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1. Overview

The AMSR-E sea ice standard level 3 products include sea ice concentration, snow depth on
sea ice, and sea ice drift. The AMSR-E standard sea ice concentration product is generated using
the enhanced NASA Team (NT2) algorithm described by Markus and Cavalieri (2000, 2009),
the snow depth is produced from the algorithm described by Markus and Cavalieri (1998) for
both hemispheres, but excluding the Arctic perennial ice regions, and the sea ice drift is
produced from an algorithm described by Liu and Cavalieri (1998). Additionally, the difference
between the AMSR-E Bootstrap (ABA) (see ATBD by Comiso below) and the NT2 retrieved
concentrations (ABA-NT2) are archived. These products together with AMSR-E calibrated
brightness temperatures (TBs) are mapped to the same polar stereographic projection used for
SSM/I data to provide the research community consistency and continuity with the existing 32-
year Nimbus 7 SMMR and DMSP SSM/I sea ice concentration products. The TB grid
resolutions are as follows: (a) TBs for all AMSR-E channels: 25-km, (b) TBs for the 18, 23, 36,
and 89 GHz channels: 12.5-km, (c) TBs for the 89 GHz channels: 6.25-km. All of these TB
products are stored as a composite of (i) daily-averaged ascending orbits only, (i1) daily-averaged
descending orbits only, and (iii) all orbits creating a full daily average. Sea ice concentrations are
produced at 12.5-km and 25-km resolutions and stored as a composite of daily-averaged
ascending orbits, daily-averaged descending orbits, and all orbits for a full daily average, similar
to the TB products. Snow depth on sea ice is produced as a 5-day average at a resolution of 12.5
km. Sea ice drift is also a five-day product computed at a resolution of 6.25-km, but mapped at a
resolution of 100-km.

2. Sea Ice Concentration
2.1 Algorithm Theoretical Basis
The two ratios of brightness temperatures used in the original NASA Team algorithm

(Cavalieri et al. 1984; Gloersen and Cavalieri 1986; Cavalieri et al. 1995) as well as in the NT2
approach are the polarization



PR(v) =[TB(vV) —TB(v )]/ [TB(vV) + TB(VH)] (1)
and the spectral gradient ratio
GR(vlpv2p) = TB(vlp) — TB(v2p)] / [TB(vlp) + TB(v2p)] (2)

where TB is the brightness temperature at frequency v for the polarized component p (vertical
(V) or horizontal (H)).

Figure 1 (top) shows a typical scatterplot of PR(19) versus GR(37V19V ) for September
conditions in the Weddell Sea. The NT algorithm identifies two ice types which are associated
with first-year and multiyear ice in the Arctic and ice types A and B in the Antarctic (as shown in
Figure 1 (top)). The A-B line represents 100% ice concentration. The distance from the open
water point (OW) to line A-B is a measure of the ice concentration. In this algorithm, the
primary source of error is attributed to conditions in the surface layer such as surface glaze and
layering (Comiso et al. 1997), which can significantly affect the horizontally polarized 19 GHz
brightness temperature (Matzler et al. 1984) leading to increased PR(19) values and thus an
underestimate of ice concentration. In the following discussion, we will refer to these effects as
surface effects. In Figure 1 (top), pixels with significant surface effects tend to cluster as a cloud
of points (labeled C) away from the 100% ice concentration line A-B resulting in an
underestimate of ice concentration by the NT algorithm. The use of horizontally polarized
channels makes it imperative to resolve a third ice type to overcome the difficulty of surface
effects on the emissivity of the horizontally polarized component of the brightness temperature.

We make use of GR(89V19V) and GR(89H19H) to resolve the ambiguity between pixels
with true low ice concentration and pixels with significant surface effects. A plot of these two
ratios are found to form narrow clusters except for areas where surface effects decrease TB(19H)
and consequently increase GR(89H19H) (Figure 1 (bottom)). Values of high GR(89V19V ) and
high GR(89H19H) are indicative of open water. The range of GR(§89H19H) values is larger
because of the greater dynamic range between ice and water for the horizontally polarized
components. With increasing ice concentration, the two ratios have more similar values. The
narrow cluster of pixels adjacent to the diagonal shown in Figure 1 (bottom) represents 100% ice
concentration with different GR values corresponding to different ice types. When surface
effects come into play, points deviate from this narrow cluster towards increased GR(89H19H)
values (cloud of points to the right of the diagonal) while GR(89V19V ) changes little or remains
constant. This cloud of points labeled C in Figure 3 (bottom) also corresponds to the cluster of
points labeled C in Figure 3 (top). The difference, therefore, between these two GRs (AGR) is
used as a measure of the magnitude of surface effects. Based on this analysis we introduce a new
ice type C which represents ice having significant surface effects. For computational reasons we
rotate the axes in PR-GR space (Figure 1 (top)) by an angle ¢ so the A-B line is vertical. This
makes the rotated PRs (PRr(19) and PRr(89)) independent of ice types A and B (first-year and
multiyear for the Arctic). The use of the 89 GHz data requires a correction for atmospheric
effects. This is accomplished through an additional AMSR-E variable, PR(89).

The response of the brightness temperatures to different weather conditions is calculated
using an atmospheric radiative transfer model (Kummerow 1993). Input data into the model are



the emissivities of first-year sea ice under winter conditions taken from Eppler et al. (1992) with
modifications to achieve agreement between modeled and observed ratios. Atmospheric profiles
used as another independent variable in the algorithm, having different cloud properties,
specifically cloud base, cloud top, cloud liquid water are taken from Fraser et al. (1975) and
average atmospheric temperatures and humidity profiles for summer and winter conditions are
taken from Antarctic research stations. These atmospheric profiles are based on climatology and
are assumed valid for both hemispheres.

Figure 1: Top: GR(37V 19V ) versus PR(19) for the Weddell Sea on September 15, 1992. The gray circles
represent the tiepoints for the ice types A and B as well as for open water as used by the NT algorithm.
Label C indicates pixels with significant surface effects. @ is the angle between the y-axis and the A-B
line. Bottom: GR(85V 19V ) versus GR(85HI19H). The ice types A and B are close to the diagonal. The
amount of layering corresponds to the horizontal deviation from this line towards label C. Taken from
Markus and Cavalieri [2000].

