Soil Moisture Active Passive (SMAP) Mission

Level 2 SMAP/Sentinel Active/Passive Soil Moisture Product Specification Document

Release 3

Narendra Das R. Scott Dunbar

August 6, 2020

JPL D-56548

National Aeronautics and Space Administration

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91109-8099 California Institute of Technology

TABLE OF CONTENTS

1	INT	RODUCTION6
	1.1	Identification
	1.2	Scope
	1.3	The SMAP Mission6
	1.4	Data Products
	1.5	L2_SM_SP Overview
2	DAT	A PRODUCT ORGANIZATION12
	2.1	Format 12
	2.2	HDF5 Notation
	2.2.	1 HDF5 File
	2.2.2	2 HDF5 Group
	2.2.3	3 HDF5 Dataset
	2.2.4	4 HDF5 Datatype
	2.2.	5 HDF5 Dataspace
	2.2.0	6 HDF5 Attribute
	2.3	SMAP FILE ORGANIZATION
	2.3.	1 Structure
	2.3.2	2 Data
	2.3.3	3 Element Types
	2.3.4	File Level Metadata
	2.3.	5 Local Metadata16
	2.4	Data Definition Standards
	2.4.	Double Precision Time Variables
	2.4.2	2 Array Representation
	2.5	Fill/Gap Values
	2.6	Flexible Data Design
3	EAS	E2 GRID
4	PRO	DUCT DEFINITION24
	4.1	Overview
	4.2	Product Names

4.3	Vo	lume	26
4.4	L2_	_SM_SP Product Metadata	26
4.5	L2_	_SM_SP Data Structure	37
4.6	Par	ameter Definitions	49
4.	6.1	albedo_1km	49
4.	6.2	albedo_3km	49
4.	6.3	bare_soil_roughness_retrieved_1km	49
4.	6.4	bare_soil_roughness_retrieved_3km	49
4.	6.5	beta_tbv_vv_1km	50
4.	6.6	beta_tbv_vv_3km	50
4.	6.7	disagg_soil_moisture_1km	50
4.	6.8	disagg_soil_moisture_3km	51
4.	6.9	disaggregated_tb_v_qual_flag_1km	51
4.	6.10	disaggregated_tb_v_qual_flag_3km	52
4.	6.11	EASE_column_index_1km	54
4.	6.12	EASE_column_index_3km	54
4.	6.13	EASE_row_index_1km	54
4.	6.14	EASE_row_index_3km	55
4.	6.15	gamma_vv_xpol_1km	55
4.	6.16	gamma_vv_xpol_3km	55
4.	6.17	landcover_class_1km	56
4.	6.18	landcover_class_3km	56
4.	6.19	latitude_1km	57
4.	6.20	latitude_3km	57
4.	6.21	longitude_1km	58
4.	6.22	longitude_3km	58
4.	6.23	retrieval_qual_flag_1km	58
4.	6.24	retrieval_qual_flag_3km	59
4.	6.25	sigma0_incidence_angle_1km	60
4.	6.26	sigma0_incidence_angle_3km	60
4.	6.27	sigma0_vv_aggregated_1km	60
4.	6.28	sigma0_vv_aggregated_3km	60
4.0	6.29	sigma0 vh aggregated 1km	61

Release 3 Aug 6, 20		JPL D-56548 ation Document
4.6	5.30 sigma0_vh_aggregated_3km	61
4.6	SMAP_Sentinel_overpass_timediff_hr_1km	61
4.6	5.32 SMAP_Sentinel_overpass_timediff_hr_3km	62
4.6	5.33 soil_moisture_1km	62
4.6	5.34 soil_moisture_3km	62
4.6	5.35 soil_moisture_std_dev_1km	62
4.6	5.36 soil_moisture_std_dev_3km	63
4.6	5.37 spacecraft_overpass_time_seconds_1km	63
4.6	5.38 spacecraft_overpass_time_seconds_3km	63
4.6	5.39 surface_flag_1km	63
4.6	5.40 surface_flag_3km	65
4.6	5.41 surface_temperature_1km	66
4.6	5.42 surface_temperature_3km	67
4.6	5.43 tb_v_disaggregated_1km	67
4.6	5.44 tb_v_disaggregated_3km	67
4.6	5.45 tb_v_disaggregated_std_1km	67
4.6	5.46 tb_v_disaggregated_std_3km	68
4.6	5.47 vegetation_opacity_1km	68
4.6	5.48 vegetation_opacity_3km	68
4.6	5.49 vegetation_water_content_1km	69
4.6	5.50 vegetation_water_content_3km	69
4.6	5.51 water_body_fraction_1km	69
4.6	5.52 water_body_fraction_3km	70
5 RE	FERENCES	71
5.1	Requirements	71
5.2	Plans	71
5.3	Algorithm Theoretical Basis Documents	71
5.4	Product Specification Documents	72
5.5	Enhanced Products (December 2016)	73
5.6	SMAP/Sentinel Product (April 2017)	73
5.7	Others	73
6 AP	PENDIX A. ACRONYMS AND ARREVIATIONS	75

1 INTRODUCTION

1.1 Identification

This is the Product Specification Document (PSD) for the Level 2 SMAP/Sentinel Active-Passive Soil Moisture Product for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The product provides gridded data of SMAP soil moisture combined radar and radiometer retrieval, ancillary data, and quality-assessment flags on 3-km and 1-km Earth-fixed grids. Only cells that are covered by the actual swath are written in the product.

In this version, there are no changes to the data file contents or format. Internal changes to the processing for both the Sentinel backscatter (L2_S0_S1) and the active-passive soil moisture retrieval in L2_SM_SP have been made to improve product quality.

1.2 Scope

This document describes the file format and data contents of the Level 2 SMAP/Sentinel Active-Passive Soil Moisture Data Product (hereafter referred to as 'L2_SM_SP' for brevity) for external software interfaces.

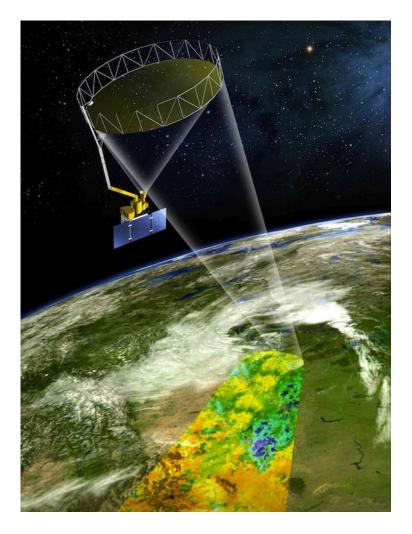
1.3 The SMAP Mission

The SMAP mission is a unique mission that combines passive (radiometer) and active (radar) observations to provide global mapping of soil moisture and freeze/thaw state with unprecedented accuracy, resolution, and coverage. The resulting space-based hydrosphere state measurements will improve:

- Understanding of the processes that link the terrestrial water, energy and carbon cycles
- Estimate of global water and energy fluxes at the land surface
- Measurement of net carbon flux in boreal landscapes
- Weather and climate forecast skill
- Flood prediction and drought monitoring capabilities

Table 1 is a summary of the SMAP instrument functional requirements derived from its science measurement needs. The goal is to combine the various positive attributes of the radar and radiometer observations, including spatial resolution, sensitivity to soil moisture, surface roughness, and vegetation, to estimate soil moisture at a resolution of 10 km and freeze-thaw state at a resolution of 1-3 km.

Table 1: SMAP Mission Requirements


Scientific Measurement Requirements	Instrument Functional Requirements
Soil Moisture:	L-Band Radiometer (1.41 GHz):
~± 0.04 cm ₃ /cm ₃ volumetric accuracy (1-	Polarization: V, H, T ₃ , and T ₄
sigma) in the top 5 cm for vegetation water	Resolution: 40 km
content $\leq 5 \text{ kg/m}_2$	Radiometric Uncertainty*: 1.3 K
Hydrometeorology at ~10 km resolution	L-Band Radar (1.26 and 1.29 GHz):
Hydroclimatology at ~40 km resolution	Polarization: VV, HH, HV (or VH)
. 5.	Resolution: 10 km
	Relative accuracy*: 0.5 dB (VV and
	HH)
	Constant incidence angle** between
	35° and 50°
Freeze/Thaw State:	L-Band Radar (1.26 GHz & 1.29
Capture freeze/thaw state transitions in	GHz):
integrated vegetation-soil continuum with two-	Polarization: HH
day precision at the spatial scale of landscape	Resolution: 3 km
variability (~3 km)	Relative accuracy*: 0.7 dB (1 dB per
	channel if 2 channels are used)
	Constant incidence angle** between
	35° and 50°
Sample diurnal cycle at consistent time of day	Swath Width: ~1000 km
(6 am/6 pm Equator crossing);	Minimize Faraday rotation
Global, ~3 day (or better) revisit;	(degradation factor at L-band)
Boreal, ~2 day (or better) revisit	
Observation over minimum of three annual	Baseline three-year mission life
cycles	
* Includes precision and calibration stability	
** Defined without regard to local topographic v	ariation

The SMAP instrument incorporates an L-band radar and an L-band radiometer that share a single feedhorn and parabolic mesh reflector. As shown in Figure 1, the reflector is offset from nadir and rotates about the nadir axis at 14.6 rpm (nominal), providing a conically scanning antenna beam with a surface incidence angle of approximately 40°. The provision of constant incidence angle across the swath simplifies data processing and enables accurate repeat-pass estimates of soil moisture and freeze/thaw change. The reflector has a diameter of 6 m, providing a radiometer 3 dB antenna footprint of 40 km (root-ellipsoidal-area). The real-aperture radar footprint is 30 km, defined by the two-way antenna beamwidth. The real-aperture radar and radiometer data will be collected globally during both ascending and descending passes.

To obtain the desired high spatial resolution, the radar employs range and Doppler discrimination. The radar data can be processed to yield resolution enhancement to 1-3 km spatial resolution over the outer 70% of the 1000-km swath. Data volume constraints

prohibit the downlinking of the entire radar data acquisition. Radar measurements that enable high-resolution processing will be collected during the morning overpass over all land regions as well as over surrounding coastal oceans. During the evening overpass, data north of 45° N will be collected and processed to support robust detection of landscape freeze/thaw transitions. The SMAP baseline orbit parameters are:

- Orbit altitude: 685 km (2-3 day average revisit globally and 8-day exact repeat)
- Inclination: 98 degrees, sun-synchronous
- Local time of ascending node: 6 pm (6 am descending local overpass time)

Figure 1: The SMAP mission concept consists of an L-band radar and radiometer sharing a single spinning 6-m mesh antenna in a sunsynchronous dawn / dusk orbit.

The SMAP radiometer measures the four Stokes parameters, TH, Tv, T3, and T4 at 1.41 GHz. The TH and Tv channels are the pure horizontally and vertically polarized brightness temperatures. The cross-polarized T3-channel measurement can be used to correct for possible Faraday rotation caused by the ionosphere. Mission planners expect that the

selection of the 6 am sun-synchronous SMAP orbit should minimize the effect of Faraday rotation.

Anthropogenic Radio Frequency Interference (RFI), principally from ground-based surveillance radars, can contaminate both radar and radiometer measurements at L-band. Early measurements and results from ESA's Soil Moisture and Ocean Salinity (SMOS) mission indicate that in some regions RFI is present and detectable. The SMAP radar and radiometer electronics and algorithms include design features to mitigate the effects of RFI. The SMAP radar utilizes selective filters and an adjustable carrier frequency to tune to predetermined RFI-free portions of the spectrum while on orbit. The SMAP radiometer will implement a combination of time and frequency diversity, kurtosis detection, and use of T4 thresholds to detect and where possible mitigate RFI.

1.4 Data Products

The SMAP mission will generate 15 different distributable data products. The products represent four levels of data processing. Level 1 products contain instrument related data. Level 1 products appear in granules that are based on half orbits of the SMAP satellite. The Northernmost and Southernmost orbit locations demarcate half orbit boundaries. Level 2 products contain output from geophysical retrievals that are based on instrument data. Level 2 products also appear in half orbit granules. Level 3 products contain global output of the Level 2 geophysical retrievals for an entire day. Level 4 products contain output from geophysical models that employ SMAP data.

Table 2 lists the distributable SMAP data products. The "enhanced" products include passive freeze-thaw and 9-km interpolated radiometer-based products developed post-launch to recover capabilities lost when the SMAP radar ceased operation. The SMAP radar-based products are now considered "legacy" products; no further development of these products is planned.

The L2_SM_SP SMAP/Sentinel active-passive product, which is the subject of this document, is the latest of the "enhanced" SMAP products to be added to the science product suite. The objective of the L2_SM_SP is to recover the capability to use the active-passive algorithms developed for SMAP using collocated Sentinel-1A and -1B data as backscatter fields for brightness temperature disaggregation and high-resolution soil moisture retrieval.

Table 2: Standard and Enhanced SMAP data products

Product	Description	Gridding (Resolution)	Latency**		
L1A_Radiometer	Radiometer Data in Time-Order	-	12 <u>hrs</u>		
L1A_Radar	Radar Data in Time-Order	-	12 <u>hrs</u>		
L1B_TB	_TB Radiometer T _B in Time-Order		12 <u>hrs</u>		
L1B_TB_E	Radiometer T _B Optimally Interpolated on EASE2.0 grid	9 km	12 <u>hrs</u>	Instrument Data	
L1B_S0_LoRes	Low Resolution Radar g_{ϱ} in Time-Order	(5x30 km)	12 <u>hrs</u>		
L1C_S0_HiRes	High Resolution Radar 🙇 in Half-Orbits	1 km (1-3 km)	12 <u>hrs</u>		
L1C_TB	Radiometer T _B in Half-Orbits	36 km	12 <u>hrs</u>		
L1C_TB_E	Radiometer T _B in Half-Orbits, Enhanced	9 km	12 <u>hrs</u>		
L2_SM_A	Soil Moisture (Radar)	3 km	24 <u>hrs</u>		
L2_SM_P	Soil Moisture (Radiometer)	36 km	24 <u>hrs</u>		
L2_SM_P_E	Soil Moisture (Radiometer, Enhanced))	9 km	24 <u>hrs</u>	Science Data (Half-Orbit)	
L2_SM_AP Soil Moisture (Radar + Radiometer)		9 km	24 <u>hrs</u>		
L2_SM_SP	.2_SM_SP Soil Moisture (Sentinel Radar + Radiometer)		Best effort		
L3_FT_A	Freeze/Thaw State (Radar)	3 km	50 <u>hrs</u>		
L3_FT_P	Freeze/Thaw State (Radiometer)	36 km	50 <u>hrs</u>		
L3_FT_P_E	Freeze/Thaw State (Radiometer, Enhanced)	9 km	50 <u>hrs</u>		
L3_SM_A	Soil Moisture (Radar) 3 km		50 <u>hrs</u>	Science Data (Daily Composite)	
L3_SM_P	Soil Moisture (Radiometer)		50 <u>hrs</u>		
L3_SM_P_E	Soil Moisture (Radiometer, Enhanced)	anced) 9 km 50 <u>hrs</u>			
L3_SM_AP	SM_AP Soil Moisture (Radar + Radiometer)		50 <u>hrs</u>		
L4_SM	4_SM Soil Moisture (Surface and Root Zone)		7 days	Science	
L4_C	Carbon Net Ecosystem Exchange (NEE)	9 km 14 days Value-		Value-Added	

1.5 L2_SM_SP Overview

The SMAP L2_SM_SP product is derived from the Sentinel L2_S0_S1 and SMAP L3_SM_P_E products, which provide gridded Sentinel radar backscatter and SMAP radiometer brightness temperature observations (corrected to remove influence of waterbodies), ancillary data, and quality-assessment flags. To generate the standard L2_SM_SP product, the processing software ingests a Sentinel-based L2_S0_S1 1 km

backscatter file and the 9 km L3_SM_P_E files for the three days nearest the time of the Sentinel data, along with the required static and dynamic ancillary data that cover the three days. The ingested data are then inspected for retrievability criteria according to input data quality, ancillary data availability, and land cover conditions. The nearest SMAP data in time at the location of the Sentinel scene is determined, both for AM-only (descending SMAP orbits) and for AM-or-PM SMAP data. In general, when SMAP-Sentinel matchups can be made, the AM-or-PM matchups will be closer in time to the Sentinel data time. When retrievability criteria are met, the software invokes the brightness temperature disaggregation algorithm followed by the retrieval algorithm to generate soil moisture. Only cells that are covered by the actual swath for a given projection are written in the product.

