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The SMAP Algorithm Theoretical Basis Documents (ATBDs) provide the physical and mathematical 
descriptions of algorithms used in the generation of SMAP science data products. The ATBDs include 
descriptions of variance and uncertainty estimates and considerations of calibration and validation, 
exception control and diagnostics.  Internal and external data flows are also described.  

 

The SMAP ATBDs were reviewed by a NASA Headquarters review panel in January 2012 with initial 
public release later in 2012.  The current version is Revision A.  The ATBDs may undergo additional 
version updates after SMAP launch. 
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1 INTRODUCTION 

This document is the Algorithm Theoretical Basis Document (ATBD) for the SMAP radar-based 
soil moisture products: 

Level 2 Soil Moisture (L2_SM_A) (half-orbit)  
Level 3 Soil Moisture (L3_SM_A) (global, daily composite) 

 

1.1 The Soil Moisture Active Passive (SMAP) Mission 

1.1.1 Background and Science Objectives 

The National Research Council’s (NRC) Decadal Survey, Earth Science and Applications from 
Space: National Imperatives for the Next Decade and Beyond, was released in 2007 after a two year 
study commissioned by NASA, NOAA, and USGS to provide them with prioritization 
recommendations for space-based Earth observation programs (National Research Council 2007).  
Factors including scientific value, societal benefit and technical maturity of mission concepts were 
considered as criteria. SMAP data products have high science value and provide data towards improving 
many natural hazards applications. Furthermore SMAP draws on the significant design and risk-
reduction heritage of the Hydrosphere State (Hydros) mission (Entekhabi et al. 2004). For these reasons, 
the NRC report placed SMAP in the first tier of missions in its survey. In 2008 NASA announced the 
formation of the SMAP project as a joint effort of NASA’s Jet Propulsion Laboratory (JPL) and 
Goddard Space Flight Center (GSFC), with project management responsibilities at JPL. The target 
launch date is October 2014 (Entekhabi et al. 2010).  

The SMAP science and applications objectives are to: 

• Understand processes that link the terrestrial water, energy and carbon cycles; 

• Estimate global water and energy fluxes at the land surface; 

• Quantify net carbon flux in boreal landscapes; 

• Enhance weather and climate forecast skill; 

• Develop improved flood prediction and drought monitoring capability. 

The Level 1 requirements for soil moisture state “…The baseline science mission shall provide 
estimates of soil moisture in the top 5 cm of soil with an error of no greater than 0.04 cm3/cm3 (one 
sigma) at 10 km spatial resolution and 3-day average intervals over the global land area excluding 
regions of snow and ice, frozen ground, mountainous topography, open water, urban areas, and 
vegetation with water content greater than 5 kg/m2 (averaged over the spatial resolution scale)…”   

The 10-km soil moisture requirement will be met for SMAP by combining the radar and radiometer 
measurements in an algorithm that optimizes the high-resolution attribute of the radar with the higher 
accuracy attribute of the radiometer, as described in the L2_SM_AP ATBD. 

The L2_SM_A (radar-only 3 km) product described in this ATBD is considered a research product 
for SMAP and is not expected to be as accurate as either the L2_SM_P or L2_SM_AP SMAP data 
products, especially under more densely vegetated conditions (~3-5 kg/m2).  The SMAP mission has 
targeted 0.06 cm3/cm3 as the L2_SM_A accuracy goal, for vegetation water contents up to 5 kg/m2 
(though it is acknowledged that this may not be feasible at the higher vegetation amounts). 
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1.1.2 Measurement Approach 

Table  1 is a summary of the SMAP instrument functional requirements derived from its science 
measurement needs. The goal is to combine the attributes of the radar and radiometer observations (in 
terms of their spatial resolution and sensitivity to soil moisture, surface roughness, and vegetation) to 
estimate soil moisture at a resolution of 10 km, and freeze-thaw state at a resolution of 1-3 km. 

The SMAP instrument incorporates an L-band radar and an L-band radiometer that share a single 
feedhorn and parabolic mesh reflector. As shown in Figure 1 the reflector is offset from nadir and rotates 
about the nadir axis at 14.6 rpm (nominal), providing a conically scanning antenna beam with a surface 
incidence angle of approximately 40°. The provision of constant incidence angle across the swath 
simplifies the data processing and enables accurate repeat-pass estimation of soil moisture and 
freeze/thaw change. The reflector has a diameter of 6 m, providing a radiometer 3 dB antenna footprint 
of 40 km (root-ellipsoidal-area). The real-aperture radar footprint is 30 km, defined by the two-way 
antenna beamwidth. The real-aperture radar and radiometer data will be collected globally during both 
ascending and descending passes.  

To obtain the desired high spatial resolution the radar employs range and Doppler discrimination. 
The radar data can be processed to yield resolution enhancement to 1-3 km spatial resolution over the 
outer 70% of the 1000 km swath. Data volume prohibits the downlink of the entire radar data 
acquisition. Radar measurements that allow high-resolution processing will be collected during the 
morning overpass over all land regions and extending one swath width over the surrounding oceans.  
During the evening overpass data poleward of 45° N will be collected and processed as well to support 
robust detection of landscape freeze/thaw transitions. 

The baseline orbit parameters are: 

 Orbit Altitude: 685 km (2-3 days average revisit and 8-days exact repeat) 

 Inclination: 98 degrees, sun-synchronous 

 Local Time of Ascending Node: 6 pm 
 

Table 1 SMAP Mission Requirements 

Scientific Measurement Requirements Instrument Functional Requirements 
Soil Moisture: 
~0.04 m3m-3 volumetric accuracy(1-sigma)  in the top 
5 cm for vegetation water content ≤ 5 kg m-2; 
Hydrometeorology at ~10 km resolution; 
Hydroclimatology at ~40 km resolution 

L-Band Radiometer (1.41 GHz): 
Polarization: V, H, T3 and T4 

Resolution: 40 km 
Radiometric Uncertainty*: 1.3 K 
L-Band Radar (1.26 and 1.29 GHz): 
Polarization: VV, HH, HV (or VH) 
Resolution: 10 km 
Relative accuracy*: 0.5 dB (VV and HH) 
Constant incidence angle** between 35° and 50° 

Freeze/Thaw State: 
Capture freeze/thaw state transitions in integrated 
vegetation-soil continuum with two-day precision, at 
the spatial scale of land-scape variability (~3 km). 

L-Band Radar (1.26 GHz and 1.29 GHz):   
Polarization: HH 
Resolution: 3 km 
Relative accuracy*: 0.7 dB (1 dB per channel if 2 
channels are used) 
Constant incidence angle** between 35° and 50° 

Sample diurnal cycle at consistent time of day Swath Width: ~1000 km 
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(6am/6pm Equator crossing); 
Global, ~3 day (or better) revisit; 
Boreal, ~2 day (or better) revisit 

 
Minimize Faraday rotation (degradation factor at 
L-band) 

Observation over minimum of three annual cycles Baseline three-year mission life 
* Includes precision and calibration stability     
** Defined without regard to local topographic variation 

The SMAP radiometer measures the four Stokes parameters, V, H and T3, and T4 at 1.41 GHz.  The 
T3-channel measurement can be used to correct for possible Faraday rotation caused by the ionosphere, 
although such Faraday rotation is minimized by the selection of the 6am/6pm sun-synchronous SMAP 
orbit.   

At L-band anthropogenic Radio Frequency Interference (RFI), principally from ground-based 
surveillance radars, can contaminate both radar and radiometer measurements. The measurements of the 
SMOS mission indicate that in some regions RFI is present and detectable. The SMAP radar and 
radiometer electronics and algorithms have been designed to include features to mitigate the effects of 
RFI. To combat this, the SMAP radar utilizes selective filters and an adjustable carrier frequency in 
order to tune to pre-determined RFI-free portions of the spectrum while on orbit. The SMAP radiometer 
will implement a combination of time and frequency diversity, kurtosis detection, and use of T4 
thresholds to detect and where possible mitigate RFI.   

 

 
Figure 1 The SMAP observatory is a dedicated spacecraft with a rotating 6-m light-weight deployable mesh 
reflector. The radar and radiometer share a common feed. 
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Table 2. SMAP data product table. 

 

1.2 Product Overview  

The SMAP planned data products are listed in Table 2. Level 1B and 1C data products are 
calibrated and geolocated instrument measurements of surface radar backscatter cross-section and 
brightness temperatures. Level 2 products are geophysical retrievals of soil moisture on a fixed Earth 
grid based on Level 1 products and ancillary information; the Level 2 products are output on half-orbit 
basis. Level 3 products are daily composites of Level 2 surface soil moisture and freeze/thaw state data. 
Level 4 products are model-derived value-added data products that support key SMAP applications and 
more directly address the driving science questions.  

1.3 Instrument Characteristics 

This section describes the SMAP radar characteristics related to the L2_SM_A product. The 
L1C_S0 ATBD offers the full details of the SMAP radar instruments. The SMAP radar operates with 
VV, HH, and HV transmit-receive polarizations, and uses separate transmit frequencies for the H (1.26 
GHz) and V (1.29 GHz) polarizations. The real-aperture (‘lo-res’) swath width of 1000 km provides 
global coverage within 3 days or less equatorward of 35°N and 2 days poleward of 55°N. Figure 2 
illustrates the instrument and conical scanning configuration. 
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Figure 2. SMAP radar swath and high resolution radar coverage. 

The Level 2 and Level 3 radar soil moisture algorithm therefore will re-sample the L1C radar 
measurements to an Equal-Area Scalable Earth (EASE) grid at a nominal 3 km resolution and estimate 
soil moisture from the resampled backscatter measurements. The radar’s original 1-MHz operating 
bandwidth yields a ground range resolution of approximately 250 m, so that a minimum of 12 “looks” in 
range occur within a 3-km range cell. The original azimuth resolution is obtained using an unfocused 
SAR processing, and is dependent on the total Doppler bandwidth resolved in each footprint. The 
Doppler diversity has a maximum at scan angles perpendicular to the platform velocity, leading to a 
single-look azimuth resolution of approximately 450 m. The single-look resolution decreases as the scan 
angle approaches the nadir track, reaching 1500 m at the inner swath edge (150 km from the nadir 
track). This varying azimuth resolution across scan causes the number of independent azimuth “looks” 
within a 3-km cell to vary with scan position. Excluding the nadir track region due to its degraded 
resolution, the 3-km (‘hi-res’) resolution portion of the swath is defined as the two outer 350-km-wide 
segments shown in Figure 2.  

The radar relative measurement error (Kp) is impacted by the radar measurement precision (Kpc) and 
any relative calibration errors (Kpr) or radio frequency interference contributions (KpRFI). The 
measurement precision depends on the signal-to-noise ratio (SNR) and the number of independent 
samples or 'looks' averaged in each measurement. The basic equation for the radar measurement 
precision, Kpc is: 

       (1.3-1) 

where Kpc is the normalized backscatter standard deviation, o/o, and the SNR is defined relative to 
the noise equivalent cross-section o

ne, i.e., SNR = o/o
ne.  The noise equivalent cross-section for 

SMAP varies with the scan position and ranges from  o
ne = -31.8 dB (inner edge) to -29.5 dB (outer 

edge).  Na and Ne are the total number of azimuth and elevation looks, which also are functions of the 
scan angle as discussed previously.  In the outer 350 km (hi-res) portion of the swath the total number of 

Kpc 
1

NaNe

1
1

SNR





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looks in a 3-km cell varies from about 30 to 100. It is assumed in equation 1.3-1 that the radar’s 
estimation and subtraction of the receiver noise power contribution to the observed o utilizes a very 
large number of looks so that this process does not impact Kpc.  

Assuming that in most situations Kpc is determined primarily by the number of looks and is not 
limited by the SNR (this may not be true for smooth and/or dry bare surfaces or for inland water bodies,  
particularly for HV measurements), the value of Kpc varies from about 0.22 to 0.14 from the inner to the 
outer edge of the hi-res swath for a worst case -25 dB signal. Calibration and RFI contributions are 
described in detail in L1C_S0_HiRes ATBD and the SMAP radar error budget document (Chan 2011), 
and the combined estimated values of Kpr and KpRFI for SMAP radar products at 3-km resolution are 0.35 
and 0.4 dB, respectively. When the three dominant components of the error sources are combined and 
converted to dB, the range of radar relative error across the swath becomes approximately 1.0 to 0.7 dB. 
Because the SMAP radar will observe particular locations both in the “fore” and “aft” portions of the 
scan during an overpass, soil moisture retrievals will average these two measurements to reduce Kpc 
(assuming no azimuthal variations in the true cross section) to 0.73 and 0.55 dB for outer and inner 
edges, respectively. The nominal Kp levels assumed for 3-km SMAP radar observations for both HH 
and VV channels therefore range from 0.7 down to 0.5 dB in the following sections. For the cross-pol, 
Kpr and KpRFI are 0.72 and 0.8 dB respectively. The cross-pol’s total Kp levels after the fore and aft 
averaging are estimated to be 1.3 and 1 dB. SMAP provides only one of HV and VH. Therefore it is not 
expected to further improve the speckle of HV by averaging the two cross-pol observations. Some 
important characteristics of the SMAP mission and its synthetic aperture radar are provided in Table 3. 

Table 3. Characteristics of the SMAP 3-km resolution o. 

Swath width 1000 km with 300 km-wide nadir-gap  
Temporal revisit period 3 day (35°N) 2 day (55°N) 

Global coverage within 8 days 
Radiometric accuracy (relative, 1σ) * ¶§ For co-pol, 0.5 dB and 0.7 dB at outer and inner 

edges of the swath, respectively. 

For cross-pol, 1 dB and 1.3dB at outer and inner 
edges of the swath, respectively. 

