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Abstract	  

This report discusses the use and modeling of sensor antenna patterns for estimating the 
spatial response function of radiometer measurements for two of the sensors used in the 
Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness Temperature ESDR 
(CETB).  Both simulated and actual antenna patterns are studied.  The relationship of the 
antenna pattern to the spatial response function is derived and explored.  A common 
model (a Gaussian function) is compared to the antenna pattern and spatial response 
function.  The model adequately represents the mainlobe of the pattern and response 
function, though it does not model the rolloff of sidelobes well.  Using a second Gaussian 
(termed a dual-Gaussian model) improves the fit.  When considering the difficulties and 
uncertainties in trying to use measured antenna patterns, and in light of the relative 
insensitivity of the CETB reconstruction processing to errors in the spatial response 
function, we conclude that the simple Gaussian approximation is adequate for modeling 
the response function in the CETB reconstruction processing. 

1 Introduction	  
The goal of the Calibrated Passive Microwave Daily EASE-Grid 2.0 Brightness 

Temperature ESDR (CETB) project (Brodzik and Long, 2014) is to produce both low-
noise gridded data and enhanced-resolution data products. The former is based on “drop 
in the bucket” (DIB) gridding which requires no information about the sensor’s 
measurement spatial response function (SRF).  However, the latter uses reconstruction 
techniques to enhance the spatial resolution and requires knowledge of the SRF for each 
measurement.  The SRF is different for each sensor channel and varies over the 
measurement swath.  Due to variations in the measurement geometry around the orbit, 
the SRF is also orbit position dependent.  For microwave radiometers the key factor 
affecting the SRF is projection of the antenna pattern on to the surface and the temporal 
integration period used to collect estimates of the brightness temperature (TB). The 
purpose of this report is to explore how the antenna pattern affects the SRF and how the 
SRF should be modeled for CETB processing. 
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2 Relation	  of	  the	  Antenna	  Pattern	  to	  the	  SRF	  
This section provides a brief background and describes how the SRF is related to 

the antenna pattern. 

2.1 	  Background	  Theory	  
Microwave radiometers measure the thermal emission, sometimes called the 

Plank radiation, radiating from natural objects (Ulaby and Long, 2014).  In a typical 
radiometer, an antenna is scanned over the scene of interest and the output power from 
the carefully calibrated receiver is measured as a function of scan position. The reported 
signal is a temporal average of the filtered received signal power. 

The observed power is related to the receiver gain and noise figure, the antenna 
loss, the physical temperature of the antenna, the antenna pattern, and the scene 
brightness temperature. In simplified form, the output power PSYS of the receiver can be 
written as (Ulaby and Long, 2014) 

PSYS = k TSYS B        (1) 

where k = 1.38×10-28 is Boltzmann's constant in W/(K Hz), B is the receiver bandwidth in 
Hz, and TSYS is the system temperature in K defined as: 

TSYS = ηl TA + (1 - ηl) Tp + (L - 1) Tp + L TREC    (2) 

where ηl is the antenna loss efficiency, Tp is the physical temperature of the antenna and 
waveguide feed, L is waveguide loss, TREC is the effective receiver noise temperature 
(determined by system calibration), and TA is the effective antenna temperature. As 
described below, the effective antenna temperature is dependent on the direction the 
antenna points and the scene characteristics.  Since the other instrument-related terms 
[i.e., (1 - ηl) Tp + (L - 1) Tp + L TREC] are approximately constant, TSYS is dominated by 
TA, which depends on the geophysical parameters of interest. 

The effective antenna temperature, TA, can be modeled as a product of the 
apparent temperature distribution TAP(θ,φ) in the look direction θ,φ (see Fig. 1) and the 
antenna radiation gain F(θ,φ) which is proportional to the antenna gain pattern G(θ,φ) 
(Ulaby and Long, 2014).  TA (in K) is obtained by integrating the product of apparent 
temperature distribution TAP (θ,φ) (in K) and the antenna pattern G(θ,φ): 

TA = Ga
-1 ∫ ∫  Gi(θ,φ) TAP(θ,φ) dθ dφ      (3) 

where 

Ga  =  ∫ ∫  Gi(θ,φ) dθ dφ       (4) 

Gi(θ,φ) is the instantaneous antenna gain for the particular channel and where the 
integrals are over the range of values corresponding to the non-negligible gain of the 
antenna. Note that the antenna pattern acts as a low pass spatial filter of the surface 
brightness distribution, limiting the primary surface contribution to the observed TB to 
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approximately the 3 dB beamwidth. The observed value can be split into contributions 
from the mainlobe and the sidelobes, 

TA = ηM TML + (1 - ηM) TSL       (5) 

where ηM is the main lobe efficiency factor defined as 

ηM = Ga
-1 ∫ ∫main lobe  Gi(θ,φ) dθ dφ      (6) 

where the integral is over (only) the main lobe of the antenna and 

TML = Ga
-1 ∫ ∫ main lobe  Gi(θ,φ) TAP(θ,φ) dθ dφ     (7) 

TSL = Ga
-1 ∫ ∫ side lobes  Gi(θ,φ) TAP(θ,φ) dθ dφ.     (8) 

Figure	  1.	  The	  apparent	  temperature	  distribution	  as	  seen	  by	  the	  radiometer	  antenna.	  The	  antenna	  
temperature	  TA	  is	  the	  normalized	  integral	  of	  product	  of	  the	  temperature	  distribution	  and	  the	  antenna	  
gain	  pattern.	  The	  apparent	  temperature	  of	  the	  surface	  seen	  through	  the	  atmosphere	  includes	  the	  

upwelling	  radiation,	  Tup,	  from	  the	  atmosphere	  plus	  the	  attenuated	  surface	  brightness	  temperature,	  Tb,	  
and	  the	  surface	  scattered	  brightness	  temperature,	  Tsc.	  Brightness	  temperature	  contributions	  from	  extra-

terrestrial	  sources	  are	  grouped	  in	  Tsky	  (Ulaby	  and	  Long,	  2014).	  

For downward-looking radiometers, the apparent brightness temperature 
distribution includes contributions from the surface and the intervening atmosphere 
(Ulaby and Long, 2014). For a spaceborne sensor this can be expressed as, 

TAP (θ,φ) = [TB(θ,φ) + Tsc(θ,φ)] e-τ sec θ + Tup(θ)     (9) 

where TB(θ,φ) is the surface brightness temperature, Tsc(θ,φ) is the surface scattering 
temperature, τ is the total effective optical depth of the atmosphere and Tup is the 
effective atmospheric upwelling temperature. Tup is the effective radiometric temperature 



	   3/2/15	   Page	  4	  of	  55	  

of the atmosphere, which depends on the temperature and density profile, atmospheric 
losses, clouds, rain, etc. 

Ignoring incidence and azimuth angle dependence, the surface brightness 
temperature is,  

TB = ϵTP         (10) 

where ϵ is the emissivity of the surface and TP is the physical temperature of the surface. 
The emissivity is a function of the surface roughness and the permittivity of the surface, 
which are related to the geophysical properties of the surface (Ulaby and Long, 2014).  In 
geophysical studies, the key parameter of interest is ϵ or TB. 

The surface scattering temperature, Tsc(θ,φ), is the result of downwelling 
atmospheric emissions which are scattered off of the rough surface toward the sensor.  
This signal depends on the scattering properties of the surface (surface roughness and 
dielectric constant) as well as the atmospheric emissions directed toward the ground.  
Note that azimuth variation with brightness temperature has been observed over the 
ocean (Wentz, 1992), sand dunes (Stephen and Long, 2005), and snow in Antarctica 
(Long and Drinkwater, 2000).  Vegetated and sea ice-covered areas generally have little 
or no azimuth brightness variation. 