The plots of AGR versus PRr (19) (Figure 2a) and AGR versus PRr(89) (Figure 2b) illustrate
the algorithm domain. The gray symbols indicate the tie-points with the different atmospheres
for the three surface types (A, C, and OW). They also illustrate that the effect of weather is well
modeled. For example, the cluster of open water values is mainly the result of changing
atmospheric conditions. The modeled atmospheres adequately span the lengths of the OW
clusters. A comparison of Figures B4a and B4b also shows how much more the 89 GHz data are
affected by the atmosphere compared to the 19 GHz data.



Figure 2 (a) AGR versus PRr (19) and (b) AGR versus PRr(89) for September 15, 2008. The gray
symbols represent the NT2 tie

Figure 3. Flow diagram of the NT2 algorithm (from Markus and Dokken 2002).



We, then, calculate brightness temperatures for all possible ice concentration combinations in
1% increments and for each of those solutions calculate the ratios PRr (19), PRr (89), and AGR.
This creates a prism in which each element contains a vector with the three ratios (Figure 3). For
each AMSR-E pixel PRr (19), PRr (89), and AGR are calculated from the observed brightness
temperatures. Next, we move through this prism comparing the observed three ratios with the
modeled ones. The indices where the differences are smallest will determine the final ice
concentration combination and weather index. The next section will provide detailed information
about the implementation.

Because of the unique signature of new ice in the microwave range, we solve for new ice
instead of ice type C for selected pixels. Using a GR(37V19V) threshold of —0.02 we either
resolve ice type C (for pixels where GR(37V19V) is below this threshold) or thin ice (for pixels
where GR(37V19V) is above this threshold). Areas of ice type C and thin ice are mutually
exclusive because thin ice has little, if any, snow cover. A limitation, of course, is that we cannot
resolve mixtures of thin ice and thicker ice with layering in its snow cover.

2.2 Implementation
2.2.1 Calculation of ice concentrations

In contrast to other operational sea ice concentration algorithms using daily averaged
brightness temperatures as input, the AMSR-E NT2 concentrations are calculated from
individual swath (Level 2) data from which daily maps are made by averaging these swath ice
concentrations. Using swath brightness temperatures is particularly critical for the NT2 algorithm
and its atmospheric correction. The atmospheric influence on the brightness temperatures is non
linear and by using average brightness temperatures we would dilute the atmospheric signal. The
ice concentration algorithm is implemented as follows:

1. Generate look-up tables: For each AMSR channel with frequency v and polarization p
calculate brightness temperature for each ice concentration-weather combination (using TBow,
TBary, TBcnin as given in the Appendix of Markus and Cavalieri (2009)):

TBca,cc,wx(v p) = (1 — Ca— Cc) * TBow(vpWx) + Ca » TBaFy (vpWx) (3)
+ Cc * TBc/thin (vpWX)

where Ca refers to the ice type A/B concentration (FY/MY for Arctic), Ccto ice type C
concentration, and Wx to the weather index. Ice concentrations are between 0 and 100 in 1%
increments, weather indices are between 1 and 12 corresponding to the tables in the Appendix of
Markus and Cavalieri (2009).

2. From these TBs calculate ratios creating the look-up tables, e.g. LUT pr19(ca,ccwx) etc.:

LUT prigcca,cc,wx) = [TBca,cc,wx(37V) — TBca,cc,wx(19V)] x sing19/
[TBca,cc,wx(37V) + TBca,cc,wx(19V)]

+

[TBca,cc,wx(19V) — TBca,cc,wx(19H)] x cosp19/



[TBca,cc,wx(19V) + TBca,cc,wx(19H)] (4)

LUTPR89(ca, ce,wx) = [ TBca,cc,wx(37V) — TBca,cc,wx(19V)] x sings9
TBca,cc,wx(37V) + TBca,cc,wx(19V)

+
[TBca,cc,wx(89V) — TBca,cc,wx(89H)] x cospsy/
[TBca,cc,wx(89V) + TBca,cc,wx(89H)] 5)

If GR(37V19V) < -0.02 we solve for ice type C using AGR as our third variable, i.e.,

LUTdGR(ca, ce,wx) = [TBca,cc,wx(89H) — TBca,cc,wx(19H)]/
[TBca,cc,wx(89H) + TBca,cc,wx(19H)]

[TBca,cc,wx(89V) — TBca,cc,wx(19V)]/
[TBca,cc,wx(89V) + TBca,cc,wx(19V)] (6)

Whereas for pixels where GR(37V19V) > -0.02 we solve for thin ice using the standard
GR(37V19V) as suggested by Cavalieri (1994), i.e.,

LUTdGR(ca, ce,wx) = [TBca,cc,wx(37V) — TBca,cc,wx(19V)]/
[TBca,cc,wx(37V) + TBca,cc,wx(19V)] (7)

Each of these arrays has the dimensions of 101 °— 101 °— 12 where, of course, the total ice
concentration (ca + cc) cannot exceed 100.

3. For each pixel i we have the actual measured AMSR-E brightness temperatures (TBi(vp))
4. Calculate same ratios from these brightness temperatures as in step 2 (PRi(19), etc.).

5. Compare these observed ratios with each of the ratios in the look-up tables looping through all
ice concentration-weather combinations, i.€.,

8= (PRI( 1 9)_LUTPR19(ca, cc,wx))2+(PRi(89)_LUTPR89(ca, cc,wx))2+(AGRi_LUT dGR(ca, cc,wx))Z (8)

6. The indices ca, cc, wx where 6 is minimal determine the ice concentration (and weather
index), i.e.:

Ct = CAmins + CCmind (9)
2.2.2 Land Spillover Correction

Although a land mask is applied to the ice concentration maps, land spillover still leads to
erroneous ice concentrations along the coast lines adjacent to open water. This makes operational
usage of these maps cumbersome. Therefore, we apply a land spillover correction scheme on the
maps. The difficulty is to delete all clearly erroneous ice concentration while at the same time
preserving actual ice concentrations, as for example, along the margins of coastal polynyas. We
apply a five step procedure.