Number of single looks per 3km 200 and 60 at outer and inner edges of the swath, 
respectively ¶ 

Noise equivalent σ0§ -28.5 dB and -31.5 dB at outer and inner edges of 
the swath, respectively. 

 
* Values include speckle, relative calibration error, and radio frequency interference residual error.  
¶ Averaging of fore-scan and aft-scan images is incorporated. 
§ These values are derived based on the required performance of the radar system. The current best 
estimate (CBE) values are better than the required values. 

The use of differing frequencies for horizontal and vertical polarizations implies that the speckle in 
HH and VV cross sections is uncorrelated. SMAP is therefore not capable of measuring any correlation 
information in HH and VV returns. SMAP will report only one of either VH or HV returns (reported 
cross section will average these quantities), and could in theory determine correlations between co- and 
cross-pol fields. However, whether these correlations will remain for averages over 3-km spatial 
resolution needs to be examined. 

1.4 Historical Perspective 

Previous spaceborne L-band synthetic aperture radar (SAR) systems include the SeaSat (1978), 
SIR-A (1981), SIR-B (1984), SIR-C (1994), JERS-1 (1992-98), and PALSAR (2006-2011). Of these 
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systems, only SIR-C (Bindlish and Barros 2001; Dubois et al. 1995; Shi et al. 1997) and PALSAR 
included multi-polarization capabilities. While some success in retrieving soil moisture has been shown 
(primarily for bare surfaces) with these instruments, none of these systems were specifically designed 
for soil moisture measurement purposes. In particular the relatively small swath sizes achieved by SAR 
systems result in temporal revisits typically of thirty days or more, limiting both hydrologic applications 
and the benefits of any potential time series retrieval approach. Due to these challenges and more than 
40 years of investigation, the goal of achieving reliable absolute soil moisture measurements from 
satellite radar observations remains largely unfulfilled. 

Because the use of radar is simplified if only “bare” surfaces are considered (i.e. surfaces with little 
or no vegetation coverage), most existing radar-only retrieval studies and algorithms are focused on bare 
surfaces alone. Empirical or semi-empirical algorithms (Dubois et al. 1995; Oh et al. 1992) have been 
applied to bare surfaces. Functional fits to the Integral Equation Model (IEM) (Shi et al. 1997) for bare 
surfaces have also been reported. A numerical inversion of the IEM (Verhoest et al. 2007) was also 
successful for bare surfaces.  

Because bare surfaces account for only ~ 14% of the global land area, an increased global coverage 
for radar soil moisture estimates can be achieved only if algorithms applicable to vegetated surfaces are 
utilized. The use of L-band radar as opposed to higher frequencies such as C- and X-band has been 
shown in both theoretical and in ground-based and airborne field campaigns to be advantageous in 
reducing the influence of vegetation of measured cross sections (De Roo et al. 2001; Moghaddam et al. 
2000), but vegetation remains a significant contributor to observed data. While some references have 
demonstrated the possibility of empirically correcting vegetation effects (Bindlish and Barros 2001), 
(Joseph et al. 2008)) and subsequently applying a bare surface retrieval algorithm, a robust empirical 
correction applicable globally remains to be determined, limiting the applicability of this approach. 

Because vegetation, roughness, and soil moisture all impact radar measurements, it is difficult to 
retrieve accurately absolute soil moisture from a single radar measurement. Retrievals become more 
feasible if multiple simultaneous radar measurements (for example in multiple polarizations), a time 
series of radar measurements, additional ancillary data on vegetation or roughness(Joseph et al. 2008), 
or combinations of such measurements or information are available.  

The more frequent revisit of the SMAP radar clearly enables the use of time series approaches to 
improve retrieval.  Several examples of time series retrievals have been reported (Kim et al. 2012; 
Mattia et al. 2009) and have shown clear improvements over “snapshot” (i.e. performing a retrieval 
using only the current observation) methods.  Some time-series algorithms (Kim and van Zyl 2009) 
estimate only the relative change in soil moisture. The estimate of an index of such change (Wagner et 
al. 1999) has been verified extensively using C-band spaceborne scatterometer data. However, when 
applied to 1 to 3-km resolution SAR data, radar speckle begins to degrade the performance of this 
method (Pathe et al. 2009). It is noted that each of the previous time series algorithms has limitations 
that make it difficult to provide quantitative estimates of soil moisture globally with the required 
accuracy for SMAP applications. The limitations include an assumption of temporally static vegetation 
conditions, a failure to report absolute soil moisture values, or a reliance on other analyses such as an 
ancillary geophysical model estimate of soil moisture. 

The incorporation of extensive ancillary data is also desirable to improve retrieval performance. 
However such detailed information is not available globally, and retrievals using satellite measurements 
must incorporate coarser and less descriptive, but globally available, ancillary descriptions of vegetation 
or roughness. Surface roughness information in particular is largely unavailable for global land surfaces; 
approaches for incorporating a stochastic description of surface roughness properties into the retrieval 
process have recently been described (Verhoest et al. 2007).  
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It is also noted that the high spatial resolution of previous SAR observations makes them more 
susceptible to an additional confounding factor: the “row effects” of agricultural surfaces that cause 
changes in the surface radar signal with azimuthal angle (Zribi et al. 2002). Although it is expected that 
the impact of such effects should be reduced at the 3-km spatial resolution of SMAP, the assessment of 
such effects continues. 

1.5 Product/Algorithm Objectives 

The foremost objective of the SMAP L2_SM_A soil moisture product is to provide reliable soil 
moisture retrieval at 3-km resolution. This product will provide finer resolution of the spatial 
heterogeneity of soil moisture fields as compared to the 9 km L2_SM_AP and 36 km L2_SM_P SMAP 
products. Both the L2_SM_P and the L2_SM_AP data products are required to meet the 0.04 cm3/cm3 
soil moisture accuracy specified in the Level 1 baseline mission requirements (Section 6.1). No formal 
mission requirements are placed on the L2_SM_A (radar-only 3 km) product since this is considered a 
research product and is not expected to perform as accurately under more densely vegetated conditions.  
However, this product will be made available publicly as a standard product if its quality, as assessed 
during the post-launch Cal/Val phase, can be shown to merit general distribution. The SMAP mission 
has targeted the threshold mission soil moisture accuracy of 0.06 cm3/cm3 as the L2_SM_A accuracy 
goal, for vegetation water contents up to 5 kg/m2 (it is acknowledged that this may not be feasible at the 
higher vegetation amounts). 

The capabilities of the SMAP radar (multiple polarizations, ~ 3 day revisit, 3-km resolution, use of 
L-band) have not been previously available simultaneously on a global scale. Thus, SMAP will provide 
a unique opportunity for understanding the impact of soil moisture on SAR backscatter, leading to a 
retrieval approach that can combine multiple polarization and time series strategies with available 
ancillary information. This will enable SMAP to map soil moisture with high temporal frequency (every 
2-3 days) with benefit to a wide range of applications at 3-km or better spatial scale in hydrology, 
agriculture, natural hazards, and human health. 

1.6 Outline 

This document contains the following sections:  Section 2 describes forward models and associated 
physics governing the radar scattering from bare and vegetated surfaces, and includes example 
predictions from these models;  Section 3 presents the baseline and optional retrieval algorithms 
(Sections 3.2 and 3.3). Section 3.4 discusses the input and output products, along with the use of 
ancillary data and various flags. The error budget of the baseline algorithm and the pre-launch algorithm 
testing on which this error budget is based, are provided in Section 3.5, along with the tests and 
procedures that will be employed for downselecting the baseline algorithm The L3_SM_A process is 
discussed in Section 3.6. Section 3.7 presents pre-launch algorithm testing plans. Important practical 
issues in the operational implementation of the baseline algorithm are discussed in Section 3.8. Section 
4 presents procedures for validating the data products after launch and approaches for modifying the 
algorithms as needed. 
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2 PHYSICS OF THE SCATTERING PROBLEM 

Forward models provide predictions of average co-polarization and cross-polarization 
backscattering in terms of physical parameters that are used to describe the vegetation-covered soil 
layer.  These are the soil dielectric constant, surface roughness statistics, and vegetation properties, as 
described below:  

1) The soil is most commonly described as a homogeneous medium having a complex dielectric 
constant  that is a function of the volumetric soil moisture mv as well as the soil texture, 

temperature, and bulk density; several empirical models exist for this relationship (Dobson and Ulaby 
1986; Hallikainen et al. 1985; Mironov et al. 2004; Peplinski et al. 1995). Thus, forward models can be 
computed as a function of the soil complex permittivity with a choice of dielectric constant model and 
associated parameters to be selected in inverting the dielectric constant into soil moisture.  It is to be 
noted that the radar response may be impacted by sub-surface dielectric discontinuities in the near 
surface region; the depth to which such effects can be significant is increased for drier soils.   

2) The interface of the soil layer is usually described as a stationary Gaussian random process having a 
specified correlation function.  Fractal surface descriptions have also been used in some studies but are 
not considered here.  Studies of soil surface profiles and soil moisture remote sensing have shown 
varied results with regard to the form of the surface correlation function.  Controlled field measurements 
of soil surface profiles (Oh et al. 1992) favor a directionally isotropic exponential correlation function, 
described by the RMS height s and correlation length l parameters alone. A directionally isotropic 
description neglects any directional row or tillage features.  The degree to which such features would 
impact radar cross sections at 3 km spatial resolution remains a subject of investigation. Other 
correlation functions for soil surfaces have also been investigated (Li et al. 2002).  Empirical models on 
the other hand neglect even the correlation length parameter and describe surfaces in terms of an RMS 
roughness alone. An intermediate approach involves an assumption that the surface correlation length is 
a fixed multiple of the surface RMS height, e.g., (Fung et al. 1992). 

3) A variety of approaches exist for describing vegetation media, including characterizations of 
vegetation structures such as stalks, trunks, and leaves in terms of canonical cylindrical or disk shapes 
with specified size and orientation distributions in a set of vegetation layers (P.de Matthaeis 2005; Stiles 
et al. 2000; Yueh et al. 1992).  Simpler approaches only use the vegetation water content (VWC) to 
provide analytical forms for attenuation and scattering effects. Because ancillary information on 
vegetation properties again are limited, forward models using detailed vegetation descriptions must use 
a priori information that is a function only of the vegetation classification and/or VWC.  A description 
of the dielectric constant of the vegetation as a function of the water content is also implicit in such 
approaches (Matzler 1994; Ulaby and El-rayes 1987). Because even small amounts of vegetation can 
significantly impact radar returns, particularly in cross polarization, “bare surface” models that neglect 
vegetation effects will have a limited range of applicability to the SMAP project.  

Given these parameters, it is typical to describe the radar backscattering for a vegetation-covered 
soil layer as a sum of three dominant contributions: 

௣௤௧ߪ  ൌ ௣௤௦ߪ ሺߝ, ,ݏ ݈ሻ݁݌ݔ ቀെ߬௣௤ሺܹሻቁ ൅ ௣௤௩ߪ ሺܹሻ ൅ ,௣௤௦௩ሺܹߪ ,ߝ ,ݏ ݈ሻ   (2-1) 

In this expression, ߪ௣௤௦ represents the total radar scattering cross-section in polarization pq (=HH, VV, or 
HV for the SMAP radar), ߪ௣௤௦  ൫െ߬௣௤൯ represents the scattering cross-section of the soil surface݌ݔ݁
modified by the two-way vegetation attenuation, ߪ௣௤௩  is the scattering cross-section of the vegetation 
volume, and ߪ௣௤௦௩ represents the scattering interaction between the soil and vegetation. In addition, τ is 
the vegetation opacity along the slant path of a radar beam, and W is the vegetation water content. 

  r  j i
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Because SMAP is required to estimate soil moisture over global land regions, forward backscatter 
models must be adopted or developed for SMAP that are applicable over the full range of land 
conditions anticipated (but excluding regions that will be masked out of the retrievals, i.e., urban areas, 
mountainous regions, water bodies, dense vegetation, snow and ice).  In this section we describe the 
forward models that will be used for SMAP, on which the retrieval algorithms are based.  As a precursor 
to this discussion Table 4 lists the landcover classes that will be used by SMAP retrieval algorithms to 
provide a self-consistent suite of products.  This table is based on the classification schemes proposed 
by the International Geosphere-Biosphere Programme (IGBP) and the crop statistics provided by the 
United Nations Food and Agriculture Office (UN FAO, http://faostat.fao.org). 
 

Table 4 Land surface classes that form the basis for SMAP soil moisture retrievals: 12 IGBP classes and 4 crop 
classes (see the references to the SMAP ancillary report for land cover class, in Section 6.1) 

 1 Evergreen Needleleaf Forest 
 2 Evergreen Broadleaf Forest 
 3 Deciduous Needleleaf Forest   
 4 Deciduous Broadleaf Forest   
 5 Mixed Forests                
 6 Closed Shrublands           
 7 Open Shrublands         
 8 Woody Savannas           
 9 Savannas                
10 Grasslands                   
11-14 Croplands : Wheat, Rice, Corn, Soybean               
15 Cropland/Natural Vegetation Mosaic 
16 Barren or Sparsely Vegetated 

 

For each landcover class shown in Table 4 a forward model must exist on which the retrieval is based.  
The process for developing such models is described below.  The process includes development of a soil 
model component (bare soil component) and a vegetation layer model above the soil component that 
can have various forms needed to describe the different types of vegetation shown of Table 4. 