2.2 	  Signal	  Integration	  
The received signal power is very noisy.  To reduce the measurement variance, 

the received signal power is averaged over a short “integration period.”  Even so, the 
reported measurements are noisy due to the limited integration time available for each 
measurement. The uncertainty is expressed as ΔT, which is the standard deviation of the 
temperature measurement. ΔT is a function of the integration time and bandwidth used to 
make the radiometric measurement and is typically inversely related to the time-
bandwidth product (Ulaby and Long, 2014).  Increasing the integration time and/or 
bandwidth reduces ΔT. High stability and precise calibration of the system gain is 
required to accurately infer the brightness temperature TB from the sensor power 
measurement PSYS.  

Because the antenna is scanning during the integration period, the effective 
antenna gain pattern of the measurements is a smeared version of the antenna pattern.  In 
the smeared case, we replace Gi in Eqs. 3 & 4 with the “smeared” version of the antenna, 
Gs where 

Gs(θ, φ)  = Ti
-1 ∫  Gi(θ, φ + Δφ t) dt      (11) 

where Ti is the integration period, Δφ is the rotation rate, and the integral limits are -Ti 
and 0.  Note that because Ti is very short, the net effect is primarily to widen the main 
lobe.  Nulls in the pattern tend to be eliminated and the sidelobes widened. 

Because the antenna pattern has been specifically designed to minimize the power 
from directions not from the surface, we can neglect the antenna smearing from non-
surface contributions and concentrate on the pattern smearing at the surface.  The 
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smeared antenna pattern Gs(θ, φ) projected on the surface at a particular time defines the 
“measurement spatial response function” (SRF) of the corresponding TB measurement. 

Note from Eq. 9 that TAP(θ,φ) consists primarily of an attenuated contribution 
from the surface (i.e., TB) plus scattered and upwelling terms.  We note that the reported 
TA values compensate or correct (to some degree) for these terms.  

Let TA’ denote the corrected TA measurement.  It follows that we can re-write Eq. 
9 in terms of the corrected TA and the surface TB value as 

TA’ = Ga
-1 ∫ ∫  Gs(θ,φ) TB(θ,φ) dθ dφ.      (12) 

We can express this result in terms of the surface coordinates x and y as (noting 
that for a given x,y location and time, the antenna elevation and azimuth angles can be 
computed) 

TA’ = Gb
-1 ∫ ∫  Gs(x,y) TB(x,y) dx dy      (13) 

where 

Gb  =  ∫ ∫  Gs(x,y) dx dy.       (14) 

We define the SRF to be 

SRF(x,y) = Gb
-1 Gs(x,y).       (15) 

So that,  

TA’ =  ∫ ∫  SRF(x,y) TB(x,y) dx dy.      (16) 

Thus, the measurements TA’ can be seen to be the integral of the product of the SRF and 
the surface brightness temperature and the SRF is a function of the antenna pattern, the 
observation geometry, and the integration period. 

3 Antenna	  Pattern	  Accuracy	  and	  the	  SRF	  
The previous section shows that each measurement is the SRF-weighted average 

of TB and that the antenna pattern and signal integration coupled with the geometry 
determine the SRF.  In principle very precise knowledge of the antenna pattern is 
required to properly calibrate the TB measurements.  Since high precision antenna pattern 
measurement is notoriously difficult, uncertainty in the antenna pattern can be quite large 
compared to the desired measurement.  We note, however, that in calibrating the 
estimated TB values, only the integrated factors such as TML, TSL, and ηM (among others) 
are needed.  Fortunately, these can be determined more precisely post launch through 
careful data analysis than they can be computed from pre-launch antenna calibration 
measurements.  Thus, knowledge of the precise antenna pattern is not essential for system 
TB calibration.  The antenna pattern calibration measurements primarily serve as a way of 
predicting performance and computing first guess parameter values that are later refined 
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during the post-launch period.  Determining the SRF, however, does require knowledge 
of the antenna pattern. 

This raises a number of questions:  for example, how accurately do we need to 
know the antenna pattern?  And, since the computation can be complicated, can 
sufficiently accurate, simplified models for the effective SRF be developed? 

3.1 Pattern	  Accuracy	  
Fundamental to answering these questions is the question, how accurately does 

the SRF need to be known?  The study by Long and Brodzik (2015) broadly considered 
this question for the CETB.  They found that since full reconstruction was not needed for 
CETB data production, significant errors in the SRF could be tolerated so long as its 3dB 
size was approximately correct.  This is a fortunate result since the antenna patterns for a 
number of important satellite radiometers (e.g., SMMR) are not known precisely.  
Further, even for sensors for which antenna patterns are available there is some 
uncertainty in the orientation of the ground-measured patterns and the on-orbit 
orientation.  In the case of SSMIS the antenna pattern measurements are made at the 
same angular spacing for all frequencies.  This is ideal for the low frequency channels but 
the available antenna pattern data is too coarse to properly resolve the sidelobes of the 90 
GHz channels (see later results).  We also note that antenna gain patterns vary with 
frequency, even within a single channel.  In such a case the effective antenna pattern is 
the average of the patterns at each frequency used, which requires averaging of the 
measured patterns. 

With these considerations in mind, we conclude that we need only estimate the 
effective antenna pattern to a reasonable level of accuracy that includes accurately 
describing the main lobe size, i.e. over the main lobe the model should be better than 
order 1 dB over the 3dB mainlobe.  In the remainder of this section we consider the 
antenna pattern.  The full SRF is addressed later. 

For approximating the antenna pattern we desire a simple, yet robust model that 
can be easily applied in all cases.  A Gaussian function is a particularly simple and 
commonly used model that, as shown below, fits the main lobe well.  To fit the sidelobes, 
adding a second, flatter Gaussian improves the fit (see Appendix B).  However, this is not 
needed in our application, i.e. the side lobe performance can be ignored due to the very 
small contribution of the signal in the sidelobes resulting from the low gain there. 

In the following we show that a simple Gaussian approximation based on the 3dB 
footprint can be used to accurately model the mainlobe of the antenna gain pattern.  
Extending the model to a so-called dual-Gaussian model improves the model to include 
the sidelobes.  We first consider idealized patterns for the SSM/I, then actual measured 
patterns for SSMIS. 

3.2 Approximate	  SSM/I	  Antenna	  Pattern	  Modeling	  

Lacking a measured SSM/I antenna pattern, we use an approximate model based 
on a particular assumed aperture function discussed in Appendix C.  The following is 
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based on using this antenna pattern.  The results for using an alternate pattern are 
provided in Appendix C.  In this section, we consider antenna gain patterns using a 
squared sine-squared antenna pattern, which is similar to those commonly used in 
microwave antennas.  We consider the effects of scanning and integration on the effective 
pattern and the accuracy of a Gaussian fit to the gain pattern for the 19, 37, and 85 GHz 
SSM/I channels.  Figure 2 illustrates the geometry of a typical measurement.  The 
effective footprint size is the projection of the 3dB integrated antenna response on to the 
surface. 

To compute the effective antenna pattern after integration, the geometry 
illustrated in Fig. 2 is used.  Knowing the antenna rotation rate, the incidence angle, and 
platform altitude (see the Appendix), the azimuth angle range that corresponds to the 
temporal integration window can be computed.  The integrated pattern is then computed 
by summing shifted azimuth gain patterns.  The resulting integrated pattern is then 
normalized to a unity peak gain. 

 
Figure	  2.	  Radiometer	  measurement	  geometry.	  	  The	  yellow	  box	  illustrates	  the	  “box-car”	  3dB	  pattern	  

approximation	  at	  the	  surface.	  

Figure 3 shows the azimuth and elevation patterns for the 19 GHz channel, while 
Figs. 4 and 5 similarly show the patterns for 37 and 85 GHz channels.  These are 
intended to be representative, but do not need to be exact to illustrate the points 
considered.  Note that the effects of the integration on the antenna pattern in the azimuth 
direction vary with channel, but tend to eliminate the pattern nulls.  The integration does 
not affect the elevation pattern very much. The Gaussian fit models the main lobe fairly 
well (within a few tenths of a dB), but it does not include the sidelobes.  The dual-
Gaussian model (described in Appendix B) fits the pattern envelope quite well at low 
frequencies, except in the areas of the nulls which have low gain and thus do not 
contribute much to the measured brightness temperature.  Both Gaussian fits are less 
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accurate at high frequencies, but still accurately describe the mainlobe 3dB width.  Given 
the relative insensitivity of the reconstruction to the details of the pattern roll off below -
10 dB, the single Gaussian is subjectively judged to be adequate for this project. 

