the water body corrected brightness temperature and the 
radar backscatter cross-sections that are averaged to 3 km.  Radar pixels that include water bodies are 
excluded.  

 
Table 3 lists the various contributions to the disaggregated brightness temperature at 3 km 

resulting from the Active-Passive algorithm. The first numbered row is the estimated error in the 
coarse resolution radiometer brightness temperature which is due to the instrument, geophysical 
contributions of Earth, and gridding. Effects of water bodies are removed from the brightness 
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temperature. Assuming a nominal 5% error in the estimation of inland water bodies, the estimated 
contribution of error is about 0.45 K.  The errors due to mis-specification of inland water bodies are 
dependent on the absolute percent of water fraction.  A 5% error is assumed on a condition with 5% 
water body fraction.  It should be noted that this source of error can be very large. For example, if a 
pixel contains 10% inland water and there is 10% error on its specification, the impact on brightness 
temperature correction can be as large as ~2.0 K uncertainty. As a nominal case, 5% error on 5% 
water coverage is considered.  The permanent water bodies within a radiometer pixel are estimated 
from existing data such as the Shuttle Radar Topography Mission (SRTM). 

 
The waterbody-adjusted brightness temperature root-sum-of-squares (RSS) is reported in row 

three of Table 3. The baseline algorithm uses the radar backscatter cross-section and brightness 
temperature time-series to estimate a disaggregated 3 km brightness temperature. The radar noise and 
uncertainty contributions to the disaggregated 3 km brightness temperature are estimated to be 2.5 K 
based on the algorithm models. This uncertainty is shown in row four of Table 3 error budget. Beside 
radar backscatter cross-calibration and contamination noise, other important sources of errors in Eq. 
17 are the uncertainties in algorithm parameters (β’ and 𝛤). Nominal values of 20% uncertainties are 
used for the algorithm parameters to evaluate the error contribution in the disaggregated 3 km 
brightness temperature, and the estimated value is 1.89 K (shown in row 5 of Table 3). The total 3 
km disaggregated brightness temperature error of ~3.4 K is shown as an RSS in the sixth row of Table 
3. 

 

 
Table 3: Error budget in degrees Kelvin. 

 

*𝑇𝐵  error requirement of 1.3 K is based on a 30 km swath grid. 
 
 

6 CALIBRATION AND VALIDATION OF L2_SM_SP PRODUCT 

The calibration/validation (cal/val) plan for the L2_SM_SP product has heritage from the 
SMAP-only Active-Passive product L2_SM_AP [22] and [24]. The L2_SM_SP product cal/val was 
performed using two different approaches: 1) by comparing the soil moisture retrievals at 3 km from 
L2_SM_SP against upscaled in situ soil moisture observations from the core sites.; and 2) comparing 
the soil moisture retrievals from L2_SM_SP at 1 km against soil moisture measurements from sparse 
networks.  

 

Error Sources at 36 km EASE2 Grid  Estimated Error  

1 

 
Radiometer precision and calibration stability, Faraday rotation, 
atmospheric gases, non-precipitating clouds, and gridding  

 
1.3* K 

2 
 
Waterbody fraction surface heterogeneity 5% error 0.45 K 

3 
 

Adjusted Corrected  TB  RSS 1.47 K 

4 
 
Radar calibration and contamination error 2.5 K 

5 
 
Algorithm Parameter error 1.89 K 

6 
 

Disaggregated  TB  (9 km) estimation RSS 3.42 K 
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Core Validation Sites: The Core Validation Sites (CVS) are of primary importance. The CVS provide 
spatial averages of soil moisture at 3 km spatial resolution with adequate replications, with minimal 
latency, and with well-known error quantification (verified against gravimetric measurements). 
NASA has established agreements with many partners to provide CVS data. There are nearly ~30 
candidate sites [24]; out of these, a few are selected for CVS based on a strict set of requirements and 
their capability to provide spatial average of soil moisture at 3 km. The CVS sites for L2_SM_SP 
primary validation also come from various land covers and biomes. 
 
Sparse Network: Sparse soil moisture measurement networks exist in the United States and other parts 
of the world. The limitation of such networks is low measurement density that results in one 
measurement site within a 3 km grid cell. It is challenging and difficult to use measurements from 
one in situ site within a 3 km grid cell for validation. Therefore, research to identify strategic 
measurement sites that are temporally stable (least affected and manipulated over a longer time 
period) and that represent the grid average are critical for the success of extensive validation of the 
L2_SM_SP product. Examples of sparse measurement networks in the United States are the USDA 
Soil Climate Analysis Network (SCAN), the NOAA Climate Research Network (CRN), the 
Oklahoma Mesonet, SoilSCAPE network at Tonzi Ranch, California and Canton, Oklahoma, and the 
Illinois Soil Moisture Data from the Illinois State Water Survey. Access to sparse measurement 
networks located outside the United States is also important for global validation efforts. Data from 
soil moisture networks in Canada, Mongolia, China, Australia, and Europe are accessible through the 
Global Soil Moisture Data bank. To rationally use the sparse measurement network, cal/val of 
L2_SM_SP has to deal with data latency, verification of calibration, and spatial scaling. At present 
cal/val relies primarily on CVS and only secondarily on sparse networks. 
 
 Complete details of cal/val approaches  are found in the SMAP Calibration and Validation 
Plan (SMAP Science Data Calibration and Validation Plan. SMAP Project, JPL D-52544, Jet 
Propulsion Laboratory, Pasadena, CA). 

 

6.1 L2_SM_SP Validation using the 3 km Core Site data 

        The SMAP L2_SM_SP product validation was based primarily on comparison of retrievals with 
in situ soil moisture measurements [28]. The in situ measurements for the top ~5 cm soil moisture 
from networks with an acceptable sensor density within a 3 km EASE2 grid are the primary validation 
locations for the L2_SM_SP product. The SMAP project collaborated with various partners from 
around the world to identify such locations and established CVS [28]. These CVS have been verified 
as providing a spatial average of soil moisture at 3 km (with at least 3 in situ sites) and 9 km (with at 
least 5 in situ sites) spatial resolution. However, the spatial averages of soil moisture from CVS are 
not without issues because of inherent upscaling errors. Table 4 lists the CVS used for validation of 
the L2_SM_SP product. Beside the CVS, sparse networks [29] were also used as a supporting 
tool/option to validate the L2_SM_SP product.  

 
Table 4: SMAP Cal/Val Partner Sites Providing Validation Data for the L2_SM_SP product 

 

Site Name  

 

Site PI  

 

Area  

 Climate  

  regime  

 IGBP Land  

  Cover  

  

Status  

 Walnut Gulch***  
 C. Holifield 
Collins   USA (Arizona)   Arid   Shrub open  Valid for 3 km and 9 km 

 Fort Cobb**   P. Starks   USA (Oklahoma)   Temperate   Grasslands  Valid for 9 km  
 Little Washita**   P. Starks   USA (Oklahoma)   Temperate   Grasslands  Valid for 9 km 
 South Fork**  M. Cosh   USA (Iowa)   Cold   Croplands  Valid for 9 km 
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 Little River**   D. Bosch  USA (Georgia)   Temperate  
 Cropland/natural 
mosaic  Valid for 9 km 

 TxSON***   T. Caldwell   USA (Texas)   Temperate   Grasslands  Valid for 3 km and 9 km 
 Kenaston***   A. Berg   Canada   Cold   Croplands  Valid for 9 km 
 Carman**  H. McNairn   Canada   Cold   Croplands  Valid for 9 km 
 Monte Buey***   M. Thibeault   Argentina   Arid   Croplands  Valid for 3 km and 9 km 
 REMEDHUS***   J. Martinez   Spain   Temperate   Croplands  Valid for 3 km and 9 km 
 Valencia***  E. Lopez-Beaza  Spain  Arid  Shrub (open) Valid for 3 km and 9 km 
 St Josephs**  M. Cosh  USA (Indiana)   Cold  Croplands  Valid for 9 km 
 Yanco***   J. Walker   Australia   Arid   Croplands  Valid for 3 km and 9 km 
 **=CVS used in assessment at 9 km, *** = CVS used for both 3 km and 9 km. 
 