2.1 Bare Soil Component Forward Models and Comparisons  

Forward modeling studies of scattering from bare surfaces have been based either on approximate 
or numerical models for the solution of Maxwell’s equations. Approximate models include, for 
example, the Small Perturbation Method (SPM) (Tsang and Kong 2001), the Integral Equation Model 
(IEM) (Fung et al. 1992), the Advanced Integral Equation Model (AIEM) (Chen et al. 2003), and the 
Small Slope Approximation (SSA) (Voronovich 1994). Such methods are advantageous because they 
provide predictions of the expected value of radar returns with minimal to moderate computational 
requirements. However their inherent approximations can cause errors in predicting “true” radar returns 
in some situations.  

Numerical methods in contrast avoid such approximations, but require Monte Carlo simulations and 
much greater computational costs to obtained predictions. Numerical methods include, for example, the 
Method of Moments (MoM) (Tsang et al. 2001), the Extended Boundary Condition Method (EBCM) 
(Kuo and Moghaddam 2007), the finite element method (Lawrence and co-authors 2010; Lou et al. 
1991) and the finite difference time domain method (Chan et al. 1991). “Fast” methods to further 
improve computational efficiency have also been developed, including the Sparse Matrix Canonical 
Grid (SMCG) method (Johnson et al. 1996), the Physical Based Two Grid (PBTG) method (Li and 
Tsang 2001), and the multilevel UV method (Tsang et al. 2004). Fully 3D simulations of Maxwell 
equations (where the height function z=f(x,y) of the rough surface varies in both horizontal directions) 
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are required to predict realistic surface behaviors. 3D full wave method of moments simulations based 
on the “Numerical Maxwell Model in 3 Dimensions” simulations (NMM3D) began in the mid-1990’s 
(Tsang et al. 1994; Tsang et al. 2001).  

NMM3D of the Univ. Washington (UW) was selected as the benchmark forward model for the bare 
surface class. The UV/PBTG/SMCG NMM3D method was used to compute L-band 40 degree 3-D 
surface backscattering for 200 cases including varying surface RMS heights, correlation lengths, and 
soil permittivities for co-polarization (Huang et al. 2010) and cross-polarization (Huang and Tsang 
2012). Sample results from these simulations (averages over a minimum of 30 Monte Carlo realizations 
for each case) are shown in Figure 3. Based on these cases, interpolation tables (or “data cubes”) were 
created (interpolated values are within 0.2 dB of the original data values). Since the maximum RMS 
height considered is 0.21 wavelength (ks=1.32 which is about 5 cm at L band, where k and s are the 
wavenumber and RMS height), the cases simulated and the interpolations used can be applied to cover a 
wide range of interests for SMAP. These results were compared with the Dubois empirical model 
(Dubois et al. 1995), SPM, KA, and AIEM. In parallel, a group in the Univ. Michigan Group used a 
stabilized EBCM method (Duan and Moghaddam 2011) and computed results up to ks=1.  

Results of the UW NMM3D look-up tables were compared with field measurements of co- and 
cross-polarized backscattering (Oh et al. 1992). The field data includes measurements of soil 
permittivity, RMS heights, and correlation lengths. The soil surface correlation functions were also 
measured and found best matched by exponential correlation functions. These ground truth parameters 
were simulated with NMM3D using the exponential correlation function description. Figure 4 shows the 
comparison of NMM3D predictions and measured data, and shows that good agreement is achieved. 
The cross polarization results of NMM3D are also in good agreement with experimental data.  

 

Figure 3. 0 (dB) generated by NMM3D bare surface simulations. l and s denote the surface correlation length and 
RMS height, respectively. Simulations were not performed for very smooth (s < 0.5 cm for HV) surfaces. 

                                                                                        

Figure 4. Comparison of backscattering coefficients in dB between NMM3D and Michigan measurement data.  
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2.2 Models for non-Woody Vegetation and Comparisons 

2.2.1 Vegetated Surface Model 

The primary approach utilized is a “discrete scatterer” approximation (Lang and Sighu 1983; Tsang 
et al. 2000), in which each vegetation object, such as a cylinder or disk, is assumed to scatter 
independently.  Fields from each vegetation component are summed and averaged over size and 
orientation distributions.  A first order iterative solution of the radiative transfer equation (Karam et al. 
1992; Tsang et al. 1985) yields similar predictions but neglects a coherent double bounce effect.  
Several variations of the discrete scatterer model exist (Arii et al. 2010; Chauhan et al. 1994), depending 
on the fidelity with which the vegetation-ground interaction term is treated, the number of vegetation 
layers included, the method utilized to compute scattering from vegetation and surface components, and 
the approach used for estimating attenuation. 

The level of detail used in describing the vegetation also varies in such models, but typically 
involves a priori assumptions regarding canonical shapes of vegetation components and their size and 
orientation distributions in an assumed set of vegetation layers (Arii et al. 2010). The required 
computations for the analytical approaches can vary widely depending on the assumptions utilized, but 
in most cases remain significant so that pretabling of model results into a “data cube” rather than “on-
the-fly” evaluations are necessary. 

The UW data cube (Xu et al. 2010), which uses the discrete scatter approximation, is applied for 
four crop land types that were selected in the order of the harvest area of the globe (grassland, corn, 
soybean, and wheat). Experimental data are also available for these types. Depending on the basic 
structure of the crop type, vegetation components are represented by cylinders, disks and spheroids. For 
the case of small radius cylinders, and for thin disks, analytic approximations are used (Tsang et al. 
2000) to calculate the scattering by these objects. When the radius of cylinder is larger, numerical 
solutions of Maxwell equations are solved for the object through the Body of Revolution (BOR) 
approach (Mautz and Harrington 1979).  The use of Maxwell’s equations maintains the smoothness of 
the results when the cylinder radius increases from small to moderate values.   

For a layer of vegetation, the distorted Born approximation is applied for the mean field calculation. 
The scattering cross section of the vegetation layer and its interaction with the soil surface were derived 
using a half space Green’s Function.  The results are expressed as three scattering mechanisms.   I) The 
direct volume scattering, II) The double bounce effect as exhibited by rough surface effect on the 
interface of the vegetation layer and soil, and III) The rough surface scattering of the soil (Figure 5). A 
factor of 2 is incorporated in the wave model, which accounts for the the double-bounce forward 
scattering that the radiative transfer model does not simulate. The wave model obeys reciprocity of 
backscattering in Maxwell equations and physically accounts for constructive interference in the 
backscattering direction (Tsang et al. 1985). The coherent reflectivities of the random rough surface of 
double bounce effects are calculated from the numerical solution (NMM3D) of the rough surface as 
described in the bare soil calculations (Huang et al. 2010). The bare soil scattering is obtained through 
the NMM3D look-up table and then reduced by the computed attenuation through the vegetation layer. 
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Figure 5. Three scattering mechanisms. 

 

2.2.2 Comparisons with Field Observations 

To validate the forward model, comparisons were made between the model predictions and field 
experiment data from the SGP99 and SMEX02 campaigns. Figure 6 demonstrates the model structures 
for the two typical crop types. The grassland was represented by thin cylinders uniformly distributed 
above the rough soil surface. The cylinder size was chosen as radius 2 mm and 50 cm height. The VWC 
is varied by the radius and grass density. In the grass cube, the radius is a best fit parameter, 
benchmarked by using the SGP99 measurement data. An empirical relationship between the radius and 
VWC is formed. All the rest of the grass parameters are kept invariant. According to the measurement 
from SGP99, most of the grass land has fairly small vegetation water content (VWC less than 2 kg/m2). 
In the grassland, when the VWC is small, the vegetation layer serves as an attenuation layer, so that the 
total backscattering is dominated by surface scattering and is strongly dependent on soil moisture. As 
the VWC increases, the volume scattering contributes more to VV polarization and the double bounce 
contributes more to HH polarization. The cross polarization is mainly due to volume scattering from the 
vegetation layer.  The other two grass-like crops are wheat and rice fields before forming grains. Thin 
cylinder models are used in both these cases also.  

Figure 6 also illustrates the corn field model structure. The corn stalk and leaves are modeled as 
different size cylinders. Larger radius cylinders (radius ~1.7cm) with vertical orientation are used to 
represent the stalk. Smaller cylinders with a random orientation distribution are used to model the 
leaves. VWC is varied by the moisture content of the stalk and leaves, whiling keeping the corn 
structure invariant. Unlike the grass-like classes, the total backscattering is mainly dominated by the 
double bounce scattering.  The soil moisture sensitivity is due to the change of the reflectivity of the 
coherent wave in the double bounce mechanism. 

Soybean’s stems are represented by cylinders and the leaves are represented by disks.  In the 
soybean model, the vegetation height and the leaves volume are changing with VWC. The relationship 
is derived from the SMEX02 in situ measurement empirically.  The thickness of the leaves and the ratio 
of the cylinder’s diameter, length and disk’s diameter are fixed. In the soybean case, both stems and 
leaves have significantly contribution to the total backscattering. 

(I) (II) (III) 

Vegetation Layer 

Soil 



   14

The measurement data for comparison in Figure 6 are all from the month of peak biomass. 
The model structures of each crop are based on the growing phase. For the pre-season and harvest 
season, the geometry parameters will likely need to be modified.  

 

 

 

 

Figure 6. Model structure and evaluation of simulation for grassland, corn, and soybean field. 

 

2.3 Models for Woody Vegetation and Comparisons 

2.3.1 Vegetated Surface Model  

For woody vegetation, the layered scattering geometry and vegetation model shown in Figure 7 are 
used. Because coherent effects are prominent in the specular interactions of crown-ground and trunk-
ground, it is important that the discrete scatter approach (wave model) is used, in contrast to radiative 
transfer theory. 

 

Grass 

 

 

Corn 

Soybean 
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Figure 7. Generalized model of backscattering from a woody (forested) vegetation canopy. The signal can follow a 
number of paths as it interacts with vegetation and ground. These paths include (1) direct backscatter from the 
crown layer, (2) direct backscatter from the ground, (3) double-bounce scattering between crown and ground or the 
opposite path (C-G and G-C), (4) double-bounce scattering between trunks and ground or the opposite path G-T 
and T-G), and (5) backscattering from the ground to crown to ground (G-C-G), which is often quite small compared 
to the other 4. The crown layer consists of discrete random scatterers representing branches and leaves. 

First, the scattering matrix of a single finite cylinder of arbitrary orientation is derived based on 
scattering theory. The scattering from the ensemble is then calculated by integrating over an arbitrary, 
but realistic, probability density function for the size and orientation of scatterers within a given volume 
of vegetation. The interactions between vegetation layers can be accounted for by cascading the 
scattering matrices of the relevant layers. The Mueller (or Stokes) matrices Mi of the ith layer is 
calculated and superimposed to calculate the total scattering from the vegetated surface. Additionally, 
attenuation due to each layer is calculated from the forward scattering matrix, and is included in the 
calculation of the backscattered signal from the layer below it. The inclusion of the layer attenuation is 
also referred to as the distorted Born approximation, since it modifies the single-scattering (Born 
approximation) solution by allowing the waves to travel in an equivalent, lossy medium, which is more 
realistic than traveling in free space (Chauhan and Lang 1991; Durden et al. 1989; Israelsson et al. 2000; 
Lin and Sarabandi 1999; Thirion et al. 2006). The RT and wave-based approaches was compared 
(Saatchi and McDonald 1997). 

Although the two-layer vegetation is the most widely used model, most realistic terrain has 
vegetation that is of either mixed species or the same species at different stages of growth. A vector RT 
formulation has been developed to accomplish this task (Liang et al. 2005), as well as a parallel 
approach using wave theory (Burgin et al. 2011).  

The scattering geometry is shown in Figure 8 (upper two panels), where it is seen that an arbitrarily 
large number of layers can be considered, each with a distinct distribution function for the scatterers. 
Each layer contains discrete scatterers of several species Figure 8 (bottom panel). These scatterers are a 
combination of large or small branches and leaves/needles, as well as trunks for softwood trees in 
branch layers (due to the extension of the stem into the canopy layer) or trunks in trunk layers. 
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Figure 8. General geometry for a multispecies forest stand, where an arbitrary number of random medium layers 
can be present. Discrete-scatterers are building blocks of each species type and each random medium layer. 

2.3.2 Comparisons with Field Observations 

Similar to the case of scattering models of grass and crops, to simplify the retrieval of soil moisture, 
an optimization approach based on searching within scattering model data cubes is adopted for woody 
vegetation.  The data cubes for each polarization have 3 input parameters.  The three polarizations are 
VV, HH, and HV backscattering and the 3 input parameters (or variables) are soil moisture RMS height 
(ks), soil moisture expressed as the equivalent dielectric constant of soil (r) and vegetation water 
content (VWC). To construct the data cubes for each woody vegetation type, the forward scattering 
model described above is parameterized with species-specific input parameters over realistic expected 
ranges of those parameters. Each axis of the data cube is sampled at a few points (on the order of 10 
points), and interpolations are used to construct a dense space of the backscattering coefficients for the 
entire range of vegetation and soil parameters represented by the data cubes. 

species species species 

layer 1 
layer 2 

layer 6 

layer 3

layer 5 

layer 4

Ground 

Trunk layer 

Canopy layer 

Disk = leaf (deciduous) 
Needle = leaf (evergreen) 
Small cylinder = small branch 
Middle cylinder = large branch 

Large cylinder = trunk 
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Figure 9. Top row: Examples of woody vegetation species for which field data and SAR data (airborne or 
spaceborne) were available; results of discrete scatterer model (Burgin et al. 2011; Durden et al. 1989) simulated 
and validated with SAR data. Middle row: validation using ALOS/PALSAR data for a subset of the plots. HH and VV 
polarizations are shown. Bottom row: validation using AIRSAR data for a different subset of the plots. HH and VV 
polarizations are shown. Each point on these plots may correspond to a forest stand with one or more species. The 
vertical error bars show the speckle distribution within a 5x5 pixel box. Mean error corresponds to model bias (also 
indicative of calibration bias). If the bias is removed, then the RMSE corresponds to model accuracy. 