The final L2_SM_SP product contains gridded data of SMAP radiometer-based soil moisture retrieval, ancillary data, and quality-assessment flags on the global 3-km and 1-km EASE2 Grids designed by NSIDC for SMAP, for the patch covering the Sentinel scene grid.

2 DATA PRODUCT ORGANIZATION

2.1 Format

All SMAP standard products are in the Hierarchical Data Format version 5 (HDF5). The HDF5 is a general-purpose file format and programming library for storing scientific data. The National Center for Supercomputing Applications (NCSA) at the University of Illinois developed HDF to help scientists share data more easily. Use of the HDF library enables users to read HDF files regardless of the underlying computing environments. HDF files are equally accessible in Fortran, C/C++, and other high-level computation packages such as IDL or MATLAB.

The HDF Group, a spin-off organization of the NCSA, is responsible for development and maintenance of HDF. Users should reference The HDF Group website at http://www.hdfgroup.org to download HDF software and documentation.

2.2 HDF5 Notation

HDF5 represents a significant departure from the conventions of previous versions of HDF. The changes that appear in HDF5 provide flexibility to overcome many of the limitations of previous releases. The basic building blocks have been largely redefined, and are more powerful but less numerous. The key concepts of the HDF5 Abstract Data Model are Files, Groups, Datasets, Datatypes, Attributes and Property Lists. The following sections provide a brief description of each of these key HDF5 concepts.

2.2.1 **HDF5 File**

A File is the abstract representation of a physical data file. Files are containers for HDF5 Objects. These Objects include Groups, Datasets, and Datatypes.

2.2.2 **HDF5 Group**

Groups provide a means to organize the HDF5 Objects in HDF5 Files. Groups are containers for other Objects, including Datasets, named Datatypes and other Groups. In that sense, groups are analogous to directories that are used to categorize and classify files in standard operating systems.

The notation for files is identical to the notation used for Unix directories. The root Group is "/". A Group contained in root might be called "/myGroup." Like Unix directories, Objects appear in Groups through "links". Thus, the same Object can simultaneously be in multiple Groups.

2.2.3 HDF5 Dataset

The Dataset is the HDF5 component that stores user data. Each Dataset associates with a Dataspace that describes the data dimensions, as well as a Datatype that describes the basic unit of storage element. A Dataset can also have Attributes.

2.2.4 HDF5 Datatype

A Datatype describes a unit of data storage for Datasets and Attributes. Datatypes are subdivided into Atomic and Composite Types.

Atomic Datatypes are analogous to simple basic types in most programming languages. HDF5 Atomic Datatypes include Time, Bitfield, String, Reference, Opaque, Integer, and Float. Each atomic type has a specific set of properties. Examples of the properties associated with Atomic Datatypes are:

- Integers are assigned size, precision, offset, pad byte order, and are designated as signed or unsigned.
- Strings can be fixed or variable length, and may or may not be null-terminated.
- References are constructs within HDF5 Files that point to other HDF5 Objects in the same file.

HDF5 provides a large set of predefined Atomic Datatypes. Table 3 lists the Atomic Datatypes that are used in SMAP data products.

HDF5 Atomic	Description
Datatypes	
H5T_STD_U8LE	unsigned, 8-bit, little-endian integer
H5T_STD_U16LE	unsigned, 16-bit, little-endian integer
H5T_STD_U32LE	unsigned, 32-bit, little-endian integer
H5T_STD_U64LE	unsigned, 64-bit, little-endian integer
H5T_STD_I8LE	signed, 8-bit, little-endian integer
H5T_STD_I16LE	signed, 16-bit, little-endian integer
H5T_STD_I32LE	signed, 32-bit, little-endian integer
H5T_STD_I64LE	Signed, 64-bit, little-endian integer
H5T_IEEE_F32LE	32-bit, little-endian, IEEE floating point
H5T_IEEE_F64LE	64-bit, little-endian, IEEE floating point
H5T_C_S1	character string made up of one or more bytes

Table 3: HDF5 Atomic Datatypes

Composite Datatypes incorporate sets of Atomic datatypes. Composite Datatypes include Array, Enumeration, Variable Length and Compound.

 The Array Datatype defines a multi-dimensional array that can be accessed atomically.

- Variable Length presents a 1-D array element of variable length. Variable Length Datatypes are useful as building blocks of ragged arrays.
- Compound Datatypes are composed of named fields, each of which may be dissimilar Datatypes. Compound Datatypes are conceptually equivalent to structures in the C programming language.

Named Datatypes are explicitly stored as Objects within an HDF5 File. Named Datatypes provide a means to share Datatypes among Objects. Datatypes that are not explicitly stored as Named Datatypes are stored implicitly. They are stored separately for each Dataset or Attribute they describe.

None of the SMAP data products employ Enumeration or Compound data types.

2.2.5 HDF5 Dataspace

A Dataspace describes the rank and dimension of a Dataset or Attribute. For example, a "Scalar" Dataspace has a rank of 1 and a dimension of 1. Thus, all subsequent references to "Scalar" Dataspace in this document imply a single dimensional array with a single element.

Dataspaces provide considerable flexibility to HDF5 products. They incorporate the means to subset associated Datasets along any or all of their dimensions. When associated with specific properties, Dataspaces also provide the means for Datasets to expand as the application requires.

2.2.6 HDF5 Attribute

An Attribute is a small aggregate of data that describes Groups or Datasets. Like Datasets, Attributes are also associated with a particular Dataspace and Datatype. Attributes cannot be subsetted or extended. Attributes themselves cannot have Attributes.

2.3 SMAP File Organization

2.3.1 Structure

SMAP data products follow a common convention for all HDF5 Files. Use of this convention provides uniformity of data access and interpretation.

The SMAP Project uses HDF5 Groups to provide an additional level of data organization. All metadata that pertain to the complete data granule are members of the "/Metadata" Group. All other data are organized within Groups that are designed specifically to handle the structure and content of each particular data product.

2.3.2 **Data**

All data in HDF5 files are stored in individual Datasets. All of the Datasets in an SMAP product are assigned to an HDF5 Group. A standard field name is associated with each Dataset. The field name is a unique string identifier. The field name corresponds to the name of the data element the Dataset stores. This document lists these names with the description of each data element that they identify.

Each Dataset is associated with an HDF5 Dataspace and an HDF5 Datatype. They provide a minimally sufficient set of parameters for reading the data using standard HDF5 tools.

2.3.3 Element Types

SMAP HDF5 employs the Data Attribute "Type" to classify every data field as a specific data type. The "Type" is an embellishment upon the standard HDF5 Datatypes that is designed specifically to configure SMAP data products.

Table 4 lists all of the "Type" strings that appear in the SMAP data products. The table maps each SMAP "Type" to a specific HDF5 Datatype in both the HDF5 file and in the data buffer. The table also specifies the common conceptual data type that corresponds to the "Type" in SMAP executable code.

Table 4: Element Type Definitions

Type	HDF5 Datatype (File)	HDF5 Datatype (Buffer)	Conceptual Type
Unsigned8	H5T_STD_U8LE	H5T_NATIVE_UCHAR	unsigned integer
Unsigned16	H5T_STD_U16LE	H5T_NATIVE_USHORT	unsigned integer
Unsigned24	H5T_STD_U16LE, with precision set to 24 bits, and size set to 3 bytes.	H5T_NATIVE_INT	unsigned integer
Unsigned32	H5T_STD_U32LE	H5T_NATIVE_UINT	unsigned integer
Unsigned64	H5T_STD_U64LE	H5T_NATIVE_ULLONG	unsigned integer
Signed8	H5T_STD_I8LE	H5T_NATIVE_SCHAR	signed integer
Signed16	H5T_STD_I16LE	H5T_NATIVE_SHORT	signed integer
Signed32	H5T_STD_I32LE	H5T_NATIVE_INT	signed integer
Signed64	H5T_STD_I64LE	H5T_NATIVE_LLONG	signed integer
Float32	H5T_IEEE_F32LE	H5T_NATIVE_FLOAT	floating point
Float64	H5T_IEEE_F64LE	H5T_NATIVE_DOUBLE	floating point
FixLenStr	H5T_C_S1	H5T_NATIVE_CHAR	character string

Type HDF5 Datatype		HDF5 Datatype (Buffer)	Conceptual
	(File)		Type
VarLenStr	H5T_C_S1, where	H5T_NATIVE_CHAR	character
	the length is set to		string
	H5T_VARIABLE		

SMAP HDF5 files employ two different types of string representation. "VarLenStr" are strings of variable length. "VarLenStr" provides greater flexibility to represent character strings. In an effort to make SMAP HDF5 more friendly to users who wish to use netCDF software, SMAP products restrict the use of "VarLenStr". "FixLenStr" are strings with a prescribed fixed-length. "FixLenStr" are useful for fixed length strings that are stored in large multi-dimension array. UTC time stamps are an excellent example of the type of data that store well in a "FixLenStr".

2.3.4 File Level Metadata

All metadata that describe the full content of each granule of the SMAP data product are stored within the explicitly named "/Metadata" Group. SMAP metadata are handled using exactly the same procedures as those that are used to handle SMAP data. The contents of each Attribute that stores metadata conform to one of the SMAP Types. Like data, each metadata element is also assigned a shape. Most metadata elements are stored as scalars. A few metadata elements are stored as arrays.

SMAP data products represent file level metadata in two forms. One form appears in one or more Attributes within the Metadata Group. Combined, those Attributes contain a complete representation of the product metadata. The content conforms to the ISO 19115-2 models in ISO 19139 compliant XML.

The second form of the metadata appears in a set of HDF5 Groups under the "/Metadata" Group. Each of these HDF5 Groups represents one of the major classes in the ISO 19115-2 model. These HDF5 Groups contain a set of HDF5 Attributes. Each HDF5 Attributes represents a specific ISO attribute of the associated ISO class. Although this representation inherits design from the ISO model, it does not completely conform to the model. In many cases, the names of the HDF5 Attributes match those used in the ISO model. In some situations, names were changed to provide greater clarity to SMAP users who are not familiar with the iSO model. Furthermore, to ease metadata searches, the structure of Groups within Groups was limited to four levels.

2.3.5 Local Metadata

SMAP standards incorporate additional metadata that describe each HDF5 Dataset within the HDF5 file. Each of these metadata elements appear in an HDF5 Attribute that is directly associated with the HDF5 Dataset. Wherever possible, these HDF5 Attributes employ names that conform to the Climate and Forecast (CF) conventions. Table 5 lists the CF names for the HDF5 Attributes that SMAP products typically employ.

Table 5: SMAP Specific Local Attributes

CF Compliant Attribute Name	Description	Required?
units	Units of measure. Appendix E lists applicable units for various data elements in this product.	Yes
valid_max	The largest valid value for any element in the Dataset. The data type in valid_max matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding valid_max will also be float32.	No
valid_min	The smallest valid value for any element in the Dataset. The data type in valid_min matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding valid_min will also be float32.	No
_FillValue	Specification of the value that will appear in the Dataset when an element is missing or undefined. The data type of _FillValue matches the type of the associated Dataset. Thus, if the associated Dataset stores float32 values, the corresponding _FillValue will also be float32.	Yes for all numeric data types
long_name	A descriptive name that clearly describes the content of the associated Dataset.	Yes
coordinates	Identifies auxiliary coordinate variables in the data product.	No
flag_values	Provides a list of flag values that appear in bit flag variables. Should be used in conjunction with local HDF5 attribute <i>flag_meanings</i> . Only appears with bit flag variables.	No
flag_masks	Provides a list of bit fields that express Boolean or enumerated flags. Only appears with bit flag variables or enumerated data types.	No
flag_meanings	Provides descriptive words or phrases for each potential bit flag value. Should be used in conjunction with local HDF5 attribute <i>flag_values</i> .	No

2.4 Data Definition Standards

Section 4.6 of this document specifies the characteristics and definitions of every data element stored in this SMAP data product. Table 6 defines each of the specific characteristics that are listed in that section of this document. Some of these characteristics correspond with the SMAP HDF5 Attributes that are associated with each Dataset. Data element characteristics that correspond to SMAP HDF5 Attributes bear the same name.

The remaining characteristics are descriptive data that help users better understand the data product content.

In some situations, a standard characteristic may not apply to a data element. In those cases, the field contains the character string 'n/a'. Hexadecimal representation sometimes indicates data content more clearly. Numbers represented in hexadecimal begin with the character string '0x'.

Table 6: Data Element Characteristic Definitions

Characteristic	Definition
Type	The data representation of the element within the storage medium.
	The storage class specification must conform to a valid SMAP type.
	The first column in table 3 lists all of the valid values that correspond
	to this characteristic.
Shape	The name of the shape data element that specifies the rank and
	dimension of a particular data set.
Valid_min	The expected minimum value for a data element. In most instances,
	data element values never fall below this limit. However, some data
	elements, particularly when they do not reflect normal geophysical
	conditions, may contain values that fall below this limit.
Valid_max	The expected maximum value for a data element. In most instances,
	data element values never exceed this limit. However, some data
	elements, particularly when they do not reflect normal geophysical
	conditions, may contain values that exceed this limit.
Valid Values	Some data elements may store a restricted set of values. In those
	instances, this listing specifies the values that the data element may
	store.
Nominal	Some data elements have an expected value. In those instances, this
Value	listing provides that expected value. Nominal values are particularly
	common among a subset of the metadata elements.
String Length	This characteristic specifies the length of the data string that
	represents a single instance of the data element. This characteristic
	appears exclusively for data elements of FixLenStr type.
Units	Units of measure. Typical values include "deg", "degC", "Kelvins",
	"m/s", "m", "m**2", "s" and "counts". Appendix A and Appendix E
	include references to important data measurement unit symbols.

2.4.1 **Double Precision Time Variables**

SMAP double precision time variables contain measurements relative to the J2000 epoch. Thus, these variables represent a real number of Standard International (SI) compatible seconds since 11:58:55.816 on January 1, 2000 UTC.

2.4.2 Array Representation

This document employs array notation to demonstrate and clarify the correspondence among data elements in different product data elements. The array notation adopted in this document is similar to the standards of the Fortran programming language. Indices are one based. Thus, the first index in each dimension is one. This convention is unlike C or C++, where the initial index in each dimension is zero. In multidimensional arrays, the leftmost subscript index changes most rapidly. Thus, in this document, array elements ARRAY(15,1,5) and ARRAY(16,1,5) are stored contiguously.

HDF5 is designed to read data seamlessly regardless of the computer language used to write an application. Thus, elements that are contiguous using the dimension notation in this document will appear in contiguous locations in arrays for reading applications in any language with an HDF5 interface.

This document differentiates among array indices based on relative contiguity of storage of elements referenced with consecutive numbers in that index position. A faster or fastest moving index implies that the elements with consecutive numbers in that index position are stored in relative proximity in memory. A slower or slowest moving index implies that the elements referenced with consecutive indices are stored more remotely in memory. For instance, given array element ARRAY(15,1,5) in Fortran, the first index is the fastest moving index and the third index is the slowest moving index. On the other hand, given array element array[4][0][14] in C, the first index is the slowest moving index and the third index is the fastest moving index.

2.5 Fill/Gap Values

SMAP data products employ fill and gap values to indicate when no valid data appear in a particular data element. Fill values ensure that data elements retain the correct shape. Gap values locate portions of a data stream that do not appear in the output data file.

Fill values appear in the SMAP L2_SM_SP Product when the L2_SM_SP SPS can process some, but not all, of the input data for a particular swath grid cell. Fill data may appear in the product in any of the following circumstances:

- One of Science Production Software (SPS) executables that generate the SMAP L2_SM_SP Product is unable to calculate a particular science or engineering data value. The algorithm encounters an error. The error disables generation of valid output. The SPS reports a fill value instead.
- Some of the required science or engineering algorithmic input are missing. Data
 over the region that contributes to particular grid cell may appear in only some of
 the input data streams. Since data are valuable, the L2_SM_SP Product records any
 outcome that can be calculated with the available input. Missing data appear as fill
 values.
- Non-essential information is missing from the input data stream. The lack of non-essential information does not impair the algorithm from generating needed output. The missing data appear as fill values.