      The in situ data obtained from the SMAP Cal/Val Partner sites (Table 4) are subjected to quality 
control (QC) before using them to validate the SMAP products. A QC software tool was developed 
at JPL using the approached presented in [30] for QC of the in situ soil moisture data.  Figures 18-21 
illustrate time series and scatter plot comparisons of the L2_SM_SP product at 3 km grid cells against 
four CVS: TxSON, Monte Buey, Valencia, and Yanco. A total number of twelve 3 km grid cells from 
the 7 CVS were used to compute statistics for primary validation of the L2_SM_SP product. Table 5 
shows the performance statistics/metrics for all the CVS used for validation. The time series plot in 
Fig. 18 for the TxSON site shows a good match between soil moisture trends, with some bias in soil 
moisture estimation compared to in situ measurements that is possible due to differences in soil 
texture used in the retrieval process. The performance of the L2_SM_SP product over most of the 
CVS with non-crop land covers is reasonable as illustrated in Fig. 18 for TxSON and Fig. 19 for 
Valencia. However, the performance of the L2_SM_SP over CVS with crop cover is inferior, as 
shown in Fig. 20, possibly because of being out of sync with the vegetation attribute information and 
strong C-band interactions with vegetation which might cause patterns not totally attributable to soil 
moisture but to vegetation cover instead. The retrieval process uses Vegetation Water Content (VWC) 
derived from NDVI climatology (developed from 10 years of MODIS data), which might lead to a 
mismatch with the actual status of VWC. Therefore, it is likely that in Fig. 20 (Monte Buey CVS) the 
lack of a consistent bias and higher errors may be caused by this type of mismatch. In Figs. 18-21 red 
color for in situ data represents good quality, and the purple color is when the in situ data quality is 
not satisfactory. The black dots are the L2_SM_SP data used in the scatter plot and computation of 
RMSE. The grey dots are the L2_SM_SP data that match on a given day with the inferior quality in 
situ data and are not used in calculation of the RMSE and R values. 

 

 

Figure 18: L2_SM_SP assessment at 3 km (40 data point) for TxSON, Texas, USA. (BL: 
L2_SM_SP) 
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Figure 19:  L2_SM_SP assessment at 3 km (25 data point) for Valencia, Spain. (BL: L2_SM_SP) 

 
Figure 20:  L2_SM_SP assessment at 3 km (18 data point) for Monte Buey, Argentina. (BL: 
L2_SM_SP) 

 

 

Figure 21:  L2_SM_SP Assessment at 3 km (55 data point) for Yanco, Australia. (BL: L2_SM_SP) 
 
      The validation results at 3 km resolution in Figs. 18-21 and Table 5 come from a very limited 
number of CVS. Thus, another strategy was developed to overcome this limitation: an upscaled 
L2_SM_SP product at 9 km is constructed by aggregating all nine L2_SM_SP 3 km EASE2 grid 
cells within the 9 km EASE2 grid. The upscaled 9 km product is then used for the 17 CVS already 
established and operating for the SMAP-only Active-Passive L2_SM_AP 9 km product [19]. This 
approach optimizes the CVS usage and to assess the performance of the spatially upscaled 
L2_SM_SP 3 km product at 9 km spatial resolution. The results and performance of the upscaled 
L2_SM_SP product at 9 km in Table 6 are encouraging. The overall ubRMSE of 0.036 m3/m3 for 
the L2_SM_SP product meets the SMAP mission accuracy goal of 0.04 m3/m3 previously established 
as a benchmark for the SMAP-only L2_SM_AP product. In Table 6 most of the R-values are 
relatively high (R>0.829), indicating a considerable match between estimates and in situ 
measurements.  

 
Table 5:  SMAP L2_SM_SP Assessment Statistics against CVS at 3 km. 

Site name ubRMSE Bias RMSE R #Samples 

Walnut Gulch 0.033 0.033 0.047 0.950 23 
Walnut Gulch 0.029 0.063  0.069  0.929 21 

TxSON 0.041 -0.039  0.056  0.895 24 
TxSON 0.033 -0.028  0.043  0.797 40 

Kenaston 0.065 -0.052  0.083  0.216 31 
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Kenaston 0.053 -0.047  0.071  0.603 24 
Monte Buey 0.034 -0.071  0.078  0.800 20 

Valencia 0.032 0.013  0.035  0.627 25 
Yanco  0.082 0.013  0.085  0.489 38 
Yanco 0.075 0.018  0.077  0.635 40 
Yanco 0.048 0.037  0.060  0.898 64 
Yanco 0.065 0.070  0.096  0.761 48 

SMAP Average 0.049 0.001 0.067 0.717 Total: 398 

The term RMSE in the analysis is interchangeably used for root-mean-square-difference (RMSD). 
Nearly 30 to 50 time-matching samples are found in core sites and are used in computing the statistics. 
 

 
Table 6: SMAP L2_SM_SP Assessment Statistics against CVS measurements at 9 km. 

Site name ubRMSE Bias RMSE R #Samples 

Walnut Gulch   0.025  0.022 0.033 0.871 37 
Walnut Gulch   0.028  0.049  0.056  0.863 47 

TxSON   0.022  0.010  0.025  0.882 23 
TxSON   0.030  0.012  0.032  0.904 42 

Fort Cobb   0.030 -0.023  0.038  0.847 48 
Little Washita   0.039 -0.032  0.051  0.771 93 

South Fork   0.060 -0.031  0.067  0.802 39 
St Josephs   0.022 -0.042  0.048  0.913 24 
Little River   0.030  0.086  0.091  0.799 22 
Kenaston   0.038 -0.061  0.072  0.764 28 
Kenaston   0.031 -0.074  0.080  0.836 27 
Carman   0.049 -0.069  0.085  0.590 20 

Monte Buey   0.014 -0.049  0.051  0.967 23 
REMEDHUS   0.059  0.112  0.126  0.831 63 

Valencia   0.027  0.012  0.029  0.746 24 
Yanco   0.055 -0.005  0.055  0.877 44 
Yanco   0.049  0.037  0.061  0.831 67 

SMAP Average 0.036 -0.003 0.059 0.829 Total: 671 

 

6.2 L2_SM_SP Validation at 1 km using the Sparse Network 

      The intensive CVS validation performed for the SMAP L2_SM_SP product can be complemented 
by sparse networks as well as by newly developed soil moisture networks. The important difference 
in interpreting these data is that they involve only one in situ point in a grid cell. Thus, whatever 
reservations might exist on the upscaling of CVS in situ measurements to the coarser resolution cells 
of remote sensing products, these reservations might be of even greater concern for sparse networks 
of in situ soil moisture measurements. However, sparse networks do offer many sites in different 
environments for comparison.  
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      The established sparse soil moisture networks utilized for the SMAP L2_SM_SP product 
comparison are the NOAA Climate Reference Network (CRN), the USDA NRCS Soil Climate 
Analysis Network (SCAN), the Oklahoma Mesonet, the MAHASRI network (in Mongolia), the 
SMOSMania network (in southwest Europe), the Pampas network (in Argentina), and soil moisture 
estimates derived from surface reflectance at Global Position Stations (in the western US). From these 
sparse soil moisture networks, ~375 sites were found to be suitable for direct comparison with the 
SMAP L2_SM_SP overlapping grid cells. The ~375 sites were selected based on in situ measurement 
data quality and continuity of the observations during the ~3 year period (April, 2015 to Oct, 2018). 
The defining feature of these networks are the low spatial density of in situ measurement locations 
that usually resulted in one point per L2_SM_SP 3 km and 1 km grid cells. This leads to large 
upscaling errors due to spatial representativeness and the inability of a single in situ site location to 
represent mean soil moisture within a 3 km or 1 km grid cell. However, despite this scaling bias, 
sparse networks can adequately describe relative errors.  
 