The 3D patterns showing the same effects are illustrated in Figs. 6-8.  Again, it 
apparent that a Gaussian does well for modeling the main lobe but not the side lobes.  
Though not shown here, using a dual-Gaussian works well in the 2D case, too. 
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Figure	  3.	  Simulated	  19	  GHz	  antenna	  gain	  pattern	  slices.	  	  	  (upper	  two	  panels)	  Azimuth.	  (lower	  two	  panels)	  
Elevation.	  	  (top	  and	  third	  panels)	  The	  red	  line	  shows	  the	  ideal	  instantaneous	  antenna	  pattern.	  The	  blue	  
line	  shows	  a	  slice	  through	  the	  azimuthally	  integrated	  pattern	  for	  a	  single	  measurement.	  The	  green	  line	  is	  
a	  Gaussian	  approximation	  to	  the	  gain	  pattern	  where	  the	  Gaussian	  3dB	  width	  is	  the	  same	  as	  the	  antenna	  
pattern.	  	  The	  dotted	  black	  line	  shows	  the	  dual-Gaussian	  approximation.	  	  (second	  and	  fourth	  panels)	  The	  
blue	  line	  shows	  the	  difference	  between	  the	  gain	  pattern	  and	  Gaussian	  approximation.	  	  	  The	  black	  line	  is	  

the	  difference	  between	  the	  pattern	  and	  dual-Gaussian.	  
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Figure	  4.	  Simulated	  37	  GHz	  antenna	  gain	  pattern	  slices.	  	  See	  caption	  for	  Fig.	  3	  for	  explanation	  of	  lines.	  
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Figure	  5.	  Simulated	  37	  GHz	  antenna	  gain	  pattern	  slices.	  	  See	  caption	  for	  Fig.	  3	  for	  explanation	  of	  lines.	  
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Figure	  6.	  Simulated	  19	  GHz	  2D	  antenna	  gain	  patterns.	  (ul)	  Instantaneous	  pattern.	  	  (ur)	  Integrated	  

pattern.	  	  	  Note	  elongation	  in	  azimuth	  direction.	  	  (ll)	  Difference	  between	  pattern	  and	  Gaussian	  in	  normal	  
space.	  	  (lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  
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Figure	  7.	  Simulated	  37	  GHz	  2D	  antenna	  gain	  patterns.	  (ul)	  Instantaneous	  pattern.	  	  (ur)	  Integrated	  

pattern.	  	  	  Note	  elongation	  in	  azimuth	  direction.	  	  (ll)	  Difference	  between	  pattern	  and	  Gaussian	  in	  normal	  
space.	  	  (lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  
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Figure	  8.	  Simulated	  85	  GHz	  2D	  antenna	  gain	  patterns.	  (ul)	  Instantaneous	  pattern.	  	  (ur)	  Integrated	  

pattern.	  	  	  Note	  elongation	  in	  azimuth	  direction.	  	  (ll)	  Difference	  between	  pattern	  and	  Gaussian	  in	  normal	  
space.	  	  (lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  

	  

3.3 SSMIS	  Antenna	  Patterns	  

For the SSMIS, detailed antenna pattern measurements are available from the 
Aerospace Corporation for for each of the flight antennas (Donald Boucher, personal 
communication).  In this section, we use the measured patterns to repeat the analysis 
previously shown for simulated SSM/I measurements.  Two-D patterns were measured at 
each of several frequencies within the bandwidth of each channel.  However, noting their 
similarity within a band, the uncertainty in knowing precisely how the patterns are 
oriented for a particular sensor, we use a single frequency near the band center.  The 
original patterns are measured at 1 deg increments.  For calculating the integrated 
patterns, they are first interpolated to 0.1 deg increments.  The resulting slices patterns 
are shown in Figs. 9-11.  A two-D pattern was created by interpolating in azimuth angle 
at each fixed elevation using the four available azimuth slices.  The results are illustrated 
in Figs. 12-14.  Only a single polarization at each channel frequency is considered. 
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Each plot consists of 4 elevation angle slices at different azimuth angles, 0, 45, 
90, and 135.  (Slices at 180, 225, 270, and 315 are redundant.)  It is not certain how the 
flight antenna azimuth angle is aligned with the calibration azimuth angle.  A Gaussian fit 
to the main lobe is shown for the 0 and 90 deg azimuth slices.  These reasonably well 
approximate the shape of the main lobe.  Note the while the 19 GHz channel has well 
defined sidelobes, the sidelobes for the other channel are less well defined and that the 
coarse measurement resolution for the 90 GHz channel results in poorly defined 
sidelobes.  Similarly, for the 2D case, the Gaussian model does a good job of describing 
the mainlobe, though it does not fit the sidelobes. 

 

 
Figure	  9.	  SSMIS	  measured	  19	  GHz	  antenna	  gain	  pattern	  slices.	  



	   3/2/15	   Page	  16	  of	  55	  

 
Figure	  10.	  SSMIS	  measured	  37	  GHz	  antenna	  gain	  pattern	  slices.	  

 
Figure	  11.	  SSMIS	  measured	  90	  GHz	  antenna	  gain	  pattern	  slices.	  
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Figure	  12.	  SSMI	  measured	  19	  GHz	  2D	  antenna	  gain	  patterns.	  (ul)	  Instantaneous	  pattern.	  	  (ur)	  Integrated	  
pattern.	  	  	  Note	  smearing	  of	  sidelobe	  nulls.	  (ll)	  Difference	  between	  pattern	  and	  Gaussian	  in	  normal	  space.	  	  

(lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  

	  

Figure	  13.	  SSMI	  measured	  37	  GHz	  2D	  antenna	  gain	  patterns.	  (ul)	  Instantaneous	  pattern.	  	  (ur)	  Integrated	  
pattern.	  	  	  Note	  smearing	  of	  sidelobe	  nulls.	  (ll)	  Difference	  between	  pattern	  and	  Gaussian	  in	  normal	  space.	  	  

(lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  
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Figure	  14.	  SSMI	  measured	  37	  GHz	  2D	  antenna	  gain	  patterns.	  (ul)	  Instantaneous	  pattern.	  	  (ur)	  Integrated	  
pattern.	  	  	  Note	  smearing	  of	  sidelobe	  nulls.	  (ll)	  Difference	  between	  pattern	  and	  Gaussian	  in	  normal	  space.	  	  

(lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  

4 Antenna	  Pattern	  to	  SRF	  Transformation	  
The previous section considered modeling the antenna pattern.  Here the SRF is 

considered.  Recall from Eqs. 14 and 15 that the SRF is the projection of the integrated 
antenna pattern on the Earth’s surface, see Fig. 2.  Computing the SRF from the antenna 
pattern requires transforming the antenna pattern expressed in azimuth and elevation 
angles into gain at the surface expressed in horizontal displacement from the location of 
the antenna boresite on the Earth’s surface.   

A brief philosophical comment regarding accuracy: When there is a lot of 
uncertainty in the inputs, it may not make sense to model the system too precisely (i.e., 
use overly complicated computational models) since errors in the system output will be 
dominated by errors or noise in the input rather than by model approximations.  Of 
course, one must verify that the modelling approximations do not introduce significant 
errors.  

With this in mind, we note that it is possible to use essentially exact computations 
in transforming from antenna az/el coordinates to ground position coordinates.  However, 
significantly more information about the orbit, scan angle, spacecraft attitude, etc. are 
required by such a model.  Instead, we use a number of simplifying assumptions that 
provide adequate accuracy and permit better insight into the computation.  These are 
summarized below. 
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1. Since the angle range of interest is small (typically less than 10 deg), we can 
treat azimuth and elevation angles as orthogonal. 