• Fill values appear in the input Sentinel L2_S0_S1 or L3_SM_P_E products. If only some of the input that contributes to a particular grid cell is fill data, the L2_SM_SP SPS will most likely be able to generate some output. However, some portion of the L2_SM_SP output for that grid cell may appear as fill values.

SMAP data products employ a specific set of data values to connote that an element is fill. The selected values that represent fill are dependent on the data type. Table 7 lists the values that represent fill in SMAP products based on data type:

Type	Value	Pattern
Float32, Float64	-9999.0	Large, negative number
Signed8, NormSigned8	-127	Type minimum + 1
Signed16, NormSigned16	-9999	Type minimum + 1
Signed24	-9999	Type minimum + 1
Signed32	-9999	Type minimum + 1
Signed64	-9999	Type minimum + 1
Unsigned8	254	Type maximum - 1
Unsigned16	65534	Type maximum - 1
Unsigned24	16777214	Type maximum - 1
Unsigned32	4294967294	Type maximum - 1
Unsigned64	18446744073709551614	Type maximum - 1
FixedLenString, VarLenString	NA	Not available

Table 7: Fill Values in SMAP Data Products

No valid value in the L2_SM_SP product is equal to the values that represent fill. If any exceptions should exist in the future, the L2_SM_SP content will provide a means for users to discern between elements that contain fill and elements that contain genuine data values. This document will also contain a description of the method used to ascertain which elements are fill and which elements are genuine.

The L2_SM_SP product records gaps when entire frames within the time span of a particular data granule do not appear. Gaps can occur under one of two conditions:

- One or more complete frames of data are missing from all data streams.
- The subset of input data that is available for a particular frame is not sufficient to process any frame output.

The Level L2_SM_SP Product records gaps in the product level metadata. The following conditions will indicate that no gaps appear in the data product:

- Only one instance of the attributes *Extent/rangeBeginningDateTime* and *Extent/rangeEndingDateTime* will appear in the product metadata.
- The character string stored in metadata element *Extent/rangeBeginningDateTime* will match the character string stored in metadata element *OrbitMeasuredLocation/halfOrbitStartDateTime*.

• The character string stored in metadata element *Extent/rangeEndingDateTime* will match the character string stored in metadata element *OrbitMeasuredLocation/halfOrbitStopDateTime*.

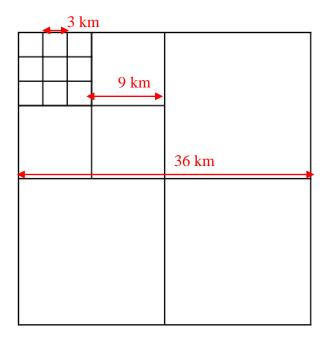
One of two conditions will indicate that gaps appear in the data product:

- The time period covered between *Extent/rangeBeginningDateTime* and *Extent/RangeEndingDateTime* does not cover the entire half orbit as specified in *OrbitMeasuredLocation/halfOrbitStartDateTime* and *OrbitMeasuredLocation/halfOrbitStartDateTime*.
- More than one pair of *Extent/rangeBeginningDateTime* and *Extent/rangeEndingDateTime* appears in the data product. Time periods within the time span of the half orbit that do not fall within the sets of *Extent/rangeBeginningDateTime* and *Extent/rangeEndingDateTime* constitute data gaps.

2.6 Flexible Data Design

HDF5 format gives the SMAP Level Products a high degree of flexibility. This flexibility in turn gives SMAP end product users the capability to write software that does not need to be modified to accommodate unforeseeable changes in the SMAP products. Since changes to the products are certain to take place over the life of the SMAP mission, users are encouraged to use software techniques that take advantage of some of the features in HDF5.

For example, users can write a product reader that selects only those product data elements they wish to read from an SMAP Level Product file. With the appropriate design, this software will not need to change, regardless of the number, the size, or the order of the current data product entries. Indeed, the only changes users need to implement would take place if they should choose to read a newly defined data element after a product upgrade.


For those users who wish to extract a specific subset of the data from an SMAP Product, the HDF5 routines H5Dopen and H5Dread (h5dopen_f and h5dread_f in FORTRAN) are very useful. H5Dopen requires two input parameters, the first is an HDF5 file/group identifier, the second is a character string that contains the name of a Dataset. H5Dopen returns the identifier for the specified Dataset in the product file. HDF5 routine H5Dread then uses the Dataset identifier to fetch the contents. H5Dread places the contents of the Dataset in a specified output variable.

Once the data element is located and read, users can generate standardized code that reads the metadata associated with each element. Users of the SMAP Level Products should employ the same methods to read metadata and standard data elements.

3 EASE2 Grid

The data in the SMAP L2_SM_SP product are presented on a global cylindrical projection. The projection is based on NSIDC's 3-km and 1-km EASE2 Grid specifications for SMAP.

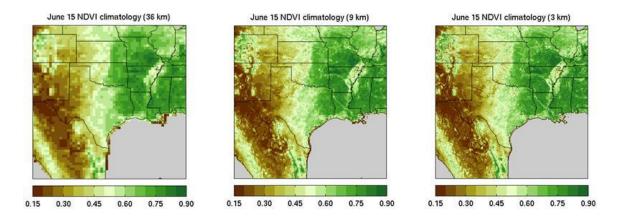

The EASE2 Grid has a flexible formulation. By adjusting one scaling parameter it is possible to generate a family of multi-resolution grids that "nest" within one another. The nesting can be made "perfect" in that smaller grid cells can be tessellated to form larger grid cells, as shown in Fig. 2.

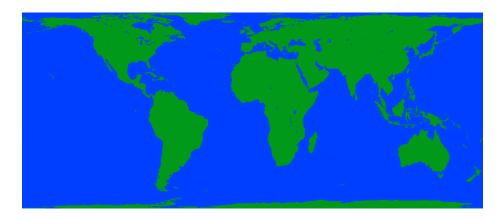
Figure 2: Perfect nesting in EASE2 Grid – smaller grid cells can be tessellated to form larger grid cells.

This feature of perfect nesting provides SMAP data products with a convenient common projection for both high-resolution radar observations and low-resolution radiometer observations, as well as their derived geophysical products.

A nominal EASE2 grid dimension of 36 km has been selected for the L1C_TB and L2/3_SM_P products. This spatial scale is close to the 40-km resolution of the radiometer footprint and it scales conveniently with the 3 km and 9 km grid dimensions that have been selected for the radar (L2/3_SM_A) and combined radar/radiometer (L2/3_SM_A/P) soil moisture products, respectively. A comparison of EASE2 Grid at these three grid resolutions is shown in Fig. 3.

Figure 3: Example of ancillary NDVI climatology data displayed on the SMAP 36-km, 9-km, and 3-km grids.

The three projections (global, north polar and south polar) used by SMAP products are assigned with the following three-letter designators. These projections are shown in Fig. 4.


Global: M[36,09,03,01]North Polar: N[36,09,03,01]South Polar: S[36,09,03,01]

(a) Northern Hemisphere on EASE2-Grid projection

(b) Southern Hemisphere on EASE2-Grid projection

(c) Global EASE2-Grid projection

Figure 4: EASE2 Grid examples: (a) N36, (b) S36, and (c) M36.

The data in the SMAP L2_SM_SP product are available on the global 3 km and 1 km projections (M03 & M01). All elements in L2_SM_SP are stored as HDF5 Datasets. Each dataset belongs to an HDF5 Group.

Global Grids	Equal-Area Cylindrical Projections			Polar Grids		Equal-Area Proorth and Sout	•
Grid Designator	Resolution	Number of Columns	Number of Rows			Number of Columns	Number of Rows
M01	1 km	34704	14616	N01, S01	1 km	18000	18000
M03	3 km	11568	4872	N03, S03	3 km	6000	6000
M09	9 km	3856	1624	N09, S09	9 km	2000	2000
M36	36 km	964	406	N36, S36	36 km	500	500

Table 8: SMAP EASE-2.0 grids

4 PRODUCT DEFINITION

4.1 Overview

The SMAP L2_SM_SP product is derived using the Sentinel-1A or -1B radar backscatter from L2_S0_S1 (aggregated at 1 km resolution on EASE grid) and the 9 km enhanced radiometer brightness temperature available in the SMAP L3_SM_P_E products, respectively. The brightness temperature available in L3_SM_P_E is corrected from presence of waterbodies (up to 0.05 fraction) and then used in L2_SM_SP product generation, and beyond waterbody fraction of 0.05 no correction is conducted. The L2_SM_SP product generation process also uses the quality flags, surface flags from the SMAP L3_SM_P_E products, and ancillary data. The ingested data are then inspected for retrievability criteria according to input data quality, ancillary data availability, and land cover conditions. When retrievability criteria are met, the software invokes the baseline

JPL D-56548 SMAP/Sentinel L2 Active/Passive Soil Moisture Data Product Specification Document

retrieval algorithm to generate soil moisture retrieval. Retrievals are performed on both 3 km (baseline) and 1 km (experimental) resolution science grids.

4.2 Product Names

L2_SM_SP data product file names conform to the following convention:

SMAP_L2_SM_SP_[SatModePol]_[SMAP Start Date/Time Stamp]_[Sentinel Start Date/Time Stamp]_[Scene Center Location]_[Composite Release ID]_[Product Counter].[extension]

Example:

SMAP L2 SM SP 1BIWDV 20170228T231824 20170227T224358 110E42N R15000 001.h5

BIWDV_201/02281231824_201/022/1224338_110E42N_K13000_00
Identifies the Sentinel-1 satellite (1A or 1B), the SAR mode ($IW = wide$ -swath interferometric), and polarization mode ($DV = dual$ -polarization V, VH).
Date/time stamp in Universal Coordinated Time (UTC) of the first SMAP data element that appears in the product. The stamp conforms to the <i>YYYYMMDDThhmmss</i> convention.
Date/time stamp in Universal Coordinated Time (UTC) of the first Sentinel data element that appears in the product. The stamp conforms to the <i>YYYYMMDDThhmmss</i> convention.
Approximate longitude (E or W) and latitude (N or S) of the center of the EASE grid patch containing the Sentinel radar scene. This is useful for finding data over regional subsets.
An ID that incorporates changes to any processing condition that might impact product results. The Composite Release ID contains three other shorter ID's: [R][Launch Indicator][Major ID][Minor ID]. The Launch Indicator distinguishes between pre-launch or pre-instrument commissioned data. ('0' for simulated or preliminary observations whereas '1' for observations at or after the time of instrument commissioning) A two-digit Major ID indicates major releases due to changes in algorithm or processing approach. A two-digit Minor ID indicates minor releases due to changes not considered by a change in Major ID.
A three-digit counter that tracks the number of times that a particular product type for a specific half orbit has been generated.
'.h5' for science product data and '.qa' for QA product data.

Aug 6, 2020

4.3 Volume

The following estimates represent the combined data volume of metadata and the actual science data of the product:

Daily volume: ~900-3600 Mbytes (depending on Sentinel coverage)

Yearly volume: 325-1300 GBytes (depending on Sentinel coverage)

4.4 L2 SM SP Product Metadata

As mentioned in section 4.1.2, the metadata elements in the L2 SM SP product appear in two forms. One form appears in one or more Attributes within the Metadata Group. Combined, those Attributes contain a complete representation of the product metadata. The content conforms to the ISO 19115-2 models in ISO 19139 compliant XML.

The second form of the metadata appears in a set of HDF5 groups under the Metadata Group. Each of these HDF5 Groups represents one of the major classes in the ISO structure. These groups contain a set of HDF5 attributes. Each HDF5 Attribute set represents a specific ISO attribute of the associated ISO class. Although this representation inherits design from the ISO model, it does not completely conform to the model. In many cases, the names of the HDF5 Attributes match those used in the ISO model. In some situations, names were changed to provide greater clarity to SMAP users who are not familiar with the ISO model. Furthermore, to ease metadata searches, the structure of Groups within Groups was limited to four levels.

Table 9 describes the subgroups of the Metadata group, and the attributes within each group. The first column of table 9 specifies a major class in the ISO 19115 metadata model. The second column provides the name of the HDF5 Group under "/Metadata" where attributes associated with the corresponding class will appear. The third column lists the names of the subgroups and attributes where specific metadata values appear. The fourth column provides valid values for each element. Constant values appear with no diacritical marks. Variable values are encapsulated by angle brackets <>. All of the metadata elements that appear in table 9 should also appear in every L2_SM_SP Product file.

Table 9: Granule Level Metadata in the L2_SM_SP Product

ISO Major Class	SMAP HDF5 Metadata SubGroup	Subgroup/Attribute in SMAP HDF5	Valid Values
		Scope	soil_moisture, downscaled brightness temperature
		CompletenssOmission/evaluationMethodType	directInternal
		CompletenessOmission/measureDescription	Percentage of grid cells that lack soil moisture retrieval values relative to the total number of grid cells that are attempted for retrieval.
		CompletenessOmission/nameOfMeasure	Percentage of Missing Data
		CompletenessOmission/value	<a 0="" 100="" and="" between="" measure="">
DQ_DataQuality	DataQualiity	CompletenessOmission/unitOfMeasure	Percentage
	-	domainConsistency/evaluationMethodType	directInternal
		DomainConsistency/measureDescription	Percentage of grid cells whose soil moisture retrieval values fall within a predefined acceptable range of measure.
			DomainConsistency/nameOfMeasure
		DomainConsistency/value	<a 0="" 100="" and="" between="" measure="">
		DomainConsistency/unitOfMeasure	Percentage
		description	The SMAP radar-radiometer based soil moisture retrieval over non-excluded regions from descending (6:00 am) half-orbit Backscatter and TB data.
EX_Extent	Extent	westBoundLongitude	<longitude -180="" 180="" and="" between="" degrees="" measure=""></longitude>
		eastBoundLongitude	<longitude -180="" 180="" and="" between="" degrees="" measure=""></longitude>
		southBoundLatitude	<latitude -90="" 90="" and="" between="" degrees="" measure=""></latitude>

		northBoundLatitude	<latitude -90="" 90="" and="" between="" degrees="" measure=""></latitude>
		rangeBeginningDateTime	<time element="" in="" indicates="" initial="" product="" stamp="" that="" the="" time=""></time>
		rangeEndingDateTime	<time data="" final="" in="" indicates="" of="" product.="" stamp="" that="" the="" time=""></time>
		processor	Soil Moisture Active Passive (SMAP) Mission Science Data System (SDS) Operations Facility
		stepDateTime	< A date time stamp that specifies when the product was generated.>
	ProcessStep	processDescription	Estimate soil moisture over non- excluded regions from descending (6:00 am) half-orbit radiometer TB data and radar backscatter data. The final result is projected on a 9-km global Earth-fixed grid.
		documentation	
		identifier	L2_SM_SP
LI_Lineage/LE_ProcessStep		runTimeParameters	<specify any="" if="" parameters="" run="" they="" time="" used.="" were=""></specify>
		SWVersionID	<a 001="" 999="" from="" identifier="" runs="" software="" that="" to="" version="">
		softwareDate	<a date="" specifies="" stamp="" that="" when<br="">software used to generate this product was released.>
		softwareTitle	L2_SM_SP_SPS
		RFIThreshold	<a algorithm="" the="" threshold="" to<br="" uses="">specify whether a particular measure was contaminated by Radio Frequency Interference.>
		timeVariableEpoch	J2000
		epochJulianDate	2451545.00
	epochUTCDate	2000-01-01T11:58:55.816Z	

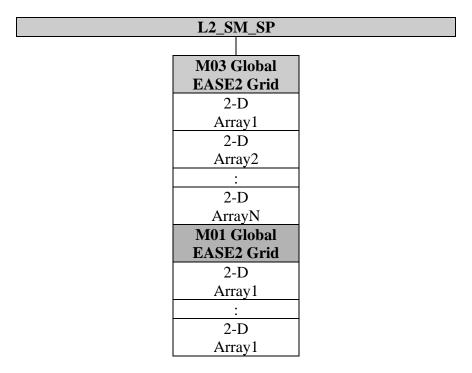
		ATBDTitle ATBDDate ATBDVersion algorithmDescription algorithmVersionID	Soil Moisture Active Passive (SMAP) L2_SM_AP Algorithm Theoretical Basis Document Apr 2017 Preliminary/Initial Release Single channel algorithm <an 001="" 999="" algorithm="" from="" identifier="" runs="" that="" to="" version=""></an>
		algorithmMaturity	Beta
	L2_S0_S1, L3_SM_P_E, 9-km global water-body fraction database, 9-km global soil texture database, 9-km global NDVI	description	Sentinel Radar Product, Level 3 Enhanced Radiometer Soil Moisture Product, Static water-body fraction, soil texture, NDVI, soil temperature, surface temperature, DEM, precipitation, snow/ice, urban fraction, and IGBP land cover classification
	database,	fileName	TBD
	9-km global soil temperature database,	creationDate	
	9-km global surface temperature database,	version	<the associated="" composite="" data="" id="" input="" product.="" smap="" the="" version="" with=""></the>
LI_Lineage/LE_Source	9-km global DEM database,	identifier	<the associated="" name="" product.="" short="" the="" with=""></the>
	9-km global precipitation database, 9-km global urban fraction database, 9-km global IGBP land cover classification database 9-km urban fraction database 9-km snow and ice database 9-km surface roughness database	DOI	

			D . 1 .1 IO GM GD 1 .
I		creationDate	<pre><date data="" l2_sm_sp="" pre="" product<="" the="" when=""></date></pre>
			file was created>
		CompositeReleaseID	<smap composite="" id<="" release="" td=""></smap>
			associated with this data product – See
			section 3.3>
		fileName	<name data<="" l2_sm_sp="" of="" output="" td="" the=""></name>
			file.>
		originatorOrganizationName	Jet Propulsion Laboratory
		shortName	SPL2SMAP_S
		SMAPShortName	L2_SM_SP
		abstract	The SMAP L2_SM_SP product provides
			soil moisture estimates over non-
			excluded regions from descending (6:00
			am) half-orbit backscatter and TB data.
			The final result is projected on a 3-km
			global Earth-fixed grid.
		characterSet	utf8
	DataSetIdentification	credit	The software that generates the
			L2_SM_SP product and the data system
DS_Dataset/MD_DataIdentificatio			that automates its production were
			designed and implemented at the Jet
11			Propulsion Laboratory, California
			Institute of Technology in Pasadena,
			California.
		Language	eng
		purpose	The SMAP L2_SM_SP product delivers
			soil moisture estimates over non-
			excluded regions from descending (6:00
			am) half-orbit backscatter and TB data.
			The final result is projected on a 3-km
			global Earth-fixed grid.
		status	on-going
		topicCategoryCode	geoscientificInformation
		QACreationDate	<the date="" product="" qa="" td="" that="" that<="" the=""></the>
		e	accompanies the L2_SM_SP data
1			granule was generated.>
	l	L	Diamate was Senerated.