   Figure 22A-B illustrates comparisons of the L2_SM_SP product retrievals with the measurements 
available from ~375 in situ sparse networks from many different land covers at 3 km and 1 km,. 
Despite the potential errors associated with spatial representativeness, the agreement between the in 
situ soil moisture and the L2_SM_SP is reasonably good (see Table 7). The ubRMSE and bias values 
obtained from these sparse networks are similar to those obtained from the CVS. These results (Fig. 
22) provide further confidence in the previous conclusions based on the CVS.  
 
 

 
A) 
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B) 
Figure 22: Results of comparison between L2_SM_SP with the sparse network sites (~375 in situ 
sites): A) at 3 km resolution; and B) at 1 km resolution. 
 
 

Table 7: SMAP L2_SM_SP Assessment Statistics against Sparse Networks at 3 km and 1 km 
resolution. 
 
L2_SM_SP (3 km) ubRMSE [m³/m³] Bias [m³/m³] RMSE [m³/m³] R [-] N 

Open shrublands 0.04 0.017 0.045 0.506 34 
Woody savannas 0.053 0.031 0.063 0.657 4 
Savannas 0.04 -0.001 0.06 0.789 6 
Grasslands 0.051 -0.032 0.064 0.647 230 
Croplands 0.072 -0.033 0.087 0.531 69 
Crop/Natural Vegetation Mosaic 0.067 -0.023 0.076 0.469 14 
Barren/Sparse 0.026 0.031 0.04 0.514 9 
Average 0.05 -0.01 0.062 0.587 370 

 
L2_SM_SP (1 km) ubRMSE [m³/m³] Bias [m³/m³] RMSE [m³/m³] R [-] N 

Open shrublands 0.046 0.008 0.046 0.544 43 
Woody savannas 0.056 -0.001 0.065 0.489 7 
Savannas 0.038 0.016 0.061 0.827 4 
Grasslands 0.06 -0.036 0.069 0.647 236 
Croplands 0.076 -0.041 0.094 0.468 80 
Crop/Natural Vegetation Mosaic 0.068 -0.008 0.077 0.349 8 
Barren/Sparse 0.023 0.018 0.036 0.592 6 
Average 0.052 -0.028 0.064 0.548 384 

 

6.3 Ancillary Data 

The data required other than SMAP and Sentinel-1A/1B observations to process and retrieve 
near surface soil moisture are termed as ancillary data. The soil moisture estimates are retrieved from 
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the disaggregated (downscaled) TB at 3 km and 1 km spatial resolutions obtained from the Active-
Passive algorithm (L2_SM_SP). Therefore, the required ancillary data needed to process the 
disaggregated TB are also required at 3 km and 1 km spatial resolution. The L2_SM_SP process needs 
both static and dynamic ancillary data. Static ancillary data are those data that normally do not change 
during the mission lifetime. The L2_SM_SP process needs permanent masks and geophysical 
parameters as static ancillary data. Permanent masks of water bodies, mountainous regions, forest 
cover (VWC > 3 kg/m2), urban areas, and land area at high-resolution (1 km and 3 km) resampled in 
Earth fixed grid is desirable for L2_SM_SP processing and quality control. Sand fraction and clay 
fraction data at 1 km spatial resolution are examples of static ancillary data essential to retrieve soil 
moisture. The L2_SM_SP process uses static ancillary data archived by the SMAP mission’s  Science 
Data System (SDS) at JPL. Dynamic ancillary data pose more challenges because they need frequent 
updates (daily, biweekly, monthly, and seasonally). The dynamic data required for L2_SM_SP 
processing are effective surface soil temperature, VWC (for vegetation opacity τ), and land use-land 
cover.  

 
Ancillary data from various resources were analyzed and selected as baseline ancillary data. 

SMAP ancillary data reports (https://nsidc.org/data/smap/smap-ancillary-products) were written for 
the individual ancillary data listed in Table 8. These reports document the rationale for the choice of 
the primary source of the ancillary data, and have been made available to the public. Table 8 lists 
most of the static and dynamic ancillary data, data source, updating frequency and desired spatial 
resolution required for the L2_SM_SP retrieval. The amount and type of ancillary data needed are 
dependent to some extent on the choice of the specific spatial resolution (3 km or 1 km). Some 
examples of the ancillary data used in L2_SM_SP retrieval are shown in Fig. 23-25. 
 

Table 8: Ancillary data required to produce the SMAP L2_SM_AP product. 

Parameter Updating 

Frequency 

Grid 

Resolution 

Data Type Data Source 

%Sand and %Clay Done once  3 km and 1 km  Static Composite of soil databases 
(HWSD, FAO, ASRIS, 
STATSGO, NSDC) 

Soil Texture Done once 3 km and 1 km Static Composite of soil databases 
(HWSD, FAO, ASRIS, 
STATSGO, NSDC) 

Vegetation (b and ω) 1-2 weeks 3 km and 1 km Static Values obtained from L2_SM_P 
ATBD look-up table 

Vegetation Opacity () Daily/Weekly 3 km and 1 km Dynamic MODIS 1 km NDVI converted to 
VWC and then to  = (b*VWC) 

Roughness (h) Monthly 3 km and 1 km Static L2_SM_P ATBD look-up table 
Effective soil  temperature Daily 9 km  Dynamic ECMWF  / MERRA (TBC) 
Waterbodies (permanent) Yearly 3 km and 1 km Static MOD44W – a MODIS static open 

water product 
Precipitation flag Daily 9 km Dynamic ECMWF total precipitation 

forecast (or GPM) 
Snow/Ice  flag Daily 9 km Dynamic NOAA Snow and Ice Mapping 

System (IMS) Product 
Mountainous flag Done once 3 km and 1 km Static SRTM and GTOPO30 derived 

elevation, slope, range and 
variance 

Urban area fraction Done one 3 km and 1 km Static GRUMP data 
 

 
 

 

https://nsidc.org/data/smap/smap-ancillary-products
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Figure 23: Global sand fraction of top soil at  3 km EASE2 grid projection. 
 
 

 
Figure 24: Urban extent fraction gridded at 3 km EASE2 grid projection. 
 
 
 

 
Figure 25: Standard deviation in DEM gridded at 3 km EASE2 grid projection. 
 

Table 8 also lists the parameters (b, ω, and h) essential for soil moisture retrieval using 
downscaled TB (3 km and 1 km). These parameters are dependent on the land cover types. Details of 
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these parameters are available in the L2_SM_P ATBD [ref?] and the associated ancillary data report 
[ref?].  

 
It is important to be aware of inherent errors in the ancillary data parameters and the latency 

involved in acquiring dynamic ancillary data. Errors present in the ancillary data affect the 
performance of the L2_SM_SP algorithm and ultimately the accuracy of the output product. This 
highlights the fact that the L2_SM_SP algorithm should be robust to accommodate the expected 
inherent errors in the ancillary data. Results mentioned in the L2_SM 
_AP ATBD from the Monte Carlo study conducted for the Active-Passive algorithm show the effects 
and robustness due to errors in ancillary data.  

 
The issue of latency involved in getting the dynamic ancillary data is critical for the timely 

delivery of SMAP baseline products to the DAAC. However, for the L2_SM_SP product, there are 
no latency requirements. Current assessment indicates that there are no major obstacles based on the 
ancillary data latency that would prevent the L2_SM_SP product generation after receiving the 
Sentinel-1A/1B granules from the European Space Agency (ESA) through the NASA Earth Science 
Data Gateway at the Goddard Space Flight Center (GSFC).  
 