To validate the date cubes for woody (treed) vegetation, the results of the discrete scatterer model 
with airborne (AIRSAR) and spaceborne (ALOS PALSAR) data are compared.  The ability to simulate 
radar backscattering coefficients from multiple species allows a combination of calculation results with 
a wide range of canopies.  Validation of the model was undertaken using field data collected from the 
Tara Downs subregion of the Brigalow Belt Bioregion (BBB) and the Injune Collaborative Landscape 
Project (ICLP) study area in Queensland, Australia. Field data were available for 82 plots. Nine plots 
from Tara Downs and 14 plots from ICLP were chosen for model validation. The choices were made to 
maximize the overlap between field data and SAR data. The plots represented single, double, and 
multiple species stands. The predicted backscattering coefficients for Tara Downs were compared to 
fully polarimetric ALOS PALSAR data acquired in 2007, and the ICLP simulations were compared to 
AIRSAR data from 2000.  
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The correspondence between field data and simulated SAR data at HH and VV polarizations for an 
example of woody vegetation at L-band is shown in Figure 9. The errors seen in the figure result from 
(1) modeling errors, (2) parameterization errors, and (3) radar data absolute and relative calibration 
errors. The modeling errors, item (1), could be due to the low-order (distorted Born) scattering 
assumption for scattering within vegetation canopy as well as the first-order surface model used. Both of 
these approximations will be examined and replaced with higher-order scattering analyses. A full-wave 
surface scattering solution has already been developed by the team, which will replace the first-order 
model used in the plots. A full-wave scattering solution for random collection of cylinders has also been 
developed, which is currently under evaluation and will likely replace the distorted Born solution. 
Parameterization errors, item (2), are due to errors in ground truth collection and more importantly, due 
to lack of certain components of ground truth and in particular soil moisture. For most of the points 
shown in the figure, no in-situ soil moisture measurements were available simultaneously with the radar 
data acquisitions. Instead, we used gross estimates provided by the ground teams from several days 
before or after the radar flights. Soil roughness measurements were also not available, and the roughness 
values were estimated from various photographs. This deficiency highlights the need for well 
coordinated field campaigns for woody vegetation, on par with those for crops and grasslands. 
Regarding radar calibration, item (3), AIRSAR co-polarized data were believed to have 1.5 dB absolute 
calibration and 1 dB relative calibration accuracies. PALSAR likely had better calibration performance, 
with relative calibration as good as 0.5 dB. UAVSAR has absolute calibration accuracy of 0.5-0.7dB, 
and is recommended for near-future field campaigns along with accurate and well planned ground data 
collection. 
 

2.4 Adaptation of Forward Models for SMAP 

SMAP has three L-band measurement channels (HH, VV, HV) from which soil moisture can be 
estimated. The estimation of soil moisture is an inversion of forward models. The estimation becomes 
challenging because there are many parameters in the forward models that are unknown (or uncertain) a 
priori, and must therefore be estimated as part of the retrieval, or be provided through ancillary data. 
With three measurement channels the most free parameters that can be estimated is three, therefore the 
forward models must be parameterized in terms of at most three dominant parameters in a simplified 
forward model framework. For SMAP, the three parameters are dielectric constant (equivalently, soil 
moisture), soil surface roughness, and vegetation water content.  The impact of vegetation structure is 
accounted for by development of separate models for each of the landcover classes shown in Table 4.  

The complexity of the non-linear forward models precludes a closed-form analytical solution. Direct 
numerical inversion of a complicated forward model is also not feasible for global soil moisture 
retrieval at 3-km resolution. However, a lookup table representation of a complicated forward model 
was demonstrated to be an accurate and fast approach for retrieval (Kim et al. 2012). Because the 
SMAP radar has three measurement channels, and three primary retrievables (dielectric constant, 
surface roughness, and vegetation water content), the forward models can be pre-computed for a given 
land surface class, for discrete values covering the full range of the three parameters, and represented as 
a “data cube” (Kim et al. 2014; van Zyl 2011).  Merits of the data cube search are summarized below: 

 to avoid numerical or analytical inversion that is often not feasible for a sophisticated forward 
model (Functional fits to the forest scattering model may also be used for the fast search of the 
soil moisture solution (Moghaddam et al. 2000)) 

 to achieve the same inversion accuracy as the numerical or analytical inversion by adopting a 
fine interval for the data cube axis, as demonstrated in (van Zyl 2011) 

 to conveniently replace and update a forward model while retaining the same retrieval formulae. 

One vegetation axis represents the vegetation structure and dielectric properties by an allometric 
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equation relating volume and weight of the vegetation. The representation of vegetation effects is 
clearly a simplification, considering that numerous vegetation parameters produce different backscatter 
coefficients. However, the axis dimension cannot be too large; and for “snapshot” retrieval options the 
dimension cannot exceed the number of independent observations (e.g., HH, VV, HV). This 
simplification will result in errors in the soil moisture retrieval (discussed subsequently). 

Only the real part of the complex relative permittivity (r) is used, to keep the number of unknowns 
to 3. It is assumed that the imaginary part of the dielectric constant can be directly related to the real part 
for specific soil texture information. The results remain dependent on both real and imaginary parts of 
the permittivity, particularly for cases when the real part of the soil dielectric constant is less than 5. 

The data cube for the grass surface developed by the Univ. Washington is shown below as an 
example. The data cube has the NMM3D simulation for the surface condition the Body of Revolution 
model for vegetated surfaces. Figure 10 shows the data cubes for the co-pol 0. Observed values of ks (k 
is the wave number, 26.38) range up to ~1 (equivalently, 3.8 cm RMS height, (Oh et al. 1992)). Values 
of mv reach 0.4 cm3/cm3 (Dubois et al. 1995); the corresponding value of the dielectric constant is about 
30 (real part). The pasture vegetation has the VWC smaller than 3 kg/m2 in most cases. Accordingly the 
range of each axis is determined. In general, the co-pol 0 increases with s, r, and VWC. Also σୌୌ

଴
 is 

typically smaller than σ୚୚
଴  for low-vegetation surfaces. These are clearly shown by the data cubes in 

Figure 10.  

   

 

Figure 10. Data cubes of 0 simulated for grass surface in dB unit. The ranges of the axes are 0.03 to 1.1, 3 to 30, 
and 0 to 3 kg/m2 for ks, r, and VWC, respectively. 

To address the challenging task of the applicability to global surfaces, the baseline time-series 
algorithm will utilize data cubes specific to the 16 classes of Table 4. Because crop classes cover 11% 
of the global land, and the scattering from various crops is not the same, the original 12 IGBP classes 
are expanded with four data cubes a to represent dominant crops in terms of their spatial extent 
(http://faostat.fao.org). Initial versions of all of the 16 data cubes are currently available, many of which 
have been validated using existing in situ observations. Because “forward model” error is a key concern 
for SMAP radar soil moisture retrievals, validation of the data cubes continues and will continue 
throughout the cal/val period. The backscatter coefficients of datacubes do not include the Kp noise. 
Application of the noise-free datacubes to the noisy SMAP data will result in retrieval errors and the 
errors are included in the retrieval error budget. 

 

 

 
  

VWC 

ks r 
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3 RETRIEVAL ALGORITHMS 

The baseline retrieval algorithm inverts a forward scattering model. The equation for forward 
scattering (Eq. 2-1) presents four unknowns: RMS height (s), dielectric constant (), correlation length 
(l), and vegetation water content (VWC). It will be shown that mv retrievals are insensitive to errors in 
knowledge of the correlation length over a wide range of mv, roughness, and correlation lengths 
(Appendix 5.2) (Kim et al. 2012). An exponential function is known to describe empirical 
measurements well (Mattia et al. 1997; Shi et al. 1997), which was used in the forward model and was 
not considered as an unknown during the retrieval.  

As an introduction to the discussion of the retrieval algorithm, and to place the discussion of each 
algorithm component in the proper context, the overall algorithm processing flow is described in the 
following section.  Each portion of the algorithm flow, and the details of the retrieval methods and 
options, will then be described in detail in the subsequent sections. 

 

3.1 Algorithm Flow 

The algorithm flow of the L2_SM_A is presented in Figure 11. The portion of the flowchart through 
the land surface classification is the initial processing done as a precursor to the actual retrievals. The 
L2_SM_A processor reads in 1-km resolution 0 from the SMAP L1C_S0. The 1-km data in natural 
unit are aggregated onto the 3-km EASE grid, during which various quality flags are applied. Three 
quality flags are derived using the 3-km 0: freeze-thaw state (see L3_FT_A ATBD), radar vegetation 
index (Section 3.4.2), and transient water body (Section 3.4.3). Static and dynamic ancillary data are 
sampled for each pixel of the L2_SM_A product. 0 values from the past time are sampled and used by 
the time-series algorithm. For each 3-km pixel, land cover class information is obtained from the mostly 
annual ancillary data. The land cover information allows to choose an appropriate data cube for each 
pixel. The retrieval over the different land cover classes is spatially assembled to create a half-orbit 
output, followed by the conversion from the dielectric constant to soil moisture. 
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Figure 11. L2_SM_A algorithm flow. 
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3.2 Baseline Algorithm: Time-series Data-cube Approach  

3.2.1 Time-series Retrieval 

The SMAP radar provides three independent channels (HH, VV, and HV). HV-channel 
measurements are reserved for possible use in correcting vegetation effects. The remaining two co-pol 
measurements (HH and VV) are not always sufficient to determine s and  (Section 3.2.4) (Kim et al. 
2012). One of the main causes is the ambiguity in bare surface scattering: a wet and smooth surface may 
have the same backscatter as a dry and moderately rough surface has (Figure 3). Very often the time-
scale of the change in s is longer than that of  (Jackson et al. 1997). Then s may be constrained to be a 
constant in time, thus resolving the ambiguity (Kim et al. 2012). The concept of a time-invariant s has 
also been utilized in other studies (Joseph et al. 2008; Mattia et al. 2009; Verhoest et al. 2007). The 
SMAP baseline algorithm differs from these studies in that no ancillary or ground measurements or 
statistical assumptions are required to constrain s. 

The SMAP baseline approach (Kim et al. 2014; Kim et al. 2012) is a multichannel retrieval 
algorithm that searches for a soil moisture solution such that the difference between computed and 
observed backscatter is minimized in the least squares sense. The algorithm estimates s first and then 
retrieves r using the estimated s. Vegetation effects are included by selecting the forward model’s 0 at 
the VWC level given by an ancillary source or the SMAP HV measurements. The algorithm retrieves s 
and real part of dielectric constant (r) using a time series of N co-pol backscatter measurements: 
0

HH(t1), 0
VV(t1), 0

HH(t2), 0
VV(t2),…, 0

HH(tN), and 0
VV(tN). There are thus 2N independent input 

observations and N+1 unknowns consisting of N r values and one s value. Note that the VWC provided 
by ancillary information is allowed to be varying throughout the time series. 

Radar backscattering coefficients before conversion to decibels can be modeled as Gaussian random 
variables (Ulaby et al. 1986) to account for speckle and thermal noise effects. Assuming sufficient 
integration following power detection, the backscattering coefficient after conversion to decibels can 
also be modeled as a Gaussian random variable. Because SMAP will observe HH and VV returns at 
slightly different center frequencies, the effects of speckle and thermal noise on these measurements are 
statistically independent. Statistical independence of speckle in measurements at differing time steps is 
also expected. These facts and a maximum likelihood formulation motivate least-squares retrieval 
approaches based on the average of individual error terms. It is noted that calibration, radio frequency 
interference, and other error sources may produce correlated error terms. The systematic and correlated 
components from these sources will be corrected. Any residuals may impact overall algorithm 
performance and are modeled as uncorrelated Gaussian noise in this ATBD (although they may still 
contain correlated noise). 

The retrieval algorithm therefore minimizes the cost function (C): 
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C s, n, r1,r2,..,rN 
 w1,HH  HH

0 t1   HH , fwd
0 s, n,r1  2

 w1,VV VV
0 t1  VV , fwd

0 s, n,r1  2

w1,HH  HH
0 t2   HH , fwd

0 s,n,r2  2
 w1,VV VV

0 t2  VV , fwd
0 s, n,r2  2

..

w1,HH  HH
0 tN   HH , fwd

0 s, n,rN  2
w1,VV VV

0 tN  VV , fwd
0 s, n, rN  2


1

N

E1  HH
0 t1 ,VV

0 t1 , s, n,r1   E2  HH
0 t2 ,VV

0 t2 , s, n, r2   ..

EN  HH
0 tN ,VV

0 tN , s, n,rN 












(3.2.1-1) 

where values from observations and from the forward model are denoted as 0 and 0
fwd (both in dB), 

respectively. An additional parameter n is included above (so that a total of N+2 parameters are now 
involved) to represent the number density of vegetation scatterers. This parameter can be viewed as 
accounting for bias discrepancies between data cube simulations and actual vegetation properties. Again 
note that the above formulation can accommodate the temporal change in VWC, because 0

fwd is chosen 
by the VWC value available at each time. The weights wi in the cost function is associated with 
differing errors in the cross section measurement as a function of time or polarization, and the subscript 
i indexes the time sequence. Uniform weights are utilized in the results to be shown. The cost function 
then is an average of terms Ei that depend individually on only three (e.g., s, n, and r1) of the N+2 
parameters. This allows the minimum of the cost function to be located without a search over the 
complete N+2 dimensional space.  

