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     The approach is based on the simplified radiative transfer theory and the assumption of 
minimal atmospheric contribution. Assuming the canopy temperature is equal to the soil 
temperature and the heterogeneous mixtures of vegetation and roughness conditions within the 
satellite footprint are adequately represented by the footprint average. The radio-brightness 
temperature (TB) at a specific microwave frequency of a land surface can be represented by: 
 

         (1) 
 
where f is the frequency of the observation, p refers to horizontal (h) or vertical (v) polarization, 
T is effective surface temperature, rfp is the soil reflectivity, ω fp is the vegetation scattering 
albedo and τfp is the vegetation opacity along the observation path. Note that this expression 
assumes a constant incidence angle as employed in AMSR-E and AMSR2. 
 
     All algorithms, including this one, utilize the Fresnel equations (Jackson 1993, Owe et al. 
2001, Wigneron et al. 2007, Gao et al. 2009) to relate the reflectivity (or emissivity) to the 
dielectric properties of the soil. The application of the Fresnel equations requires that the surface 
is smooth and that the contributing depth dielectric properties are uniform. The reflectivity in Eq. 
1 is for the underlying soil, which may have a rough surface. This value must be related to a 
smooth surface equivalent.  The surface roughness effect is typically modeled using the h − Q 
formulation described by Wang and Choudhury (1995), where hf and Qf are parameters related to 
the surface height and horizontal roughness correlation length. Thus, if we assume that the single 
scattering albedo is negligible (ω ≅ 0), then Eq. 1 can be re-written so that TBfp is directly related 
to smooth surface conditions. 
 

                       (2) 
 

where is the smooth surface reflectivity. 
 
     The vegetation opacity can be expressed as a function of the vegetation water content (VWC) 
(Jackson and Schmugge 1991); the relationship between the two is given in Eq. 3. 
 

                (3) 
 
where bfp is a vegetation attenuation parameter that is dependent on canopy type, polarization, 
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frequency, and θ is incidence angle. 
     
      Since both hf  and bfp are known to increase with frequency and have similar attenuating 
effects (Eq. 2), it is possible to lump these together into a combined vegetation-roughness 
parameter. Njoku and Chan (2006) proposed that the frequency dependence of g could be 
approximated using a proportionality frequency dependent coefficient αf . Consequently, Eq. 2 
can be simplified further: 
 

             (4) 
 
where 
 

              (5) 
 

             (6) 
 
where p and q are h and v polarizations. Note that here we have assumed that the vegetation 
parameter is unpolarized, thus p was dropped. 
 
     It has been demonstrated that the vegetation and soil moisture conditions (SM) are both   
related to the microwave polarization difference ratio: 
 

            (7) 
 
This ratio is insensitive to surface temperature, which reduces the required number of sensor 
variables or the need for an ancillary data set. 
  

Substituting 3 and 4 into 7 yields 
 

           (8) 
 

 
 
Af  and Bf  are both functions of soil moisture and Af represents the MPDIf of the bare smooth soil. 
 
    As a result of the manipulations above, the soil moisture and vegetation/roughness 
dependences can be separated and the corresponding approximations are given in 9 and 10, 
respectively. 
 

            (9) 
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            (10) 
 
where Cf and Df  are best-fit coefficients. 
 
     As defined earlier, g is a combined vegetation-roughness factor because both have similar 
impact on MPDIf , i.e. an increase in hf is manifested in gf as an increase in vegetation water 
content. Thus, g can be interpreted as an equivalent vegetation water content in the units of 
kg/m2.  
 
     The first step in solving 9 and 10 is to determine the roughness parameters. Since hf  and Qf 
have similar relationships with MPDIf, there is some redundancy in varying both of these 
parameters.  Therefore, hf  (incorporated in the αf g term) was selected to represent the spatial 
variability, while Qf is treated as a fixed global factor. Qf was determined for each frequency by 
calibrating Eq. 8 to the AMSR-E computed MPDIf  values over two desert regions, one located in 
Niger and the other one in Saudi Arabia. The radiative transfer simulations were carried out 
assuming bare, smooth, dry land surface conditions with hf  = 0 and SM = 0.05 m3/m3 As 
computed, Qf represents minimum roughness conditions. Spatial variations in surface roughness 
are then accounted for by allowing hf to vary globally. 
 
     Frequency dependent coefficients Cf and Df  were determined next using a similar approach. 
Simulations results from the Dobson dielectric model (Dobson et al. 1985) for dry to moderate 
soil moisture (SM=0.05-0.20 m3/m3) for sandy loam were used to estimate these parameters.   
 
     αf, which was defined as a proportionality constant, allows us to account for the frequency 
dependence of the vegetation parameterization (Eq. 3). We already clarified that the canopy 
related bf parameter in Eq. 3 is a function of vegetation type, thus, along with the frequency 
dependence αf  also needs to be calibrated over a wide range of vegetation conditions. 
This was done over a region of naturally varying vegetation and roughness with approximately 
uniform dry soil moisture that includes portions of Chad, Sudan, and the Central African 
Republic. AMSR-E observations for a dry month (March 2004) with a uniform value of 0.10 
m3/ m3 over this domain were used to estimate αf . 
 
     g is then derived using Eq. 10. For a region of uniform soil moisture MPDIf  approximated by 
 

              (11) 
 
Njoku and Chan (2006) demonstrated that the ratio of Zf for any two AMSR-E frequency pairs is 
approximately equal 
 

             (12) 
 
     The vegetation parameter (g) can be approximated using the MPDIf  observations from  
10.7 GHz and 18.0 GHz. 
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           (13)  
 
where  β0, β1, and β2 are model constants and the MPDI -subscript specifies the frequency.   
      