6.4 Quality Control and Diagnostics 

 Quality control (QC) is an integral part of the L2_SM_SP processing. The QC steps of 
L2_SM_SP processing are based on the flags that are provided with the input data streams 
(L2_SM_P_E,  and Sentinel-1A/1B), different types of masks, flags, and fractional coverage of other 
variables derived from ancillary data (Table 8). The SDS at JPL processes all data from the input data 
streams (L2_SM_P_E,  and Sentinel-1A/1B) that have favorable conditions for soil moisture retrieval 
(VWC <= 3 kg/m2, no rain, no snow cover, no frozen ground, no RFI, sufficient distance from open 
water) to generate the L2_SM_SP product. However, soil moisture retrieval will also be conducted 
for regions with VWC > 3 kg/m2, rain, RFI repaired data, and places closer to water bodies, but 
appropriate flags are added to these data points indicating their susceptibility to potentially high errors. 
The L2_SM_SP Product Specification Document elaborates the fields for QC bit flags. A flow 
diagram in Fig. 26 illustrates the decision tree to perform L2_SM_SP retrieval.  
 
 As shown in Fig. 26, the L2_SM_SP processing involves merging of two data streams, i.e., 
L2_SM_P_E and Sentinel-1A/1B. Therefore, the QC of L2_SM_SP output is influenced by these 
input data streams. In other words, the QC flags of the L2_SM_SP output are the union of QC flags 
from L2_SM_P_E and Sentinel-1A/1B data streams. However, due to differences in spatial resolution 
of the inputs (L2_SM_P_E and Sentinel-1A/1B) and output (L2_SM_SP), the assignment of QC flags 
in L2_SM_SP may differ from the flags associated with the inputs. The thresholds of ancillary data 
that initiate flagging in the L2_SM_SP product are mentioned below. For example, 𝑇𝐵𝑝

 data in 
L2_SM_P_E are corrected for the presence of water bodies. Studies were conducted to assess the 
quality of corrected 𝑇𝐵𝑝

 data that are acceptable and within the desired uncertainty level that could be 
used in L2_SM_SP processing. The water body fraction is reported for all land-based 3 km and 1 km 
grid cells in the L2_SM_SP product file, and the water body flag bit is set in the retrieval quality field 
if the water body fraction is greater than a threshold value. In the case of VWC, L2_SM_SP retrieval 
is performed at all the grid cells irrespective of VWC, but the QC flag is set only for grid cells having 
VWC > 3 kg/m2. No retrievals are performed for L2_SM_SP grid cells that are associated with RFI, 
water body fraction above a particular threshold, frozen ground, snow, and urban fraction above 
threshold.  
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Figure 26: Decision Tree to QC σvv and σvh from Sentinel-1A/1B and TBv

 from SMAP. 
 
  
        Thresholds from masks that initiate flags and operational decisions are available in L2_SM_SP 
processing. The following thresholds are used to QC SMAP and Sentinel-1A/1B input streams to the 
L2_SM_SP processing. The thresholds from masks also initiate quality flag and surface flags in the 
L2_SM_SP product. 
 
Open water body: The open water fraction map derived from the MODIS (MOD44W) database at 1 
km resolution is used to flag and mask the L2_SM_P_E and the Sentinel-1A/1B input stream. This 
following thresholds are used to flag the L2_SM_P_E and the Sentinel-1A/1B grid cells during the 
L2_SM_SP soil moisture retrieval processing in the following way: 
 

Masking and flagging of L2_SM_P_E grid cell:  
Water fraction is 0.00 – 0.05: Use in algorithm and retrieve soil moisture, do not flag. 
Water fraction is 0.05 – 0.50: Use in algorithm and retrieve soil moisture, flag.  
             Water fraction is 0.5 – 1.00: Mask completely and flag, do not retrieve soil moisture 

 

Masking and flagging of Sentinel-1A/1B grid cell:  
Water fraction is 0.00 – 0.05: Retrieve soil moisture, do not flag. 
Water fraction is 0.05 – 0.50: Flag and retrieve soil moisture. 
Water fraction is 0.50 – 1.00: Flag but do not retrieve soil moisture. 

 
Surface flag in L2_SM_SP product is initiated when the water fraction is greater than 0.05. 
Retrieval quality flag in L2_SM_SP product is initiated when the water fraction is greater than 0.05. 
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RFI: Presence of RFI in the SMAP TB adversely affects the L2_SM_SP algorithm. Therefore, specific 
logics are built into the L2_SM_SP processor to initiate masking and flagging during soil moisture 
retrievals. The RFI flag is initiated as follows: 
 

No RFI detected in TB: Retrieve soil moisture, do not flag. 
RFI detected in TB and repaired: Flag and retrieve soil moisture. 

 RFI detected in TB and not repaired: Flag and do not retrieve soil moisture. 
 
No RFI information is provided in the Sentinel-1A/1B 𝜎𝑣𝑣 and 𝜎𝑣ℎ data. 
 
Retrieval quality flag in L2_SM_SP product is initiated when RFI is detected in SMAP TB. 
 
 
Snow: The ancillary data that provide a binary indicator for presence of snow are used for flagging 
in the following way: 
 

Snow data indicate no snow: Use TB to retrieve soil moisture, do not flag. 
Snow data indicate snow: Flag, do not retrieve soil moisture. 

 
Surface flag in L2_SM_SP product is initiated when snow is present. 
Retrieval quality flag in L2_SM_SP product is initiated when snow is present. 
 
Frozen Ground: Besides snow, the frozen ground is another situation that impacts observations from 
the SMAP TB and Sentinel-1A/1B 𝜎𝑣𝑣 and 𝜎𝑣ℎ. The surface temperature data are used to detect frozen 
ground (temperatures <0º). SMAP TB and Sentinel-1A/1B 𝜎𝑣𝑣  and 𝜎𝑣ℎ  are eliminated from the 
L2_SM_SP processing. 
 
Surface flag in L2_SM_SP product is initiated when surface temperature is less than0º . 
Retrieval quality flag in L2_SM_SP product is initiated when surface temperature is less than0º. 
 
 
Urban Area: Presence of urban area adversely affects the L-band radiometric measurements. The 
presence of urban areas within the SMAP measurement and Sentinel-1A/1B data is likely to bias soil 
moisture retrievals. Currently the L2_SM_SP processor flags the regions having urban areas as 
follows: 
 

Urban fraction is 0.00 – 0.25: Retrieve soil moisture, do not flag. 
Urban fraction is 0.25 – 0.50: Flag TB and 𝜎𝑣𝑣 and 𝜎𝑣ℎ, and retrieve soil moisture. 
Urban fraction is 0.50 – 1.00: Flag TB and 𝜎𝑣𝑣 and 𝜎𝑣ℎ, do not retrieve soil moisture. 

 
Surface flag in L2_SM_SP product is initiated when urban area is greater than 0.25. 
Retrieval quality flag in L2_SM_SP product is initiated when urban area is greater than 0.25. 
 
 
Precipitation: Presence of heavy rainfall during SMAP data acquisition may adversely affect the TB 
and Sentinel-1A/1B backscatter observations. Precipitation forecasts from Goddard’s GEOS5 model 
are used to flag the TB and Sentinel-1A/1B backscatter observations. L2_SM_SP retrievals are 
performed irrespective of rainfall; however, the L2_SM_SP product grid cells are flagged in case of 
precipitation more than 5 mm. 
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Surface flag in L2_SM_SP product is initiated when precipitation is detected more than 5 mm. 
Retrieval quality flag in L2_SM_SP product is initiated when precipitation is detected more than 5 
mm. 
 