Because s and n are the only parameters in common among the terms of the cost function, the 
retrieval algorithm considers all possible values of s and n. For each s value, values of ri are found that 
minimize each Ei term individually (i.e., N one dimensional searches are performed), and the resulting 
average of Ei values is the minimum value of the cost function for the assumed value of s, notated 
Cmin(s). The retrieved estimate of srtr is determined as the value of s that minimizes Cmin(s), and retrieved 
estimates of soil moisture are the corresponding ri values determined when constructing Cmin(srtr). 
Because 0 is a monotonic function of s, the minimum is unique with respect to s. 0 is also a 
monotonic function with respect to r. Therefore the minimum associated with ri is unique for a given s. 
In summary, the proposed method is a two-step approach. In the first step, the temporal average of the 
individual error term, Ei, reduces the Gaussian random noise and improves the retrieval of s. 
Subsequently the r retrieval benefits from the estimate of s. The vegetation density parameter n is not a 
direct retrieval parameter, but rather is included to represent potential physical sources of any biases that 
may remain (i.e. non-zero values of the Cost function) at the retrieved rms height and permittivity 
values. 

3.2.2 Data-cube Search 

The least-square minimization of Section 3.2.1 is implemented using the forward model lookup 
table (generated using the models described in Section 2). The lookup table has three input parameters 
(a ‘data cube’) required to predict SMAP’s HH, VV, and HV radar observations. The data-cube input 
parameters are the RMS height of bare soil roughness (s), real part of dielectric constant (r), and the 
ancillary or HV determined vegetation water content (VWC). Either dielectric constant or volumetric 
soil moisture (mv) may characterize the bare soil scattering, because they are interchangeable through a 
dielectric model. The dielectric constant is a more practical choice because otherwise soil parameters 
other than mv, such as texture, force additional dimensions of the data cubes. The current baseline 
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retrieval is fairly independent of the correlation length (Appendix 5.2) that therefore is not a part of the 
data cube. 

 

3.2.3 Algorithm Evaluation 

Monte-Carlo simulation of 0.5 dB radar measurement noise was performed to evaluate the 
performance of the time-series algorithm and the results are presented in Figure 12. According to the 
bare surface analysis in Figure 12a, the retrieval error is mostly smaller than 0.06 cm3/cm3 and smaller 
than 0.04 cm3/cm3 in more than half of the cases examined. A challenging problem in the bare surface 
retrieval is to resolve the ambiguities between soil moisture and roughness effects: the backscatter of the 
dry-rough surface is the same as that of the wet-smooth surface (Figure 3). The ambiguity is resolved by 
constraining the retrieval using the estimate of surface roughness.  

The Monte-Carlo simulation of the Kp noise in the presence of vegetation is also performed (in 
Figure 12b). The retrieval error is better than 0.06 cm3/cm3 mostly for VWC up to 2 kg/m2 and mv up to 
0.4 cm3/cm3. Generally the mv retrieval error increases with VWC, as a result of the vegetation effect. 
Both of the Monte-Carlo simulation results were made with 6 time-series records. This time-length 
corresponds to 18 days considering SMAP’s 3-day repeat cycle. The VWC error is set to 20% (1σ, zero-
mean) based on a preliminary analysis of 1.5 dB (1σ, zero-mean) error in the SMAP HV observation 
(see Section 5.3). 

 
Figure 12. RMS errors in cm3/cm3 from the Monte-Carlo simulation of the Kp effect on the data-cube mv retrieval. (a) 
time-series retrieval for bare surface, (b) time-series retrieval for pasture surface, (c) snap-shot retrieval for bare 
surface: all three cases represent s of ~1 cm and Kp of 13% for the co-pol signal (0.5dB). The correlation length to 
the RMS height has the ratio of 10. The number of time series records used during the retrieval is 6 (=18 days).  

The time-series retrieval algorithm was further tested with in situ field data. The first data were 
measured by the truck-mounted scatterometer at 1.25 GHz at 40 incidence angle over four bare surface 
sites near Ypsilanti, Michigan during a two-month period with up to 11 temporal samples per 

site (Oh et al. 2002). The second data were collected by the airborne Passive/Active L-band Sensor 
(PALS) instrument at 1.26 GHz at the incidence angle centered at 38 during the 1999 Southern Great 
Plains (SGP99) experiment over the Little Washita Watershed near Chickasha, Oklahoma (Jackson and 
Hsu 2001; Njoku et al. 2002). The VWC varies from site to site between 0.16 and 2.5 kg/m2. 
Temporally the roughness, correlation length, and VWC remain constant. Both data sets offer additional 
in situ measurements of soil texture and soil temperature. 

Figure 13a shows that the bare surface retrieval has an RMSE of 0.044 cm3/cm3 after compiling the 
retrievals over the 4 in situ locations. The time-series retrieval over the pasture surface has an RMSE of 
0.054 cm3/cm3 (Figure 13b). The slightly larger error for the pasture surface may reflect the effect of 
vegetation.  
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For each field of the SGP99, a constant offset in terms of dB was estimated to minimize the 
difference between observed backscatter and predicted backscatter using the time series of co-pol 
backscatter observations. This offset in dB may be understood as an error in the scatterer number 
density, n. The error would appear in the data cube as nearly a constant in dB. A change in n results in 
time-invariant offsets in dB for the volume scattering and the attenuation of the surface scattering (this 
may not necessarily apply to the double-bounce term if the bare surface condition changes in time.) To 
the extent that the double-bounce component is small, and also that the dB offsets in the individual 
scattering components become a dB offset in the total scattering power, the correction for n can be 
achieved by applying the dB offset. The estimated offset values are -2.6, 1.9, 5.2, 0.5, 2.5, and -2.5 dB 
across the 6 fields of the SGP99 (3 dB offset would roughly mean a doubling of n). These values are 
comparable with the bias difference between the data cube prediction and the backscatter observations: -
2.5, 1.1, 1.9, -1.2, 2.5, and -1.2 dB for the 6 fields. The close agreement between the estimated offset 
and the bias difference suggests that the interpretation of data cube biases in terms of variations in 
vegetation density is reasonable.  

 

 

Figure 13. RMS errors in soil moisture retrieval using the data-cube time-series method, assessed with (a) the 
Yipsilanti bare surface data and (b) the SGP99 pasture surface data. 

 

3.2.4 Snapshot Retrieval  

When the number of time-series input is set to 1, the time-series method becomes a conventional 
snapshot approach. r and s are adjusted simultaneously at each time instance so as to minimize the 
distance between the data cube prediction and the observation. The snapshot retrieval algorithm was 
also tested with the two sets of field campaign data used in Section 3.2.3. Figure 14a shows that the bare 
surface retrieval has an RMSE of 0.055 cm3/cm3, which is larger than the error of the time-series 
retrieval. Closer examination however indicates that the retrieval error increases for larger soil moisture. 
When the performance of the Monte-Carlo simulation of the Kp effect is compared between time-series 
(Figure 12a) and snapshot (Figure 12c) retrievals, the performance difference is much greater than the in 
situ validation shows. The radar measurement error of the in situ data (~0.3 dB) is smaller than 
simulated by the Monte-Carlo analysis, which may explain why the Monte-Carlo analysis of the 
snapshot retrieval show the poorer performance. 

The snapshot retrieval over the pasture surface is poor. Figure 14b shows a retrieval error of 0.105 
cm3/cm3. It is possible that the structure of the grass was important in characterizing the backscatter to 
be very different from that of the bare surface. The possibility is supported also by the large retrieval 
error (not shown) when the retrieval was performed using the bare surface data cube (NMM3D) after 
treating the grass surface as if it is a bare surface. The evaluation results suggest the limited applicability 
of the snapshot retrieval, and highlights the need for time-series retrievals. 
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Figure 14. In situ validation of the soil moisture retrieval error (RMS) using the data-cube snapshot method, 
assessed with (a) the Yipsilanti bare surface data and (b) the SGP99 pasture surface data. 

 

3.3 Optional Algorithms 

3.3.1 Change-detection by Kim and van Zyl 

The full details of this algorithm are described by (Kim and van Zyl 2009). A brief summary is 
presented here. After the SMAP radar data are accumulated for a moderate time period (nominally six 
months), an expression will be derived to relate the backscattering cross section to soil moisture as 

         (3.3.1-1) 

where the normalized radar cross sections are expressed in decibels. Since this expression depends on 
the biomass level, the cross-polarization will be used to compensate the biomass variation over time: 
how this will be implemented is being studied. One potential choice for f is given by 

 ݂ሺߪ௛௛, ௩௩ሻߪ ൌ ଴ܥ ൅ ଵܥ
ఙ೓೓ାఙೡೡ

ଶ
        (3.3.1-2) 

These two coefficients for each pixel will be determined using the expected minimum and maximum 
values for soil moisture and the time-series backscattering cross section data. Accommodating different 
vegetation phenology during the implementation of the above relationship remains as a task. The 
obvious assumption contained in Eq. 3.3.1-2 is that there is a linear relationship between the radar cross-
sections and the soil moisture. However, simulated data suggests that this relationship may be nonlinear. 
Ground radar and airborne data will be used to derive the final expression for the function ݂ሺߪ௛௛,  .௩௩ሻߪ
The slowly varying backscattering cross section component due to the biomass variation will be 
estimated and compensated using the cross-polarization backscattering cross section. Ground radar 
measurements will help derive the expression before the SMAP instrument is launched. However, since 
the ground measurements are limited, with simulated data various vegetation environments will be 
considered. When the two extreme conditions (completely dry and wet) of the soil moisture and radar 
backscatter are known exactly, a test with a corn field experiment shows that the soil moisture may be 
retrieved with an error of 0.026 cm3/cm3 (Table 3 of Kim and van Zyl). When the errors in the two 
extreme values are simulated with the random noise, the retrieval error reaches 0.05 cm3/cm3. 
Alternatively, Kim and van Zyl proposed that C1 at each radar pixel (e.g., at 3 km resolution) is inverted 
using the mv retrieved at a coarse scale (e.g., at 36 km resolution) using the radiometer records. The 
radar-radiometer method is the subject of the SMAP Level 2&3 Active/Passive ATBD. 

mv  f ( hh , vv )

(b) (a) 
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3.3.2 Change detection by Wagner et al. 

A radar-only time-series algorithm (Wagner et al. 1999) was proposed to retrieve an index of mv 
change using the C-band ERS scatterometer data. The index (Ms) is given by  

 ,       (3.3.2-1) 

where 0(t) is the observation at one time. and   are two extreme values of 0 of a pixel, which 

may be derived from a multi-year database of radar records. At least one year worth of the SMAP data 
are needed to derive the two extreme values of 0. Ms is an index ranging from 0 to 1, and can 
distinguish 5 different levels of soil moisture states. Later studies retrieved the index varying 
continuously, e.g., (Naeimi et al. 2009). To obtain the absolute value of soil moisture, two extreme sets 
of moisture and radar backscatter are needed (Kim and van Zyl 2009), or the index may be assimilated 
into a land surface numerical model (Scipal et al. 2008). Most of the studies were applied to the low-
speckle scatterometer data with the spatial resolution of 25 km or larger. When applied to the 1-km 
resolution data from the ENVISAT Advanced SAR (ASAR), the speckle began to impact the 
performance even at 3-km resolution; 3-10 km resolution was recommended for reliable retrieval of the 
index (Pathe et al. 2009). 

3.3.3 Snapshot Algorithm for Bare Surfaces by Sun et al. 

A new algorithm to estimate bare surface soil moisture using dual-polarization L-band 
backscattering measurements is proposed in (Sun et al. 2009). The retrieval over the vegetation surface 
based on the bare surface algorithm is under development. This algorithm describes the backscattering 
coefficients as a product of two functions. 

      (3.3.3-1) 

One is the dielectric function Rpq that reflects the soil moisture information. It can be approximated by 
the polarization magnitudes as described by the Small Perturbation Model at L-band. The other is the 
roughness function Srpq that describes the overall effects of the surface roughness at the different 
polarization. The subscript pq represents for the polarization status. Inversion requires the 
acknowledgement of the relationship between the surface roughness parameters Srhh and Srvv at different 
polarizations with a good accuracy so that they can be considered as one unknown. 

Through analyses on an AIEM surface backscattering database with a wide range of soil 
moisture and surface roughness conditions, it was found that the relative difference of the overall 
surface roughness parameters between co-polarizations can be well estimated through a roughness index 
Sr.  

     (3.3.3-2) 

where 
hh

B
vvhh

r AS


 , where ߪ௩௩௛௛ ൌ ඥߪ௛௛ߪ௩௩ , is a roughness index that only related to the surface 

roughness properties but not the dielectric properties. Equation (3.3.3-2) provides a direct estimation of 
the differences in the roughness parameters at the certain powers from the radar observations. From this 
information, we now can directly estimate surface dielectric properties by 

      (3.3.3-3) 
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The left side of Equation (3.3.3-3) is the surface roughness differences and can be estimated directly 
from the dual co-polarization radar measurements. The right side of Equation (3.3.3-3) has only one 
unknown: the dielectric properties of soil through the dielectric function in Equation (3.3.3-1). It can be 
estimated numerically. The advantage of this algorithm is that the estimation of surface soil moisture is 
based on the roughness relation at the different polarization that can be directly estimated from the radar 
measurements. 

 
Figure 15. The comparisons between the estimated volumetric soil moisture (y-axis) from two validation data sets 
and the ground measurements (x-axis). 

This algorithm is validated with two sets of ground scatterometer experimental data. Figure 15 
shows the comparison of the ground measured soil moisture with that the estimated surface soil 
moisture using the above two experimental data sets for incidences from 30º to 60º. The inversion 
results at 20º are very poor with RMSE over 0.06. This is mainly due to the very small polarization 
differences in the measurements and some measurements with HH larger than VV, which can not be 
predicted by the AIEM model. The inversion results in the range of 30 º to 60 º incidence, however, 
have an RMSE of 0.037 over a total of 134 observations. It indicates that bare surface soil moisture may 
be estimated with SMAP instrument. 