1. Classify all pixels of the polar-stereographic grid with respect to the distance to coast. Ocean
pixels directly along the coast are classified by 1, whereas pixels farther away are 2 and 3. Open
ocean pixels are zero. Land pixels directly along the coast are classified as 4 and pixels farther
away have increasing values.

2. All pixels with classes 1 or 2 will be assessed for erroneous sea ice concentrations due to land
spillover by analyzing the 7 by 7 pixel neighborhood. The area of the neighborhood (7 pixels or
87.5 km) needs to be greater than the AMSR-E antenna pattern. Pixels with values of 3 and 0
will not be changed.

3. Check whether all class 3 pixels in 7 pixel neighborhood are open water (if so, set ice
concentration to 0).

4. Calculate an average sea ice concentration for the 7 by 7 pixel box assuming all ocean pixels
have zero ice concentration and all land pixels have an ice concentration of 90%. This

approximates a theoretical concentration caused by land spillover only.

5. If the AMSR-E ice concentration is less than or equal to this value, set pixel at center of box to
open water.

Figure 4 shows an example ice concentration with and without the land spillover correction.

Figure 4 Map of ice concentration with and without land spillover correction
2.2.3 Reduction of Atmospheric Effects
The NT2 algorithm has an atmospheric correction scheme as an inherent part of the

algorithm. It provides weather-corrected sea ice concentrations through the utilization of a
forward atmospheric radiative transfer (RT) model. However, to eliminate remaining severe



weather effects over open ocean, two weather filters based on the spectral gradient ratio are
implemented using threshold values similar to those used by the NT algorithm (Gloersen and
Cavalieri 1986; Cavalieri et al. 1995). However, the advantage of the RT atmospheric correction
is that not only are spurious ice concentrations over the open ocean removed, but atmospheric
corrections are applied to ice covered portions of the ocean.

Figure 5 shows AMSR-E sea ice concentration maps for the Sea of Okhotsk. Figure 5a shows
the ice concentration map if PRr (19), PRr (89), and AGR are used without any weather
correction. Figure 5b shows the ice concentration map with the NT2 weather correction. The
differences between Figure 5a and 5b are shown in Figure 5d and illustrate the effect of the
weather correction not only over the open ocean, but also over the sea ice. More severe weather
effects over the open ocean (for example, in the bottom right corner) are finally removed by the
NT weather filters (Figure 5c). The threshold for the GR(37V19V) NT weather filter (Gloersen
and Cavalieri 1986) is 0.05, where the threshold for the GR(22V19V) NT weather filter
(Cavalieri et al. 1995) is 0.045. If the respective GR values exceed these thresholds, the sea ice
concentrations are set to zero. Figure Se shows the difference in ice concentrations between the
retrievals using only the NT2 weather correction and the retrievals using both the NT2 correction
and the NT filters. A slight change along the ice edge is observed.

Even with both the atmospheric correction scheme and the GR filters, we still had problems
with residual weather contamination particularly at low latitudes. A filter based on monthly
climatological sea surface temperatures (SSTs) from the National Oceanic and Atmospheric
Administration (NOAA) ocean atlas, used earlier by Cavalieri et al. (1999), was employed to
eliminate these low-latitude spurious ice concentrations. In the Northern Hemisphere, any pixel
where the monthly SST is greater than 278 K, the ice concentration is set to zero throughout the
month; whereas in the Southern Hemisphere, wherever the monthly SST is greater than 275 K,
the ice concentration is set to zero throughout the month. The higher SST threshold value in the
Northern Hemisphere is needed because the 275 K isotherm used in the Southern Hemisphere is
too close to the ice edge in the north. The closest distance the threshold isotherms are to the ice
edge is more than 400 km (Cavalieri et al. 1999).

In summary, the order of processing is as follows:

1. Calculate sea ice concentrations with atmospheric correction.
2. Apply GR filters.

3. Apply SST mask.

4. Apply land spillover correction.



Figure 5. AMSR-E sea ice concentrations for March 1, 2007. (a) Ice concentrations calculated
using PRr (19), PRr (89), and AGR without applying an atmospheric correction; (b) ice
concentration with atmospheric correction, (c) final ice concentration with additional clean-up
over the open ocean by applying the standard NASA Team GR weather filters; (d) difference
between (a) and (b); (e) difference between (b) and (c). Differences greater than 10% have been
truncated for the erroneous sea ice concentrations in the lower right corner.

3. Snow Depth on Sea Ice
3.1 Algorithm Theoretical Basis

The AMSR-E snow-depth-on-sea-ice algorithm was developed using DMSP SSM/I data
(Markus and Cavalieri 1998) to estimate snow depth on sea ice from space. The snow depth on
sea ice is calculated using the spectral gradient ratio of the 18.7 GHz and 37 GHz vertical
polarization channels,

hs= a1+ a2 GRV(ice) (10)
where hs is the snow depth in meters, and a1=2.9 and a2=-782 are coefficients derived from the

linear regression of in situ snow depth measurements on microwave data. GRV(ice) is the
spectral gradient ratio corrected for the sea ice concentration, C, as follows



GRV(ice) = [Ts(37V)-T(19V)-ki(1-C)] / [TB(37V)+Ts(19V)-k2(1-C)] (11)

with ki=TBo(37V)-TBo(19V) and ko=TBo(37V)+TBo(19V). The open water brightness
temperatures, TBo, are average values from open ocean areas and are used as constants. The
principal idea of the algorithm is similar to the AMSR-E snow-on-land algorithm (Kelly et al.
2003) utilizing the assumptions that scattering increases with increasing snow depth and that the
scattering efficiency is greater at 37 GHz than at 19 GHz. For snow-free sea ice, the gradient
ratio is close to zero and it becomes more and more negative as the snow depth (and grain size)
increases. The correlation of regional in sifu snow depth distributions and satellite-derived snow
depth distributions is 0.81 (Figure 6). The upper limit for snow depth retrievals is 50 cm which is
a result of the limited penetration depth a 19 and 37 GHz.