VWC: L2_SM_SP retrievals are made for all the locations irrespective of VWC level. The grid cells 
are flagged for VWC greater than 3 kg/m2. 
 
Surface flag in L2_SM_SP product is initiated when VWC is greater than 3 kg/m2. 
Retrieval quality flag in L2_SM_SP product is initiated when VWC is greater than 3 kg/m2. 
 
 
Mountainous Area:  The statistical metric of mountainous regions that initiates flags and operational 
decisions during L2_SM_AP processing is the standard deviation of terrain slope. There are other 
options and threshold statistics (the range of elevation, the variance of elevation, and combination of 
variance of slope and elevation parameters) that were considered for the L2_SM_SP product. 
However, standard deviation of slope seems to be robust to detect mountainous and uneven terrain 
that may impact the quality of radiometric measurements. Currently the L2_SM_SP processor flags 
the region where standard deviation of slope is more than 3 degrees; however, the retrieval is 
performed for all locations.  
 

Surface flag in L2_SM_SP product is initiated when the standard deviation of DEM slope is more 
than 3 degrees. 
Retrieval quality flag in L2_SM_SP product is initiated when the standard deviation of DEM slope 
is more than 3 degrees. 
 

 

Coastal Region: Large masses of water near the land such as coastal regions close to sea, ocean and 
large lakes influence the SMAP footprint. SMAP TB data along the coast are substantially 
contaminated due to the presence of adjacent large waterbodies. Correction of the TB data is possible 
and has been done in the L2_SM_P_E processing. However, the correction process for land TB data 
is not perfect and the TB data may still contain some error. Therefore, the surface flag in the 
L2_SM_SP product is initiated when the grid cell is within 60 km of the coast.  The retrieval quality 
flag in the L2_SM_SP product is initiated when the grid cell is within 60 km of the coast. 
 

 

6.5 Numerical Computation and Storage Consideration 

The expected computational requirements of L2_SM_SP activities are moderate. With the 
present technology in computing and archiving of electronic files, it can easily accommodate the 
L2_SM_SP processing. The maximum computational demand (processor time and cache memory) is 
anticipated during ingestion and preliminary processing of Sentinel-1A/1B data. With the current 
infrastructure at the JPL Science Data System (SDS), no bottlenecks are expected while running the 
L2_SM_SP software PGE for the SMAP-Sentinel Active-Passive product. Data volume of one 
L2_SM_SP product granule is ~4 - 6 MB, and there are nearly ~200 such granules per day. This 
makes a yearly volume of ~365 GB for the L2_SM_SP product.  
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6.6 Programming Consideration 

Processing and operational codes for the L2_SM_SP algorithm are written in Fortran to make 
it consistent with other algorithms. This facilitates inter-algorithm functioning of switches, data, and 
information transactions. Programming for the L2_SM_SP algorithm adheres to standard coding 
specifications to ensure consistent, maintainable, and readable code deliveries within the SMAP SDS. 
Fortran programming of the L2_SM_SP algorithm also meets the necessary requirements of language 
compliance, predictable execution, and code clarity. Adherence to these standards by Fortran routines 
allows efficient integration of SDS software components (Interfaces) and simplifies the Algorithm-
to-PGE development process. The L2_SM_SP Fortran codes contain comments and version control 
information to track the changes and streamline the development of software. A software specification 
document was developed for documentation of all the source codes.  
 

6.7 Exception Handling  

To obtain the L2_SM_SP product from SMAP and Sentinel-1A/1B observations involves 
many aspects of product generation. This includes instrument performance, satellite data downlink, 
data preprocessing activities, quality of data (e.g., data drop-off), preceding algorithm performance, 
availability of ancillary data, and computation of related resources. Due to these activities, exceptions 
are expected while operating the L2_SM_SP algorithm on the SDS testbed. The development of 
L2_SM_SP software includes identification of expected exceptions. However, the formulation and 
computer coding of L2_SM_SP software is robust to withstand the expected exceptions and exit 
normally with messages in case of any exception.    

 

6.8 Interface Assumptions 

The L2_SM_SP algorithm generates data based on the input of L2_SM_P_E (water bodies 
corrected brightness temperature fields) and the Sentinel-1A/1B (radar backscatter cross-section) 
products. Masks and flags contained in the foundation products are also propagated in the L2_SM_SP. 
The masks include bad or missing data, inland water, coasts, vegetation and terrain flags, frozen 
ground flag, etc. In order to maintain consistency and streamline production, any additional masks 
that may be required for the L2_SM_SP product will be requested to be included in the parent SMAP 
data product.  
 

6.9 Latency in L2_SM_SP Product 

The L2_SM_SP product has no latency requirements. However, the SMAP project tries to 
make the L2_SM_SP product available to the NASA DAAC at NSIDC as early as possible. On 
average the data are available after ~3 days (~72 hours). The main driver of latency for the L2_SM_SP 
products is the availability of the Sentinel-1A/1B data and the requirement of 3 days to look for the 
closest match between the SMAP TB L2_SM_P_E and Sentinel-1A/1B 𝜎𝑣𝑣 and 𝜎𝑣ℎ for the Active-
Passive algorithm processing. Overall ~90% of the Sentinel-1A/1B granules received by JPL SDS 
are processed for the L2_SM_SP product and delivered to NSIDC between ~72 – 96 hours. 
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7 PRODUCTS SPECIFICATIONS 

The L2_SM_SP product contains relevant outputs from the Active-Passive algorithm 
(Section 3.2), soil moisture retrieval data, dynamic ancillary data used in the soil moisture retrieval, 
and metadata information. The L2_SM_SP product file comprises two distinct data groups, one for 
the 3 km EASE2 grid and a second one for the 1 km EASE2 grid. The L2_SM_SP product contains 
soil moisture retrievals for each data group. Table 9 provides the fields contained in the L2_SM_SP 
product file for both of the data groups. However, the primary data group of the L2_SM_SP product 
is at 3 km resolution (EASE2 grid) which has been validated, and the 1 km resolution (EASE2 grid) 
data group which is experimental. For completeness, disaggregated TB from the current Active-
Passive algorithm, averaged radar backscatter, dynamic ancillary inputs, and algorithm parameters 
are included. Geolocation information (latitude, longitude, and EASE2 grid-ID) and UTC time of the 
spacecraft overpass are also included for all the grid cells at 3 km and 1 km. Within each data group, 
the L2_SM_SP product file contains two parts: 1) the baseline is when only the SMAP descending 
pass is used in the input data stream to find an overlap with the Sentinel-1A/1B overpass, and 2) when 
the SMAP descending-ascending (apm) combination is used in the input data stream to find an 
overlap with the Sentinel-1A/1B overpass. The descending-ascending (apm) combination is the 
process of overlapping the SMAP TB data from the descending pass or the ascending pass obtained 
from L2_SM_P_E data to find the minimum overpass time difference between the SMAP TB data and 
the Sentinel-1A/1B 𝜎 data. The overlap (+/- 24 hours timeframe) is done using the 3 days of the 
SMAP TB  data centered around the Sentinel-1A/1B overpass time.  

 
       With the current design of the L2_SM_SP product file, the contents can be easily mapped on to 
the 3 km and 1 km fixed EASE2 grid cells using the geolocation information present in the product 
file. Complete details about the contents are provided in the L2_SM_SP product specification 
document. There are a total of 52 data elements at 3 km EASE2 grid resolution and 52 data elements 
at 1 km EASE2 grid resolution. Some of the data elements are experimental and may be removed in 
future releases. The metadata and the populated product fields are packaged in HDF5 file format and 
are made available to the public from the NASA DAAC at the National Snow and Ice Data Center 
(NSIDC) in Boulder, Colorado [https://nsidc.org/data/smap]. 
 