		QAFileName	<the name="" of="" product.="" qa=""></the>
		QAAbstract	An ASCII product that contains
			statistical information on data product
			results. These statistics enable data
			producers and users to assess the quality
			of the data in the data product granule.
		revisionDate	<date and="" of="" release<="" software="" td="" the="" time=""></date>
			that was used to generate this data
			product.>
		CompositeReleaseID	<smap composite="" id="" release="" td="" that<=""></smap>
			identifies the release used to generate
			this data product – See section 3.3>
		longName	SMAP Radiometer Soil Moisture
			Product. Soil moisture estimate over a
			3-km global Earth-fixed grid.
		shortName	SPL2SMAP_S
		identifier_product_DOI	<digital <b="" identifier="" object="" –="">TBS></digital>
		resourceProviderOrganizationName	National Aeronautics and Space
			Administration
		abstract	The SMAP L2_SM_SP product provides
DS_Series/MD_DataIdentification	SeriesIdentification		soil moisture estimates over non-
			excluded regions from descending (6:00
			am) half-orbit backscatter and TB data.
			The final result is projected on a 9-km
			global Earth-fixed grid.
		characterSet	utf8
		credit	The software that generates the
			L2_SM_SP product and the data system
			that automates its production were
			designed and implemented at the Jet
			Propulsion Laboratory, California
			Institute of Technology in Pasadena,
		1	California.
		language	eng
		purpose	The SMAP L2_SM_SP product delivers
			soil moisture estimates over non-

			excluded regions from descending (6:00 am) half-orbit backscatter and TB data. The final result is projected on a 3-km global Earth-fixed grid.
		status	on-going
		topicCategoryCode	geoscientificInformation
		pointOfContact	National Snow and Ice Data Center, Boulder, Colorado.
		PSDPublicationDate	<date of="" product<br="" publication="" the="">Specification Document></date>
		PSDEdition	<edition document="" for="" identifier="" product="" specification="" the=""></edition>
		PSDTtitle	Soil Moisture Active Passive Mission L2_SM_SP Product Specification
		22.51.724	Document
		SMAPShortName	L2_SM_SP
		mission	Soil Moisture Active Passive (SMAP)
		maintenanceAndUpdateFrequency	asNeeded
		maintenanceDate	<specifies a="" anticipated="" be="" date="" might="" next="" product="" the="" this="" to="" update="" when=""></specifies>
		format	HDF5
		formatVersion	1.8.9
		crossTrack/dimensionSize	1
		crossTrack/resolution	3 km
MD CuidCustisID suggestation	GridSpatialRepresentati	track/dimensionSize	N = Number of 3-km global EASE2-
MD_GridSpatialRepresentation	on		Grid cells covered by the radiometer
			swath
		track/resolution	3 km
		platform/antennaRotationRate	14.6 rpm (13.0 rpm)
MD_AcquisitionInformation	AcquisitionInformation	platformDocument/publicationDate	<the available="" date="" describes="" document="" general="" if="" of="" platform,="" public="" publication="" smap="" that="" the="" to=""></the>
		platformDocument/edition	<the describes="" document="" edition="" of="" p="" publication="" smap<="" that="" the=""></the>

	platform, if available to the general
	public.>
platformDocument/title	<the of="" publication="" td="" the="" the<="" title=""></the>
	document that describes the SMAP
	platform, if available to the general
	public.>
platform/description	The SMAP observatory houses an L-
	band radiometer that operates at 1.40
	GHz and an L-band radar that operates at
	1.26 GHz. The instruments share a
	rotating reflector antenna with a 6 meter
	aperture that scans over a 1000 km
	swath. The bus is a 3 axis stabilized
	spacecraft that provides momentum
	compensation for the rotating antenna.
platform/identifier	SMAP
radarDocument/publicationDate	<the date="" of="" publication="" td="" the<=""></the>
	document that describes the SMAP radar
	instrument, if available to the general
	public.>
radarDocument/edition	<the edition="" of="" publication="" td="" the<=""></the>
	document that describes the SMAP radar
	instrument, if available to the general
	public.>
radarDocument/title	<the of="" publication="" td="" the="" the<="" title=""></the>
	document that describes the SMAP radar
	instrument, if available to the general
	public.>
radar/description	The Sentinel-1 radar instrument employs
	a C-band side-scanned system and SAR
	processing techniques to achieve high
	resolution (20 m) backscatter
	measurements over a wide 300 km
	swath.
radar/identifier	Sentinel-1 SAR
radar/type	C-band Synthetic Aperture Radar


		radiometerDocument/publicationDate	<the available="" date="" describes="" document="" general="" if="" instrument,="" of="" public.="" publication="" radiometer="" smap="" that="" the="" to=""></the>
		radiometerDocument/edition	<the available="" describes="" document="" edition="" general="" if="" instrument,="" of="" public.="" publication="" radiometer="" smap="" that="" the="" to=""></the>
		radiometerDocument/title	<the available="" describes="" document="" general="" if="" instrument,="" of="" public.="" publication="" radiometer="" smap="" that="" the="" title="" to=""></the>
		radiometer/description	The SMAP L-band Radiometer records V-pol, H-pol, 3rd and 4th Stokes brightness temperatures at 40 km resolution at 4.3 Megatbits per second with accuracies of 1.3 Kelvin or better.
		radiometer/identifier	SMAPRAD
		radiometer/type	L-band Radiometer
		argumentOfPerigee	<the angle="" in="" orbit="" plane<br="" satellite's="" the="">between the point of perigee and ascending node. The angle is measured in the direction of spacecraft motion.></the>
SD_OrbitMeasuredLocation	OrbitMeasuredLocation	cycleNumber	<the 1.="" 117="" a="" after="" assigned="" cycle="" data="" element="" first="" flies="" in="" is="" number="" of="" orbits="" orbits.="" repeats="" satellite="" smap="" specifies="" taken.="" the="" this="" were="" when=""></the>
		eccentricity	<the eccentricity="" of="" orbit.="" satellite="" the=""></the>
		epoch	2000-01-01T11:58:55.816Z
		equatorCrossingDateTime	
		equatorCrossingLongitude	<the ascending="" crossing="" current="" for="" longitude="" node="" of="" orbit.="" the=""></the>

inclination	<the angle="" between="" p="" spacecraft's<="" the=""></the>
inciniation	orbital plane and the Earth's equatorial
	plane. An angle greater than 90 degrees
76.2	indicates a orbit retrograde path.>
meanMotion	<the angular="" constant="" speed="" td="" that="" would<=""></the>
	be required for a body travelling in an
	undisturbed elliptical orbit with the
	specified semi-major axis to complete
	one revolution in the actual orbital
	period, expressed as a number of
	revolutions per day.>
orbitDirection	<smap 1="" 2="" and="" level="" products<="" td=""></smap>
	appear in half orbit granules. This
	element provides direction of orbital
	path relative to equatorial plane. Values
	are "ascending" or "descending":>
halfOrbitStartDateTime	<a and<="" date="" specifies="" stamp="" td="" that="" the="" time="">
	time of the instant the spacecraft crosses
	either the southernmost point or the
	northernmost point in its path, marking
	the beginning of the half orbit.>
halfOrbitStopDateTime	<a and<="" date="" specifies="" stamp="" td="" that="" the="" time="">
man oronovopa and rand	time of the instant the spacecraft crosses
	either the southernmost point or the
	northernmost point in its path, marking
	the end of the half orbit.>
orbitPathNumber	< The SMAP satellite flies in a cycle the
orbiti atin tumber	repeats after 117 orbits. This element
	specifies which of the 117 possible paths
	the spacecraft flew when the data in the
	file were acquired. The
. 4.2(D24	orbitPathNumber varies from 1 to 117.>
orbitPeriod	<time a="" complete="" required="" td="" the<="" to=""></time>
2 000	spacecraft orbit.>
reference_CRS	<a coordinate<="" description="" of="" td="" the="">
	reference system used to describe
	spacecraft orbital data.>

¹ The metadata will allocate a group for each input data set that requires provenance tracking. The most critical ones listed in this document are those that are likely to vary from one orbit granule to the next. The metadata will track and list additional files for user information.

4.5 L2_SM_SP Data Structure

The L2 SM SP product contains gridded data of SMAP radiometer-based soil moisture retrieval, Sentinel backscatter data, ancillary data, and quality-assessment flags on the 3km and 1-km global EASE2 Grids. This organization is reflected schematically in Fig. 5. All data elements appear in the HDF5 Global Projection Group.

Figure 5: L2_SM_SP data organization.

Table 9 describes the output parameters of a typical L2 SM SP descending half-orbit granule. Each 2-D data element represents a sub-patch of the global grid which contains the pixels of the Sentinel data swath, and the SMAP data that is overlaid on the Sentinel scene. The data in each scene covers approximately a 300km x 300km spatial extent, equivalent to about 30 seconds of Sentinel-1 observation time.

Table 10: L2_SM_SP output parameters

Soil Moisture Retrieval Data 3km Group

AM-only 3km elements

Element	Shape	Concept	Bytes	Unit	Min	Max	Comment
EASE_column_index_3km	EASEGridCell_Array _3km	integer	2	count	0	65535	The column index of the 3 km EASE grid cell that contains the associated data.
EASE_row_index_3km	EASEGridCell_Array _3km	integer	2	count	0	65535	The row index of the 3 km EASE grid cell that contains the associated data.
SMAP_Sentinel_overpass_timediff_hr _3km	EASEGridCell_Array _3km	real	4	hours	0.0	36.0	The time difference in hours between the Sentinel data and the collocated SMAP data
albedo_3km	EASEGridCell_Array _3km	real	4	normalized	0.0	1.0	Diffuse reflecting power of the Earth's surface within the grid cell.
bare_soil_roughness_retrieved_3km	EASEGridCell_Array _3km	real	4	meters	0.0	0.1	Retrieved soil roughness provided by the active soil moisture algorithm.
beta_tbv_vv_3km	EASEGridCell_Array _3km	real	4	Kelvins/dB	-25	0	Beta parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell, derived using time series Tbv and sigma0_vv
disagg_soil_moisture_3km	EASEGridCell_Array _3km	real	4	cm3/cm3	0.02	0.5	Representative optional (disaggregated) soil moisture measurement for the Earth based grid cell.
disaggregated_tb_v_qual_flag_3km	EASEGridCell_Array _3km	bit flag	2	NA	NA	NA	Bit flags that record the conditions and the quality of the disaggregated vertical polarization

							brightness temperature generated for the grid cell.
gamma_vv_xpol_3km	EASEGridCell_Array _3km	real	4	normalized	0	2	Gamma parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell, derived using high resolution sigma0 vv and sigma0 xpol
landcover_class_3km	EASEGridCell_Array _3km	enum	1	NA	NA	NA	An enumerated type that specifies the predominant surface vegetation found in the grid cell.
latitude_3km	EASEGridCell_Array 3km	real	4	degrees_no rth	-90.0	90.0	Latitude of the center of the Earth based grid cell.
longitude_3km	EASEGridCell_Array _3km	real	4	degrees_ea st	-180.0	180.0	Longitude of the center of the Earth based grid cell.
retrieval_qual_flag_3km	EASEGridCell_Array _3km	bit flag	2	NA	NA	NA	Bit flags that record the conditions and the quality of the retrieval algorithms that generate baseline soil moisture for the grid cell.
sigma0_incidence_angle_3km	EASEGridCell_Array _3km	real	4	degrees	20°	60°	Angle of radar incidence relative to the local normal.
sigma0_vv_aggregated_3km	EASEGridCell_Array _3km	real	4	normalized	0.0	1.0	The outcome of aggregating a set of 3 km vertical polarization radar backscatter measurements into a 3 km EASE grid cell.
sigma0_vh_aggregated_3km	EASEGridCell_Array _3km	real	4	normalized	0.0	1.0	The outcome of aggregating a set of 3 km cross-polarized radar backscatter measurements into a 3 km EASE grid cell.
soil_moisture_3km	EASEGridCell_Array _3km	real	4	cm3/cm3	0.02	0.5	Representative baseline soil moisture measurement for the Earth based grid cell.
soil_moisture_std_dev_3km	EASEGridCell_Array _3km	real	4	cm ₃ /cm ₃	0.0	0.2	Standard deviation of soil moisture measure for the 3 km Earth based grid cell.
spacecraft_overpass_time_seconds_3k m	EASEGridCell_Array _3km	real	8	seconds	0	999999.9	Number of seconds since a specified epoch that represents the spacecraft overpass relative to the

							3 km EASE grid cell represented in this data product.
surface_flag_3km	EASEGridCell_Array _3km	bit flag	2	NA	NA	NA	Bit flags that record ambient surface conditions for the grid cell
surface_temperature_3km	EASEGridCell_Array _3km	real	4	degrees Celsius	-50.0	60.0	Temperature at land surface based on GMAO GOES.
tb_v_disaggregated_3km	EASEGridCell_Array _3km	real	4	Kelvins	0.0	330.0	Vertical polarization brightness temperature from option1 adjusted for the presence of water bodies and disaggregated from the 9 km EASE grid cells into 3 km EASE grid cells.
tb_v_disaggregated_std_3km	EASEGridCell_Array _3km	real	4	Kelvins	0.0	330.0	Standard deviation of disaggregated Tb in the 3 km cell.
vegetation_opacity_3km	EASEGridCell_Array _3km	real	4	normalized	0	1	The measured opacity of the vegetation in the grid cell.
vegetation_water_content_3km	EASEGridCell_Array _3km	real	4	kg/m2	0.0	30	Representative measure of water in the vegetation within the 3 km grid cell.
water_body_fraction_3km	EASEGridCell_Array _3km	real	4	normalized	0.0	1.0	Fraction of the area of 3 km grid cell that is a permanent or transient water body. Derived from the DEM and radar processing.