 

Table 5 Input data for the L2_SM_A algorithm. 

Data Type Data Source 

Radar backscatter 

(HH/VV/HV) 
SMAP L1C_S0 

Elevation and standard 

deviation of DEM 
combination of SRTM, Alaska USGS DEM, 
Canada Geobase DEM, and GTOPO30 

Land cover class MODIS-IGBP 

Crop type 

Cropland Data Layer (US) 

Environment Canada (Canada) 

ECOCLIMAP (Europe) 

(Monfreda et al. 2008) (Rest of the world) 

30°-60° 

RMSE = 0.037 
cm3/cm3 

# = 134 

Measured 
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Vegetation water content 
SMAP L2_SM_A 

MODIS NDVI 

Data cube SMAP Science Team 

Soil texture 
Harmonized World Soil Database + regional + 

FAO 

Soil surface temperature GMAO 

Mountain Area 
combination of SRTM, Alaska USGS DEM, 

Canada Geobase DEM, and GTOPO30 

Freeze/thaw flag SMAP L2_SM_A 

Permanent ice MODIS IGBP 

Snow Snow & Ice Mapping System (IMS) - NOAA 

Static water body MODIS MOD44W 

Transient water body SMAP L2_SM_A 

Precipitation 
ECMWF total precipitation forecasts (or GPM 

once launched) 

Urban area Global Rural-Urban Mapping Project (GRUMP) 

RFI contamination SMAP L1C S0 

 

3.4 Input Data and Output Parameters 

Table 5 lists the required input data sets to the radar-only soil moisture inversion. These includes the 
primary choices that meet the ancillary data requirements. Ancillary data sets are defined as external 
data sets that are required as inputs to SMAP retrieval algorithms in the generation of the standard L2/3 
products. Ancillary data needed by the SMAP mission fall into two categories -- static ancillary data are 
data that do not change during the mission while dynamic ancillary data require periodic updates in time 
frames ranging from seasonally to daily. Static data include parameters such as permanent masks (land / 
water / forest / urban / mountain), the grid cell average elevation and slope derived from a DEM, 
permanent open water fraction, and soils information (primarily sand and clay fraction).  All of the static 
ancillary data will be resampled to the 3-km EASE grids as the output products, and will be available to 
any algorithm or end user who needs them. The dynamic ancillary data include land cover, precipitation, 
and effective soil temperatures. Although most ancillary data are by definition external to SMAP, the 
L2_SM_A will provide key pieces of information to the L2_SM_P and L2_SM_AP algorithms 
including the open water fraction (Section 3.4.3) and the frozen ground flag (see L3_FT_A ATBD).  

The choice of which ancillary data set to use for a particular SMAP product is based on a number of 
factors, including its availability and ease of use, and its inherent error and resulting impact on the 
overall soil moisture or freeze/thaw retrieval accuracy. Latency, spatial resolution, temporal resolution, 
and global coverage are also important. The choice of a primary source for each of the ancillary data 
parameters is fully documented in individual SMAP Ancillary Data Reports (Section 6.1) which will be 
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made available to the user community. Below brief descriptions are provided for the input radar 
backscatter, and for the ancillary parameters generated by the L2_SM_A processor. 

3.4.1 Radar Backscatter 

The primary input to the L2_SM_A algorithm will be the Level 1C (L1C) gridded radar product.  
This product consists of the calibrated high-resolution (SAR-mode) multiple polarization radar 
backscatter measurements and associated parameters, Earth-located and mapped to a swath-based, 
along-track/cross-track, 1 km grid. It is assumed that the backscatter measurements have been fully 
calibrated and corrected for atmospheric attenuation and ionospheric effects such as Faraday rotation. 
Information provided in the L1C product or in ancillary calibration files should enable estimates of the 
0 accuracy (Kp) for each measurement based on instrument characteristics.  

3.4.2 Vegetation Water Content derived from Radar Vegetation Index 

The SMAP L2_SM_A/L2_SM_P/L2_SM_AP algorithms require information on the VWC. One 
potential source of vegetation information is a polarimetric parameter derived from SMAP data such as 
the RVI (Radar Vegetation Index) (Kim and van Zyl 2000) defined by: 

 
       

 (3.4.2-1) 

The RVI nominally ranges between 0 and 1, and is a measure of the randomness of the scattering.  For a 
smooth bare surface, the RVI is near zero, while for surfaces with a dominant volume scattering 
component the value approaches 1. This parameter is very similar to the polarimetric entropy, but does 
not require the full covariance matrix to calculate. A linear relationship between RVI and VWC was 
reported from the 14-day long aircraft measurement over corn and wheat fields in Oklahoma in 2007 
(Yueh et al. 2008). On the other hand, the relationship was strongly non-linear during corn’s entire 
growth cycle over a 20-week period (Kim and van Zyl 2009). A further analysis is needed for RVI to be 
an operational source of VWC. 

Alternatively, the vegetation amount may be derived based on low-order polynomial of the 
normalized difference vegetation index (NDVI) and optical remote-sensing images (see L2_SM_P 
ATBD). In principle the RVI or any other parameter based on the radar backscatter should correlate 
with the vegetation amount more strongly than the optical NDVI, because fundamentally optical 
radiation cannot penetrate vegetation canopies while the L-band microwave signal can. Furthermore the 
RVI is concurrent with the radar observation. Studies are ongoing with regard to whether the radar 
backscatter may improve estimates of vegetation effects. 

3.4.3 Transient Water Bodies 
An algorithm for discriminating transient water bodies from land surfaces is also part of the SMAP 
L2_SM_A processor. There are many combinations of water surfaces adjoined by land surfaces, 
(depending on both land and water surface roughness and presence of vegetation) that will affect this 
discrimination capability. At present, the case of a calm water surface next to lightly vegetated land was 
studied.  It was found that a threshold (3 dB) applied to the ratio of HH to VV effectively separated 
water from land at SMAP’s 40 deg incidence angle. In this study, UAVSAR (Uninhabited Aerial 
Vehicle Synthetic Aperture Radar) images were analyzed over fairly flat terrain. Despite the apparent 
differences between UAVSAR and SMAP, the measurement quality for both instruments is determined 
by the same statistical processes inherent in SAR imaging. Calibration error and the number of single 
looks of one UAVSAR pixel are similar to those of one pixel of the proposed SMAP SAR. The 
algorithm was tested over two locations (one of them is shown in Figure 16). The detection error in both 
cases is smaller than 10% [Kim et al., 2015]. Diverse configurations of water and neighboring land exist 

RVI 
8hv

hh  vv  2hv
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depending on surface roughness and vegetation cover. A classifier different from the co-pol ratio may 
be necessary to delineate these types of standing water. 

 

Figure 16 Water body detection tested with 
a UAVSAR image over the Mono Lake, CA, 
with the noise level (0

NE) of -28.5 dB. The 
abscissa is the distance along the 40 
incidence angle path (for example, the 60-
km mark corresponds to the middle of the 
lake and the 48 km mark is over land). The 
top panels show the HH (cyan) and VV 
(black) co-polarized backscatter. The 
bottom panels show HH-VV, with the 
threshold of -3dB shown as a dotted line. 

 

3.5 Error Budget 

The primary purpose of this section is to verify that the baseline algorithm is able to satisfy the 
accuracy target of the soil moisture retrieval. The accuracy target for the SMAP’s radar-based retrieval 
is not specified in the science requirement, because this product is a research product. Tentatively the 
target is set to 0.06 cm3/cm3 up to VWC of 5 kg/m2.  

3.5.1 Evaluation with In situ Data 

The time-series data-cube retrieval method was tested with the scatterometer data over four bare 
surface sites near Ypsilanti, Michigan during the two month period (Kim et al. 2012), and the airborne 
Passive/Active L-band Sensor (PALS) data collected over pasture fields during the 1999 Southern Great 
Plains (SGP99) experiment. The number of time-series inputs varies from 6 to 11 for the bare surface 
data and is fixed to 6 for the pasture data. The retrievals were described in detail in Section 3.2.3, and 

showed the retrieval errors of  0.044 (bare surface) and 0.054 (pasture) cm3/cm3. In both 
evaluations, the dielectric model error was accounted for: the forward model used the Peplinski model 
while the retrieval used the Dobson model. Also, included are the errors in the radar measurement by 
the PALS instrument. Evaluation over different in situ data and for different land cover classes are 
continuing. 

3.5.2 Evaluation with Simulated Data 

Monte-Carlo simulations of the Kp radar measurement noise and the VWC error is performed for the 
time-series algorithm (Kim et al. 2014). The Kp levels corresponding to the outer edges of the swath 
(13%, 0.5dB) was used. The VWC error is set to 10% (1σ, zero-mean) based on a preliminary analysis 
of 1 dB (1σ, zero-mean) error in the SMAP HV observation (after the fore-aft averaging and considering 
the CBE performance, see Section 5.3). The number of the time-series records is set to 6 (18 days in 
view of SMAP’s 3-day cycle). Each point of the Monte-Carlo simulation results in Figure 17 is an 
average of the results over the soil moisture truth ranging from 0.05 to 0.45 cm3/cm3. The Monte-Carlo 
study was performed for all available datacubes where mv retrieval is feasible. For non-woody classes 
such as grass and soybean, the mv retrieval error increases with VWC due to the vegetation attenuation. 
For woody-vegetation (shrub and woody savanna) the mv retrieval improves with VWC, as a result of 
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benefiting from the double bounce process. Corn, evergreen needle, and deciduous broadleaf classes 
also have the dominant vertical stem. Consequently the retrieval benefits from the double bounce 
mechanism. The two forests classes (evergreen broadleaf and deciduous needle) do not have the vertical 
stem structure. The vegetation attenuation dominates and mv retrieval deteriorates with VWC. In 
summary, the soil moisture retrieval error is found smaller than about 0.05 cm3/cm3 except for the two 
forest classes. 

 

 

 

 

Figure 17. Monte-Carlo simulation of the radar measurement error (13% for the signal, 0.5dB) on the data-cube mv 
retrieval. Each point on a curve is an average of mv RMSE from the Monte-Carlo simulation (e.g., Figure 12), over 
roughness values of 0.5 cm to 4 cm, and soil moisture truth ranging from 0.05 to 0.45 cm3/cm3. 

3.5.3 Error Budget 

Based on the above results, the error budget is summarized in Table 6. The Monte-Carlo analysis 
presented in Section 3.5.2 assess the errors due to the Kp noise and the vegetation water content 
uncertainty. However the analysis does not capture forward model errors. The conversion from 
dielectric constant to soil moisture is accurate to about 0.02 cm3/cm3 (Mironov et al. 2009), which 
would not affect the total error budget when added to the total error by root-square-sum. The in situ 
evaluation with the airborne radar data described in Section 3.5.1 accounts for the errors associated with 
data cube modeling and dielectric conversion (as well as the errors in in situ measurements of soil 
moisture, both instrumental and scaling). A small degree of heterogeneity exist within the airborne radar 
footprint, which would also contribute to the in situ evaluation result. The effect of scaling and 
heterogeneity within the 3-km pixel will be studied further. 
 

Table 6. Error budget for the time-series baseline algorithm. The Kp and VWC errors are modeled with Gaussian 
random variables with zero mean. The soil moisture retrieval error is obtained from the Monte-Carlo analysis in 
Figure 17. Number of the pair of HH and VV radar backscatter used as time-series input (6, equivalently 18 days).  

 

Error sources 
Budget (cm3/cm3) 

Outer  
swath edge 

Inner  
swath edge 

A) Kp 0.75-1.0 dB 1σ error (1, co-pol, fore look) 0.035 0.043 
B) Vegetation water content error (1, 10%) 0.01 
C) Forward model error (data cubes and heterogeneity) 0.04 
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D) Dielectric model uncertainty 0.02 
E) Soil texture: 5% error 0.004 
mv retrieval error up to VWC of ~ 3 kg/m2 0.058 0.063 

A,B) the estimate comes from Figure 17, where the effects of the Kp and VWC were combined. 
C) the estimate comes from the in situ validation with the SGP99 data (Figure 13b), after subtracting the 
errors in in situ measurements and the errors in dielectric conversion. 
D) The conversion error is about 0.02 cm3/cm3 (Mironov et al. 2009) 
 
Refinement of the error budget continues as additional validations of forward models and retrieval 
performance are conducted. 
 

3.6 Level 3 Processing 

The Level 3 product is the daily composite of the Level 2 granules. The current approach for the 
L3_SM_A product is to use the nearest 6:00 am local solar time criterion to perform Level 3 
compositing (see L2_SM_P ATBD for details). All the three Level 2 products (Active, Passive, and 
Active/Passive) will share the same master processor for the Level 3 products. The L2_SM_A product 
has a nadir gap where the effective resolution in the crosstrack direction gradually becomes 36 km. A 
flag will be assigned to identify this region and the region will be excluded during the L3 compositing. 
Over 3 days on average the gaps will be filled except for the pixels near the equator, where it takes 
longer to fill the gaps. 

3.7 Algorithm Testing & Baseline Selection 

The aim of pre-launch activity is to evaluate candidate algorithms, to improve the algorithms, and to 
select the baseline algorithm. The pre-launch validation of the L2&3_SM_A product retrieval algorithm 
will be made using (1) global representative simulations on the Algorithm Testbed and (2) field 
experiment data that offer the radar backscatter and ground truth observations. The implementation of 
the complete pre-launch Cal/Val process is described in SMAP Calibration and Validation plan (JPL D-
52544, Apr. 2011). 
 