 
Table 9: L2_SM_SP product file data fields (mostly in alphabetical order) at 3 km and 1 km EASE2 
grid resolutions that contain geolocation information, disaggregated TB, aggregated 𝜎 (sigma0), 
geophysical data fields, QC data, and dynamic ancillary data. 
 
L2_SM_SP    3 km      
Data Group     

 

Data Element Name 

Data 

type Unit 

 

Description 

'EASE2_column_index_3km' integer (-) EASE2 grid column index at 3 km 

'EASE2_column_index_apm_3km' integer (-) EASE2 grid column index at 3 km for apm 

'EASE2_row_index_3km' integer (-) EASE2 grid row index at 3 km 

'EASE2_row_index_apm_3km' integer (-) EASE2 grid row index at 3 km for apm 

'SMAP_Sentinel_overpass_timediff_hr_3km' real hours 
Time difference of acquisition between SMAP 
and Sentinel-1A/1B observations 

'SMAP_Sentinel_overpass_timediff_hr_apm_3km' real hours 
Time difference of acquisition between SMAP 
and Sentinel-1A/1B observations for apm 

'albedo_3km' real (-) 
Vegetation albedo used in Tau-Omega model for 
soil moisture retrieval 
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'albedo_apm_3km' real (-) 
Vegetation albedo used in Tau-Omega model for 
soil moisture retrieval for apm 

'bare_soil_roughness_retrieved_3km' real (-) 
Soil roughness provided by the lookup table Tau-
Omega model for soil moisture retrieval  

'bare_soil_roughness_retrieved_apm_3km' real (-) 
Soil roughness provided by the lookup table Tau-
Omega model for soil moisture retrieval for apm 

'beta_tbv_vv_3km' real (-) 

 
Beta parameter derived from TBh and 𝜎hh with 
snapshot approach used in the Active/Passive 
retrieval algorithm for the coarse resolution 
EASE2 grid cell (~33 km) 

'beta_tbv_vv_apm_3km' real (-) 

Beta parameter derived from TBh and 𝜎hh with 
snapshot approach used in the Active/Passive 
retrieval algorithm for the coarse resolution 
EASE2 grid cell (~33 km) for apm 

'disagg_soil_moisture_3km' real cm3/cm3 

It is soil moisture from the alternative algorithm 
that disaggregates the coarse resolution (~33 km) 
soil moisture from L2_SM_P_E 

'disagg_soil_moisture_apm_3km' real cm3/cm3 

It is soil moisture from the alternative algorithm 
that disaggregates the coarse resolution (~33 km) 
soil moisture from L2_SM_P_E for apm 

'disaggregated_tb_v_qual_flag_3km' 
bit 

flags (-) 
Bit flags that record the conditions and the quality 
of the disaggregated  TB at 3 km  

'disaggregated_tb_v_qual_flag_apm_3km' 
bit 

flags (-) 
Bit flags that record the conditions and the quality 
of the disaggregated  TB at 3 km for apm 

'gamma_vv_xpol_3km' real (-) 
Heterogeneity parameter of the Active-Passive 
algorithm used to obtain disaggregated  TB. 

'gamma_vv_xpol_apm_3km' real (-) 
Heterogeneity parameter of the Active-Passive 
algorithm used to obtain disaggregated  TB for apm 

'landcover_class_3km' integer (-) 
Enumerated data that classify MODIS derived 
dominant landcover at 3 km 

'landcover_class_apm_3km' integer (-) 
Enumerated data that classify MODIS derived 
dominant landcover at 3 km for apm 

'latitude_3km' real degrees 
Latitude of the center of the EASE2 based grid 
cell at 3 km 

'latitude_apm_3km' real degrees 
Latitude of the center of the EASE2 based grid 
cell at 3 km at apm 

'longitude_3km' real degrees 
Longitude of the center of the EASE2 based grid 
cell at 3 km 

'longitude_apm_3km' real degrees 
Longitude of the center of the EASE2 based grid 
cell at 3 km at apm 

'retrieval_qual_flag_3km' 
bit 

flags (-) 

Bit flags that record the conditions and the quality 
of the retrieval algorithms that generate soil 
moisture for the Active-Passive algorithm 

'retrieval_qual_flag_apm_3km' 
bit 

flags (-) 

Bit flags that record the conditions and the quality 
of the retrieval algorithms that generate soil 
moisture for the Active-Passive algorithm for apm 

'sigma0_incidence_angle_3km' real degrees 
Averaged Sentinel-1A/1B sigma0 incidence angle  
at 3 km  

'sigma0_incidence_angle_apm_3km' real degrees 
Averaged Sentinel-1A/1B sigma0 incidence angle  
at 3 km at apm 

'sigma0_vh_aggregated_3km' real (-) 
Average of fine resolution x-pol (vh) Sentinel-
1A/1B sigma0 into at 3 km EASE2 grid resolution 

'sigma0_vh_aggregated_apm_3km' real (-) 

Average of fine resolution x-pol (vh) Sentinel-
1A/1B sigma0 into at 3 km EASE2 grid resolution 
at apm 

'sigma0_vv_aggregated_3km' real (-) 
Average of fine resolution v-pol (vv) Sentinel-
1A/1B sigma0 into at 3 km EASE2 grid resolution 

'sigma0_vv_aggregated_apm_3km' real (-) 

Average of fine resolution v-pol (vv) Sentinel-
1A/1B sigma0 into at 3 km EASE2 grid resolution 
at apm 
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'soil_moisture_3km' real cm3/cm3 
Soil moisture retrieved using disaggregated  TBh 
for the 3 km EASE2 grid cell  

'soil_moisture_apm_3km' real cm3/cm3 
Soil moisture retrieved using disaggregated  TBh 
for the 3 km EASE2 grid cell at apm 

'soil_moisture_std_dev_3km' real cm3/cm3 
Soil moisture standard deviation retrieved using 
disaggregated  TBv for the 3 km EASE2 grid cell 

'soil_moisture_std_dev_apm_3km' real cm3/cm3 

Soil moisture standard deviation retrieved using 
disaggregated  TBv for the 3 km EASE2 grid cell at 
apm 

'spacecraft_overpass_time_seconds_3km' real seconds 

Number of seconds since a specified epoch that 
represents the SMAP overpass relative to the ~33 
km EASE2 grid cell that contains each 3 km 
EASE2 grid cell represented in this data product 

'spacecraft_overpass_time_seconds_apm_3km' real seconds 

Number of seconds since a specified epoch that 
represents the SMAP overpass relative to the ~33 
km EASE2 grid cell that contains each 3 km 
EASE2 grid cell represented in this data product at 
apm 

'surface_flag_3km' 
bit 

flags (-) 
Bit flags that record ambient surface conditions 
for the 3 km EASE2 grid cell 

'surface_flag_apm_3km' 
bit 

flags (-) 
Bit flags that record ambient surface conditions 
for the 3 km EASE2 grid cell at apm 

'surface_temperature_3km' real Kelvin 

Temperature at land surface based on a 
geophysical model (GMAO) at 3 km, base 
resolution is 9 km 

'surface_temperature_apm_3km' real Kelvin 

Temperature at land surface based on a 
geophysical model (GMAO) at 3 km, base 
resolution is 9 km at apm 

'tb_v_disaggregated_3km' real Kelvin 
SMAP TBv disaggregated from the ~33 km grid 
cells into 3 km EASE2 grid cells 

'tb_v_disaggregated_apm_3km' real Kelvin 
SMAP TBv disaggregated from the ~33 km grid 
cells into 3 km EASE2 grid cells at apm 

'tb_v_disaggregated_std_3km' real Kelvin 
STD in SMAP TBv disaggregated from the ~33 km 
grid cells into 3 km EASE2 grid cells 

'tb_v_disaggregated_std_apm_3km' real Kelvin 
STD in SMAP TBv disaggregated from the ~33 km 
grid cells into 3 km EASE2 grid cells at apm 