AM-or-PM 3km elements

Element	Shape	Concept	Bytes	Unit	Min	Max	Comment
EASE_column_index_apm_3km	EASEGridCell_Array	integer	2	count	0	65535	The column index of the 3 km
	_3km						EASE grid cell that contains the
							associated data.
EASE_row_index_apm_3km	EASEGridCell_Array	integer	2	count	0	65535	The row index of the 3 km EASE
	_3km						grid cell that contains the
							associated data.
SMAP_Sentinel_overpass_timediff_hr	EASEGridCell_Array	real	4	hours	0.0	36.0	The time difference in hours
_apm_3km	_3km						between the Sentinel data and the
							collocated SMAP data

albedo_apm_3km	EASEGridCell_Array _3km	real	4	normalized	0.0	1.0	Diffuse reflecting power of the Earth's surface within the grid cell.
bare_soil_roughness_retrieved_apm_3 km	EASEGridCell_Array _3km	real	4	meters	0.0	0.1	Retrieved soil roughness provided by the active soil moisture algorithm.
beta_tbv_vv_apm_3km	EASEGridCell_Array _3km	real	4	Kelvins/dB	-25	0	Beta parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell, derived using time series Tbv and sigma0 vv
disagg_soil_moisture_apm_3km	EASEGridCell_Array _3km	real	4	cm3/cm3	0.02	0.5	Representative optional (disaggregated) soil moisture measurement for the Earth based grid cell.
disaggregated_tb_v_qual_flag_apm_3 km	EASEGridCell_Array _3km	bit flag	2	NA	NA	NA	Bit flags that record the conditions and the quality of the disaggregated vertical polarization brightness temperature generated for the grid cell.
gamma_vv_xpol_apm_3km	EASEGridCell_Array _3km	real	4	normalized	0	2	Gamma parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell, derived using high resolution sigma0 vv and sigma0 xpol
landcover_class_apm_3km	EASEGridCell_Array _3km	enum	1	NA	NA	NA	An enumerated type that specifies the predominant surface vegetation found in the grid cell.
latitude_apm_3km	EASEGridCell_Array _3km	real	4	degrees_no rth	-90.0	90.0	Latitude of the center of the Earth based grid cell.
longitude_apm_3km	EASEGridCell_Array _3km	real	4	degrees_ea st	-180.0	180.0	Longitude of the center of the Earth based grid cell.
retrieval_qual_flag_apm_3km	EASEGridCell_Array _3km	bit flag	2	NA	NA	NA	Bit flags that record the conditions and the quality of the retrieval algorithms that generate baseline soil moisture for the grid cell.

sigma0_incidence_angle_apm_3km	EASEGridCell_Array _3km	real	4	degrees	20°	60°	Angle of radar incidence relative to the local normal.
sigma0_vv_aggregated_apm_3km	EASEGridCell_Array _3km	real	4	normalized	0.0	1.0	The outcome of aggregating a set of 3 km vertical polarization radar backscatter measurements into a 3 km EASE grid cell.
sigma0_vh_aggregated_apm_3km	EASEGridCell_Array _3km	real	4	normalized	0.0	1.0	The outcome of aggregating a set of 3 km cross-polarized radar backscatter measurements into a 3 km EASE grid cell.
soil_moisture_apm_3km	EASEGridCell_Array _3km	real	4	cm3/cm3	0.02	0.5	Representative baseline soil moisture measurement for the Earth based grid cell.
soil_moisture_std_dev_apm_3km	EASEGridCell_Array _3km	real	4	cm3/cm3	0.0	0.2	Standard deviation of soil moisture measure for the 3 km Earth based grid cell.
spacecraft_overpass_time_seconds_ap m_3km	EASEGridCell_Array _3km	real	8	seconds	0	999999.9	Number of seconds since a specified epoch that represents the spacecraft overpass relative to the 3 km EASE grid cell represented in this data product.
surface_flag_apm_3km	EASEGridCell_Array 3km	bit flag	2	NA	NA	NA	Bit flags that record ambient surface conditions for the grid cell
surface_temperature_apm_3km	EASEGridCell_Array 3km	real	4	degrees Celsius	-50.0	60.0	Temperature at land surface based on GMAO GOES.
tb_v_disaggregated_apm_3km	EASEGridCell_Array _3km	real	4	Kelvins	0.0	330.0	Vertical polarization brightness temperature from option1 adjusted for the presence of water bodies and disaggregated from the 9 km EASE grid cells into 3 km EASE grid cells.
tb_v_disaggregated_std_apm_3km	EASEGridCell_Array _3km	real	4	Kelvins	0.0	330.0	Standard deviation of disaggregated Tb in the 3 km cell.
vegetation_opacity_apm_3km	EASEGridCell_Array 3km	real	4	normalized	0	1	The measured opacity of the vegetation in the grid cell.

vegetation_water_content_apm_3km	EASEGridCell_Array _3km	real	4	kg/m2	0.0	30	Representative measure of water in the vegetation within the 3 km grid cell.
water_body_fraction_apm_3km	EASEGridCell_Array _3km	real	4	normalized	0.0	1.0	Fraction of the area of 3 km grid cell that is a permanent or transient water body. Derived from the DEM and radar processing.

Soil Moisture Retrieval Data 1km Group

AM-only 1km elements

Element	Shape	Concept	Bytes	Unit	Min	Max	Comment
EASE_column_index_1km	EASEGridCell_Array _1km	integer	2	count	0	65535	The column index of the 1 km EASE grid cell that contains the associated data.
EASE_row_index_1km	EASEGridCell_Array _1km	integer	2	count	0	65535	The row index of the 1 km EASE grid cell that contains the associated data.
SMAP_Sentinel_overpass_timediff_hr _1km	EASEGridCell_Array _1km	real	4	hours	0.0	36.0	The time difference in hours between the Sentinel data and the collocated SMAP data
albedo_1km	EASEGridCell_Array _1km	real	4	normalized	0.0	1.0	Diffuse reflecting power of the Earth's surface within the grid cell.
bare_soil_roughness_retrieved_1km	EASEGridCell_Array _1km	real	4	meters	0.0	0.1	Retrieved soil roughness provided by the active soil moisture algorithm.
beta_tbv_vv_1km	EASEGridCell_Array _1km	real	4	Kelvins/dB	-25	0	Beta parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell, derived using time series Tbv and sigma0_vv

disagg_soil_moisture_1km	EASEGridCell_Array _1km	real	4	cm3/cm3	0.02	0.5	Representative optional (disaggregated) soil moisture measurement for the Earth based grid cell.
disaggregated_tb_v_qual_flag_1km	EASEGridCell_Array _1km	bit flag	2	NA	NA	NA	Bit flags that record the conditions and the quality of the disaggregated vertical polarization brightness temperature generated for the grid cell.
gamma_vv_xpol_1km	EASEGridCell_Array _1km	real	4	normalized	0	2	Gamma parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell, derived using high resolution sigma0 vv and sigma0 xpol
landcover_class_1km	EASEGridCell_Array _1km	enum	1	NA	NA	NA	An enumerated type that specifies the predominant surface vegetation found in the grid cell.
latitude_1km	EASEGridCell_Array _1km	real	4	degrees_no rth	-90.0	90.0	Latitude of the center of the Earth based grid cell.
longitude_1km	EASEGridCell_Array _1km	real	4	degrees_ea st	-180.0	180.0	Longitude of the center of the Earth based grid cell.
retrieval_qual_flag_1km	EASEGridCell_Array _1km	bit flag	2	NA	NA	NA	Bit flags that record the conditions and the quality of the retrieval algorithms that generate baseline soil moisture for the grid cell.
sigma0_incidence_angle_1km	EASEGridCell_Array _1km	real	4	degrees	20°	60°	Angle of radar incidence relative to the local normal.
sigma0_vv_aggregated_1km	EASEGridCell_Array _1km	real	4	normalized	0.0	1.0	The outcome of aggregating a set of 1 km vertical polarization radar backscatter measurements into a 1 km EASE grid cell.
sigma0_vh_aggregated_1km	EASEGridCell_Array _1km	real	4	normalized	0.0	1.0	The outcome of aggregating a set of 1 km cross-polarized radar backscatter measurements into a 1 km EASE grid cell.

soil_moisture_1km	EASEGridCell_Array _1km	real	4	cm3/cm3	0.02	0.5	Representative baseline soil moisture measurement for the Earth based grid cell.
soil_moisture_std_dev_1km	EASEGridCell_Array _1km	real	4	cm3/cm3	0.0	0.2	Standard deviation of soil moisture measure for the 1 km Earth based grid cell.
spacecraft_overpass_time_seconds_1k m	EASEGridCell_Array _1km	real	8	seconds	0	999999.9	Number of seconds since a specified epoch that represents the spacecraft overpass relative to the 1 km EASE grid cell represented in this data product.
surface_flag_1km	EASEGridCell_Array _1km	bit flag	2	NA	NA	NA	Bit flags that record ambient surface conditions for the grid cell
surface_temperature_1km	EASEGridCell_Array _1km	real	4	degrees Celsius	-50.0	60.0	Temperature at land surface based on GMAO GOES.
tb_v_disaggregated_1km	EASEGridCell_Array _1km	real	4	Kelvins	0.0	330.0	Vertical polarization brightness temperature from option 1 adjusted for the presence of water bodies and disaggregated from the 9 km EASE grid cells into 1 km EASE grid cells.
tb_v_disaggregated_std_1km	EASEGridCell_Array _1km	real	4	Kelvins	0.0	330.0	Standard deviation of disaggregated Tb in the 1km cell.
vegetation_opacity_1km	EASEGridCell_Array _1km	real	4	normalized	0	1	The measured opacity of the vegetation in the grid cell.
vegetation_water_content_1km	EASEGridCell_Array _1km	real	4	kg/m2	0.0	30	Representative measure of water in the vegetation within the 1 km grid cell.
water_body_fraction_1km	EASEGridCell_Array _1km	real	4	normalized	0.0	1.0	Fraction of the area of 1 km grid cell that is a permanent or transient water body. Derived from the DEM and radar processing.

AM-or-PM 1km elements

F31	C1		D (TT	3.51	3.5	C ,
Element	Shape	Concept]	Bytes	Unit	Min	Max	Comment

EASE_column_index_apm_1km	EASEGridCell_Array _1km	integer	2	count	0	65535	The column index of the 1 km EASE grid cell that contains the associated data.
EASE_row_index_apm_1km	EASEGridCell_Array _1km	integer	2	count	0	65535	The row index of the 1 km EASE grid cell that contains the associated data.
SMAP_Sentinel_overpass_timediff_hr _apm_1km	EASEGridCell_Array _1km	real	4	hours	0.0	36.0	The time difference in hours between the Sentinel data and the collocated SMAP data
albedo_apm_1km	EASEGridCell_Array _1km	real	4	normalized	0.0	1.0	Diffuse reflecting power of the Earth's surface within the grid cell.
bare_soil_roughness_retrieved_apm_1 km	EASEGridCell_Array _1km	real	4	meters	0.0	0.1	Retrieved soil roughness provided by the active soil moisture algorithm.
beta_tbv_vv_apm_1km	EASEGridCell_Array _1km	real	4	Kelvins/dB	-25	0	Beta parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell, derived using time series Tbv and sigma0 vv
disagg_soil_moisture_apm_1km	EASEGridCell_Array _1km	real	4	cm3/cm3	0.02	0.5	Representative optional (disaggregated) soil moisture measurement for the Earth based grid cell.
disaggregated_tb_v_qual_flag_apm_1 km	EASEGridCell_Array _1km	bit flag	2	NA	NA	NA	Bit flags that record the conditions and the quality of the disaggregated vertical polarization brightness temperature generated for the grid cell.
gamma_vv_xpol_apm_1km	EASEGridCell_Array _1km	real	4	normalized	0	2	Gamma parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell, derived using high resolution sigma0 vv and sigma0 xpol
landcover_class_apm_1km	EASEGridCell_Array _1km	enum	1	NA	NA	NA	An enumerated type that specifies the predominant surface vegetation found in the grid cell.

latitude_apm_1km	EASEGridCell_Array 1km	real	4	degrees_no	-90.0	90.0	Latitude of the center of the Earth based grid cell.
longitude_apm_1km	EASEGridCell_Array	real	4	degrees_ea	-180.0	180.0	Longitude of the center of the Earth based grid cell.
retrieval_qual_flag_apm_1km	EASEGridCell_Array _1km	bit flag	2	NA	NA	NA	Bit flags that record the conditions and the quality of the retrieval algorithms that generate baseline soil moisture for the grid cell.
sigma0_incidence_angle_apm_1km	EASEGridCell_Array 1km	real	4	degrees	20°	60°	Angle of radar incidence relative to the local normal.
sigma0_vv_aggregated_apm_1km	EASEGridCell_Array _1km	real	4	normalized	0.0	1.0	The outcome of aggregating a set of 1 km vertical polarization radar backscatter measurements into a 1 km EASE grid cell.
sigma0_vh_aggregated_apm_1km	EASEGridCell_Array _1km	real	4	normalized	0.0	1.0	The outcome of aggregating a set of 1 km cross-polarized radar backscatter measurements into a 1 km EASE grid cell.
soil_moisture_apm_1km	EASEGridCell_Array _1km	real	4	cm3/cm3	0.02	0.5	Representative baseline soil moisture measurement for the Earth based grid cell.
soil_moisture_std_dev_apm_1km	EASEGridCell_Array _1km	real	4	cm3/cm3	0.0	0.2	Standard deviation of soil moisture measure for the 1 km Earth based grid cell.
spacecraft_overpass_time_seconds_ap m_1km	EASEGridCell_Array _1km	real	8	seconds	0	999999.9	Number of seconds since a specified epoch that represents the spacecraft overpass relative to the 1 km EASE grid cell represented in this data product.
surface_flag_apm_1km	EASEGridCell_Array 1km	bit flag	2	NA	NA	NA	Bit flags that record ambient surface conditions for the grid cell
surface_temperature_apm_1km	EASEGridCell_Array _1km	real	4	degrees Celsius	-50.0	60.0	Temperature at land surface based on GMAO GOES.
tb_v_disaggregated_apm_1km	EASEGridCell_Array _1km	real	4	Kelvins	0.0	330.0	Vertical polarization brightness temperature from option1 adjusted for the presence of water bodies and disaggregated from the 9 km

							EASE grid cells into 1 km EASE
							grid cells.
tb_v_disaggregated_std_apm_1km	EASEGridCell_Array	real	4	Kelvins	0.0	330.0	Standard deviation of
	_1km						disaggregated Tb in the 1km cell.
vegetation_opacity_apm_1km	EASEGridCell_Array	real	4	normalized	0	1	The measured opacity of the
	_1km						vegetation in the grid cell.
vegetation_water_content_apm_1km	EASEGridCell_Array	real	4	kg/m2	0.0	30	Representative measure of water
	_1km						in the vegetation within the 1 km
							grid cell.
water body fraction_apm_1km	EASEGridCell_Array	real	4	normalized	0.0	1.0	Fraction of the area of 1 km grid
	_1km						cell that is a permanent or
							transient water body. Derived
							from the DEM and radar
							processing.

4.6 Parameter Definitions

NOTE: All definitions given here are for the "AM-only" data elements. The definitions for the "AM-or-PM" (_apm_) elements for each resolution are the same, other than the "_apm_" tag in the element names; they are not repeated here for brevity.

4.6.1 **albedo 1km**

Diffuse reflecting power of the Earth's surface within the grid cell at 1 km.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km
Shape: EASEGridCell Array 1km

 Valid_min:
 0.0

 Valid_max:
 1.0

 Units:
 n/a

4.6.2 albedo 3km

Diffuse reflecting power of the Earth's surface within the grid cell at 3 km.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell Array 3km

 Valid_min:
 0.0

 Valid_max:
 1.0

 Units:
 n/a

4.6.3 bare_soil_roughness_retrieved_1km

Roughness coefficient at 1-km spatial scale. Note that this parameter is the same 'h' coefficient in the 'tau-omega' model for a given polarization channel.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km
Shape: EASEGridCell Array 1km

Valid_min: 0.0 Valid_max: 2.0 Units: n/a

4.6.4 bare_soil_roughness_retrieved_3km

Roughness coefficient at 3-km spatial scale. Note that this parameter is the same 'h' coefficient in the 'tau-omega' model for a given polarization channel.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Release 3 JPL D-56548

SMAP/Sentinel L2 Active/Passive Soil Moisture Data Product Specification Document Aug 6, 2020

Shape: EASEGridCell Array 3km

Valid_min: 0.0 Valid max: 2.0 **Units:** n/a

4.6.5 beta tbv vv 1km

Beta parameter used in the Active/Passive retrieval algorithm is derived using the Enhanced Radiometer brightness temperature data at ~33 km and coregistered (overlapping data) within +/- 36 hrs of spatially averaged high resolution (1 km) Sentinel 1A/B sigma0 vv and sigma0 vh. This is call the snapshot approach and more details are given in Jagdhuber et al., 2018. The Beta parameter derived populated for all the 1 km grid cells that fall within the nested 9 km grid cell.