2. When computing the approximate slant range, the Earth can be treated as 
spherical. 

3. The SRF is evaluated on a plane tangent to the Earth’s surface at the center of 
the measurement footprint. 

4. The frequency dependence of TB within a single channel can be ignored. 

5. The slant range is long enough and angles small enough that local ground 
distance and arc length are essentially the same. 

From the geometry shown in Fig. 2, it can be shown that the slant range R can be 
computed from the spacecraft height H, the incidence angle θ, and the radius of the Earth 
RE using the formula 

R = [RE / sin(180-θ)] sin[θi – sin-1{RE sin(180-θi) / (RE + H)}]  (17) 

Aligning the x coordinate with the look direction (azimuth angle = 0 deg), on the 
locally tangent plane, the x and y displacements in terms of the elevation dθ and azimuth 
angle displacements dφ from boresite are 

    dx ≈ R dθ / sin θ       (18) 

    dy ≈ R dφ 

Since the elevation angle for the SSM/I is approximately 53 deg, 1/sin θ ≈ 1.252 
and so the nominally circular antenna pattern is elongated on the surface in the range 
direction by about 25%, resulting in an elliptical footprint on the surface.  As previously 
noted, the instantaneous antenna pattern is smeared in the rotation (azimuth) direction by 
the temporal signal averaging.  The SRF differs from the antenna pattern. 

Figure 15 is the result of projecting the simulated SSM/I antenna patterns shown 
in Fig. 3 onto the surface.  In these plots the Gaussian fits shown were computed for the 
projected antenna pattern on the surface.  Slices for the other SSM/I channels are shown 
in Figs. 16 and 17.  Note that the single Gaussian model fits the main lobe quite well in 
both x (elevation) and y (azimuth).  The dual-Gaussian fits better, though neither model 
handles nulls in the sidelobe region.  Two-D patterns are shown in Figs. 18-20. 

Patterns for SSMIS are shown in Figs. 21-26.  The Gaussian fits for the SRFs 
estimated from the actual measured SSMIS antenna patters are reasonable, but not as 
good as for the simulated SSM/I.  Nevertheless, the accuracy is judged acceptable since 
the gain difference between the integrated patterns and the model fit is less than 1 dB 
over the region of the main lobe that has gain greater than -10dB below the peak. 
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Figure	  15.	  Simulated	  19	  GHz	  antenna	  gain	  pattern	  slices	  projected	  on	  to	  the	  Earth’s	  surface.	  	  Compare	  
with	  Fig.	  3.	  	  (upper	  two	  panels)	  Azimuth.	  (lower	  two	  panels)	  Elevation.	  	  (top	  and	  third	  panels)	  The	  red	  
line	  shows	  the	  ideal	  instantaneous	  antenna	  pattern.	  The	  blue	  line	  shows	  a	  slice	  through	  the	  azimuthally	  
integrated	  pattern	  for	  a	  single	  measurement.	  The	  green	  line	  is	  a	  Gaussian	  approximation	  to	  the	  grain	  
pattern	  where	  the	  Gaussian	  3dB	  width	  is	  the	  same	  as	  the	  antenna	  pattern.	  	  The	  dotted	  black	  line	  shows	  

the	  dual-Gaussian	  approximation.	  	  (second	  and	  fourth	  panels)	  The	  blue	  line	  shows	  the	  difference	  
between	  the	  gain	  pattern	  and	  Gaussian	  approximation.	  	  	  The	  black	  line	  is	  the	  difference	  between	  the	  

pattern	  and	  dual-Gaussian.	  
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Figure	  16.	  Simulated	  37	  GHz	  antenna	  gain	  pattern	  slices	  projected	  on	  to	  the	  Earth’s	  surface.	  See	  caption	  

for	  Fig.	  15.	  
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Figure	  17.	  Simulated	  85	  GHz	  antenna	  gain	  pattern	  slices	  projected	  on	  to	  the	  Earth’s	  surface.	  See	  caption	  

for	  Fig.	  15.	  
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Figure	  18.	  Simulated	  19	  GHz	  2D	  antenna	  gain	  patterns	  projected	  onto	  the	  Earth’s	  surface.	  	  (ul)	  
Instantaneous	  projected	  antenna	  pattern.	  	  (ur)	  Integrated	  pattern,	  i.e.,	  the	  SRF.	  	  (ll)	  Difference	  between	  

SRF	  and	  Gaussian	  in	  normal	  space.	  	  (lr)	  Difference	  between	  SRF	  and	  Gaussian	  in	  dB.	  

	  

Figure	  19.	  Simulated	  37	  GHz	  2D	  antenna	  gain	  patterns	  projected	  onto	  the	  Earth’s	  surface.	  	  (ul)	  
Instantaneous	  projected	  antenna	  pattern.	  	  (ur)	  Integrated	  pattern,	  i.e.,	  the	  SRF.	  	  (ll)	  Difference	  between	  

SRF	  and	  Gaussian	  in	  normal	  space.	  	  (lr)	  Difference	  between	  SRF	  and	  Gaussian	  in	  dB.	  
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Figure	  20.	  Simulated	  SSM/I	  85	  GHz	  2D	  antenna	  gain	  patterns	  projected	  onto	  the	  Earth’s	  surface.	  	  (ul)	  
Instantaneous	  projected	  antenna	  pattern.	  	  (ur)	  Integrated	  pattern,	  i.e.,	  the	  SRF.	  	  (ll)	  Difference	  between	  

SRF	  and	  Gaussian	  in	  normal	  space.	  	  (lr)	  Difference	  between	  SRF	  and	  Gaussian	  in	  dB.	  

 
Figure	  21.	  SSMIS	  	  projected	  19	  GHz	  antenna	  gain	  pattern	  slices.	  	  X	  axis	  is	  displacement	  in	  km.	  



	   3/2/15	   Page	  25	  of	  55	  

 
Figure	  22.	  SSMIS	  	  projected	  37	  GHz	  antenna	  gain	  pattern	  slices.	  	  X	  axis	  is	  displacement	  in	  km.	  

	  

 
Figure	  23.	  SSMIS	  	  projected	  90	  GHz	  antenna	  gain	  pattern	  slices.	  	  X	  axis	  is	  displacement	  in	  km.	  
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Figure	  24.	  SSMIS	  measured	  19	  GHz	  2D	  antenna	  gain	  patterns.	  (ul)	  Instantaneous	  pattern.	  	  (ur)	  Integrated	  
pattern.	  	  	  Note	  smearing	  of	  sidelobe	  nulls.	  (ll)	  Difference	  between	  pattern	  and	  Gaussian	  in	  normal	  space.	  	  

(lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  

	  
Figure	  25.	  SSMIS	  measured	  37	  GHz	  2D	  antenna	  gain	  patterns.	  	  See	  caption	  Fig.	  24.	  
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Figure	  26.	  SSMIS	  measured	  90	  GHz	  2D	  antenna	  gain	  patterns.	  	  See	  Caption	  Fig.	  25.	  

5 Antenna	  Pattern	  Ground	  Spectrum	  
In this section the wavenumber spectrum of the SRF and the antenna pattern as 

projected on the surface are considered.  This provides insight into the spatial frequency 
content of the TB measurements and hence the resolution enhancement capability.  

