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The SMAP Algorithm Theoretical Basis Documents (ATBDs) provide the physical and 
mathematical descriptions of algorithms used in the generation of SMAP science data products. 
The ATBDs include descriptions of variance and uncertainty estimates and considerations of 
calibration and validation, exception control and diagnostics.  Internal and external data flows 
are also described. 
 
The SMAP ATBDs were reviewed by a NASA Headquarters review panel in January 2012 with 
initial public release later in 2012.  The current version is Revision A.  The ATBDs may undergo 
additional version updates after SMAP launch. 
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SMAP Level 4 Surface and Root Zone Soil Moisture (L4_SM) Data Product 
Algorithm Theoretical Basis Document  

 
EXECUTIVE SUMMARY 

 
Rolf Reichle*, Randal Koster, Gabrielle De Lannoy, Wade Crow, and John Kimball  

    *Email:  Rolf.Reichle@nasa.gov 
      Phone: +1-301-614-5693 

 
The Soil Moisture Active Passive (SMAP) mission (planned launch in January 2015) 

measures land surface microwave emission (or brightness temperature; at 1.41 GHz) and radar 
backscatter (at 1.26 GHz and 1.29 GHz), thus providing information on surface soil moisture 
(top 5 cm of the soil column) and on the freeze/thaw state of the land surface.  The main 
objectives of the SMAP Level 4 Surface and Root Zone Soil Moisture (L4_SM) product are  
 

(i) to provide estimates of root zone soil moisture (defined here nominally as soil moisture in 
the top 1 m of the soil column) based on SMAP observations, and  

(ii) to provide a global surface and root zone soil moisture product that is spatially and 
temporally complete.  

 
Obtaining root zone soil moisture is important for several of the key applications targeted by 

SMAP.  The L4_SM algorithm uses an ensemble Kalman filter (EnKF) to merge SMAP 
observations with soil moisture estimates from the NASA Catchment land surface model.  The 
Catchment model describes the vertical transfer of soil moisture between the surface and root 
zone reservoirs and will be driven with observation-based surface meteorological forcing data, 
including precipitation, on a global 9 km Earth-fixed grid with a 7.5 min model time step.  The 
EnKF considers the respective uncertainties of each component estimate and, if provided with 
properly calibrated uncertainty inputs, yields a product that is superior to satellite or land model 
data alone.  Error estimates for the L4_SM product are also generated.   
 

The baseline L4_SM algorithm assimilates the following three SMAP products: (i) 9 km 
downscaled brightness temperature (downscaled from 36 km by the L2_SM_AP algorithm based 
on high-resolution radar backscatter measurements), (ii) 36 km brightness temperature (from 
L1C_TB) when and where downscaled brightness temperature is not available, and (iii) 
freeze/thaw observations (from L3_FT_A).  Analysis updates are computed every three hours (at 
0z, 3z, …, 21z) using the available SMAP products.  The baseline L4_SM algorithm assimilates 
brightness temperature anomalies (after  removal of the long-term mean seasonal and diurnal 
cycles).  Freeze/thaw observations are assimilated with a rule-based approach similar to existing 
snow cover assimilation methods.   

 
The L4_SM product provides a variety of geophysical fields at 3 hour time resolution on the 

global 9 km modeling grid, along with the assimilated lower-level SMAP observations and 
related instantaneous model and analysis fields.  Soil moisture will be output in volumetric units, 
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wetness (relative saturation) units, and percentile units (except surface soil moisture).  L4_SM 
surface and root zone soil moisture estimates will be validated to an RMSE requirement of 0.04 
m3 m-3 after removal of the long-term mean bias (identical to Level 2 soil moisture product 
validation and excluding regions of snow and ice, frozen ground, mountainous topography, open 
water, urban areas, and vegetation with water content greater than 5 kg m-2). Additional metrics, 
including bias and correlation coefficients, will also be assessed.  Research outputs (not 
validated) include the surface meteorological forcing fields, land surface fluxes, soil temperature 
and snow states, runoff, and error estimates (derived from the ensemble). 