     Similarly, soil moisture can be expressed as a linear function of MPDIf , where the slope of 
the fitted line is dependent on the local ground conditions as characterized by roughness and 
vegetation. The time varying soil moisture (SMt) is estimated as a deviation from the annual 
minimum soil moisture conditions (SMdry) observed at a particular location. Consequently, we 
can derive two regression models, the first solution using the current MPDIf value and 
the second one using an annual minimum baseline MPDI for dry soil conditions . 
Subtracting the baseline from the current leads to the following equation: 
 

         (14) 
 
where αo, α1, and α2 are model constants that incorporate the previously derived and calibrated 
αf  coefficients. g* is computed using monthly minimum values of MPDIf at 10.7 GHz.   
 
     Finally, the algorithm relies on some additional ancillary data sets to identify areas of 
permanent ice, open water bodies or strong topography, where the retrieval is not carried out. 
 
 
SCA Algorithm 
 
     In the single channel algorithm (SCA) (Jackson 1993), horizontally polarized TBhf  are 
traditionally used due to their sensitivity to soil moisture, but the same algorithm can also be 
applied to v polarization TBvf.  The use of h pol TBhf  with the SCA is the current SMAP baseline 
algorithm. In this approach, brightness temperatures are converted to emissivity using a surrogate 
for the physical temperature of the emitting layer. The derived emissivity is corrected for 
vegetation and surface roughness to obtain the soil emissivity, where. The Fresnel equation is 
then used to determine the dielectric constant. Finally, a dielectric mixing model is used to obtain 
the soil moisture. Additional details on these steps follow. 
 
     At the X-band frequency used by AMSR-E, the brightness temperature of the land surface is 
proportional to its emissivity  multiplied by its physical temperature 
(T). It is typically assumed that the temperatures of the soil and the vegetation are the same. 
 
     Based upon the above, the equation for observed TBfp is: 
 

             (15) 
 
where the second term in the equation represents the contributions of the cosmic background and 
downwelling radiation from the atmosphere as reflected by the soil surface. This term is very 
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small at L band and tends to be dropped for computational purposes (although it can be retained 
for stricter accuracy). Equation 1 can be rearranged to derive emissivity: 
 

                           (16) 
 
     The physical temperature is estimated using Ka-band observations at v polarization (De Jeu 
and Owe 2003). 
 
     The emissivity retrieved above is that of the soil as modified by any overlying vegetation and 
surface roughness. In the presence of vegetation, the observed emissivity is a composite of the 
soil and vegetation. To retrieve soil water content, it is necessary to isolate the soil surface 

emissivity .  Following Jackson and Schmugge (1991) the emissivity 
 

                      (17) 
 
      Both the single scattering albedo (ω) and the one-way transmissivity of the canopy (γ) are 
dependent upon the vegetation structure, polarization and frequency. The transmissivity is a 
function of the optical depth (τ) of the vegetation canopy: 
 

              (18) 
 
     The single scattering albedo tends to be very small, and sometimes is assumed to be zero in 
order to reduce dimensionality for computational purpose. Substituting equation 18 into equation 
17 and rearranging yields 
 

                                                         (19) 
 
     The vegetation optical depth is also dependent upon the vegetation water content (VWC). In 
studies reported in Jackson and Schmugge (1991), it was found that the following functional 
relationship between the optical depth and vegetation water content could be applied Eq. 3. 
 
     The vegetation water content can be estimated using several ancillary data sources. The 
baseline approach utilizes a set of land cover-based equations to estimate VWC from values of 
the Normalized Difference Vegetation Index (NDVI) (an index derived from visible-near 
infrared reflectance data). 
 
     The emissivity that results from the vegetation correction is that of the soil surface, 
including any effects of surface roughness. These effects must be removed in order to determine 
the smooth surface soil emissivity which is required for the Fresnel equation inversion.  
One approach to removing this effect is a model described in Choudhury et al. (1979) that yields 
the bare smooth soil emissivity: 
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                                 (20) 
 
     The cos2 θ term is often dropped to avoid overcorrecting for roughness. The parameter hfp is 
dependent on the polarization, frequency, and geometric properties of the soil surface. 
 
     Emissivity is related to the dielectric properties (εfp) of the soil and the viewing or incidence 
angle (θ). For ease of computational inversion, it is assumed that the real component (εr

fp) of the 
dielectric constant provides a good approximation of the complex dielectric constant; 
however, this assumption can be modified if additional evidence is found to support the use of 
this more complex formulation. The Fresnel equations link the dielectric constant to emissivity. 
For horizontal (h) polarization: 
 

            (21) 
 
The dielectric constant of soil is a composite of the values of its components – air, soil, and 
water, which have greatly different values.  A dielectric mixing model is used to relate the 
estimated dielectric constant to the amount of soil moisture. 
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