5.1 Relation	  of	  the	  Antenna	  Pattern	  to	  the	  Effective	  
Aperture	  Illumination	  Function	  

It is well known that the far-field antenna pattern can be expressed as the Fourier 
transform of the electric field across the effective aperture of the antenna (Ulaby and 
Long, 2014).  Since the latter is, by definition, finite extent, this implies that the antenna 
pattern is bandlimited, i.e., there is an upper limit to the wavenumber spectral content of 
the antenna pattern.  This argument has been use to suggest that the wavenumber 
spectrum (the two dimensional spatial Fourier transform) of the SRF is also bandlimited.  
However, it should be noted that the aperture-to-far-field Fourier transform is computed 
in angular units, while the spectrum of the SRF is computed in distance on the surface.  
There is a non-linear transformation between angle and surface distance.  Further, the 
angular Fourier transform is computed over a sphere and is periodic in angle whereas the 
surface spectrum Fourier is computed over a finite domain and is therefore infinite in 
extent.  In the following we consider these issues in more detail and compute the 
spectrum of the SRF. 
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Figure	  27.	  (top)	  Geometry	  of	  circular	  aperture.	  (bottom)	  Antenna	  pattern	  assuming	  constant	  
illumination,	  i.e.	  Ea=constant	  over	  the	  aperture,	  zero	  elsewhere.	  (Ulaby	  and	  Long,	  2014)	  

For simplicity, we consider a circularly symmetric antenna, though similar results 
can be derived for a general antenna aperture and antenna pattern.  Figure 27 illustrates 
the antenna aperture and resulting radiation pattern.  Kirchoff’s scalar diffraction theory 
shows that the radiated far-field electric field E(R,θ,φ) is related to the electric field 
across the aperture by the general expressions (Ulaby and Long, 2014) 

€ 

E(R,θ,ϕ) =
j
λ
e− jkR

R
⎛ 

⎝ 
⎜ 

⎞ 

⎠ 
⎟ h(θ,ϕ)

h(θ,ϕ) = Ea (xa,ya )exp[ jk sinθ (∫∫ xa cosϕ + ya sinϕ)]dxadya

  (19) 

where j=√-1, k=2π/λ where λ is the microwave wavelength, and the double integral is 
computed over the region for which aperture illumination function Ea is non-zero – a 
finite region that is the effective antenna aperture. The exponential factor in parenthesis is 
the spherical propagation factor. 

For a circular aperture with circularly symmetric aperture illumination, a 
rectangular to polar transformation is used with 
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€ 

xa = ra cosφa
ya = ra sinφa

         (20) 

then, 

€ 

h(θ,ϕ) = Ea (ra )exp[ jkra sinθ(cosφa cosϕ + sinφa sinϕ)]dradφa
0

a

∫
0

2π

∫

h(θ,ϕ) = Ea (ra )exp[ jkra sinθ cos(φa −ϕ)]dradφa
0

a

∫
0

2π

∫

h(θ,ϕ) = h(θ) = 2π Ea (ra )J0(kra sinθ )dradφa
0

2π

∫

  (21) 

where J0(k) is a zeroth order Bessel function of the first kind, 

€ 

J0(k) = exp[ jkx cos(φa −ϕ)]dφa
0

2π

∫       (22) 

The far-field antenna pattern F(θ,φ) is then F(θ,φ)=|E(R,θ,φ)R|2/2η0 where η0 is the 
impedance of free space (Ulaby and Long, 2014). 

The resulting antenna pattern for the case where Ea=constant is shown in Fig. 27.  
In general, however, the illumination function is tapered or windowed.  This reduces the 
sidelobes and the expense of a wider mainlobe, but does not change the region of support 
of the antenna, i.e. the true “bandwidth” of the pattern remains the same, though parts of 
it are attenuated differently.  The simulated SSM/I pattern previously considered in this 
report uses a cosine-squared (also sometime termed a sine-squared) taper function. 

5.2 Relationship	  of	  the	  SRF	  Wavenumber	  Spectrum	  to	  
the	  Antenna	  Illumination	  Function	  

As previously discussed, the SRF results from projecting the antenna pattern onto 
the surface (see Fig. 2) and integrating the moving pattern over the integration period.  
The resulting gain pattern on the surface is a non-linearly stretched and smeared version 
of the antenna pattern.  Note that due to the curvature of the earth, not all of the antenna 
pattern will be projected onto the Earth’s surface.  Thus the SRF contains only part of the 
antenna pattern, i.e. the pattern is “clipped”.  The clipping introduces a rectangular 
window or boxcar function into the transformation between antenna pattern and SRF, 
though where the response function has low gain. 

We are interested in the wavenumber (i.e., the spatial) spectrum of the SRF, 
which is the Fourier transform (in x,y on the surface) of the SRF.  This is related to the 
aperture illumination function, but the transformation is non-linear due to the non-linear, 
clipped projection.  This non-linearity can produce a broader region of support for the 
SRF wavenumber spectrum than suggested by the finite region of support of the antenna 
pattern illumination function. 
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In principle we can analytically compute the wavenumber (spatial) spectrum of 
the SRF from the projecting and clipping function.  However, this is quite complicated.  
To provide insight into the nature of the various spectra, we first use a simplified 
representation of the problem. 

Referring to the geometry illustrated in Fig. 2 and the pattern illustrated in Fig.  
27, the antenna pattern is a sinc2-like function in the variable sin θ where θ is the 
elevation angle.  Using the simplified projection expressions in Eqs. 17 and 18 (note that 
there is some potential notational confusion since θ is also used for both elevation angle 
and the local incidence angle – a standard convention in both cases), the antenna pattern 
on the surface as a function of ground distance is a non-linearly “stretched” copy of the 
pattern due to the oblique viewing angle.  Note that locally the curvature of the Earth was 
earlier ignored.  However, as the distance from the intersection of the boresite vector and 
Earth’s surface increases, the tangent plane approximation is less appropriate, and it can 
be seen that only part of the antenna pattern intersects the surface.  Thus the projected 
antenna gain pattern on the Earth’s surface is a clipped version of the antenna pattern.  
This can be modeled as the multiplication of the stretched antenna pattern by a 
rectangular window or boxcar function.  (Technically, since the antenna pattern is 
proportional to the magnitude of the electric field at a fixed radius from the antenna, but 
the projection distance changes as a function of angle, the clipping window should 
include a taper function based on varying distance from the antenna and the Earth’s 
surface.  For simplicity, this is ignored in the following discussion and in the numerical 
results presented later.  The taper does not affect the region of support, only the 
magnitude of the spectrum.) 

The projected antenna pattern on the surface is thus a non-linearly stretched and 
windowed version of the original pattern.  Recall from signal processing theory that the 
Fourier transform of the product of two functions is the convolution of the Fourier 
transforms of the individual functions.  In this case, the convolution will yield a wider 
region of support in frequency domain than either of the individual functions has.  
Further since the window function is finite length, its Fourier transform is infinite in 
extent (though it can have nulls).  The convolution of an infinite function with any 
function results in an infinite function.  It thus becomes apparent that the region of 
support of the SRF is not bounded, i.e., it is not bandlimited, even though the aperture 
illumination pattern is.  However, the high wavenumber portion of the spectrum may 
unrecoverable due to low gain, and there may be nulls in the wavenumber spectrum. 

Figure 28 illustrates a slice through the simulated 19 GHz SSM/I pattern over the 
full angular extent of the pattern (the effects of spacecraft blockage are ignored).  The 
corresponding Fourier transform is also shown.  Due to the approximation used in 
computing the far-field pattern, the spectrum is not perfect, but exhibits high frequency 
information. Other channels have similar results, though for shorter wavelengths the 
pattern is narrower and the frequency support wider. 
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Figure	  28.	  (top)	  Magnitude	  squared	  plot	  of	  slice	  through	  the	  simulated	  19	  GHz	  SSM/I	  channel	  antenna	  
pattern.	  	  (bottom)	  Magnitude	  Fourier	  transform.	  	  This	  is	  the	  magnitude	  of	  the	  aperture	  illumination	  
function.	  	  Note	  that	  the	  region	  of	  support	  is	  (effectively)	  limited	  to	  low	  frequencies	  due	  to	  the	  finite	  

extent	  of	  the	  aperture	  illumination	  function.	  

To compute the spectrum of the antenna pattern projected onto the Earth’s surface 
along the elevation axis we again use the geometry shown in Fig. 2.  Additional variables 
are introduced in Fig. 29.  To enable computation on a larger area, rather than use a 
tangent plane approximation, the arc length on the surface is used here.   
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Figure	  29.	  Geometry	  for	  arc-length	  computation.	  