'vegetation_opacity_3km' real (-) 
Vegetation opacity (tau) in the 3 km grid cell 
compute using the NDVI data 

'vegetation_opacity_apm_3km' real (-) 
Vegetation opacity (tau) in the 3 km grid cell 
compute using the NDVI data at apm 

'vegetation_water_content_3km' real kg/m2 
Vegetation-water-content (VWC) in the 3 km grid 
cell compute using the NDVI data 

'vegetation_water_content_apm_3km' real kg/m2 
Vegetation-water-content (VWC) in the 3 km grid 
cell compute using the NDVI data at apm 

'water_body_fraction_3km' real (-) 
Fraction of the area of 3 km grid cell that is a 
permanent or transient water body 

'water_body_fraction_apm_3km' real (-) 
Fraction of the area of 3 km grid cell that is a 
permanent or transient water body at apm 

 
 
 
L2_SM_SP    1 km      
Data  Group     

 

Data Element Name Data type Unit 

 

Description 

'EASE2_column_index_1km' integer (-) EASE2 grid column index at 1 km 

'EASE2_column_index_apm_1km' integer (-) EASE2 grid column index at 1 km for apm 
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'EASE2_row_index_1km' integer (-) EASE2 grid row index at 1 km 

'EASE2_row_index_apm_1km' integer (-) EASE2 grid row index at 1 km for apm 

'SMAP_Sentinel_overpass_timediff_hr_1km' real hours 
Time difference of acquisition between 
SMAP and Sentinel-1A/1B observations 

'SMAP_Sentinel_overpass_timediff_hr_apm_1km' real hours 

Time difference of acquisition between 
SMAP and Sentinel-1A/1B observations for 
apm 

'albedo_1km' real (-) 
Vegetation albedo used in Tau-Omega 
model for soil moisture retrieval 

'albedo_apm_1km' real (-) 
Vegetation albedo used in Tau-Omega 
model for soil moisture retrieval for apm 

'bare_soil_roughness_retrieved_1km' real (-) 

Soil roughness provided by the lookup table 
Tau-Omega model for soil moisture 
retrieval  

'bare_soil_roughness_retrieved_apm_1km' real (-) 

Soil roughness provided by the lookup table 
Tau-Omega model for soil moisture 
retrieval for apm 

'beta_tbv_vv_1km' real (-) 

Beta parameter derived from TBh and 𝜎hh 
with snapshot approach used in the 
Active/Passive retrieval algorithm for the 
coarse resolution EASE2 grid cell (~33 km) 

'beta_tbv_vv_apm_1km' real (-) 

Beta parameter derived from TBh and 𝜎hh 
with snapshot approach used in the 
Active/Passive retrieval algorithm for the 
coarse resolution EASE2 grid cell (~33 km) 
for apm 

'disagg_soil_moisture_1km' real cm3/cm3 

It is soil moisture from the alternative 
algorithm that disaggregates the coarse 
resolution (~33 km) soil moisture from 
L2_SM_P_E 

'disagg_soil_moisture_apm_1km' real cm3/cm3 

It is soil moisture from the alternative 
algorithm that disaggregates the coarse 
resolution (~33 km) soil moisture from 
L2_SM_P_E for apm 

'disaggregated_tb_v_qual_flag_1km' integer (-) 
Bit flags that record the conditions and the 
quality of the disaggregated  TB at 1 km  

'disaggregated_tb_v_qual_flag_apm_1km' integer (-) 

Bit flags that record the conditions and the 
quality of the disaggregated  TB at 1 km for 
apm 

'gamma_vv_xpol_1km' real (-) 

Heterogeneity parameter of the Active-
Passive algorithm used to obtain 
disaggregated  TB. 

'gamma_vv_xpol_apm_1km' real (-) 

Heterogeneity parameter of the Active-
Passive algorithm used to obtain 
disaggregated  TB for apm 

'landcover_class_1km' integer (-) 
Enumerated data that classify MODIS 
derived dominant landcover at 1 km 

'landcover_class_apm_1km' integer (-) 
Enumerated data that classify MODIS 
derived dominant landcover at 1 km for apm 

'latitude_1km' real degrees 
Latitude of the center of the EASE2 based 
grid cell at 1 km 

'latitude_apm_1km' real degrees 
Latitude of the center of the EASE2 based 
grid cell at 1 km at apm 

'longitude_1km' real degrees 
Longitude of the center of the EASE2 based 
grid cell at 1 km 

'longitude_apm_1km' real degrees 
Longitude of the center of the EASE2 based 
grid cell at 1 km at apm 

'retrieval_qual_flag_1km' integer (-) 
Bit flags that record the conditions and the 
quality of the retrieval algorithms that 
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generate soil moisture for the Active-
Passive algorithm 

'retrieval_qual_flag_apm_1km' integer (-) 

Bit flags that record the conditions and the 
quality of the retrieval algorithms that 
generate soil moisture for the Active-
Passive algorithm for apm 

'sigma0_incidence_angle_1km' real degrees 
Averaged Sentinel-1A/1B sigma0 incidence 
angle  at 1 km  

'sigma0_incidence_angle_apm_1km' real degrees 
Averaged Sentinel-1A/1B sigma0 incidence 
angle  at 1 km at apm 

'sigma0_vh_aggregated_1km' real (-) 

Average of fine resolution x-pol (vh) 
Sentinel-1A/1B sigma0 into at 1 km EASE2 
grid resolution 

'sigma0_vh_aggregated_apm_1km' real (-) 

Average of fine resolution x-pol (vh) 
Sentinel-1A/1B sigma0 into at 1 km EASE2 
grid resolution at apm 

'sigma0_vv_aggregated_1km' real (-) 

Average of fine resolution v-pol (vv) 
Sentinel-1A/1B sigma0 into at 1 km EASE2 
grid resolution 

'sigma0_vv_aggregated_apm_1km' real (-) 

Average of fine resolution v-pol (vv) 
Sentinel-1A/1B sigma0 into at 1 km EASE2 
grid resolution at apm 

'soil_moisture_1km' real cm3/cm3 
Soil moisture retrieved using disaggregated  
TBh for the 1 km EASE2 grid cell  

'soil_moisture_apm_1km' real cm3/cm3 
Soil moisture retrieved using disaggregated  
TBh for the 1 km EASE2 grid cell at apm 

'soil_moisture_std_dev_1km' real cm3/cm3 

Soil moisture standard deviation retrieved 
using disaggregated  TBv for the 1 km 
EASE2 grid cell 

'soil_moisture_std_dev_apm_1km' real cm3/cm3 

Soil moisture standard deviation retrieved 
using disaggregated  TBv for the 1 km 
EASE2 grid cell at apm 

'spacecraft_overpass_time_seconds_1km' real seconds 

Number of seconds since a specified epoch 
that represents the SMAP overpass relative 
to the ~33 km EASE2 grid cell that contains 
each 1 km EASE2 grid cell represented in 
this data product 

'spacecraft_overpass_time_seconds_apm_1km' real seconds 

Number of seconds since a specified epoch 
that represents the SMAP overpass relative 
to the ~33 km EASE2 grid cell that contains 
each 1 km EASE2 grid cell represented in 
this data product at apm 

'surface_flag_1km' integer (-) 
Bit flags that record ambient surface 
conditions for the 1 km EASE2 grid cell 

'surface_flag_apm_1km' integer (-) 

Bit flags that record ambient surface 
conditions for the 1 km EASE2 grid cell at 
apm 

'surface_temperature_1km' real Kelvin 

Temperature at land surface based on a 
geophysical model (GMAO) at 1 km, base 
resolution is 9 km 

'surface_temperature_apm_1km' real Kelvin 

Temperature at land surface based on a 
geophysical model (GMAO) at 1 km, base 
resolution is 9 km at apm 