 
It is expected that the L4_SM soil moisture estimates will meet the error requirements based 

on pre-launch validation of prototype products that benefit from the  assimilation of brightness 
temperature observations from the Soil Moisture and Ocean Salinity (SMOS) mission and 
surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for EOS 
(AMSR-E) and the Advanced Scatterometer (ASCAT).  It was further demonstrated that the 
assimilation of satellite soil moisture retrievals from AMSR-E and the correction of the 
precipitation forcing towards gauge- and satellite-based estimates contribute significant and 
largely independent amounts of information, stressing the importance of using observation-based 
precipitation forcing to the fullest extent possible.  It is expected that SMAP observations further 
improve soil moisture assimilation estimates because SMAP operates at L-band whereas AMSR-
E and ASCAT retrievals are based on X-band (10.7 GHz) and C-band (5.3 GHz), respectively, 
and because SMAP offers observations at higher resolution that are less affected by radio-
frequency interference than those from SMOS. 

 
Post-launch, the L4_SM soil moisture output will be validated against in situ observations 

from SMAP core validation sites and sparse networks.  Moreover, the L4_SM product will be 
evaluated using internal diagnostics from the assimilation system (such as the observation-
minus-model residuals and the soil moisture increments) in conjunction with high-quality, 
independent precipitation observations. 
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 1.  Introduction 
 
1.1  Mission Background and Science Objectives 

 
The National Research Council’s (NRC) Decadal Survey, Earth Science and Applications 

from Space: National Imperatives for the Next Decade and Beyond, was released in 2007 after a 
two year study commissioned by NASA, NOAA, and USGS to provide prioritization 
recommendations for space-based Earth observation programs [Space Studies Board, 2007].  
Factors including scientific value, societal benefit and technical maturity of mission concepts 
were considered as criteria. SMAP data products have high science value and provide data 
towards improving many natural hazards applications.  Furthermore SMAP draws on the 
significant design and risk-reduction heritage of the Hydrosphere State (Hydros) mission 
[Entekhabi et al., 2004].  For these reasons, the NRC report placed SMAP in the first tier of 
missions in its survey.  In 2008 NASA announced the formation of the SMAP project as a joint 
effort of NASA’s Jet Propulsion Laboratory (JPL) and Goddard Space Flight Center (GSFC), 
with project management responsibilities at JPL.  The target launch date is January 2015 
[Entekhabi et al., 2010b].  

 

The SMAP science and applications objectives are to: 

• Understand processes that link the terrestrial water, energy and carbon cycles; 
• Estimate global water and energy fluxes at the land surface; 
• Quantify net carbon flux in boreal landscapes; 
• Enhance weather and climate forecast skill; 
• Develop improved flood prediction and drought monitoring capability. 

 
 

1.2 Measurement Approach 
 
Table 1 is a summary of the SMAP instrument functional requirements derived from its 

science measurement needs. The goal is to combine the attributes of the radar and radiometer 
observations (in terms of their spatial resolution and sensitivity to soil moisture, surface 
roughness, and vegetation) to estimate soil moisture at a resolution of 10 km, and freeze/thaw 
state at a resolution of 1-3 km. 

 
The SMAP instrument incorporates an L-band radar and an L-band radiometer that share a 

single feedhorn and parabolic mesh reflector. As shown in Figure 1 the reflector is offset from 
nadir and rotates about the nadir axis at 14.6 rpm (nominal), providing a conically scanning 
antenna beam with a surface incidence angle of approximately 40°. The provision of constant 
incidence angle across the swath simplifies the data processing and enables accurate repeat-pass 
estimation of soil moisture and freeze/thaw change. The reflector has a diameter of 6 m, 
providing a radiometer 3 dB antenna footprint of 40 km (root-ellipsoidal-area). The real-aperture 
radar footprint is 30 km, defined by the two-way antenna beamwidth. The real-aperture radar and 
radiometer data will be collected globally during both ascending and descending passes.  
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Scientific Measurement Requirements Instrument Functional Requirements 
Soil Moisture: 
~±0.04 m3 m-3 volumetric accuracy (1-sigma)  in the top 
5 cm for vegetation water content ! 5 kg m-2; 
Hydrometeorology at ~10 km resolution; 
Hydroclimatology at ~40 km resolution 

L-Band Radiometer (1.41 GHz): 
Polarization: V, H, T3 and T4 
Resolution: 40 km 
Radiometric Uncertainty*: 1.3 K 
L-Band Radar (1.26 and 1.29 GHz): 
Polarization: VV, HH, HV (or VH) 
Resolution: 10 km 
Relative accuracy*: 0.5 dB (VV and HH) 
Constant incidence angle** between 35° and 50° 

Freeze/Thaw State: 
Capture freeze/thaw state transitions in integrated 
vegetation-soil continuum with two-day precision, at 
the spatial scale of land-scape variability (~3 km). 