Figure 6: Comparison of in-situ and SSM/I-derived snow depth distributions [from Markus and
Cavalieri 1998].

3.2 Implementation

The algorithm is applicable to dry snow conditions only. At the onset of melt, the emissivity
of both the 19 GHz and the 37 GHz channels approach unity (that of a blackbody) and the
gradient ratio approaches zero initially before becoming positive. Thus, snow depth is
indeterminate under wet snow conditions. Snow, which is wet during the day, frequently
refreezes during the night. This refreezing results in very large grain sizes (Colbeck 1982) which
leads to a reduced emissivity at 37 GHz relative to 19 GHz thereby decreasing GRV(ice) and
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thus leads to an overestimate of snow depth. These thaw-freeze events, therefore, cause large
temporal variations in the snow depth retrievals. This temporal information is used in the
algorithm to flag the snow depths as unretrievable from those periods with large fluctuations.

As grain size in situ measurements are even less frequently collected than snow depth
measurements, the influence of grain size variations could not be incorporated into the algorithm.
Because of the uncertainties in grain size and density variations as well as sporadic weather
effects, AMSR-E snow depth products will be 5-day averages similar to the snow-on-land
product.

Snow depths are retrieved for the entire Southern Ocean, but only for the seasonal sea ice
zones in the Arctic, because the microwave signature of snow is very similar to the multiyear ice
signature so that snow depth on multiyear ice cannot be retrieved unambiguously. To this end,
we use a dynamic multiyear ice mask based on a threshold in GR which evolves on a day-to-day
basis starting from October 1 of each year until the onset of melt.

4. Sea Ice Drift
4.1 Algorithm Theoretical Basis

The sea ice drift algorithm applies a wavelet transform to the 89 GHz Horizontal (H)
channel of the AMSR-E L3 6.25 km brightness temperature map gridded at a resolution of 6.25
km for ice feature detection. These ice features are tracked from day-to-day providing sea ice
speed and direction at grid points mapped every 100 km. The algorithm, originally developed at
Goddard Space Flight Center (GSFC) for use with DMSP SSM/I imagery, is described by Liu
and Cavalieri (1998). The algorithm provides sea ice drift for 5-day periods for both the Arctic
and the Antarctic.

The following has been adapted from Liu and Cavalieri (1998) and describes the derivation
techniques:

The wavelet transforms of satellite images can be used for near-real-time quick-look analyses
of satellite data for feature detection, for data reduction using a binary image, and image
enhancement by edge linking. In general, the continuous wavelet transform, Ws (a, b), of a
function, s (r), where r = (X, y), is expressed in terms of the complex valued wavelet function,
w(r), as follows:

Ws(a,b) = (1Na) [s(r)w*(r-b/a)dr (12)

in which the wavelet function is dilated by a factor a, and shifted by b. The function w(r) is the
basic wavelet (Combes et al. 1989). The superscript * indicates complex conjugate. For data
analysis, the wavelets frequently used are: a Gaussian modulated sine and cosine wave packet,
known as the Morlet wavelet; and the second derivative of a Gaussian, often referred to as the
Mexican hat.
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4.2 Implementation

To determine drift vectors only over sea ice, not open water, a sea ice mask is used within the
sea ice drift algorithm code. Derived from the 18 GHz and 37 GHz Vertical (V) channels of the
AMSR-E L3 12.5 km brightness temperature product, the mask approximates sea ice coverage in
order to mask out unused vector points.

* Closed contours (those with no other features crossing them, called zero-crossing
contours) correspond to the boundary of ice features. Yet these zero-crossing contours
may contain many different ice features. To associate a single closed contour with an
isolated ice feature, a five percent threshold above the minimum of the wavelet transform
is applied as the contour value.

* Next, each closed contour is framed in a rectangular window with its four sides just
tangent to the four extreme locations of the closed contour. Each window at a given
starting date is used as a template to be matched. The template window is not fixed in
size, but is determined by the ice feature at a particular location.

*  With the template defined, the templates are then matched with the results from the
wavelet transform of the AMSR-E image four days later. Because of the 6.25 km
resolution of the AMSR-E image, the displacement of the ice feature may move just a
pixel or two in several days. Thus, the domain of the template matching can be restricted
to an area with a few pixels (such as 20 pixels) larger than the template window. The
matching is done by shifting the template over each pixel in the domain.

* For each location, the absolute values of the differences between the shifted template
values and the target values are then summed.

* The sequence of the summation values is then used as a metric of the degree of match of
the ice feature. Its minimum indicates a possible match of two displaced ice features.
Once the shapes have been matched, the velocity vector can be easily estimated from
dividing the relative displacement over a time interval of four days.

Note that the method of template matching outlined above uses a template window
determined by the threshold of the wavelet transform of AMSR-E images. This method of
template matching of ice features is very efficient, as the only computations involved are logical
operations, addition, and subtraction. Furthermore, it is only necessary to match the template
pattern to a limited number of target patterns generated by the results of the wavelet transform,
not to every location in the image as with classical template matching. Note also that although
template correlation is applied here only to find the translation of the target pattern with respect
to the template pattern, it can be extended to find the rotation of the target pattern by incremental
rotation of the target pattern in direction and then matching the extent of their agreement (Liu
and Cavalieri 1998).