3.7.1 Simulated Data in the Algorithm Testbed 

Global simulations using ancillary data sources and a spacecraft/instrument simulator will not only 
reveal performance issues but also processing issues. The ancillary data have to be from the actual 
source identified by the selected algorithm and meet the specifications of the data that will be used in 
post-launch processing. The spacecraft/instrument simulator has to provide data compatible with the 
sampling configuration and performance of the actual spacecraft and instrument. 

The simulation data permit testing whether an algorithm can handle with SMAP's sampling that is 
not well represented by field campaign, such as: 

 time gaps 
 temporal changes in VWC 
 temporal changes in soil surface roughness. 

Since the range of surfaces for which measured radar data exist is limited, the output of a reliable radar 
forward model will be used to establish a database that covers the most likely ranges of the surface soil 
moisture and roughness properties including RMS height, correlation length, and the forms of the 
correlation functions. The various inversion models will then be tested against this database to establish 
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their accuracy, and the ranges of surface parameters over which they are applicable. A similar procedure 
will be used to simulate vegetation effects by using the data cubes generated for different vegetation 
classes by radar scattering models. 

A realistic global simulation (GloSim2) is currently underway on the SMAP Algorithm Testbed 
(http://smap-sds-web.jpl.nasa.gov/ confluence/display/algorithm/GloSim+2003). An example of 
simulated 0 is shown in Figure 18 for the HH channel. The simulation covers the world. The simulation 
is based on the 14 data cubes corresponding to the IGBP scheme and four major crop classes. For the 
forward simulation, soil moisture and temperature fields were generated by the Goddard Modelling and 
Assimilation Office (GMAO) Nature Run at 9-km resolution and hourly over 1 year period. VWC was 
derived from MODIS NDVI data using empirical relationships (see L2_SM_P ATBD). The surface 
roughness values were generated at 1-km resolution. A mean roughness value was assigned to each of 
the IGBP and crop classes. The roughness value was then randomly perturbed using a deviation 
determined from the literature per each IGBP class. The Gaussian random noise with a magnitude of 0.9 
dB (1-sigma) is multiplied to both fore or aft look observation of the backscatter, to represent effective 
Kp noise that includes speckle (0.7 dB), relative calibration error (0.35 dB), and contamination from 
radio frequency interference (0.4 dB). 

Assessments of retrieval performance with the GloSim2 dataset are currently in progress. 

 
Figure 18. Simulated 0

HH in dB for a composite of 14 simulated SMAP descending (AM) orbits using radar 
scattering models. 

 

3.7.2 Field Campaigns 

The requirements for field experiment data are two-fold: (1) to provide sufficient knowledge to train 
the forward model underlying the retrieval algorithm (2) to assess the performance of retrieval 
algorithms.  
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To train the forward model, the experimental data have to cover a range of conditions that can be 
considered to represent the global diversity of surface conditions. Also the time-frame has to be long 
enough to test the time-series methods (the baseline algorithm so far has been tested with 6 time-series 
inputs) and to capture the sufficient changes in soil moisture (and desirably vegetation growth). The 
interval between two consecutive temporal samples is a secondary issue. The following soil surface 
properties need to be measured:  

 Moisture 
 Roughness 
 Correlation length 

Sampling of the following vegetation parameters is desired to characterize the radar scattering model: 
 Vegetation class 
 Fraction of vegetation cover 
 Number of vegetation stem per unit area 
 Height of vegetation 
 Stem size (diameter) 
 Branch, leaves/needles diameter  
 Branch, leaves/needles density 
 Branch, leaves/needles, trunk volumetric water content 
 Dielectric properties for stem, branches, leaves/needles 
 VWC from destructive samples and NDVI 

Aircraft field experiments or tower-based measurements are suitable for providing the backscatter data 
to accompany the extensive ground sampling items listed above. Overpass spaceborne L-band SAR 
measurements (ALOS-2 and SAOCOM) are desired if such can be coordinated.  

To test and validate the soil moisture retrieval, the ground sampling requirements for the 
experimental data are comparatively less demanding. Measurements of soil surface properties, 
information on vegetation class and VWC would provide sufficient information. Clearly, nonetheless, 
the full details of the vegetation properties are desired, which will enable further in-depth analysis of the 
retrieval performance. Overpass spaceborne L-band SAR measurements are desired if such can be 
coordinated.  

The detection of transient water body also require ground truth data. Because the water bodies are 
transient and often scattered over a large area, the most appropriate source of mapping is satellite or 
aircraft. Necessary information of ground truths are: 

 Vegetation class and descriptive VWC of the adjacent land 
 Wind speed over water bodies 
 Coordinates of the water body perimeter 

As a part of the Cal/Val activities of the SMAP project, the following aircraft/tower campaigns were 
conducted or are planned that offer the validation capability of the L2_SM_A retrieval: 

 SMAPVEX08 (2008, USA).  
 CanEx-SM10 (2010, Canada). Extensive vegetation properties were sampled. 
 SMAPEx (2010, 2011, Australia). Extensive vegetation properties were sampled. Water body 

truths were collected. 
 San Joaquin Valley Experiment (2010, 2011, USA). Some vegetation properties will be 

sampled. Water body truths were collected. 
 Carbon	Arctic	Reservoir	Vulnerability	Experiment	(CARVE)	flights (2011-2015, USA). 
 NASA	 GSFC	 ComRAD	 (Combined	 Radar/Radiometer	 System)	 truck‐based	 instrument	

(2012,	USA).	The extensive vegetation properties will be sampled. 	 
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 SMAPVEX	 12	 (2012,	 Canada). The duration of the campaign will accommodate the testing of 
the time series approach and the extensive vegetation properties will be sampled. 

3.7.3 Baseline Algorithm Selection 

The baseline algorithm will be selected through comparison with optional algorithms on an ongoing 
basis, both before and after launch. The following three criteria will be considered: 

 performance in terms of soil moisture retrieval accuracy. The performance of each algorithm 
will be evaluated by the simulation (GloSim2) and also by tests on observational data. 

 feasibility of global soil moisture retrieval with regard to the computing load, the availability of 
ancillary data, and the applicability to the global surfaces of vegetation and bare soil. 

 capability to perform various analysis related to SMAP science, and the design of the mission 
and the instrument. 

 

3.8 Practical Considerations 

This section describes practical issues that would arise during the product generation after launch. 
The following issues have been identified during the algorithm test with the SMAP Algorithm Testbed. 
The description pertains to the baseline algorithms, and is subject to change when the baseline algorithm 
changes. 

3.8.1 Numerical Computation Considerations 

The numerical computation load is assessed at the time of ATBD writing (September 2012). As the 
computing hardware advances, the computing load is expected to lessen. As the retrieval algorithms are 
further refined and economized as the algorithm matures, it will reduce the computing load as well. 
Preliminary data on processing resources and throughput for the L2_SM_A are acquired by performing 
the time-series retrieval using Glosim data, and are as follows 
Disc storage requirement 60GB for 400 half orbits (about one month worth) of 

L2_SM_A. The size will increase substantially when all the 
parameters defined in the data specification document are 
outputted.   

Processing time 25 minutes on average per half orbit 

3.8.2 Output Data volume 

Currently the ‘GloSim2’ exercise is being implemented, where the retrieval is performed on the 
global scale on the basis of the half-orbit granule (http://smap-sds-web.jpl.nasa.gov/ 
confluence/display/algorithm/GloSim+2003.). The global output products occupy about 0.8 
terabyte/year and 2 gigabyte/day. The output volume would increase with more output parameters 
associated with the complete set of parameters related to the ephemeris and geometry; however, the 
HDF output format employs compression that is expected to significantly reduce the data volume.  

3.8.3 Programming/Procedural Considerations 

Processing and operational codes for L2_SM_A algorithm are written in Fortran to make it 
consistent with other algorithms. This will ease inter-algorithm functioning of switches, data and 
information transactions. Programming of L2_SM_A algorithm will adhere to standard coding 
specifications to ensure consistent, maintainable, and readable code deliveries within the SMAP SDS. 
The Fortran program of the L2_SM_A algorithm will also meet the necessary requirements of language 
compliance, predictable execution, and code clarity. Adherence to these standards by programs will 
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allows efficient integration of SDS software components (Interfaces) and will simplify the Algorithm-
to-PGE development process. The L2_SM_A Fortran code contains comments and version control 
information to track changes and streamline the development of software. A software specification 
document will be developed for documentation of all source codes.   

Table 7 Soil moisture retrieval flags.  

Soil moisture quality 
Retrieval recommended flag 
Retrieval attempted flag 
Retrieval success flag 
Radar water body detection success 
Freeze-thaw retrieval success 
Radar vegetation index retrieval success 

Surface quality flag 
Static waterbody 
Radar water body 
Coastal proximity 
Urban 
Precipitation 
Snow ice surface (dynamic) 
Permenant snow ice surface 
Radar freeze-thaw retrieval 
Model frozen ground 
Mountain 
Dense vegetation (Vegetation water content) 
Nadir region 

 

3.8.4 Quality Control and Diagnostics 

Quality control (QC) is an integral part of the L2_SM_A processing. The QC steps of the L2_SM_A 
processing are based on the flags that are provided with the input data streams (L1C_S0), different types 
of masks, flags, and fractional coverage of other variables provided by ancillary data. The list of the 
flags is provided in Table 7. ‘sigma0 quality flag’ is deemed good if all of the sub-flags (fore, aft, RFI) 
are good. Generally ‘0’ is assigned to the favorable condition for soil moisture retrieval. The L2_SM_A 
will process all data that have favorable conditions for soil moisture retrieval (VWC <= 5 kg/m2, no 
rain, no snow cover, no frozen ground, no RFI, sufficient distance from open water). However, soil 
moisture retrieval will also be conducted for regions with the high VWC, rain, RFI cleaned data, and 
places closer to water bodies but appropriate flags will be added to these data points indicating their 
susceptibility to high errors. Therefore there are three flagging states associated with soil moisture 
retrieval: 

- retrieval recommended flag: soil moisture was retrieved. The retrieval is either recommended or 
not recommended. For example, even if soil moisture value is retrieved over mountainous areas, 
the retrieval will be deemed unreliable.  

- retrieval success flag: soil moisture retrieval was attempted. The retrieval is either successful or 
unsuccessful. For example, when sigma0 is out of reasonable range, the retrieval will be 
attempted but may fail. 

- retrieval attempt flag: soil moisture retrieval was either attempted or not attempted. For example 
on frozen or water surfaces, retrieval will not be attempted.  
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Exception Handling 

To obtain L2_SM_A product from the SMAP observations involves many aspects of product 
generation. This includes instrument performance, satellite data downlink, data preprocessing activities, 
quality of data (e.g., data drop-off), preceding algorithm performance, availability of ancillary data, and 
computing related resources. Due to these activities, exceptions are expected while operating the 
L2_SM_A algorithm on the SDS Testbed. The development of the L2_SM_A software also includes 
identification of expected exceptions. The list of expected exceptions is being developed. However, the 
formulation and computer coding of the L2_SM_A software will be made robust to withstand the 
expected exceptions.     

3.8.5 Interface assumptions 

The L2_SM_A product interacts with other products of SMAP as follows. It takes the radar 
backscatter and RFI flag from the SMAP L1C_S0, and freeze/thaw flag. The flag is generated by the 
freeze/thaw module of the L3_FT, which is used by the L2_SM_A (L3_FT is a daily composite and its 
output does not feed directly into the L2_SM_A).  

The aggregated 3-km resolution of radar backscatter will be used as an input of the L2_SM_AP. 
The soil moisture output from the L2_SM_A provides an input to the L3_SM_A and to the optional 
algorithm of the L2_SM_AP. The water body flag and radar vegetation index from the L2_SM_A is 
used by the L2_SM_P and L2_SM_AP. 

3.8.6 Latency 

The L2_SM_A product has to meet the latency requirement of 24 hours from the time of data 
acquisition by the satellite. The latency requirement for the L1C_S0 product is 12 hour, which leaves 12 
hour for the L2_SM_A product. There are 14 half-orbit acquisitions per day. Accordingly the target for 
the processing speed is ±1 hour per half orbit. 

The latency of L2_SM_A product is mainly governed by the latencies involved in the time-series 
retrieval and the dynamic ancillary data (surface temperature). The time-series retrieval may be 
accomplished on time (Section 3.8.1). The surface temperature is used by a dielectric model (some 
models do not require the parameter). Furthermore, the effect of the temperature on the dielectric 
conversion is secondary. If the surface temperature becomes a major bottleneck, it may be omitted or 
the source may be replaced with a faster source.  

Several outputs of the L2_SM_A processor are used by the L2_SM_P and L2_SM_AP processors. 
These are the transient water body flag, freeze/thaw flag, RVI information, and 3-km resolution sigma0. 
The evaluation of these parameters is fast, and will be performed prior to the time-time series retrieval. 
Subsequently, these will be made available internally for the L2_SM_P and L2_SM_AP so that the two 
processors do not need to wait until the completion of the L2_SM_A processor. 
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4 CALIBRATION AND VALIDATION 

According to the mission requirements, the post-launch validation needs to establish that the 
product meets certain criteria to be released as a beta version, a provisional version (not discussed in this 
version of the document), and finally as a validated product. The implementation of the post-launch 
Cal/Val process is described in SMAP Calibration and Validation plan (JPL D-52544, Sept. 2012). The 
following cal/val elements are available: 

 Field experiments (intensive ground sampling with airborne measurements): ground sampling 
of soil moisture with simultaneous airborne radar measurements; the required suite of ground 
sampling parameters depends on the final forward model; the underflights of airborne radar will 
be important for validating the scaling aspects of the in situ sampled soil moisture.  