L-Band Radar (1.26 GHz and 1.29 GHz):   
Polarization: HH 
Resolution: 3 km 
Relative accuracy*: 0.7 dB (1 dB per channel if 2 
channels are used) 
Constant incidence angle** between 35° and 50° 

Sample diurnal cycle at consistent time of day 
(6am/6pm Equator crossing); 
Global, ~3 day (or better) revisit; 
Boreal, ~2 day (or better) revisit 

Swath Width: ~1000 km 
 
Minimize Faraday rotation (degradation factor at 
L-band) 

Observation over minimum of three annual cycles Baseline three-year mission life 
* Includes precision and calibration stability     
** Defined without regard to local topographic variation 
 

Table 1. SMAP Mission Requirements 
 
To obtain the desired high spatial resolution the radar employs range and Doppler 

discrimination. The radar data can be processed to yield resolution enhancement to 1-3 km 
spatial resolution over the 70% outer parts of the 1000 km swath. Data volume prohibits the 
downlink of the entire radar data acquisition.  Radar measurements that allow high-resolution 
processing will be collected during the morning overpass over all land regions and extending one 
swath width over the surrounding oceans.  During the evening overpass data poleward of 45° N 
will be collected and processed as well to support robust detection of boreal landscape 
freeze/thaw transitions. 

 
The baseline orbit parameters are: 

• Orbit Altitude: 685 km (2-3 days average revisit and 8-days exact repeat) 
• Inclination: 98°, sun-synchronous 
• Local Time of Ascending Node: 6 pm 

 
The SMAP radiometer measures the four Stokes parameters, V, H and T3, and T4 at 1.41 GHz.  

The T3-channel measurement can be used to correct for possible Faraday rotation caused by the 
ionosphere, although such Faraday rotation is minimized by the selection of the 6am/6pm sun-
synchronous SMAP orbit.   
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Figure 1.  The SMAP observatory is a dedicated spacecraft with a rotating 6 m light-weight deployable mesh 
reflector. The radar and radiometer share a common feed. 

 
At L-band anthropogenic Radio Frequency Interference (RFI), principally from ground-based 

surveillance radars, can contaminate both radar and radiometer measurements. Early 
measurements and results from the SMOS mission indicate that in some regions RFI is present 
and detectable. The SMAP radar and radiometer electronics and algorithms have been designed 
to mitigate the effects of RFI. The SMAP radar utilizes selective filters and an adjustable carrier 
frequency in order to tune to pre-determined RFI-free portions of the spectrum while on orbit. 
The SMAP radiometer will implement a combination of time and frequency diversity, kurtosis 
detection, and use of T4 thresholds to detect and, where possible, mitigate RFI.   

 
The planned SMAP data products are listed in Table 2. Level 1B and 1C data products are 

calibrated and geolocated instrument measurements of surface radar backscatter cross-section 
and brightness temperatures derived from antenna temperatures. Level 2 products are 
geophysical retrievals of soil moisture on a Earth-fixed grid based on Level 1 products and 
ancillary information; the Level 2 products are output on a half-orbit basis. Level 3 products are 
daily composites of Level 2 surface soil moisture and freeze/thaw state data. Level 4 products are 
model-derived value-added data products that support key SMAP applications and more directly 
address the driving science questions.  

 
1.3 Motivation for the L4_SM Data Product 

 
The primary SMAP measurements, land surface microwave emission at 1.41 GHz and radar 

backscatter at 1.26 GHz and 1.29 GHz, are directly related to surface soil moisture (in the top 5 
cm of the soil column).  Several of the key applications targeted by SMAP, however, require 
knowledge of root zone soil moisture (defined here as soil moisture in the top 1 m of the soil 
column), which is not directly linked to SMAP observations.  The foremost objective of the 
SMAP Level 4 Surface and Root Zone Soil Moisture (L4_SM) product is to fill this gap and 
provide estimates of root zone soil moisture that are informed by and consistent with SMAP 
observations.  Such estimates are obtained by merging SMAP observations with estimates from a 
land surface model in a soil moisture data assimilation system. 
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Table 2.   Overview of SMAP science data products.  Mean latency under normal operating conditions.  The SMAP 
project will make a best effort to reduce these latencies. 
 