In summary, once a sea ice feature is identified, it is tracked from day-to-day over 4 days. The
total displacement over this period then is used to calculate the 5-day sea ice drift (speed and
direction). The sea ice speed is given in centimeters per second (cm/s) and direction is given in
radians from the horizontal axis of the grid counterclockwise.
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Zhao and Liu (2007) have compared the AMSR-E sea ice drift with Arctic Ocean buoy data
and obtained an RMS error of 3.1 cm/s for the AMSR-E sea ice speed and an RMS error of 26.4
degrees for the AMSR-E sea ice direction.
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AMSR-E Bootstrap Sea Ice Algorithm
Josefino Comiso
NASA Goddard Space Flight Center
Greenbelt, MD 20771

1. Introduction

Historical records of the global sea ice cover, as derived from satellite passive microwave
data, have provided some of the most important climate change signals that may be associated
with anthropogenic greenhouse gases. One of the most revealing results from satellite
microwave data is the large rate of decline of the Arctic perennial ice extent which is currently
at-13.5 % per decade and its thick multiyear ice component at -15% per decade (Comiso
2012). In September 2007, the perennial ice cover was not only the record low but also 40%
lower than the average value since 1978, and 27% lower than the previous low value in 2005
(Comiso et al. 2008). A slight recovery followed but in September 2011, the perennial ice cover
was about as low as in 2007. This phenomenon has been recognized as one of the most
intriguing climate change signals coming from the Arctic region. The anomalously high sea
surface temperature during the period and the strong possibility of having an ice free ocean in
the Arctic in the summer in the near future has been reported (Shibata et al. 2010; Lindsay and
Zhang 2005; Wang and Overland 2009). The potential impact of such an event on the ecology,
environment, navigation and mineral exploration has been the subject of many studies (e.g.,
Bhatt et al. 2010). On the other hand, similarly intriguing is that the sea ice cover in the
Antarctic region has been changing as well but in the opposite direction (Zwally et al. 2002;
Comiso et al. 2009). Such positive trend, which is now about 2% per decade, has been
postulated to be in part caused by the deepening of the lows in West Antarctica associated with
the Ozone hole that in turn have caused stronger winds off the Ross ice shelf and hence more
ice production in the Ross Sea region (Turner et al., 2009). Enhanced ice production in the Ross
Sea has been confirmed (Comiso et al. 2009) but other studies indicate that other processes not
linked to stratospheric ozone depletion must be invoked to explain the observed increase in
the Antarctic extent since 1979 (Sigmond and Fyfe 2010). Because of many important issues
associated with the aforementioned changes, accurate characterization of the global sea ice
cover more than ever needed. Such product should also be consistent with historical data to
enable meaningful trend and variability studies.

2. Algorithm Overview

Monitoring the sea ice cover with satellite passive microwave data has had a long history,
starting with the Nimbus-5 Electrically Scanning Microwave Radiometer (ESMR) launched in
December 1972, continuing with the Nimbus-7 Scanning Multichannel Microwave Radiometer
(SMMR), launched in October 1978, and then with the series of DMSP Special Scanning
Microwave Imagers (SSM/I) the first of which was launched in July 1987. The data from these
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sensors have provided the continuous and consistently derived sea ice concentration data from
1978 up to the present (Comiso and Nishio 2008). The data, however, are not without any
shortcomings among which are the relatively coarse resolution, significant radiometer noise
and antenna side lobes. The launch of the Japanese Advanced Microwave Scanning Radiometer
(AMSR-E) on board the EOS/Aqua satellite in May 2002 and a similar version (AMSR) on board
ADEOQS-2 satellite in December 2002 provided a new era in the remote sensing of sea ice. The
new system has a much better resolution, wider spectral range and larger swath width than
previously available data. For example, the resolution of the 37 GHz channel for SSM /I is 30 x
38 km while that of AMSR-E at approximately the same frequency is 10.3 x 13.7 km. The higher
resolution has enabled more accurate identification of the ice edge and improved
characterization of the ice cover in the inner zones (Comiso and Nishio 2008). It also enabled
assessments of snow cover and surface ice temperature as well as improved estimates of drift
velocities of the ice floes (Markus and Cavalieri 1998; Comiso et al. 2003; Yaguchi and Cho
2009). Further improvements in accuracy are expected with the launch of the
GCOMW1/AMSR?2 sensor because of significantly higher resolution of the latter (i.e., 7x12 km
for AMSR2 compared to 10x14 for AMSR-E and 30x38 km for SSM/I at 37 GHz).

The Bootstrap Algorithm has had a long history and has been used to generate sea ice data
from 1978 to the present (Comiso 2010). It makes use of three frequency channels (i.e., 18.7 at
vertical polarization, 36.5 GHz at both vertical and horizontal polarization and 22 GHz at
vertical resolution) that are available continuously from SMMR, through SSM/I and to AMSR-E.
The algorithm is thus ideally suited for generating long term and consistent data set needed for
detailed studies of the variability and trends in the sea ice cover. The launched of AMSR2
aboard the GCOM-W satellite in May 2012 is a most welcomed development, especially with the
demise of AMSR-E in 2010. Among the objectives of the JAXA/Global Change Observation
Mission (GCOM) and NASA'’s Earth Observing System is to understand global climate change
through the use of long-term satellite observing systems. It is important that the sea ice data
set that had been enhanced by AMSR-E will continue with AMSR2, especially during the current
climatic period when the sea ice cover is undergoing not just large seasonal and interannual
variability but also rapid declines in the Arctic and some increases in the Antarctic.

3. Theoretical Description

The conversion of digital satellite data to sea ice parameters requires a knowledge of some
basic geophysical parameters, among which are surface temperature and the microwave
emissivity of the surface at the different frequency and polarization channels of the sensor. In
addition, atmospheric effects that vary from one location to another and from one day to the
next have to be taken into account. The brightness temperature, (TB), recorded by satellite
passive microwave sensors at a given wavelength can be estimated using the basic radiative
transfer equation given by

15



T,=eTe+ [ T(z) g (z)e "dv(z) + (1 -e)ke [ T(z) ¢ (z)e "d7'(z) (13)

0 0

where ¢ is the emissivity of the surface, Tsis the physical temperature of the surface, t'(z) and ©
are the atmospheric opacities from the surface to a height z and from the surface to the satellite
height, respectively, K is an estimate of the diffusiveness of the surface reflection, and T(z) and
C (z) are the temperature and the emittance at z. In equation 13, the first term represents
radiation directly from the earth’s surface, which is the dominant contribution for
measurements at microwave frequencies. The second term represents satellite observed
upwelling radiation that emanates directly from the atmosphere, while the third term
represents downwelling radiation from the atmosphere that has been reflected by the surface
before it reaches the satellite detector. A fourth term that takes into account the reflected
contribution of radiation from free space (i.e., the cosmological 2.7 K contribution from the Big
Bang), which is an additive contribution, is usually negligible and not included in equation 10.
This radiative transfer equation provides the means to transform the top of the atmosphere
brightness temperature as measured directly by satellite sensors to surface brightness
temperature needed to obtain the geophysical surface parameter. The brightness temperature
of the surface of interest is equal to ¢Ts which is part of the first term in equation 10. The
atmospheric parameters and also surface emissivity as required by the equation changes
spatially and temporally and are unfortunately not known on a real time basis and hence the
need to develop an alternative procedure. The Bootstrap Algorithm is designed to take the
atmospheric contribution into account in an indirect manner through a technique based on the
utilization and analysis of real time data. With the Bootstrap Algorithm, a multichannel scheme
was developed in which the patterns in the distribution of data points and clustering of these
points in a multi-dimensional space are used to indirectly infer emissivity and at the same time,
take into account spatial variations in surface temperature and atmospheric effects.