Given the elevation angle and height, for a particular displacement Δx the Earth 
angles α and α0 can be computed using 

ξ = sin-1[(Re/(Re+H)) sin (180-θ)]      (23) 

α = θ - ξ 

α0 = α - Δx / Re 

The antenna elevation angle Δθ corresponding to the point of interest is computed as 

R0 = sqrt[(Re+H)2 + Re
2-2(Re+H)Re cos α0]     (24) 

ξ0 = sin-1[(Re/R0) sin α0] 

Δθ = ξ - ξ0 

Computation of the azimuth angle is more complicated and not treated here. 

Figures 30-32 illustrate the magnitude Fourier transform of elevation slices of the 
antenna pattern projected on to the Earth’s surface.  Note that the spatial spectrum is in 
wavenumber space which has units of inverse ground distance and that the region of 
support extends to a broader range of spatial frequencies, i.e. the rolloff is slower.  This 
suggests we can recover more spatial information. Based on experience, in practice we 
can only hope to recover information when the gain is higher than -10 dB, or perhaps -20 
dB in the best case.  Table 1 summarizes the cutoff points for all the channels at different 
gain thresholds. 
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Table	  1.	  Cutoff	  scales	  in	  km	  for	  simulated	  SSM/I	  channels.	  

Channel Spatial Scale (in km) at gain cutoff 
Frequency -20 dB -10 dB -3 dB 

19 27.3 36.5 63.8 
37 14.4 19.1 33.3 
85 6.3 8.3 14.5 

 
Figure	  30.	  (top)	  Antenna	  pattern	  for	  the	  simulated	  19	  GHz	  SSM/I	  channel	  projected	  on	  to	  the	  Earth	  
surface	  versus	  (arc	  length)	  displacement	  along	  the	  surface.	  	  The	  x	  axis	  is	  the	  range	  over	  which	  the	  
platform	  is	  visible	  from	  the	  surface.	  	  Note	  the	  variable	  spacing	  of	  the	  sidelobes.	  .	  	  Compare	  to	  Fig.	  3.	  

(bottom)	  Magnitude	  Fourier	  transform	  of	  slice	  of	  the	  projected	  antenna	  pattern.	  	  The	  vertical	  line	  is	  at	  --
20	  dB	  and	  corresponds	  to	  a	  27	  km	  spatial	  scale.	  
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Figure	  31.	  (top)	  Antenna	  pattern	  for	  the	  simulated	  37	  GHz	  SSM/I	  channel	  projected	  on	  to	  the	  Earth	  
surface	  versus	  (arc	  length)	  displacement	  along	  the	  surface.	  	  The	  x	  axis	  is	  the	  range	  over	  which	  the	  
platform	  is	  visible	  from	  the	  surface.	  	  Note	  the	  variable	  spacing	  of	  the	  sidelobes.	  .	  	  Compare	  to	  Fig.	  3.	  

(bottom)	  Magnitude	  Fourier	  transform	  of	  slice	  of	  the	  projected	  antenna	  pattern.	  	  The	  vertical	  line	  is	  at	  --
20	  dB	  and	  corresponds	  to	  a	  14.4	  km	  spatial	  scale.	  

We note that since these results are based on approximate (i.e., simulated) antenna 
patterns the results look more precise than they probably really are, particularly since the 
analytic antenna pattern assumed rolls off faster than the realistic.  Nevertheless we can 
observe that using the -10 dB cutoff, the 25 km sample spacing provided by the 
instrument oversamples the 19 GHz channels, but is about the right value for the 37 GHz 
channels.   The 85 GHz channels are sampled at 12.5 km, and so they are slightly 
undersampled.  Note, however that to achieve effective recovery of the frequency content 
down to -10 dB (or more), some sort of reconstruction processing is required.  Classic 
drop in the bucket resolution is limited to approximately the 3 dB resolution, which this 
table suggests is much coarser than the sampling. 
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Figure	  32.	  (top)	  Antenna	  pattern	  for	  the	  simulated	  85	  GHz	  SSM/I	  channel	  projected	  on	  to	  the	  Earth	  
surface	  versus	  (arc	  length)	  displacement	  along	  the	  surface.	  	  The	  x	  axis	  is	  the	  range	  over	  which	  the	  
platform	  is	  visible	  from	  the	  surface.	  	  Note	  the	  variable	  spacing	  of	  the	  sidelobes.	  .	  	  Compare	  to	  Fig.	  3.	  

(bottom)	  Magnitude	  Fourier	  transform	  of	  slice	  of	  the	  projected	  antenna	  pattern.	  	  The	  vertical	  line	  is	  at	  --
20	  dB	  and	  corresponds	  to	  a	  6.3	  km	  spatial	  scale.	  

It is computationally intensive to compute the 2-D antenna pattern over the full 
hemisphere.  In this report a smaller area is used to numerically compute the projected 2-
D antenna pattern, which is then integrated to estimate the SRF.  The tangent plane 
approximation described earlier is also used. A 2-D FFT is used to compute the 
integrated SRF over the smaller area.  Computing the transform only over a small area 
probably raises the sidelobes of the spectrum estimate somewhat and the approximations 
introduce some artifacts so this result should be viewed as approximate.  However the 
results are generally consistent with the elevation results just considered, though the 
derived regions of support computed from the 2-D wavenumber spectra are slightly 
smaller than those computed previously.   The two dimensional spectrum of the SRFs for 
the different frequency channels are illustrated in Fig. 33-35.  Notice that the integration, 
which primarily affects the azimuth or y direction, tends to reduce sidelobes in the 
azimuth direction, which narrows the region of support and introduces additional 
sidelobes. 
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Figure	  33.	  	  2-D	  antenna	  patterns	  (top	  row)	  and	  spectra	  (bottom	  row)	  for	  the	  simulated	  19	  GHz	  frequency	  

channels.	  	  The	  instantaneous	  and	  integrated	  patterns	  are	  shown.	  	  The	  latter	  is	  the	  SRF.	  
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Figure	  34.	  	  2-D	  antenna	  patterns	  (top	  row)	  and	  spectra	  (bottom	  row)	  for	  the	  simulated	  37	  GHz	  frequency	  
channels.	  	  The	  instantaneous	  and	  integrated	  patterns	  are	  shown.	  	  The	  latter	  is	  the	  SRF.	  	  Note	  the	  nulls	  

introduced	  into	  the	  frequency	  response	  of	  the	  SRF	  due	  to	  the	  azimuth	  integration.	  
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Figure	  35.	  	  2-D	  antenna	  patterns	  (top	  row)	  and	  spectra	  (bottom	  row)	  for	  the	  simulated	  85	  GHz	  frequency	  
channels.	  	  The	  instantaneous	  and	  integrated	  patterns	  are	  shown.	  	  The	  latter	  is	  the	  SRF.	  	  Note	  the	  nulls	  

introduced	  into	  the	  frequency	  response	  of	  the	  SRF	  due	  to	  the	  azimuth	  integration.	  

6 Conclusion	  
For partial reconstruction a precise model of the spatial response function is not 

required—all that is required is an accurate representation of the mainlobe.  While some 
measured antenna patterns are available for some sensors, in some cases accurate patterns 
are not available.  Even when available, there is significant uncertainty in applying the 
measured patterns.  Using simplified models for the SRF can enable consistent 
processing for multiple sensors.  A particularly simple model can be achieved by using a 
2D Gaussian with 3dB size the same as the integrated antenna pattern on the surface, i.e. 
to the effective footprint size.   

This report has examined the effective frequency response of the SRF and how 
the antenna pattern, coupled with the measurement geometry, dictates the recoverable 
spatial information.  It is shown that the SRF has recoverable frequency information in 
excess of its 3dB width. 
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8 Appendix	  A:	  Radiometer	  Sensors	  

The SSM/I and SSMIS sensors are briefly described in the following sections.  More 
detailed descriptions are provided in the cited literature. 