The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell Array 1km

Valid min: -20.0Valid max: 0.0

Units: Kelvin/dB

4.6.6 beta tbv vv 3km

Beta parameter used in the Active/Passive retrieval algorithm is derived using the Enhanced Radiometer brightness temperature data at ~33 km and coregistered (overlapping data) within +/- 36 hrs of spatially averaged high resolution (1 km) Sentinel 1A/B sigma0 vv and sigma0 vh. This is call the snapshot approach and more details are given in Jagdhuber et al., 2018. The Beta parameter derived populated for all the 3 km grid cells that fall within the nested 9 km grid cell.

The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

EASEGridCell_Array_3km Shape:

Valid min: -20.0Valid max: 0.0

Units: Kelvin/dB

4.6.7 disagg soil moisture 1km

Retrieved soil moisture estimate from the disaggregated/downscaled 9km soil moisture measurements representative of the 1-km grid cell.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell Array 1km

Valid_min: 0.01 Release 3 JPL D-56548

SMAP/Sentinel L2 Active/Passive Soil Moisture Data Product Specification Document Aug 6, 2020

Valid max: Based on the soil bulk density (BD), porosity of soil = 1 - (BD/2.65)

Units: m₃/ m₃

4.6.8 disagg soil moisture 3km

Retrieved soil moisture estimate from the disaggregated/downscaled 9km soil moisture measurements representative of the 3-km grid cell.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km Shape: EASEGridCell Array 3km

Valid min: 0.01

Valid_max: Based on the soil bulk density (BD), porosity of soil = 1 - (BD/2.65)

Units: m_3/m_3

4.6.9 disaggregated_tb_v_qual_flag_1km

Bit flags that record the conditions and the quality of the disaggregated vertical polarization brightness temperature generated for the grid cell.

Precision: Uint16

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

Valid min: 0 Valid_max: 65,535 **Units:** n/a

Name	Bit Position	Value (0:off, 1:on)	Interpretation
Disaggregated brightness temperature v-pol quality	0	off	Disaggregated vertical polarization brightness temperature has acceptable quality.
		on	Unable to disaggregate vertical polarization brightness temperatures into 9 km resolution cells.
Sigma0_vv quality flag	1	off	All vertical polarization sigma0 input that contributed to disaggregation of vertical polarization brightness temperatures were deemed as good quality.
		on	Some vertical polarization sigma0 input that contributed to disaggregation of vertical polarization brightness temperatures was of questionable or poor quality.
Sigma0_xpol quality flag	2	off	All cross polarized sigma0 input that contributed to disaggregation of vertical polarization brightness temperatures were deemed as good quality.
		on	Some cross polarized sigma0 input that contributed to disaggregation of vertical polarization brightness temperatures was of questionable or poor quality.
Brightness temperature v-pol quality flag	3	off	Vertical polarization brightness temperature input that was used for disaggregation was deemed as good quality.
		on	Some vertical polarization brightness temperature input that was used for soil moisture retrieval was of questionable or poor quality.

Brightness temperature v-pol			Insignificant levels of RFI detected in the vertical
RFI detected flag	4	off	polarization radiometer brightness temperature input.
Ki i detected mag			Significant levels of RFI were detected in the vertical
		on	polarization radiometer brightness temperature input.
Brightness temperature v-pol			The vertical polarization radiometer brightness
RFI corrected flag	5	off	temperature input is based on data that were repaired for
KIT corrected mag	3	011	the effects of RFI.
		on	Unable to repair the vertical polarization radiometer
C:0 DEL 1-44-1 fl			brightness temperature input for the effects of RFI.
Sigma0_vv RFI detected flag	6	off	Insignificant levels of RFI detected in the vertical
			polarization radar sigma0 input.
		on	Significant levels of RFI were detected in the vertical
G' O DEL			polarization radar sigma0 input.
Sigma0_vv RFI corrected	7	off	The input for retrieval is based on vertical polarization
flag			radar sigma0s that were repaired for the effects of RFI.
		on	Unable to repair the vertical polarization radar sigma0
			input for the effects of RFI.
Sigma0_xpol RFI detected	8	off	Insignificant levels of RFI detected in the cross
flag		011	polarized radar sigma0 input.
		on	Significant levels of RFI were detected in the cross
		OH	polarized radar sigma0 input.
Sigma0_xpol RFI corrected	9	off	The input for retrieval is based on cross polarized radar
flag		OII	sigma0s that were repaired for the effects of RFI.
		on	Unable to repair the cross polarized radar sigma0 input
		OII	for the effects of RFI.
Negative sigma0_vv flag	10	off	The input for retrieval is based on vertical polarization
	10	OII	radar sigma0s that are greater than zero.
		on	The input for retrieval is based on vertical polarization
		on	radar sigma0s that are less than or equal to zero.
Negative sigma0_xpol flag	11	off	The input for retrieval is based on cross polarized radar
	11	011	sigma0s that are greater than zero.
			The input for retrieval is based on cross polarized radar
		on	sigma0s that are less than or equal to zero.
Waterbody correction flag			Waterbody correction successfully done and the
	12	off	percentage waterbody with 36 TB grid cell is <= 5%,
			TB deemed good quality.
			Waterbody correction successfully done and the
		on	percentage waterbody with 36 TB grid cell is > 5%, TB
			quality is suspected.
Ascending or Descending	12	cc	SMAP Descending Orbit TB used for disaggregation
flag	13	off	
		on	SMAP Ascending Orbit TB used for disaggregation
SMAP-Sentinel Overlap flag	14	off	SMAP-Sentinel overlap time is <= to 36 hrs
		on	SMAP-Sentinel overlap time is > 36 hrs
		U11	2 2 Sentine overlap time is 50 ms

4.6.10 disaggregated_tb_v_qual_flag_3km

Bit flags that record the conditions and the quality of the disaggregated vertical polarization brightness temperature generated for the grid cell.

Precision: Uint16

Group: Soil Moisture Retrieval Data 3km Shape: EASEGridCell_Array_3km

 Valid_min:
 0

 Valid_max:
 65,535

 Units:
 n/a

Name	Bit Position	Value (0:off, 1:on)	Interpretation
Disaggregated brightness			Disaggregated vertical polarization brightness
temperature v-pol quality	0	off	temperature has acceptable quality.
			Unable to disaggregate vertical polarization brightness
		on	temperatures into 9 km resolution cells.
Sigma0 vv quality flag			All vertical polarization sigma0 input that contributed to
	1	off	disaggregation of vertical polarization brightness
			temperatures were deemed as good quality.
			Some vertical polarization sigma0 input that contributed
		on	to disaggregation of vertical polarization brightness
			temperatures was of questionable or poor quality.
Sigma0_xpol quality flag			All cross polarized sigma0 input that contributed to
	2	off	disaggregation of vertical polarization brightness
			temperatures were deemed as good quality.
			Some cross polarized sigma0 input that contributed to
		on	disaggregation of vertical polarization brightness
			temperatures was of questionable or poor quality.
Brightness temperature	3	off	Vertical polarization brightness temperature input that
v-pol quality flag	3	OH	was used for disaggregation was deemed as good quality.
			Some vertical polarization brightness temperature input
		on	that was used for soil moisture retrieval was of
			questionable or poor quality.
Brightness temperature	4	off	Insignificant levels of RFI detected in the vertical
v-pol RFI detected flag	•	011	polarization radiometer brightness temperature input.
		on	Significant levels of RFI were detected in the vertical
		on	polarization radiometer brightness temperature input.
Brightness temperature	_		The vertical polarization radiometer brightness
v-pol RFI corrected flag	5	off	temperature input is based on data that were repaired for
			the effects of RFI.
		on	Unable to repair the vertical polarization radiometer
			brightness temperature input for the effects of RFI.
Sigma0_vv RFI detected	6	off	Insignificant levels of RFI detected in the vertical
flag			polarization radar sigma0 input.
		on	Significant levels of RFI were detected in the vertical
G: 0 PEI			polarization radar sigma0 input.
Sigma0_vv RFI	7	off	The input for retrieval is based on vertical polarization
corrected flag			radar sigma0s that were repaired for the effects of RFI.
		on	Unable to repair the vertical polarization radar sigma0
C' O TO IDEI			input for the effects of RFI.
Sigma0_xpol RFI	8	off	Insignificant levels of RFI detected in the cross polarized
detected flag			radar sigma0 input.
		on	Significant levels of RFI were detected in the cross
Sigmo() vnol DEI			polarized radar sigma0 input. The input for retrieval is based on cross polarized radar
Sigma0_xpol RFI corrected flag	9	off	sigma0s that were repaired for the effects of RFI.
corrected mag			
		on	Unable to repair the cross polarized radar sigma0 input for the effects of RFI.
Nagativa sigmal vy flac			The input for retrieval is based on vertical polarization
Negative sigma0_vv flag	10	off	
			radar sigma0s that are greater than zero.

Aug 6, 2020

		on	The input for retrieval is based on vertical polarization radar sigma0s that are less than or equal to zero.
Negative sigma0_xpol flag	11	off	The input for retrieval is based on cross polarized radar sigma0s that are greater than zero.
		on	The input for retrieval is based on cross polarized radar sigma0s that are less than or equal to zero.
Waterbody correction flag	12	off	Waterbody correction successfully done and the percentage waterbody with 36 TB grid cell is <= 5%, TB deemed good quality.
		on	Waterbody correction successfully done and the percentage waterbody with 36 TB grid cell is > 5%, TB quality is suspected.
Ascending or Descending flag	13	off	SMAP Descending Orbit TB used for disaggregation
		on	SMAP Ascending Orbit TB used for disaggregation
SMAP-Sentinel Overlap flag	14	off	SMAP-Sentinel overlap time is <= to 36 hrs
		on	SMAP-Sentinel overlap time is > 36 hrs

4.6.11 EASE_column_index_1km

EASE grid cell at 1 km row index on world grid in longitude direction.

Precision: Uint16

Soil Moisture Retrieval Data 1km Group:

Shape: EASEGridCell_Array_1km

Valid min:

Valid_max: 34703 (M01)

Units: n/a

4.6.12 EASE_column_index_3km

EASE grid cell at 3 km row index on world grid in longitude direction.

Precision: Uint16

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

Valid min: 0

Valid max: 11567 (M03)

Units: n/a

4.6.13 EASE_row_index_1km

EASE grid cell at 1 km row index on world grid in latitude direction.

Precision: Uint16

Soil Moisture Retrieval Data 1km Group:

Shape: EASEGridCell_Array_1km

Valid min:

Valid max: 14615 (M01)

Units: n/a Release 3 JPL D-56548

SMAP/Sentinel L2 Active/Passive Soil Moisture Data Product Specification Document Aug 6, 2020

4.6.14 EASE row index 3km

EASE grid cell at 3 km row index on world grid in latitude direction.

Precision: Uint16

Soil Moisture Retrieval Data 3km Group: Shape: EASEGridCell_Array_3km

Valid min:

Valid_max: 4871 (M03)

Units: n/a

4.6.15 gamma_vv_xpol_1km

Gamma parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell at the most recent prior instance when the grid cell was processed. The parameter is obtained by regression between high-resolution co-pol (vv) backscatters at at 1 km and cross-pol (hv) backscatters at 1 km that are contained within the respective ~33 km resolution, centered at the 9 km EASE2 grid cell.

The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Soil Moisture Retrieval Data 1km **Group:**

Shape: EASEGridCell_Array_1km

Valid min: 0.0 Valid max: 5.0 **Units:** dB/dB

4.6.16 gamma vv xpol 3km

Gamma parameter used in the Active/Passive retrieval algorithm for the corresponding EASE grid cell at the most recent prior instance when the grid cell was processed. The parameter is obtained by regression between high-resolution co-pol (vv) backscatters at at 1 km and cross-pol (hv) backscatters at 1 km that are contained within the respective ~33 km resolution, centered at the 9 km EASE2 grid cell.

The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

EASEGridCell_Array_3km Shape:

Valid min: 0.0 Valid_max: 5.0 **Units:** dB/dB Aug 6, 2020

4.6.17 landcover_class_1km

An enumerated type that specifies the predominant surface vegetation found in the EASE2 grid cell at 1-km.

Precision: Uint16

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

Valid_min: 0 Valid_max: 16 **Units:** n/a

Value	Interpretation
0	Water
1	Evergreen needleleaf forest
2	Evergreen broadleaf forest
3	Deciduous needleleaf forest
4	Deciduous broadleaf forest
5	Mixed forest
6	Closed shrubland
7	Open shrubland
8	Woody savanna
9	Savanna
10	Grassland
11	Permanent Wetland
12	Croplands
13	Urban and Built-up
14	Cropland/Natural Vegetation Mosaic
15	Permanent Snow and Ice
16	Barren or Sparsely Vegetated
>16	TBD

4.6.18 landcover_class_3km

An enumerated type that specifies the predominant surface vegetation found in the EASE2 grid cell at 3 km.

Precision: Uint16

Group: Soil Moisture Retrieval Data 3km **Shape:** EASEGridCell_Array_3km

 Valid_min:
 0

 Valid_max:
 16

 Units:
 n/a

Value	Interpretation
0	Water
1	Evergreen needleleaf forest
2	Evergreen broadleaf forest
3	Deciduous needleleaf forest
4	Deciduous broadleaf forest
5	Mixed forest
6	Closed shrubland
7	Open shrubland
8	Woody savanna
9	Savanna
10	Grassland
11	Permanent Wetland
12	Croplands
13	Urban and Built-up
14	Cropland/Natural Vegetation Mosiac
15	Permanent Snow and Ice
16	Barren or Sparsely Vegetated
>16	TBD

4.6.19 latitude_1km

Latitude of the center of the Earth based grid cell at 1 km.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

 Valid_min:
 -90.0

 Valid_max:
 +90.0

 Units:
 degree

4.6.20 latitude_3km

Latitude of the center of the Earth based grid cell at 3 km.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

Valid_min: -90.0 **Valid_max:** +90.0

Release 3

JPL D-56548

Aver 6, 2020

SMAR/Sentinel L3 Active/Receive Seil Meieture Date Breduct Specification Decument

Aug 6, 2020 SMAP/Sentinel L2 Active/Passive Soil Moisture Data Product Specification Document

Units: degree

4.6.21 longitude_1km

Longitude of the center of the Earth based grid cell at 1 km.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

 Valid_min:
 -180.0

 Valid_max:
 +180.0

 Units:
 degree

4.6.22 longitude_3km

Longitude of the center of the Earth based grid cell at 3 km.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

 Valid_min:
 -180.0

 Valid_max:
 +180.0

 Units:
 degree

4.6.23 retrieval qual flag 1km

Bit flags that record the conditions and the quality of the retrieved baseline soil moisture. When translated to decimal representation, this parameter contains an integer indicating one of the following inversion outcomes.

Precision: Uint16

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

 Valid_min:
 0

 Valid_max:
 65,535

 Units:
 n/a

Name	Bit Position	Value (0:off, 1:on)	Interpretation
Retrieval recommended flag	0	off	Use of the soil moisture value retrieved for this pixel is recommended.
		on	Use of soil moisture value retrieved for this pixel is not recommended.
Retrieval attempted flag	1	off	The algorithm attempted to retrieve soil moisture for this grid cell.
		on	The algorithm did not attempt to retrieve soil moisture for this grid cell.
Retrieval success flag	2	off	Retrieval for this algorithm was successfully executed or the algorithm was not attempted.
		on	The retrieval for this algorithm was attempted but failed.
Radar water body detection success flag	3	off	Radar water body detection ran successfully

		on	Unable to detect water bodies using retrieval techniques based on radar.
Freeze-thaw retrieval success flag	4	off	Freeze-thaw retrieval ran successfully
		on	Unable to ascertain freeze-thaw conditions
Radar vegetation index retrieval success flag	5	off	Radar vegetation index retrieval ran successfully
		on	Radar vegetation index retrieval unsuccessful
Disaggregated brightness temperature quality	6	off	Disaggregated brightness temperature retrieval ran successfully
		on	Unable to disaggregate brightness temperatures into 1 km resolution cells.
Anomalously high SM retrieval	7	off	Retrieved soil moisture is within normal range, between 0.02 and porosity, as determined by soil texture.
		on	Retrieved soil moisture is beyond normal range, above porosity, as determined by soil texture.