 

The land surface model component of the assimilation system is driven with observation-
based surface meteorological forcing data, including precipitation, which is the most important 
driver for soil moisture.  The model also encapsulates knowledge of key land surface processes, 
including the vertical transfer of soil moisture between the surface and root zone reservoirs.  
Finally, the model interpolates and extrapolates SMAP observations in time and in space.  The 
SMAP L4_SM product thus provides a comprehensive and consistent picture of land surface 
hydrological conditions based on SMAP observations and complementary information from a 
variety of sources.  The assimilation algorithm considers the respective uncertainties of each 
component and, if properly calibrated, yields a product that is superior to satellite or land model 
data alone.  Error estimates for the L4_SM product are generated as a by-product of the data 
assimilation system.  

 
Without root zone soil moisture estimates from the L4_SM product, SMAP would be of 

limited use for several key applications targeted by the mission.  Fortunately, there has been 
substantial progress in land data assimilation over the past decade, and soil moisture data 
assimilation has already been demonstrated successfully with SMAP precursor datasets (section 
2.2).  Much of the development occurred at GSFC, which is a partner in the SMAP project.  The 
Global Modeling and Assimilation Office (GMAO) at GSFC currently hosts an ensemble 
Kalman filter (EnKF) data assimilation system that has been used successfully to assimilate 
satellite retrievals of surface soil moisture into the NASA Catchment land surface model.  When 
the satellite data, the model data, and the assimilation product are each compared to independent 
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in-situ observations, the assimilated product proves superior (section 2.2), thereby validating the 
assimilation system [Reichle et al., 2007; Liu et al., 2011; Draper et al., 2012].  Most 
importantly, the assimilation system improves over the model-only root zone soil moisture 
estimates.  This ATBD provides a detailed description of the SMAP L4_SM product, its 
algorithm, and how the product will be validated. 
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2. Overview and Background 
 
2.1  Product/Algorithm Objectives 
 
The main objectives of the SMAP L4_SM product are  
 
(i) to provide estimates of root zone soil moisture (defined here nominally as soil moisture in 

the top 1 m of the soil column) based on SMAP observations, and  
(ii) to provide a global surface and root zone soil moisture product that is spatially and 

temporally complete.  
 
These objectives address two limitations of the SMAP Level 2 soil moisture products, which 
provide soil moisture estimates only for the surface layer (~top 5 cm of the soil) and only at 
times and locations where soil moisture can be observed by SMAP sensors (subject to orbit and 
land surface characteristics). 

 
 
2.2  Historical Perspective 
 

There has been considerable progress in the methodological development of soil moisture 
data assimilation [Walker and Houser, 2001; Reichle et al., 2002a,b, 2009a, 2014a; Margulis et 
al., 2002; Reichle and Koster, 2003; Crow and Wood, 2003; Seuffert et al., 2003; Crow and van 
Loon, 2006; Dunne and Entekhabi, 2006; Pan and Wood, 2006; Zhou et al., 2006; De Lannoy et 
al., 2007, 2014b; de Rosnay et al., 2013, 2014], with ensemble-based Kalman filtering and 
smoothing algorithms emerging as the methods of choice.  These developments were initially 
based on assimilation experiments with synthetic soil moisture retrievals and field-scale studies 
because global satellite observations of soil moisture had been lacking.  Recently, a number of 
such data sets have become available, including soil moisture products from the Advanced 
Microwave Scanning Radiometer for the Earth Observing System (AMSR-E; since 2002) 
[Njoku, 2011, Owe et al., 2008], the Tropical Rainfall Measuring Mission (TRMM) Microwave 
Imager (TMI; since 1997] [Gao et al., 2006, Owe et al., 2008], Windsat [Li et al., 2007], and the 
historic Scanning Multichannel Microwave Radiometer (SMMR;1978-1987) [Owe et al., 2008].  
These products are based on C- and X-band passive microwave observations with an effective 
sensing depth of roughly 1 cm.  Soil moisture retrievals can also be obtained from (active) radar 
microwave measurements, including those from the European Remote Sensing satellites (ERS-
1/2) [Wagner et al., 2007], and the Advanced Scatterometer (ASCAT) [Bartalis et al., 2008].  
Improved retrievals are expected from passive L-band sensors that measure moisture in the top 5 
cm of the soil, including SMOS [Kerr et al., 2001; 2010] launched in November 2009, the 
NASA Aquarius mission [Lagerloef et al., 2008] launched in June 2011, and, of course, the 
NASA SMAP mission. 
  