8.1 Special	  Sensor	  Microwave/Imager	  (SSM/I)	  

The SSM/I is a total-power radiometer with seven operating channels, see Table 1. These 
channels cover four different frequencies with horizontal and vertical polarizations 
channels at 19.35, 37.0, and 85.5 GHz and a vertical polarization channel at 22.235 GHz. 
An integrate-and-dump filter is used to make radiometric brightness temperature 
measurements as the antenna scans the ground track via antenna rotation (Hollinger, 
1989; 1987).  As specified by Hollinger et al. (1987) the 3 dB elliptical antenna footprints 
range from about 15-70 km in the cross-scan direction and 13-43 km in the along-scan 
direction depending on frequency. First launched in 1987, SSM/I instruments have flown 
on multiple spacecraft continuously until the present on the Defense Meteorological 
Satellite Program (DMSP) (F) satellite series.  The nominal orbit height is 833 km. 
	  

Table	  1:	  	  SSM/I	  Channel	  Characteristics	  (Hollinger,	  1987)	  

Channel 
Name 

Polarization Center 
Frequency 

(GHz) 

Bandwidth 
(MHz) 

3 dB 
Footprint  
Size (km) 

Integration 
Period 
(ms) 

Channel 
ΔT* 
(K) 

19H	   H	   19.35	   	  	  125	   43	  ×	  69	   7.95	   0.42	  
19V	   V	   19.35	   	  125	   43	  ×	  69	   7.95	   0.45	  

	  	  	  	  	  	  22	  	  	   V	   22.23	   	  	  300	   40	  ×	  60	   7.95	   0.74	  
37H	   H	   37	  	  	  	   	  	  750	   28	  ×	  37	   7.95	   0.38	  
37V	   V	   37	   	  	  750	   20	  ×	  37	   7.95	   0.37	  
85H	   H	   85.5	   2000	   13	  ×	  15	   3.89	   0.73	  
85V	   V	   85.5	   2000	   13	  ×	  15	   3.89	   0.69	  

   * Estimated instrument noise for the F08 SSM/Is.  Actual values vary between sensors.	  

The SSM/I scanning concept is illustrated in Figure A1. The antenna spin rate is 
31.6 rpm with an along-track spacing of approximately 12.5 km.  The measurements are 
collected at a nominal incidence angle of approximately 53°. The scanning geometry 
produces a swath coverage diagram as shown in Fig. A2. The integrate and dump filter 
lengths for each channel are shown in the table. 
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Figure	  A1.	  Illustration	  of	  the	  SSM/I	  scanning	  concept.	  The	  antenna	  and	  feed	  are	  spun	  about	  the	  vertical	  
axis.	  	  Due	  to	  the	  along-track	  translation	  of	  the	  nadir	  point	  resulting	  from	  spacecraft	  motion	  in	  its	  orbit,	  
the	  resulting	  scan	  pattern	  on	  the	  surface	  is	  an	  overlapping	  helix.	  	  Due	  to	  interference	  from	  the	  spacecraft	  

structure,	  only	  part	  of	  the	  rotation	  is	  useful	  for	  measuring	  the	  surface	  TB,	  see	  Fig,	  2.	  	  The	  rest	  of	  the	  
rotation	  time	  is	  used	  for	  calibration.	  The	  observation	  incidence	  angle	  is	  essentially	  constant	  as	  the	  

antenna	  scans	  the	  surface.	  (Long,	  2008)	  

	  

Figure	  A2.	  SSM/I	  coverage	  swath.	  	  The	  dark	  ellipse	  schematically	  illustrates	  the	  antenna	  3dB	  response	  
mainlobe	  on	  the	  surface	  for	  a	  particular	  channel	  at	  a	  particular	  antenna	  scan	  angle	  as	  illustrated	  by	  the	  
light	  dashed	  line.	  The	  orientation	  of	  the	  ellipse	  varies	  relative	  to	  the	  ground	  track	  due	  to	  the	  rotation	  of	  
the	  antenna,	  which	  is	  centered	  at	  the	  top	  of	  the	  diagram.	  	  The	  observation	  swath	  is	  defined	  the	  rotation	  
of	  the	  antenna	  through	  a	  total	  scan	  angle	  range	  of	  102°.	  	  The	  dark	  dashed	  line	  represents	  the	  spacecraft	  
nadir	  ground	  track.	  	  The	  measurement	  incidence	  angle	  remains	  essentially	  constant	  during	  the	  scan.	  	  
This	  diagram	  is	  for	  the	  aft-looking	  F08	  SSM/I.	  	  Later	  SSM/Is	  looked	  forward,	  but	  had	  same	  swath	  width.	  

!
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8.2 Special	  Sensor	  Microwave	  Imager/Sounder	  (SSMIS)	  

The Special Sensor Microwave Imager/Sounder (SSMIS) is a total-power radiometer 
with 24 operating channels, see Table A2 (Kunkee, 2008).  The antenna rotation rate is 
31.6 rpm with measurements collected at a nominal incidence angle of 53.1° producing a 
nominal swath width of 1700 km and an along-track spacing of nominal 12.5 km.  First 
launched in 2003, SSMIS instruments have flown on multiple spacecraft (F-17, F-18) in 
the Defense Meteorological Satellite Program (DMSP) (F) satellite series.  The integrate 
and dump filters are 4.2 ms long.	  
	  

Table	  A2.	  Selected	  SSMIS	  Channel	  Characteristics	  (Kunkee,	  2008)	  (not	  all	  channels	  are	  shown)	  

Channel 
Name 

Polarization Center Frequency 
(GHz) 

Bandwidth 
(MHz) 

Footprint Size 
(km) 

19H	   H	   19.35	   355	   43	  ×	  69	  
19V	   V	   19.35	   357	   43	  ×	  69	  
22	   V	   22.235	   401	   40	  ×	  60	  
37H	   H	   37	   1616	   28	  ×	  37	  
37V	   V	   37	   1545	   20	  ×	  37	  
90H	   H	   91.644	   1418	   13	  ×	  15	  
90V	   V	   91.655	   1411	   13	  ×	  15	  
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9 Appendix	  B:	  The	  Dual-‐Gaussian	  Pattern	  Model	  

A	  Gaussian	  function	  is	  a	  commonly	  used	  approximation	  for	  the	  mainlobe	  of	  an	  
antenna	  gain	  pattern.	  	  However,	  the	  roll	  off	  of	  the	  Gaussian	  function	  and	  the	  antenna	  
pattern	  may	  differ.	  	  This	  can	  be	  partially	  corrected	  for	  by	  modelling	  the	  response	  
with	  the	  sum	  of	  two	  Gaussian	  functions:	  one	  that	  models	  the	  mainlobe	  and	  the	  other	  
that	  models	  the	  side	  lobes.	  	  Figure	  B1	  provides	  and	  illustration	  of	  how	  this	  works.	  	  
The	  main	  lobe	  model	  uses	  a	  zero-‐mean	  Gaussian	  function	  with	  a	  standard	  deviation	  
set	  to	  the	  3dB	  width	  the	  pattern.	  	  This	  Gaussian	  has	  unit	  height.	  	  A	  second	  zero-‐
mean	  Gaussian	  is	  added	  that	  is	  scaled	  lower	  and	  has	  a	  larger	  standard	  deviation	  so	  
as	  to	  model	  the	  sidelobe	  roll	  off.	  	  The	  resulting	  sum	  is	  normalized	  to	  a	  peak	  of	  one.	  