3.1 Tie-Point and Threshold Optimization

The basic assumption of the Bootstrap Algorithm for ice concentration is that within the ice
pack, the surface is covered by either sea ice or ice free (liquid) water. The brightness
temperature recorded by the satellite passive microwave sensor within each field-of-view is
thus a contribution of radiation from ice covered surfaces and from ice-free surfaces. The
brightness temperature, Ts, as measured by AMSR-2 is thus assumed to be a linear
combination of the two surfaces as expressed by the following mixing formulation:

Tg=TiCi+ ToCo (14)
where Tiis the brightness temperature of 100% ice covered areas and To s the corresponding

value of 100% open water, while Ciand Co are the percentage concentrations for sea ice and
open (ice free) water respectively. Using the relationship, Co + Ci= 1, and assuming that the
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observational area is covered only by either ice or water, equation 15 can be solved explicitly
for Crand the result is as follows

Ci= [Tb'To)/Ti'To (15)

Equation 15 is the fundamental formula that has been used by all sea ice concentration
algorithms. It is a relatively simple formula but not so easy to implement. The big challenge has
been how to obtain good estimates of the surface values of T, Toand Tiwhich are all functions
of emissivity (¢), surface temperature (Ts), and atmospheric opacity. In principle, the equation
is independent of sensor resolution and should provide similar results regardless of resolution.
But there are exceptions especially near boundaries of ice and water and in areas where the
contrast in the emissivity of sea ice and water are not strong enough to enable a good
discrimination of the two surfaces. In such areas, there could be a smearing of data as is
normally the case at the marginal ice zone in part due to antenna side lobes. In general, the
higher the resolution, the better the chances in getting the correct location of the ice edge and
in getting accurate characterizations of the marginal ice zones.

An ideal algorithm for retrieving the ice concentration would be the one that calculates
accurately the surface values of the parameters T, Toand Tiin equation 15 at each field-of-
view (or data element) of satellite observation. This means that all three parameters have to be
corrected for atmospheric effects at each measurement. The usual technique is to utilize a
radiative transfer model which makes use as input, atmospheric profile parameters to take into
account the effect of spatially and temporally changing opacity T of the atmosphere as indicated
in equation 13. Such atmospheric contributions can be as large as 20% of the satellite observed
signal and are therefore important to take into account.

Earlier algorithms were based on radiative transfer models that used atmospheric profiles
taken from averages derived from radiosonde data at some Arctic regions (Svendsen et al.
1987; Swift et al. 1985). These algorithms were reasonably successful in regions where and
time periods when such radiosonde data are acquired and used for atmospheric corrections.
Generally, however, there are problems when they were used as a global algorithm because of
large spatial and temporal variability of atmospheric and surface conditions. The algorithms
that are currently more frequently utilized are those that take advantage of the multichannel
capability of the satellite data in obtaining the required input parameters in equation 16 as
described in Comiso et al. (2003). Two of these algorithms are the Bootstrap Algorithm and the
Nimbus-7 Team Algorithm (now called the NASA team algorithm), both developed at the NASA
Goddard Space Flight Center (Cavalieri et al. 1984; Comiso 1986). The original Team Algorithm
used three tie points: two for the two general ice types (i.e., first year and multiyear ice) and
one for open water, and employs polarization and gradient ratios to minimize the effect of
varying surface temperatures. The different techniques for accounting for spatial changes in ice
temperature and emissivity and the use of different sets of channels yielded different results
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between the Team Algorithm and the Bootstrap Algorithm (Comiso et al. 1997; Comiso and
Steffen 2001) in large areas of the polar regions. The different results were attributed to
different sensitivity of the polarization ratios to surface effects, including ice and snow layering,
as discussed in Matzler (1984). The original NASA Team Algorithm (now called NT) has been
substantially revised to make use of the 89 GHz in combination with other channels and is
currently called NT2 (Markus and Cavalieri 2000). With NT2, a radiative transfer model (e.g.,
Kumerow 1993) has to be used to correct for the high sensitivity of the 89 GHz data to
atmospheric effects. It also requires some accounting on the large variations in the surface
emissivity of sea ice at this frequency. The results from NT2 have been shown to be an
improvement to that of NT and are in much better agreement with those of the Bootstrap
Algorithm but there are still significant differences (Parkinson and Comiso 2008; Comiso and
Parkinson 2008). Such differences are believed to be associated in part with the use of the 89
GHz data (in NT2) which at times could cause errors due to inadequate accounting of
atmospheric and surface effects. The differences are also in part due to differences in resolution
since the two algorithms uses different sets of frequency channels.

A schematic illustration of the distribution of data points in ice covered and open ocean
region is shown in Figure 7 using data from two radiometer channels. Data points in
consolidated ice regions where the ice concentrations are close to 100% usually form a linear
cluster along a line near AD. Those in the open water areas would be along the line AW. The
scheme for finding the two tie points for ice concentration is to utilize the line AD in Figure 7 as
the reference for 100% ice and the data point O for 100% liquid (or open) water. Data points
located between the line AD and O are interpreted as having ice concentrations between 0 and
100% in this scheme. Thus, given a data element at a hypothetical data point B in the plot
measured by the satellite sensor, the ice concentration can be derived by first extending the
line along OB until it intersects the line AD. The brightness temperature Tiat the intersection
point, I, represents 100% ice for this particular ice type/surface while the brightness
temperature Toat O represents 0% ice. Using this tie-point values in equation 17, ice
concentration can be calculated. This can be done for either channels (along the horizontal or
the vertical), but when Toand Tiare close or equal to each other, as can happen at 36 GHz (V)
and higher frequencies, there is a singularity problem (i.e., if To = T1). Thus, the ratio of OB to OI
is usually used, as described in Comiso (1995), which provides the same value as the ratio of
the numerator and denominator in equation 12. It should be noted that ice concentrations
below a cut-off of about 10% are derived because the emissivities of ice and water are mainly
impossible to discriminate at such values as discussed below.