 Core sites (dense long term networks, limited spatial domain): calibrated soil moisture estimate 
established to the 3-km footprint scale (uncertainty assessed) based on several in situ stations 
within a footprint area supported with sub-footprint scale ancillary information (as specified by 
the retrieval algorithm). Figure	19 show	the	current	list	of	the	core sites.	The	sites	have	been	
categorized	based	on	the	applicability	to	different	scales	of	the	SMAP	L2	products. 

 Sparse networks (sparse long term networks, large spatial domain): calibrated soil moisture 
estimate established to the 3-km footprint scale (uncertainty assessed) based on one in situ 
station within a footprint area supported with sub-footprint scale ancillary information (as 
specified by the retrieval algorithm). 

 Spaceborne remote sensing observations: radar backscatter from the spaceborne SAR 
instruments onboard, together with in situ ground truth. 

 Independent hydrological models: global hydrological models including surface soil moisture as 
an output. 

The soil moisture information alone is sufficient to perform the post-launch validation of the L2_SM_A 
product. However, whenever available, additional information of soil surface properties (roughness and 
correlation length), vegetation class, and VWC will be valuable to further analyze the validation results. 
 

 
Figure 19. Potential Core Validation Sites categorized by scale. 
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4.1 Evaluation for Beta Release 

For evaluating the L2&3_SM_A product quality for Beta release, a selected subset of the core sites 
and sparse networks need to be utilized. These resources need to provide almost real time soil moisture 
estimates in foot-print scale and their comparison with the satellite product should be possible without 
additional processing, allowing the fast assessment of the product quality and preliminary estimate of 
the uncertainties. 

Subset of these resources will be selected so that they represent the major biomes and high priority 
areas of the globe. The selection will be performed prior to launch. Furthermore, the inclusion of 
analyses of the field experiment data is not necessary at this phase (although first field experiment data 
should be available), which saves time required for doing the evaluation. 

The L2&3_SM_A product processing will require the possibility to adjust (calibrate) the basic 
parameters of the retrieval algorithms for quick tuning of the product. These parameters include 
adjustment of any bias component in radar backscatter, and other parameters that may reduce the 
retrieval errors arising from the heterogeneity. This needs to be accounted for in the preparation for the 
cal/val activities in pre-launch stage. 

4.2 Validation 

In the first stage of the validation a subset of the core sites, sparse networks and field experiments 
are needed to establish the L2&3_SM_A product accuracy in confined space and time domain. This 
refers to the areas directly covered by the selected resources and to the time period of the field 
experiments. The process is based on the comparison of the mentioned validation resources and the 
retrieved products. The comparison will be given in terms of mean, standard deviation, and correlation 
in soil moisture. 

In the second stage of the validation, all core sites and sparse networks need to be included and also 
other satellite products to establish the L2&3_SM_A product accuracy in wider distribution of space 
and time domain. This refers to the areas covered by the identified validation resources and to the time 
period, or periods, representing one full season. 

The first and second stages are expected to be completed during the geophysical product Cal/Val 
phase (12 months after launch), which will be followed by the release of the L2_SM_A product to the 
public. The validation with the other satellite products may have limited importance, depending on the 
fidelity of those products.  

In the third stage of the validation the hydrological models are included as the accuracy of the 
L2&3_SM_A product is evaluated globally over an extensive time period. The combination of all 
cal/val elements will allow establishing the uncertainty of the product over global conditions in its 
lifetime.  

The post-launch field experiments should cover high priority biomes and have separation in 
seasonal cycle. The L2&3_SM_A product will be sensitive to vegetation cover. This means sites with 
type and density of vegetation that is most critical for the performance of the retrieval (has to be 
determined in the pre-launch phase).  

In the comparison to soil moisture products obtained with other spaceborne L-band SAR 
instruments (such as ALOS-2 and SAOCOM) the quality of these products, difference in both overpass 
date and time and differences in the retrieval systems has to be accounted for on case-by-case basis. 
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The combination of all validation data with the product flow is required to be a clearly defined 
independent process. This process needs to respond to the need to minimize the retrieval error over 
selected validation resources. There has to be a possibility not only to adjust parameters, which is 
needed also for the Beta release, but also to do more extensive updates to the algorithm based on the 
output of the validation process. The process needs to be defined and implemented before the launch. 
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5 APPENDIX 

5.1 Hydros-era Algorithms 

Two retrieval algorithms were considered in previous studies for the Hydros mission. The first is the 
“bare-soil with vegetation correction”. In this algorithm (Dubois et al. 1995) the empirical equations 
relating co-polarized backscatter for bare soil, 0

hh and 0
vv, to soil dielectric constant and roughness are 

inverted.  A correction is made for vegetation attenuation and scattering using the cross-polarized 
backscatter.  Soil moisture is then retrieved from the dielectric constant using the dielectric model. This 
algorithm is considered by SMAP as one of the snapshot retrieval algorithms for low-vegetation 
surfaces.  

The second Hydros approach used the numerical inversion of a forward model. In this algorithm, 
soil moisture and vegetation water content estimates are adjusted iteratively in computations of two co-
pol 0 until the difference between computed and observed backscatter coefficients is minimized in a 
least squares sense.  Both soil moisture and vegetation water content are retrieved by this algorithm. 
Initial guesses of the vegetation amount and knowledge of the surface roughness were required for 
successful retrieval. The forward model considered during the iterative minimization incorporates the 
bare surface 0 of Dubois et al. (Dubois et al. 1995) for the co-pol and 0 of Oh et al. (Oh et al. 1992) 
for the cross-pol, and Ulaby et al.’s cloud model for the volume and interaction components (Ulaby et 
al. 1986). This model is referred to as DOU hereafter. 

Below, the performance of the Hydros second algorithm is revisited through examination of soil 
moisture retrieval errors obtained in a Monte Carlo simulation. In Figure 20 the soil moisture and 
surface roughness are estimated (VWC is assumed known with 10% standard deviation error with no 
bias error). Except for low-vegetation surfaces with VWC smaller than 0.5 kg/m2, the mv retrieval error 
exceeds 0.1 cm3/cm3. Further analyses suggest that the iterative retrieval from the Hydros era works 
well when the surface roughness is known with an accuracy better than ~40%. In practice, reliable 
ancillary information for surface roughness is not readily available (Joseph et al. 2008; Mattia et al. 
2009; Shi et al. 1997; Verhoest et al. 2007). Therefore this approach does not meet the specified 
requirements for the SMAP baseline algorithm. 

 
Figure 20. RMS errors from the Monte-Carlo simulation of the mv retrieval using the numerical iteration of the DOU 
forward model. mv and surface roughness are estimated using three channels as input (HH, VV, HV), and assuming 
10% Gaussian error in VWC and vegetation albedo and 2K error in surface temperature. 
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5.2 Insensitivity of retrieval to correlation length 

The correlation length is not retrieved in the baseline time-series algorithm. Additional retrieval 
studies in which the correlation length to RMS height ratio was varied in creating the forward model 
tabulations showed that the time series algorithm retrieval of soil moisture is not sensitive to uncertainty 
in knowledge of the correlation length (Kim et al. 2012). Figure 21 illustrates this by experimenting 
with a ratio of correlation length to RMS height of 4, 7, 10, and 15. Even if the correlation length 
changes 0 by several dB (Figure 21a-b), the changes are nearly constant with respect to the permittivity 
(or equivalently the soil moisture) and also between the two co-pols. In such a case a different 
correlation length does not affect the locations in the permittivity solution space where the difference in 
0 between the forward model and the input measurements reaches its minimum. Therefore the retrieval 
of soil moisture would be essentially unaffected by errors in the correlation length. The exception to this 
is for rough terrain where the RMS height is 3 cm or greater and the ratio of correlation length to RMS 
height is 4 or less (Figure 21c-d). For these cases the retrieval of soil moisture and roughness becomes 
less accurate. The uniform increase in 0 due to the shorter correlation length may be explained by the 
decoupling of the roughness effect on backscatter from the dielectric effect. The decoupling would 
occur for a smooth random surface when the single scattering process is dominant (Fung et al. 1992). 

 

 

Figure 21. (a-b) NMM3D bare surface 0 as a function of polarization, the ratio of correlation length (l) to RMS 
height (s: 4, 7, 10, and 15), and roughness height (1cm and 3cm). 0 increases with the smaller ratio. (c-d) 
Difference in 0 is computed using the curves in (a-b) between three ratios of correlation length to correlation height 
(4, 7, 10) and the largest ratio (15), to show the increase in 0 with the shorter correlation length. For example, the 
largest difference in 0 is found with ratio 4 and ratio 15, and the smallest difference is with ratio 10 and ratio 15. 
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To validate the insensitivity of retrieval to correlation length, retrievals were made for four choices 
of the ratio of correlation length (l) to RMS height for roughness (s), which are available with the 
Ypsilanti bare surface data set. The mv retrieval varies among the four retrievals by 0.004 (Site 1), 0.008 
(Site 2), 0.012 (Site 3), and 0.015 (Site 4) cm3/cm3. As the roughness increases, the mv retrieval begins 
to depend on the choice of l/s, consistent with the above analysis. Nevertheless the impact of incorrect 
knowledge in l/s on the mv retrieval is less than 0.015 cm3/cm3 (Site 4). For the smooth surfaces such as 
Sites 1 and 2, the impact is negligible, which is consistent with the earlier analysis. 

 

Table 8. Time-series data cube mv retrieval validated with the bare surface data over Ypsilanti, Michigan. The ratio 
of correlation length (l) to RMS height for roughness (s) is fixed to 10 during the retrieval (denoted by the 
superscript a); is chosen to match the in situ value (superscript b).  

 
Site l/s =4 l/s = 7 l/s = 10 l/s = 15 
S-1 0.037 0.041 0.038(a) 0.038(b) 
S-2 0.043 0.048 (b) 0.051(a) 0.048 
S-3 0.043(b) 0.043 0.047(a) 0.055 
S-4 0.055(b) 0.042 0.040(a) 0.042 

 

5.3 Errors in VWC knowledge 

During the Monte-Carlo simulation of the retrieval in the presence of the Kp and VWC errors 
(Sections 3.2.3 and 3.5.2), the VWC error is set to 10% (1σ, zero-mean). One candidate source of the 
VWC for the SMAP algorithms is the SMAP HV observation. Even if the sensitivity of σ0 to VWC 
decreases towards higher VWC, the saturation of σ0

HV occurs at higher VWC values than for co-pol σ0. 
After considering the fore and aft averaging and the current-best-estimate of radar performance, the total 
error on the SMAP HV observation is 1 dB (1σ, zero-mean) at -30 dB signal (Table 3). 1 dB error 
results in the 10%-15% error up to 5 kg/m2 VWC according to the following preliminary analysis. Let 
HV and VWC described by a certain function: VWC = f(HV). An example of f() is given in Figure 22a 
by the discrete scatterer model (Arii et al. 2010) of the pasture vegetation. The corresponding error in 

VWC, ܥܹܸߜ ൌ
డ௙

డு௏
 .is shown in Figure 22b (in absolute size) and Figure 22c (in percentage) ,ܸܪߜ	

Figure 22c shows the VWC error of ~10% except when the percentage error becomes large due to the 
small VWC value. The finding would apply to various cases of surface roughness and soil moisture 
because HV is determined primarily by the volume scattering. A similar analysis will be performed for 
different vegetation classes. 
 

 
Figure 22. % error in VWC when VWC is derived from HV observation that has 1.5 dB error.  
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• SMAP Algorithm Theoretical Basis Document: L4 Surface and Root-Zone Soil Moisture Product. 
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7 ACRONYMS 

BOR  Body of Revolution 

CLASIC07 Cloud Land Atmosphere Interaction Campaign 2007 

DDA  Discrete Dipole Approximation 

DSM  Discrete Scatterer Model  

DOU  Dubois/Oh/Ulaby radar scattering model 

ECMWF European Centre for Medium-Range Forecasting 

EASE (grid) Equal-Area Scalable Earth (grid) 

GMAO  Goddard Modelling and Assimilation Office 

HDF  Hierarchical Data Format 

HYDROS Hydrosphere State (satellite) 

IEM  Integral Equation Model 

IGBP  International Geosphere-Biosphere Programme 

MODIS  Moderate-resolution Imaging Spectroradiometer 

NMM3D Numerical Maxwell Model in 3-Dimension 

NDVI  Normalized Difference Vegetation Index 

PALS  Passive/Active L-band Sensor 

PALSAR Phased Array type L-band Synthetic Aperture Radar 

PGE  Product Generation Executable 

RFI  Radio Frequency Interference 

RMS  Root Mean Square  

RMSE  Root Mean Square Error 

RVI  Radar Vegetation Index 

SAR  Synthetic Aperture Radar 

SAOCOM SAtélite Argentino de Observación COn Microondas 

SDT  (SMAP) Science Definition Team 

SDS  (SMAP) Science Data System 

SGP99  Southern Great Plains 1999 

SMAP  Soil Moisture Active Passive 

SMEX02 Soil Moisture Experiment 2002 
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SMOS   Soil Moisture Ocean Salinity (mission) 

SNR  Signal to Noise Ratio 

SPM  Small Perturbation Model 

SRTM  Shuttle Radar Topography Mission 

UAVSAR Uninhabited Aerial Vehicle Synthetic Aperture Radar 

USDA  United States Department of Agriculture 

USGS  United States Geological Survey 

UW  Univ. Washington 

VSM  Volumetric Soil Moisture 

VWC  Vegetation Water Content 

 

8 SYMBOLS 

k wave number 
mv volumentric soil moisture 
l correlation length of bare surface height  
s RMS height of bare surface 
 soil dielectric constant 
r real part of soil dielectric constant 
ri real part of soil dielectric constant at i-th time instance 

  