	  
Figure	  B1:	  	  Dual-Gaussian	  model	  fit	  illustration	  for	  a	  particular	  pattern.	  	  The	  blue	  curve	  is	  the	  integrated	  
antenna	  pattern	  the	  model	  is	  trying	  to	  approximate.	  	  The	  green	  curve	  is	  the	  3dB	  Gaussian	  model	  for	  the	  
main	  lobe.	  	  The	  black	  curve	  is	  a	  Gaussian	  approximation	  for	  (just)	  the	  side	  lobes.	  	  The	  red	  curve	  is	  the	  

dual-Gaussian	  model,	  which	  is	  the	  sum	  of	  the	  black	  and	  green	  curves.	  
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10 	  Appendix	  C:	  Analytic	  SSM/I	  Antenna	  Patterns	  
Lacking a measured antenna pattern for the SSM/I we here consider a simple 

analytic model for the pattern.  Typically, radiometer antennas use a cosine-squared or 
higher order taper on the antenna aperture illumination function.  The magnitude-squared 
far-field electric field is then the antenna pattern.  This is what is used in Figs. 3-5.  
However, this analytic model for the antenna pattern has better rolloff in the sidelobes 
than the measured SSMIS antenna patterns shown in Figs. 21-23.  Therefore, as a 
comparison, Figs. 3-8 are repeated using a magnitude sine-squared taper in Figs. C-1 to 
C-6.  This analytic model for the antenna patterns tends to underpredict the sidelobe 
rolloff, i.e., the sidelobes in sine-squared pattern taper off more slowly than the measured 
SSMIS patterns.   We note that the Gaussian fit and dual-Gaussian fit tends to be better 
for the sine-squared case than for the squared sin-squared taper.  Since the actual patterns 
falls between the two antenna patterns, it is expected that the Gaussian fit accuracy will 
be between the two cases. 

For the SRF, Figs. 15-20 are similarly replicated as Figs. C-8 to C-12 with 
modified antenna patterns. The Gaussian fit is much better for the sine-squared case 
compared to the squared sine-squared case. 

Note that the antenna patterns, when measured in degrees, are nearly circular.  
The integrated patterns are elongated in the azimuth direction.  The projected antenna 
patterns are elongated in the elevation direction.   Integration elongates the projected 
patterns in the azimuth direction, resulting in a nearly circular SRF at 19 GHz, with 
elliptical SRFs at 37 and 85 GHz. 
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Figure	  C-1.	  Simulated	  19	  GHz	  antenna	  gain	  pattern	  slices	  using	  sin^2	  pattern	  with	  SSM/I	  beamwidths.	  	  

(upper	  two	  panels)	  Azimuth.	  (lower	  two	  panels)	  Elevation.	  	  (top	  and	  third	  panels)	  The	  red	  line	  shows	  the	  
ideal	  instantaneous	  antenna	  pattern.	  The	  blue	  line	  shows	  a	  slice	  through	  the	  azimuthally	  integrated	  

pattern	  for	  a	  single	  measurement.	  The	  green	  line	  is	  a	  Gaussian	  approximation	  to	  the	  grain	  pattern	  where	  
the	  Gaussian	  3dB	  width	  is	  the	  same	  as	  the	  antenna	  pattern.	  	  The	  dotted	  black	  line	  shows	  the	  dual-

Gaussian	  approximation.	  	  (second	  and	  fourth	  panels)	  The	  blue	  line	  shows	  the	  difference	  between	  the	  
gain	  pattern	  and	  Gaussian	  approximation.	  	  	  The	  black	  line	  is	  the	  difference	  between	  the	  pattern	  and	  

dual-Gaussian.	  
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Figure	  C-2.	  Simulated	  37	  GHz	  antenna	  gain	  pattern	  slices.	  	  See	  caption	  for	  Fig.	  C-1	  for	  explanation	  of	  

lines.	  
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Figure	  C-3.	  Simulated	  37	  GHz	  antenna	  gain	  pattern	  slices.	  	  See	  caption	  for	  Fig.	  C-1	  for	  explanation	  of	  

lines.	  
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Figure	  C-4.	  Simulated	  19	  GHz	  2D	  antenna	  gain	  patterns	  using	  sin^2	  pattern	  with	  SSM/I	  beamwidths.	  (ul)	  
Instantaneous	  pattern.	  	  (ur)	  Integrated	  pattern.	  	  	  Note	  elongation	  in	  azimuth	  direction.	  	  (ll)	  Difference	  
between	  pattern	  and	  Gaussian	  in	  normal	  space.	  	  (lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  
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Figure	  C-5.	  Simulated	  37	  GHz	  2D	  antenna	  gain	  patterns	  using	  sin^2	  pattern	  with	  SSM/I	  beamwidths.	  (ul)	  
Instantaneous	  pattern.	  	  (ur)	  Integrated	  pattern.	  	  	  Note	  elongation	  in	  azimuth	  direction.	  	  (ll)	  Difference	  
between	  pattern	  and	  Gaussian	  in	  normal	  space.	  	  (lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  
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Figure	  C-6.	  Simulated	  85	  GHz	  2D	  antenna	  gain	  patterns	  using	  sin^2	  pattern	  with	  SSM/I	  beamwidths.	  (ul)	  
Instantaneous	  pattern.	  	  (ur)	  Integrated	  pattern.	  	  	  Note	  elongation	  in	  azimuth	  direction.	  	  (ll)	  Difference	  
between	  pattern	  and	  Gaussian	  in	  normal	  space.	  	  (lr)	  Difference	  between	  pattern	  and	  Gaussian	  in	  dB.	  
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Figure	  C-7.	  Simulated	  19	  GHz	  sine-squared	  antenna	  gain	  pattern	  slices	  projected	  on	  to	  the	  Earth’s	  

surface.	  (upper	  two	  panels)	  Azimuth.	  (lower	  two	  panels)	  Elevation.	  	  (top	  and	  third	  panels)	  The	  red	  line	  
shows	  the	  ideal	  instantaneous	  antenna	  pattern.	  The	  blue	  line	  shows	  a	  slice	  through	  the	  azimuthally	  
integrated	  pattern	  for	  a	  single	  measurement.	  The	  green	  line	  is	  a	  Gaussian	  approximation	  to	  the	  grain	  
pattern	  where	  the	  Gaussian	  3dB	  width	  is	  the	  same	  as	  the	  antenna	  pattern.	  	  (second	  and	  fourth	  panels)	  

The	  blue	  line	  shows	  the	  difference	  between	  the	  gain	  pattern	  and	  Gaussian	  approximation.	  
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Figure	  C-8.	  Simulated	  37	  GHz	  antenna	  gain	  pattern	  slices	  projected	  on	  to	  the	  Earth’s	  surface.	  See	  caption	  

for	  Fig.	  C-7.	  
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Figure	  C-9.	  Simulated	  85	  GHz	  antenna	  gain	  pattern	  slices	  projected	  on	  to	  the	  Earth’s	  surface.	  See	  caption	  

for	  Fig.	  C-7.	  
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Figure	  C-10.	  Simulated	  19	  GHz	  2D	  antenna	  gain	  patterns	  projected	  onto	  the	  Earth’s	  surface.	  	  (ul)	  
Instantaneous	  projected	  antenna	  pattern.	  	  (ur)	  Integrated	  pattern,	  i.e.,	  the	  SRF.	  	  (ll)	  Difference	  between	  

SRF	  and	  Gaussian	  in	  normal	  space.	  	  (lr)	  Difference	  between	  SRF	  and	  Gaussian	  in	  dB.	  

	  

Figure	  C-11.	  Simulated	  37	  GHz	  2D	  antenna	  gain	  patterns	  projected	  onto	  the	  Earth’s	  surface.	  	  (ul)	  
Instantaneous	  projected	  antenna	  pattern.	  	  (ur)	  Integrated	  pattern,	  i.e.,	  the	  SRF.	  	  (ll)	  Difference	  between	  

SRF	  and	  Gaussian	  in	  normal	  space.	  	  (lr)	  Difference	  between	  SRF	  and	  Gaussian	  in	  dB.	  
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Figure	  C-12.	  Simulated	  SSM/I	  85	  GHz	  2D	  antenna	  gain	  patterns	  projected	  onto	  the	  Earth’s	  surface.	  	  (ul)	  
Instantaneous	  projected	  antenna	  pattern.	  	  (ur)	  Integrated	  pattern,	  i.e.,	  the	  SRF.	  	  (ll)	  Difference	  between	  

SRF	  and	  Gaussian	  in	  normal	  space.	  	  (lr)	  Difference	  between	  SRF	  and	  Gaussian	  in	  dB.	  

	  