The line AD is determined by the algorithm on a daily basis and inferred from a regression
analysis of data points above the red dash line in Figure 7. The red dash line is determined such
that most of the data points above it have near 100% sea ice concentration. A small positive
value of a few Kelvins is added to the offset of the regression line to account for the known
presence of open water (of about 2 % in the Arctic and 4% in the Antarctic) for much of the
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consolidated ice regions. The estimate of the parameters of the line AD is critical to the
accuracy of the ice concentration estimate. With AMSR2 data, the values of the offsets will be
optimized such that the retrieved ice concentration values are as consistent as possible with
those from validation data sets (e.g., high resolution satellite data or detailed ship or aircraft
observations) and at the same time allows for variations in surface emissivity and atmospheric
attenuation.

Figure 7. Schematics for the choice of tie-points in the Bootstrap Algorithm. Data points along AD
are considered as having 100% ice concentration while those along OW have 0% ice
concentration.

The criteria used for choosing the channels for the algorithm are: (a) they provide the
geophysical parameter at the optimal resolution and accuracy; and (b) ancillary data are used
only if absolutely necessary to improve accuracy. Thus, the set of 36.5 GHz channels (called
HV36) is used because of reasonably good resolution and at the same time takes into account
spatial variations in surface temperature and emissivity for accurate retrieval. With this set, the
data in the consolidated ice regions form a linear cluster with a well defined slope for AD
(when one polarization is plotted versus the other) the value of which is approximately equal
to one. The values form a linear distribution because the wavelengths are the same and
emissivity of ice is approximately the same for the two polarizations. Thus, they are affected by
intermediary factors, like snow and the atmosphere, in much the same way. What makes it
even more valuable is that the set is basically insensitive to spatial variations in temperature
since the slope is approximately one and any change in the brightness temperature due to
temperature as observed in one channel is approximately equal to that in the other channel.
Thus the net effect of a changing temperature is to cause Tito slide along the line AD and
practically no impact on the accuracy in the retrieval of ice concentration.

The algorithm complements the use of the set of 36.5 GHz channels with another set using

18 (or 19) GHz at vertical polarization which we call the V1836 set. This other set provides the
means to remove some ambiguities in the HV36 set since in this set of channels, the open ocean
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data cluster (i.e., the line OW) is either along the line OA in Figure 7 or to the left of this line.
Furthermore, the horizontal channel is more sensitive to layering and other surface effects than
the vertical channel (Matzler et al. 1984) and in some ice covered areas, the data points fall
below or to the right of the line AD. Both problems are resolved through the additional use of a
set of channels that utilizes the 18 (or 19) GHz in combination with the 36.5 (or 37) GHz
channel at vertical polarization (thereafter called the V1836 set) which provides an even easier
discrimination and a good contrast between the emissivity of ice and water. The use of the
V1836 set shows some sensitivity to variations in surface ice temperature but the associated
error is relatively minor because sea ice is usually covered by snow which is a good insulator
and the spatial variability of observed surface ice temperature is not much. The standard
deviation of observed snow/ice interface temperatures has been about 2.5K.

3.2 Statistical Error Analysis

Figure 8 provides the means to evaluate how accurately the sea ice concentration can be
derived from the HV36 set of channels. The data points are from winter data in the Northern
Hemisphere and the distribution for consolidated ice (in blue) is indeed quite compact and the
slope is close to 1. The accuracy in the estimate of Crdepends mainly on the accuracy in the
estimate of Tisince it is known that Trvaries a lot more than Toin the pack ice regions. The
accuracy in the estimate of Tris in turn dependent on how well AD represents 100% ice. The
more well defined the linear cluster AD is, the more accurate the retrieval is going to be. To
quantify how well defined the ice cluster AD is, the scatter plot is rotated such that the AD
cluster is along the vertical as shown in orange in Figure 8a. The width of the cluster can then
be quantified with a frequency histogram of the sum of data points along the vertical within
each horizontal bin and the results are shown in Figure 8b. In the plot, the peak in the left
represents the distribution of consolidated ice data points along an arbitrary horizontal axis
that can be converted to ice concentration since the relative location of TO is also shown in the
plot (approximately the highest data point to the right). After the conversion, the standard
deviation of the ice peak is about 1.5 units which is estimated to be equivalent to less than 3%
ice concentration. The actual uncertainty in the ice concentration associated with the
variability of Trwould be even smaller since the consolidated ice data points include a fraction
of open water within a relatively large footprint (which in this case is 25 by 25 km).

3.3 Systematic and Residual Errors

The aforementioned retrieval technique for ice concentration is appropriate only in ice
covered oceans. Applying the same algorithm over land and open oceans would yield non-zero
ice concentration values and hence the need for a land and liquid ocean masks. Such land and
liquid masks are usually not perfect and would affect the accuracy of the retrieval of areas
covered by sea ice. The land mask, that has been previously used were based on published
boundaries of land areas. The published boundaries have been shown to be inaccurate in some
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areas when compared with high resolution satellite data. This is in part because in the polar
regions, the land/ocean boundaries are not permanent because of iceberg calving, glacial
surging or retreat and ice melt. The land mask to be used for AMSR2 will be an enhanced
version of the one currently used for AMSR-E and will be based on MODIS or higher resolution
satellite data.