4.6.24 retrieval_qual_flag_3km

Bit flags that record the conditions and the quality of the retrieved soil moisture. When translated to decimal representation, this parameter contains an integer indicating one of the following inversion outcomes.

Precision: Uint16

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

 Valid_min:
 0

 Valid_max:
 65,535

 Units:
 n/a

Name	Bit Position	Value (0:off, 1:on)	Interpretation
Retrieval recommended flag	0	off	Use of the soil moisture value retrieved for this pixel is recommended.
		on	Use of soil moisture value retrieved for this pixel is not recommended.
Retrieval attempted flag	1	off	The algorithm attempted to retrieve soil moisture for this grid cell.
		on	The algorithm did not attempt to retrieve soil moisture for this grid cell.
Retrieval success flag	2	off	Retrieval for this algorithm was successfully executed or the algorithm was not attempted.
		on	The retrieval for this algorithm was attempted but failed.
Radar water body detection success flag	3	off	Radar water body detection ran successfully
		on	Unable to detect water bodies using retrieval techniques based on radar.
Freeze-thaw retrieval success flag	4	off	Freeze-thaw retrieval ran successfully
		on	Unable to ascertain freeze-thaw conditions
Radar vegetation index retrieval success flag	5	off	Radar vegetation index retrieval ran successfully
		on	Radar vegetation index retrieval unsuccessful

Aug 6, 2020

Disaggregated brightness temperature quality	6	off	Disaggregated brightness temperature retrieval ran successfully
		on	Unable to disaggregate brightness temperatures into 3 km resolution cells.
Anomalously high SM retrieval	7	off	Retrieved soil moisture is within normal range, between 0.02 and porosity, as determined by soil texture.
		on	Retrieved soil moisture is beyond normal range, above porosity, as determined by soil texture.

4.6.25 sigma0 incidence angle 1km

The angle of radar incidence relative to the local normal at the location of the scene pixel, aggregated at 1 km resolution on the EASE grid.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

EASEGridCell_Array_1km Shape:

Valid min: 20.0 Valid max: 60.0 **Units:** degrees

4.6.26 sigma0 incidence angle 3km

The angle of radar incidence relative to the local normal at the location of the scene pixel, aggregated at 3 km resolution on the EASE grid.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell Array 3km

Valid_min: 20.0 Valid max: 60.0 **Units:** degrees

4.6.27 sigma0 vv aggregated 1km

The outcome of aggregating a set of 3-km co-pol vertical polarization radar backscatter measurements that are encompassed within 9 km EASE2 grid cell. This aggregated radar backscatter at 9-km does not include the undesirable 3-km grid cells, mainly the grid cells having water, snow/ice and RFI contaminated pixels.

Precision:

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell Array 1km

Valid min: 0.0 Valid max: 1.0

Units: normalized (linear)

4.6.28 sigma0_vv_aggregated_3km

The outcome of aggregating a set of 3-km co-pol vertical polarization radar backscatter measurements that are encompassed within 9 km EASE2 grid cell. This aggregated radar backscatter at 9-km does not include the undesirable 3-km grid cells, mainly the grid cells having water, snow/ice and RFI contaminated pixels.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

 Valid_min:
 0.0

 Valid_max:
 1.0

Units: normalized (linear)

4.6.29 sigma0 vh aggregated 1km

The outcome of aggregating a set of 3-km cross-polarization (*hv* or *vh*) radar backscatter measurements that are encompassed within 9 km EASE2 grid cell. This aggregated radar backscatter at 9-km does not include the undesirable 3-km grid cells, mainly the grid cells having water, snow/ice and RFI contaminated pixels.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

 Valid_min:
 0.0

 Valid_max:
 1.0

Units: normalized (linear)

4.6.30 sigma0_vh_aggregated_3km

The outcome of aggregating a set of 3-km cross-polarization (*hv* or *vh*) radar backscatter measurements that are encompassed within 9 km EASE2 grid cell. This aggregated radar backscatter at 9-km does not include the undesirable 3-km grid cells, mainly the grid cells having water, snow/ice and RFI contaminated pixels.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

Valid_min: 0.0 Valid_max: 1.0

Units: normalized (linear)

4.6.31 SMAP Sentinel overpass timediff hr 1km

The time difference in hours between the mean SMAP overpass time and the Sentinel overpass time at the location of the Sentinel scene.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

Valid_min: 0.0 Valid_max: 40 Units: hours Aug 6, 2020

4.6.32 SMAP_Sentinel_overpass_timediff_hr_3km

The time difference in hours between the mean SMAP overpass time and the Sentinel overpass time at the location of the Sentinel scene.

Precision: Float32

Soil Moisture Retrieval Data 3km Group: EASEGridCell_Array_3km Shape:

Valid min: 0.0 Valid max: 40 Units: hours

4.6.33 soil moisture 1km

Retrieved soil moisture estimate from the disaggregated/downscaled vertical polarization brightness temperature at 1-km grid cell.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km EASEGridCell Array 1km Shape:

Valid min: 0.01

Valid_max: Based on the soil bulk density (BD), porosity of soil = 1 - (BD/2.65)

Units: m₃/m₃

4.6.34 soil moisture 3km

Retrieved soil moisture estimate from the disaggregated/downscaled vertical polarization brightness temperature at 3-km grid cell.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km Shape: EASEGridCell Array 3km

Valid min: 0.01

Valid max: Based on the soil bulk density (BD), porosity of soil = 1 - (BD/2.65)

Units: m_3/m_3

4.6.35 soil moisture std dev 1km

Estimated '1-sigma' error of the soil moisture output parameter. The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km Shape: EASEGridCell_Array_1km

Valid min: 0.01 Valid max: 0.30 Units: m3/m3 Release 3

Aver C. 2020

SMAR/Contine I. 2. Active/Passive Scil Mainture Pate Product Considering Passworth

Aug 6, 2020 SMAP/Sentinel L2 Active/Passive Soil Moisture Data Product Specification Document

4.6.36 soil_moisture_std_dev_3km

Estimated '1-sigma' error of the retrieved v-pol soil_moisture output parameter. The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

 Valid_min:
 0.01

 Valid_max:
 0.30

 Units:
 m3/m3

4.6.37 spacecraft_overpass_time_seconds_1km

Number of seconds since a specified epoch that represents the spacecraft overpass relative to ground swath. The 9-km EASE2-Grid cell is assigned the UTC time of 36-km EASE2-Grid cell that is used for downscaling. The field describes the average of UTC acquisition times, in ASCII representation, of L1B_TB observations whose boresights fall within a 36-km EASE2-Grid cell.

Precision: Float64

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

Valid_min: 0.0
Valid_max: n/a
Units: seconds

4.6.38 spacecraft overpass time seconds 3km

Number of seconds since a specified epoch that represents the spacecraft overpass relative to ground swath. The 3 km EASE2-Grid cell is assigned the UTC time of 36-km EASE2-Grid cell that is used for downscaling. The field describes the average of UTC acquisition times, in ASCII representation, of L1B_TB observations whose boresights fall within a 36-km EASE2-Grid cell.

Precision: Float64

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell Array 3km

Valid_min: 0.0
Valid_max: n/a
Units: seconds

4.6.39 surface_flag_1km

Bit flags that record ambient surface conditions for the grid cell at 1 km.

Precision: Uint16

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

Valid_min: 0

Valid_max: 65,535 **Units:** n/a

Name	Bit Position	Value (0:off, 1:on)	Interpretation
1 km static water body flag		,	The fraction of the 1 km grid cell area that is over a
	0	off	permanent water body is less than metadata element
			PermanentWaterBodyThreshold. Determined by DEM.
			The fraction of the 1 km grid cell area that is over a
		on	permanent water body is greater than or equal to
		OII	metadata element PermanentWaterBodyThreshold.
			Determined by DEM.
1 km radar water body	1	off	Not used in L2_SM_SP.
detection flag	-		11 10 GM GD
11 1 2		on	Not used in L2_SM_SP.
1 km coastal mask flag			Data within the grid cell were not acquired in the coastal
	2	off	region of the large water bodies where especially
			brightness temperature on land may get severely contaminated due to presence of water.
			Data within the grid cell were acquired in the coastal
			region of the large water bodies where especially
		on	brightness temperature on land may get severely
			contaminated due to presence of water.
1 km urban area flag			The fraction of the 1 km grid cell area that is over urban
1 Kill urbail area mag	3	off	development is less than metadata element
			UrbanAreaThreshold.
			The fraction of the 1 km grid cell area that is over urban
		on	development is greater than or equal to metadata
			element UrbanAreaThreshold.
1 km precipitation flag	4	off	No precipitation detected within the 1 km grid cell when
	4	011	data were being acquired.
		on	Precipitation detected within the 1 km grid cell when
		on	data were being acquired
1 km snow or ice flag	5	off	No or insignificant quantities of snow or ice were
	3	011	detected within the 1 km cell.
		on	Significant quantities of snow and/or ice were detected
			within the 1 km grid cell.
1 km permanent snow or ice		00	The fraction of the 1 km grid cell area that is over
flag	6	off	permanent snow or ice is less than a specified
			algorithmic threshold.
			The fraction of the 96 km grid cell area that is over
		on	permanent snow or ice is greater than or equal to a specified algorithmic threshold.
1 km frozen ground flag	7	off	
	/		No frozen ground detected within the 1 km grid cell. Frozen ground detected within the 1 km grid cell.
1 km frozen ground flag		on	No frozen ground detected within the 1 km grid cell.
based on surface	8	off	110 Hozon ground detected within the 1 kin grid cell.
temperature		011	
		on	Frozen ground detected within the 1 km grid cell.
1 km mountainous terrain		311	The variability of land elevation in the 1 km grid cell is
flag	9	off	less than metadata element
			MountainousTerrainThreshold.

		on	The variability of land elevation in the 1 km grid cell is greater than or equal to metadata element MountainousTerrainThreshold.
1 km dense vegetation flag	10	off	The vegetation density within the 1 km grid cell is less than metadata element DenseVegetationThreshold.
		on	The vegetation density within the 1 km grid cell area is greater than or equal to metadata element DenseVegetationThreshold.
1 km edge cell flag	11	off	Data within the grid cell were not acquired at the edge of the Sentinel scene where disaggregation can be suspect.
		on	Data within the grid cell were acquired at the edge of the Sentinel scene where disaggregation can be suspect.
1 km anomalous sigma0 flag	12	off	Sentinel sigma0 data in the grid cell were within nominal expected range for the scene.
		on	Sentinel sigma0 data in the grid cell were outside the nominal expected range for the scene.

4.6.40 surface_flag_3km

Bit flags that record ambient surface conditions for the grid cell at 3 km.

Precision: Uint16

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

Valid_min: 0

Valid_max: 65,535 **Units:** n/a

Name	Bit Position	Value (0:off, 1:on)	Interpretation
3 km static water body flag	0	off	The fraction of the 3 km grid cell area that is over a permanent water body is less than metadata element PermanentWaterBodyThreshold. Determined by DEM.
		on	The fraction of the 3 km grid cell area that is over a permanent water body is greater than or equal to metadata element PermanentWaterBodyThreshold. Determined by DEM.
3 km radar water body detection flag	1	off	Not used in L2_SM_SP.
		on	Not used in L2_SM_SP.
3 km coastal mask flag	2	off	Data within the grid cell were not acquired in the coastal region of the large water bodies where especially brightness temperature on land may get severely contaminated due to presence of water.
		on	Data within the grid cell were acquired in the coastal region of the large water bodies where especially brightness temperature on land may get severely contaminated due to presence of water.
3 km urban area flag	3	off	The fraction of the 3 km grid cell area that is over urban development is less than metadata element UrbanAreaThreshold.

			The fraction of the 3 km grid cell area that is over urban
		on	development is greater than or equal to metadata
			element UrbanAreaThreshold.
3 km precipitation flag	,	22	No precipitation detected within the 3 km grid cell when
2 mil procipitation mag	4	off	data were being acquired.
			Precipitation detected within the 3 km grid cell when
		on	data were being acquired
3 km snow or ice flag	_	cc	No or insignificant quantities of snow or ice were
8	5	off	detected within the 3 km cell.
			Significant quantities of snow and/or ice were detected
		on	within the 3 km grid cell.
3 km permanent snow or ice			The fraction of the 3 km grid cell area that is over
flag	6	off	permanent snow or ice is less than a specified
8			algorithmic threshold.
			The fraction of the 3 km grid cell area that is over
		on	permanent snow or ice is greater than or equal to a
			specified algorithmic threshold.
3 km frozen ground flag	7	off	No frozen ground detected within the 3 km grid cell.
		on	Frozen ground detected within the 3 km grid cell.
3 km frozen ground flag			No frozen ground detected within the 3 km grid cell.
based on surface	8	off	
temperature	_		
1		on	Frozen ground detected within the 3 km grid cell.
3 km mountainous terrain			The variability of land elevation in the 3 km grid cell is
flag	9	off	less than metadata element
			MountainousTerrainThreshold.
			The variability of land elevation in the 3 km grid cell is
		on	greater than or equal to metadata element
			MountainousTerrainThreshold.
3 km dense vegetation flag	10	cc	The vegetation density within the 3 km grid cell is less
		off	than metadata element DenseVegetationThreshold.
			The vegetation density within the 3 km grid cell area is
		on	greater than or equal to metadata element
			DenseVegetationThreshold.
3 km edge cell flag			Data within the grid cell were not acquired at the edge
	11	off	of the Sentinel scene where disaggregation can be
			suspect.
			Data within the grid cell were acquired at the edge of the
	1	010	
		on	Sentinel scene where disaggregation can be suspect.
3 km anomalous sigma0 flag	12		Sentinel scene where disaggregation can be suspect. Sentinel sigma0 data in the grid cell were within
3 km anomalous sigma0 flag	12	off	Sentinel sigma0 data in the grid cell were within
3 km anomalous sigma0 flag	12		

4.6.41 surface_temperature_1km

Soil temperature (averaged over the top 5-cm soil layer) at 9-km spatial scale. This parameter is used as input ancillary data parameter to the L2_SM_AP processing software for the baseline algorithms. The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Release 3 JPL D-56548

SMAP/Sentinel L2 Active/Passive Soil Moisture Data Product Specification Document Aug 6, 2020

Shape: EASEGridCell Array 1km

Valid_min: 253.15 320.15 Valid_max: **Units:** Kelvin

4.6.42 surface temperature 3km

Soil temperature (averaged over the top 5-cm soil layer) at 3-km spatial scale. This parameter is used as input ancillary data parameter to the L2_SM_AP processing software for the baseline algorithms. The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell Array 3km

Valid min: 253.15 Valid max: 320.15 **Units:** Kelvin

4.6.43 tb v disaggregated 1km

Vertical polarization brightness temperature option 1 at 9-km obtained by disaggregating/downscaling the 36 km EASE grid cells vertical polarization brightness temperature.

Precision: Float32

Soil Moisture Retrieval Data 1km Group: EASEGridCell_Array_1km Shape:

Valid_min: 0.0 Valid max: 320.0 **Units:** Kelvin

4.6.44 tb v disaggregated 3km

Vertical polarization brightness temperature at 3-km obtained by disaggregating/downscaling the 36 km EASE grid cells vertical polarization brightness temperature.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell Array 3km

Valid_min: 0.0 Valid max: 320.0 **Units:** Kelvin

4.6.45 tb_v_disaggregated_std_1km

Standard deviation of the vertical polarization brightness temperature option1 adjusted for the presence of water bodies and disaggregated from the 36 km EASE grid cells into 9 km EASE grid cells.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

Valid_min: 0.0 Valid_max: 100.0 Units: Kelvin

4.6.46 tb_v_disaggregated_std_3km

Standard deviation of the vertical polarization brightness temperature adjusted for the presence of water bodies and disaggregated from the 36 km EASE grid cells into 3 km EASE grid cells.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

Valid_min: 0.0 Valid_max: 100.0 Units: Kelvin

4.6.47 vegetation_opacity_1km

Estimated vegetation opacity at 9-km spatial scale. Note that this parameter is the same 'tau' parameter normalized by the cosine of the incidence angle in the 'tau-omega' model. That's,

$$\tau = \frac{b \ VWC}{\cos \theta}$$

The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

 Valid_min:
 0.0

 Valid_max:
 5.0

 Units:
 n/a

4.6.48 vegetation opacity 3km

Estimated vegetation opacity at 3-km spatial scale. Note that this parameter is the same 'tau' parameter normalized by the cosine of the incidence angle in the 'tau-omega' model. That's,

$$\tau = \frac{b \ VWC}{\cos \theta}$$

The valid minimum and maximum below are subject to further analysis on real data.