'tb_v_disaggregated_1km' real Kelvin 
SMAP TBv disaggregated from the ~33 km 
grid cells into 1 km EASE2 grid cells 

'tb_v_disaggregated_apm_1km' real Kelvin 

SMAP TBv disaggregated from the ~33 km 
grid cells into 1 km EASE2 grid cells at 
apm 

'tb_v_disaggregated_std_1km' real Kelvin 

STD in SMAP TBv disaggregated from the 
~33 km grid cells into 1 km EASE2 grid 
cells 
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'tb_v_disaggregated_std_apm_1km' real Kelvin 

STD in SMAP TBv disaggregated from the 
~33 km grid cells into 1 km EASE2 grid 
cells at apm 

'vegetation_opacity_1km' real (-) 
Vegetation opacity (tau) in the 1 km grid 
cell compute using the NDVI data 

'vegetation_opacity_apm_1km' real (-) 
Vegetation opacity (tau) in the 1 km grid 
cell compute using the NDVI data at apm 

'vegetation_water_content_1km' real kg/m2 
Vegetation-water-content (VWC) in the 1 
km grid cell compute using the NDVI data 

'vegetation_water_content_apm_1km' real kg/m2 

Vegetation-water-content (VWC) in the 1 
km grid cell compute using the NDVI data 
at apm 

'water_body_fraction_1km' real (-) 
Fraction of the area of 1 km grid cell that is 
a permanent or transient water body 

'water_body_fraction_apm_1km' real (-) 
Fraction of the area of 1 km grid cell that is 
a permanent or transient water body at apm 

 
 

8 FUTURE CONSIDERATIONS for the L2_SM_SP PRODUCT 

         There is further potential for improvement in the L2_SM_SP data quality by reducing the errors 
in soil moisture retrievals. These improvements include use of better ancillary data (e.g. optimized 
VWC and better soil texture data) and optimization of the tau-omega model parameters for various 
land covers at resolutions of 3 km and 1 km. The current operational processing of the L2_SM_SP 
product can be improved to attain better soil moisture accuracy over most of the land covers through 
the following steps:  

a) Replacing the current soil texture database with the latest available high-resolution soil 
texture data. 

b) Improving the dielectric model for higher latitudes where organic content in soil is high. 
c) Improving the method/model that is used to derive VWC to obtain the vegetation opacity 

used in the tau-omega model to retrieve soil moisture. 
 
 

8.1 Replacing Soil Texture Database 

        The SMAP project uses a blend of the Harmonized World Soil Database (HWSD) at ~10–25 km 
resolution, the State Soil Geographic (STATSGO) database for the continental United States 
(CONUS) at 1 km resolution, and the Australian Soil Resource Information System (ASRIS) at 1 km 
resolution. Apart from  CONUS and Australia, the rest of the world has soil data that are very coarse 
(~10 to 25 km) and outdated. Recent advances in the global soil database such as available at 
https://openlandmap.org provide very high resolution (~250 m) with better accuracy soil texture 
information [31].  Including high-resolution and recent soil texture data in the L2_SM_SP retrieval 
process will likely improve its global performance. The impact of the coarse resolution soil texture 
data currently used in the SMAP operational soil moisture retrieval process is not visible in the 
L2_SM_SP CVS because most of CVS are confined to CONUS and Australia where high resolution 
soil texture data (STATSGO and ASRIS) are available. Figure 27 illustrates a comparison of texture 
data between the current composite soil database used by the SMAP project and the soil database 
from https://openlandmap.org [31]. The quality of the new database appears to be more reliable, likely 
due to the latest high-resolution remote sensing information, an enhancement in the number of in situ 
soil physical attribute observations, and other high-resolution pedotransfer functions used in its 
creation.  

https://openlandmap.org/
https://openlandmap.org/
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Figure 27: Comparison between the latest GlobalSoilGrid (~250 m) from https://openlandmap.org 
and the composite soil database used by the SMAP project. More details and natural spatial 
distribution of clay in the top soil is observed in the GlobalSoilGrid as compared to the artificial and 
unnatural contours and distinct boundaries in the current SMAP soil texture baseline.  
 
        In looking at different regions of the world, similar observations related to the soil texture data 
were evident in the latest GlobalSoilGrid (~250 m). Therefore, it is expected that the overall quality 
of the L2_SM_SP soil moisture data will improve with improved global soil texture data. 
 

8.2 Improving the Dielectric Model for Higher Latitude 

        The current L2_SM_SP processing at JPL SDS uses the Mironov model [32] for estimating the 
real and the imaginary part of the soil effective dielectric constant. The clay fraction is the only soil 
physical attribute that goes into the Mironov model to compute the dielectric constant. With the clay 
fraction input to the Mironov model, it is optimal for most of the hydroclimatic domains and biomes, 
except for higher latitudes such as tundra regions where the organic component in the soil is present 
in high amounts. The Mironov model is not optimized for estimating the dielectric constant for top 
soils having a large fraction of organic matter. Other dielectric models such as [33] and [34] that 
consider organic content of the top soil as one of the inputs will be evaluated to determine their impact 
on soil moisture retrieval accuracy. If warranted, the inclusion of such a dielectric model in the JPL 
SDS processing should improve the L2_SM_SP soil moisture product for higher latitudes. 
 

https://openlandmap.org/
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8.3 Improving VWC estimates 

         Currently, the SMAP L2_SM_SP retrievals use the same tau-omega parameters as the 
L2_SM_P_E retrievals [ref?]. Another important step to improving the L2_SM_SP data quality is the 
inclusion of retrieved vegetation optical depth (VOD) or vegetation opacity tau ( ), from dual-
channel algorithms such as [35. However, such retrieved are at the coarse resolution of the 
radiometer (at C scale), and therefore, not very useful for high-resolution soil moisture retrievals.  The 

values used for L2_SM_SP soil moisture retrievals are derived from a 10-year (2002−2012) 
climatology of NDVI-based VWC ( =b*VWC, where b is a parameter based on land cover, typically 
close to 0.1 at L-band frequencies). The drawback of using VWC climatology for is prominently 
visible over CVS with cropland land cover because it may be out of sync. The accuracy of is critical 
because  has a first order impact on the quality of the L2_SM_SP soil moisture product. Fig. 28 
illustrates one such scenario where the NDVI climatology taken from Day-of-Year (DOY) 185 is 
compared against the actual NDVI for DOY 185, 2017 for California. Two time series plots, one from 
a natural landscape with shrubland cover and another with cropland, are shown in Fig. 28. The actual 
NDVI time series over cropland (agricultural region) does not match with the climatology (2002–
2012) mostly due to crop rotation and differences in planting date for that particular year. However, 
the climatology and the actual time series over the shrubland are  similar. Such mismatches are very 
possible over many of the CVS with crop land cover, hence leading to inferior performance of the 
L2_SM_SP product, as visible in Tables 5-6 for CVS Yanco and Kenaston. Inclusion of actual NDVI 
in the operational L2_SM_SP processing has potential to improve the overall accuracy of the 
L2SMSP soil moisture retrievals for those cases where poor accuracy is due to mismatch errors 
between actual and climatological NDVI .  However, the 8–16 day latency of actual MODIS NDVI 
data is a constraint (cloudy conditions would also contribute to larger latencies). As an alternative to 
NDVI, the cross-polarized Sentinel-1A/B measurements could be used as a variable that is 
proportional to  [36]. Future research will examine the use of Sentinel-1A/1B cross-polarized data 
to estimate and its potential to improve the quality of the L2_SM_SP product. 
 

 
Figure 28: Comparison of actual NDVI (green curve) and climatology of NDVI (2002-2012) (blue 
curve) for an agricultural region (cropland) and a non-agricultural region (shrubland) in Central 
Valley, California. 
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