Figure 8. (a) Scatter plot of 36 GHz(V) versus 36 GHz(H) brightness temperatures with the ice
cluster along AD shown as blue data points. Also shown is the same set of data points with data
points rotated (in orange) such that the line AD cluster is along the vertical. (b) frequency
distribution of rotated data points (orange) in (a). The standard deviation of the distribution for

the ice curve (red line) is 1.5 'K which is approximately 2% in ice concentration.

An open ocean mask has been developed by identifying the location of data points that
correspond to such open oceans areas in the scatter plots of one channel versus another. Most
of the data points in the open ocean can be isolated and identified readily using this procedure
but there are significant number that are problematic. In particular, areas in the open ocean
that are under the influence of inclement weather conditions can have signatures similar to
those of ice covered ocean. We make use of a combination of 19, 22, and 36 GHz brightness
temperatures (Tg) at vertical (V) and horizontal (H) polarizations to discriminate open ocean
data from ice data during such unusual conditions as discussed in Comiso (1995). Figures 9a
and 9b show scatter plots of Ts(19,V) versus the difference T(22,V) - Ts(19,V) using SSM/I
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and AMSR data, respectively. The blue data points in the scatter plot along a line OW represent
data from the open ocean at all weather conditions while the black data points are those from
ice covered ocean. In the open ocean, strong winds and inclement weather cause large surface
waves and foam that alters the emissivity of the surface. The microwave signature of open
water is thus variable and moves from low values at O, during relatively calm conditions, to
higher values and towards W, in the scatter plot, depending on the strength of the disruption of
the surface water. In the algorithm, these data points in blue are masked since they represent
open water. The brightness temperature of open water within the ice pack corresponds to
lowest values of the

Figure 9. Scatter plots of T(V19, V) versus Ts(22, V) - Ts(19, V) for (a) SSM/I and (b) AMSR-E data.
Data points in blue correspond to data interpreted as either ice free or <10% ice concentration.

cluster along OW since inside the pack the water surface is relatively still. The tie point used to
represent Toin equation 13 is thus a low value close to the label O (along OW). The primary
mask for open water is the set of channels shown in Figures 9a and 9b. This is usually
complemented by the use of the V1936 set to remove residuals. The sloping red line represents
approximately 10% ice concentration and is used as a threshold. Below this threshold, ice and
open ocean areas are not possible to discriminate as indicated by the data. The vertical red line
is used to mask out data to the right of the line which represent primarily ice free water under
abnormal or extreme surface conditions, as described in Comiso et al. (2003). We also use
climatological surface temperature data or SST from AMSR2 (Shibata et al. 2010) for unusually
difficult cases away from the ice pack assuming that the surface temperature of ice covered

surfaces cannot have surface temperatures greater than 5 'C. Because of significant variability
of the emissivity of sea ice near the ice edge, the errors in the retrievals near 10% ice
concentration is relatively large compared to those in high ice concentration areas. In the
estimates for ice extent, which is the integral sum of the area of data elements with ice
concentration greater than a certain threshold. We usually use 15% ice concentration as the
threshold as was done in Zwally et al. (1983) (instead of 10%) for comparative analysis with
previous estimates of extents. Other sources of systematic errors are those associated with
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meltponds and new ice primarily because of unpredictable emis sivities as described in Comiso
(2010).

4. Algorithm Implementation
4.1 Implementation

The discussion of the theoretical basis of the Bootstrap Algorithm in the previous section
provides a general overview of the technique for estimating sea ice concentration and what it
takes to obtain accurate values. To summarize, the basic equation for determining sea ice
concentration is given by equation 13 while the associated technique for obtaining the key
parameters needed in the determination is illustrated in Figure 7. The technique is quite simple
and should provide accurate ice concentration values as long as the assumptions for obtaining
the “tie-points” for 100% and 0% ice concentrations are valid. This is generally the case during
dry/cold surface conditions but in the summer, the uncertainties are increased as discussed
earlier.

4.2 Input/Output parameters

The input parameters are brightness temperatures as observed by AMSR2 for each data element.
For ice concentration calculations, these include brightness temperatures at 18.7 GHz at vertical
polarization, 36.5 GHz at both vertical and horizontal polarization, and 23.8 at vertical polarization.
Input parameters include open ocean tie point, slope and offset of the regression line (red dash line
in Figure 7), and thresholds for ocean mask (see Figure 9). The output is sea ice concentration.

4.3 Ancillary data

Ancillary data includes SST data as supplementary ocean mask derived from AMSR2 data
and land mask derived from published land boundary data supplemented by high resolution
satellite data.

4.4 Processing flow

Although only 1 set of 2 channels are required, 2 sets of channels are used by the Bootstrap
Algorithm to optimize accuracy in the estimate of ice concentration: VH36 set, representing
36.5 GHz channels at both vertical and horizontal polarization and V1836 set, representing the
18.7 and 36.5 GHz channels at vertical polarization. Ice concentration is estimated using the
VH36 set for data elements that are above the line AD-4K (see scatter plot in Figure 7). The ice
concentration for the rest of the data elements are estimated using the V1836 set. In the
process, the data element is also tested to check whether it is in land area or in the ice free open
ocean area. If it is in either land or ice free ocean, ice concentration is not calculated and the
data is flagged as either land or ocean.
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4.5 Basic Limitations

The basic limitations of ice concentration data from AMSR2 include relatively coarse
resolution and the inability to unambiguously identify areas covered by thin ice, pancake ice
and meltponded ice. Thin ice, pancake ice and meltponded ice can have emissivities
intermediate to those of open water and dry thick ice and could contribute to significant
uncertainties in the retrieval of ice concentration. A good scheme that enables classification of
each data element into different surface types would help minimize uncertainties.

5. Validation Concept

Validation of ice concentrations from AMSR2 will be done primarily using high-resolution
satellite data as has been done previously (Comiso and Steffen 2001). Aircraft data from the Ice
Bridge Project over both Northern and Southern Hemispheres will also be utilized for direct
comparison and to validate interpretation of high-resolution satellite data. The data include
detailed topography information and high resolution photos of the surface twice a year over
key sea ice regions of the Arctic and the Antarctic. Special emphasis will be done on retrieved
ice concentrations over new ice, marginal ice zones, and meltponded regions.
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