Release 3 JPL D-56548

SMAP/Sentinel L2 Active/Passive Soil Moisture Data Product Specification Document Aug 6, 2020

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

Valid min: 0.0 Valid max: 5.0 **Units:** n/a

4.6.49 vegetation water content 1km

Vegetation water content at 9-km spatial scale. This parameter is used as input ancillary data parameter to the L2 SM AP processing software when the baseline algorithm is used. The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Soil Moisture Retrieval Data 1km Group:

Shape: EASEGridCell_Array_1km

Valid min: 0.0 Valid max: 30.0 **Units:** kg/m2

4.6.50 vegetation_water_content_3km

Vegetation water content at 3-km spatial scale. This parameter is used as input ancillary data parameter to the L2 SM AP processing software when the baseline algorithm is used. The valid minimum and maximum below are subject to further analysis on real data.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

Valid min: 0.0Valid max: 30.0 **Units:** kg/m2

4.6.51 water_body_fraction_1km

Water body fraction at 9-km spatial scale. If there are NW water pixels and NL land pixels within a 9-km grid cell, this parameter refers to the fraction of NW / (NW + NL). Note that NW is the number of water pixels regardless of their temporal span – NW captures both static water pixels and transient water pixels. At present the L2_SM_AP processing software can be configured to provide this parameter from a static water fraction database or from the SMAP L2 SM A product.

Precision: Float32

Group: Soil Moisture Retrieval Data 1km

Shape: EASEGridCell_Array_1km

Valid min: 0 Valid_max: 1

Release 3 JPL D-56548

Aug 6, 2020 SMAP/Sentinel L2 Active/Passive Soil Moisture Data Product Specification Document

Units: n/a

4.6.52 water_body_fraction_3km

Water body fraction at 3-km spatial scale. If there are NW water pixels and NL land pixels within a 3-km grid cell, this parameter refers to the fraction of NW / (NW + NL). Note that NW is the number of water pixels regardless of their temporal span – NW captures both static water pixels and transient water pixels. At present the L2_SM_AP processing software can be configured to provide this parameter from a static water fraction database or from the SMAP L2_SM_A product.

Precision: Float32

Group: Soil Moisture Retrieval Data 3km

Shape: EASEGridCell_Array_3km

Valid min: 0 Valid max: 1 **Units:** n/a

5 REFERENCES

5.1 Requirements

- SMAP Level 1 Mission Requirements and Success Criteria. (Appendix O to the Earth Systematic Missions Program Plan: Program-Level Requirements on the Soil Moisture Active Passive Project.). NASA Headquarters/Earth Science Division, Washington, DC.
- SMAP Level 2 Science Requirements. SMAP Project, JPL D-45955, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Science Algorithms and Validation Requirements. SMAP Project, JPL D-45993, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Mission System Requirements. SMAP Project, JPL D-45962, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 4 Science Data System Requirements. SMAP Project, JPL D-61680, Jet Propulsion Laboratory, Pasadena, CA.

5.2 Plans

- SMAP Science Data Management and Archive Plan. SMAP Project, JPL D-45973, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Science Data Calibration and Validation Plan. SMAP Project, JPL D-52544, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Applications Plan. SMAP Project, JPL D-53082, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Science Data System Management Plan. SMAP Project, Propulsion Laboratory, Pasadena, CA.
- SMAP Project Implementation Plan. SMAP Project, JPL D-45939, Jet Propulsion Laboratory, Pasadena, CA.

5.3 Algorithm Theoretical Basis Documents

- SMAP Algorithm Theoretical Basis Document: L1B and L1C Radar Products.
 SMAP Project, JPL D-53052, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L1B Radiometer Product. SMAP Project, GSFC-SMAP-006, NASA Goddard Space Flight Center, Greenbelt, MD.
- SMAP Algorithm Theoretical Basis Document: L1C Radiometer Product. SMAP Project, JPL D-53053, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L2 & L3 Radar Soil Moisture (Active) Products. SMAP Project, JPL D-66479, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L2 & L3 Radiometer Soil Moisture (Passive) Products. SMAP Project, JPL D-66480, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L2 & L3 Radar/Radiometer Soil Moisture (Active/Passive) Products. SMAP Project, JPL D-66481, Jet Propulsion Laboratory, Pasadena, CA.

- SMAP Algorithm Theoretical Basis Document: L3 Radar Freeze/Thaw (Active)
 Product. SMAP Project, JPL D-66482, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L2 SMAP/Sentinel Active-Passive Soil Moisture Product. SMAP Project, JPL D-56547, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L4 Surface and Root-Zone Soil Moisture Product. SMAP Project, JPL D-66483, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Algorithm Theoretical Basis Document: L4 Carbon Product. SMAP Project, JPL D-66484, Jet Propulsion Laboratory, Pasadena, CA.

5.4 Product Specification Documents

- SMAP Level 1A Radar Product Specification Document. SMAP Project, JPL D-72543, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1B Radar (L1C_S0_LoRes) Product Specification Document.
 SMAP Project, JPL D-72544, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1A Radiometer Product Specification Document. SMAP Project, JPL D-92340, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1B Radiometer (L1B_TB) Product Specification Document. SMAP Project, JPL D-72552, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1C Radiometer (L1C_TB) Product Specification Document. SMAP Project, JPL D-72545, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2 Active Soil Moisture (L2_SM_A) Product Specification Document. SMAP Project, JPL D-72546, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2 Passive Soil Moisture (L2_SM_P) Product Specification Document. SMAP Project, JPL D-72547, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2 Active/Passive Soil Moisture (L2_SM_AP) Product Specification Document. SMAP Project, JPL D-72548, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Freeze-Thaw (L3_FT_A) Product Specification Document.
 SMAP Project, JPL D-72549, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Active Soil Moisture (L3_SM_A) Product Specification Document. SMAP Project, JPL D-72550, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Passive Soil Moisture (L3_SM_P) Product Specification Document. SMAP Project, JPL D-72551, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Active/Passive Soil Moisture (L3_SM_AP) Product Specification Document. SMAP Project, JPL D-72552, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 4 Carbon (L4_C) Product Specification Document. SMAP Project, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 4 Soil Moisture (L4_SM) Product Specification Document. SMAP Project, Jet Propulsion Laboratory, Pasadena, CA.

5.5 Enhanced Products (December 2016)

- SMAP Level 1B_TB_E Product Specification Document, JPL D-56289, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 1C_TB_E Product Specification Document. SMAP Project, JPL D-56290, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 2_SM_P_E Product Specification Document. SMAP Project, JPL D-56291, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3_SM_P_E Product Specification Document. SMAP Project, JPL D-56292, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Freeze-Thaw Passive Product Specification Document (L3_FT_P). SMAP Project, JPL D-56293, Jet Propulsion Laboratory, Pasadena, CA.
- SMAP Level 3 Enhanced Freeze-Thaw Passive Product Specification Document (L3_FT_P_E). SMAP Project, JPL D-56294, Jet Propulsion Laboratory, Pasadena, CA.

5.6 SMAP/Sentinel Product (April 2017)

 Level 2 SMAP/Sentinel Active-Passive Soil Moisture (L2_SM_SP) Product Specification Document. SMAP Project, JPL D-56548, Jet Propulsion Laboratory, Pasadena, CA.

5.7 Others

- Interface Control Document Between the Soil Moisture Active Passive (SMAP) Science Data System (SDS) and the Alaska Satellite Facility (ASF) and National Snow and Ice Data Center (NSIDC) Distributed Active Archive Centers (DAACs), Goddard Space Flight Center.
- SMAP Pointing, Positioning, Phasing and Coordinate Systems, Volume 0: Definitions and Principle Coordinate Systems. SMAP Project, JPL D-46018, Jet Propulsion Laboratory, Pasadena, CA.
- ISO 19115:2003(E) International Standard Geographic Information Metadata, May 1, 2003.
- ISO 19115-2:2009 International Standard Geographic Information Part 2:Extensions for imagery and gridded data, December 12, 2009.
- ISO 19139:2007 International Standard Geographic Information Metadata XML schema implementation, May 14 2009.
- Introduction to HDF5, The HDF Group. URL: http://www.hdfgroup.org/HDF5/doc/H5.intro.html
- HDF5: API Specification Reference Manual, The HDF Group. URL: http://www.hdfgroup.org/HDF5/doc/RM/RM_H5Front.html
- HDF5 User's Guide Release 1.8.9, The HDF Group. URL: http://hdfgroup.com/HDF5/doc/UG
- NetCDF Climate and Forecast (CF) Metadata Conventions, Version 1.6, December 5, 2011.

EASE-Grid 2.0: Incremental but Significant Improvements for Earth-Gridded Data Sets, Brodzik, M.J., et. al., National Snow and Ice Data Center, Cooperative Institute of Environmental Sciences, University of Colorado, ISPRS International Journal of Geo-Information, ISSN 2220-9964, DOI: 10.3390/igji1010032.

JPL D-56548

6 APPENDIX A: ACRONYMS AND ABBREVIATIONS

This is the standard Soil Moisture Active Passive (SMAP) Science Data System (SDS) list of acronyms and abbreviations. Not all of these acronyms and abbreviations appear in every SMAP SDS document.

ADT Algorithm Development Team

AMSR Advanced Microwave Scanning Radiometer
ANSI American National Standards Institute

APF Algorithm Parameter File
ARS Agricultural Research Service
ASF Alaska Satellite Facility

ATBD Algorithm Theoretical Basis Document
ATLO Assembly Test Launch and Operations
BFPQ Block Floating Point Quantization

BIC Beam Index Crossing

CARA Criticality and Risk Assessment

CBE Current Best Estimate

CCB Configuration Control Board

CCSDS Consultative Committee on Space Data Systems

CDR Critical Design Review

CEOS Committee on Earth Observing Systems
CF Climate and Forecast (metadata convention)

CM Configuration Management

CM Center of Mass

CONUS Continental United States
COTS Commercial Off the Shelf

CR Change Request

DAAC Distributed Active Archive Center

DB Database

DBA Database Administrator

dB Decibels deg Degrees

deg/secDegrees per seconddeg CDegrees Celsius

DEM Digital Elevation Model
DFM Design File Memorandum
DIU Digital Interface Unit

DN Data Number

DOORS Dynamic Object Oriented Requirements

DQC
DSK
Digital Skin Kernel
DVD
Digital Versatile Disc
EASE
Equal Area Scalable Earth

ECMWF European Centre for Medium Range Weather Forecasts

ECHO EOS Clearing House

ECI Earth Centered Inertial Coordinate System
ECR Earth Centered Rotating Coordinate System

ECR Engineering Change Request

ECS EOSDIS Core System

EDOS EOS Data Operations System

EM Engineering Model
EOS Earth Observing System

EOSDIS Earth Observing System Data and Information System

EPO Education and Public Outreach

ESDIS Earth Science Data and Information System Project

ESDT Earth Science Data Type

ESSP Earth Science System Pathfinder

ET Ephemeris Time
EU Engineering Units
FOV Field of View

FRB Functional Requirements Baseline

FS Flight System
FSW Flight Software
F/T Freeze/Thaw

FTP File Transfer Protocol

Gbyte Gigabyte

GDS Ground Data System
GHA Greenwich Hour Angle

GHz Gigahertz

GLOSIM Global Simulation

GMAO Government Modeling and Assimilation Office

GMT Greenwich Mean Time
GN Ground Network

GPMC Governing Program Management Council

GPP Gross Primary Production
GPS Global Positioning System
GSE Ground Support Equipment
GSFC Goddard Space Flight Center
HDF Hierarchical Data Format
HK Housekeeping (telemetry)

Hz Hertz

HSD Health and Status Data

ICE Integrated Control Electronics

ICESat Ice, Cloud and Land Elevation Satellite

IDL Interactive Data Language I&T Integration and Test

ICD Interface Control Document

IEEE Institute of Electrical and Electronics Engineers

IFOV Instantaneous Field of View

I/O Input/Output IOC In-Orbit Checkout

IRU Inertial Reference Unit

ISO International Organization for Standardization
IV&V Independent Verification and Validation
ITAR International Traffic in Arms Regulations

I&T Integration and Test
JPL Jet Propulsion Laboratory

kHz Kilohertz km Kilometers

LAN Local Area Network
LBT Loopback Trap
LEO Low Earth Orbit

LEOP Launch and Early Operations

LOE Level Of Effort
LOM Life Of Mission
LOS Loss of Signal
LSK Leap Seconds Kernel

LZPF Level Zero Processing Facility

m Meters MHz Megahertz

MIT Massachusetts Institute of Technology

MMR Monthly Management Review MOA Memorandum of Agreement MOC Mission Operations Center

MODIS Moderate Resolution Imaging Spectroradiometer

MOS Mission Operations System

m/s Meters per second ms Milliseconds MS Mission System

NAIF Navigation and Ancillary Information Facility
NASA National Aeronautics and Space Administration
NCEP National Centers for Environmental Protection

NCP North Celestial Pole

NCSA National Center for Supercomputing Applications

NEDT Noise Equivalent Diode Temperature

NEE Net Ecosystem Exchange
NEN Near Earth Network

netCDF Network Common Data Form NFS Network File System/Server

NISN NASA Integrated Services Network

NRT Near Real Time

NOAA National Oceanic and Atmospheric Administration

NSIDC National Snow and Ice Data Center

NVM Non-Volatile Memory

NWP Numerical Weather Prediction

N\A Not applicable

OCO Orbiting Carbon Observatory

ORBNUM Orbit Number File

OODT Object Oriented Data Technology
ORR Operational Readiness Review
ORT Operational Readiness Test

OSSE Observing System Simulation Experiment

OSTC One Second Time Command
PALS Passive and Active L-Band System

PALSAR Phased Array L-Band Synthetic Aperture Radar

PcK Planetary Constants Kernel PDR Preliminary Design Review

PPPCS Pointing, Position, Phasing and Coordinate System

PR Problem Report

PRF Pulse Repetition Frequency
PRI Pulse Repetition Interval

PROM Programmable Read Only Memory
PSD Product Specification Document

QA Quality Assurance

rad Radians

RAM Random Access Memory RBA Reflector Boom Assembly

RBD Rate Buffered Data
RBE Radiometer Back End

RDD Release Description Document RDE Radiometer Digital Electronics

RF Radio Frequency
RFA Request For Action
RFE Radiometer Front End

RFI Radio Frequency Interference

RMS Root mean square
RSS Root sum square
ROM Read Only Memory
RPM revolutions per minute
RVI Radar Vegetation Index
SA System Administrator
SAR Synthetic Aperture Radar

S/C Spacecraft

SCE Spin Control Electronics

SCLK Spacecraft Clock

SDP Software Development Plan

SDS Science Data System
SDT Science Definition Team
SI International System

SITP System Integration and Test Plan SMAP Soil Moisture Active Passive SMEX Soil Moisture Experiment

SMOS Soil Moisture and Ocean Salinity Mission

SMP Software Management Plan

SNR Signal to noise ratio SOC Soil Organic Carbon

SOM Software Operators Manual SQA Software Quality Assurance

SPDM Science Process and Data Management

SPG Standards Process Group

SPK Spacecraft Kernel

SQA Software Quality Assurance
SPS Science Production Software
SRF Science Orbit Reference Frame
SRR System Requirements Review
SRTM Shuttle Radar Topography Mission
SSM/I Special Sensor Microwave/Imager

STP Software Test Plan

sec Seconds

TAI International Atomic Time TB Brightness Temperature

TBC To Be Confirmed
TBD To Be Determined
TBR To Be Resolved

TCP/IP Transmission Control Protocol/Internet Protocol

TEC Total Electron Content

TM Trademark
TOA Time of Arrival
TPS Third Party Software

UML Unified Modeling Language U-MT University of Montana

USDA United States Department of Agriculture

UTC Coordinated Universal Time V&V Verification and Validation VWC Vegetation Water Content