Significant climatological differences have been identified between independent soil moisture 
estimates from in situ measurements, satellite retrievals, and model integrations of antecedent 
meteorological forcing data.  On a global scale, neither the satellite nor the model soil moisture 
are more consistent with the available in situ observations, implying that presently there is no 
agreed climatology of global soil moisture [Reichle et al., 2004].  This gap may be filled in the 
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future through a sufficiently long record of satellite-based soil moisture observations at L-band 
(such as provided by SMOS and SMAP) and validation against similarly long records of 
distributed in situ observations.  In the meantime, the problem can be circumvented for data 
assimilation through a scaling approach [Reichle and Koster, 2004; Drusch et al., 2005].  The 
central idea is to rescale the satellite data prior to assimilation by matching the satellite data’s 
cumulative distribution function (cdf) to the model’s climatology.  Note that while at first glance 
such rescaling may appear to remove some potentially useful information, the most important 
information in the data stream for most applications, namely, the time variability of the signal, is 
fully retained in the rescaling process.  (The final merged dataset value can, in any case, be 
converted, through application of the appropriate statistical moments, to a magnitude consistent 
with any given climatology.)  Hence, long-term mean bias should be removed prior to validation 
(Section 4.2.4).  Obviously, such validation relies on the availability of relatively long time series 
of satellite and in situ observations, though approaches using ergodic sampling have been 
developed [Reichle and Koster, 2004] that relax the time-series length requirement for satellite 
data (section 4.1.2e), allowing even short missions like SMAP to contribute effectively to Level 
4 product generation.  
 

It has been demonstrated that the assimilation of satellite retrievals of surface soil moisture 
into a land model does in fact yield superior estimates of soil moisture conditions when 
compared to model or satellite estimates alone. Reichle and Koster [2005], Drusch [2007], and 
Reichle et al. [2007] demonstrated this property for large-scale soil moisture fields based on the 
assimilation of retrievals from SMMR, TMI, and AMSR-E, respectively.  Recently, Liu et al. 
[2011] assessed the contributions of precipitation and soil moisture observations to soil moisture 
skill in a land data assimilation system.  Relative to baseline estimates from the Modern Era 
Retrospective-analysis for Research and Applications (MERRA), the study investigated soil 
moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and 
satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals 
from AMSR-E.  Soil moisture skill (defined as the anomaly time series correlation coefficient R) 
was assessed using in situ observations in the continental United States.  In situ observations 
were from 37 single-profile sites within the Soil Climate Analysis Network (SCAN) for which 
skillful AMSR-E retrievals are available and from four USDA Agricultural Research Service 
watersheds with high-quality distributed sensor networks that measure soil moisture at the scale 
of land model and satellite estimates.  The latter have been selected as SMAP core validation 
sites (section 4.2.4a).  The average skill of AMSR-E retrievals is R=0.42 versus SCAN (Figure 
2) and R=0.55 versus the core validation site measurements (not shown).  The skill of MERRA 
surface and root zone soil moisture is R=0.43 and R=0.47, respectively, versus SCAN 
measurements (Figure 2).  MERRA surface moisture skill is R=0.56 versus the core validation 
site measurements (not shown).  Most importantly, Figure 2 shows that adding information from 
precipitation observations increases (surface and root zone) soil moisture skills by "R~0.06, that 
assimilating AMSR-E retrievals increases soil moisture skills by "R~0.08, and that adding 
information from both sources increases soil moisture skills by "R~0.13.  The result 
demonstrates that precipitation corrections and assimilation of satellite soil moisture retrievals 
contribute important and largely independent amounts of information. 
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Figure 2. Average time series correlation coefficient R with SCAN in situ surface and root zone soil moisture 
anomalies for estimates from two AMSR-E retrieval datasets (NSIDC and LPRM), the Catchment model forced 
with four different precipitation datasets (MERRA, CMAP, GPCP, and CPC), and the corresponding data 
assimilation integrations (DA/NSIDC and DA/LPRM).  Average is based on 37 SCAN sites for surface and 35 
SCAN sites for root zone soil moisture (see Figure 17 in section 4.2.4). Error bars indicate approximate 95% 
confidence intervals. 

 
Note that the improvements through data assimilation that are shown in Figure 2 are affected 

by errors in the validating in situ measurements and the fact that the in situ measurements are 
point-scale observations.  In contrast, satellite, model, and assimilation estimates refer to 
horizontally distributed soil moisture footprints of about 50 km linear scale.  Given the in situ 
errors and the scale mismatch, the maximum possible R value, even with perfect estimates of 
large scale soil moisture, is presumably much less than 1, and thus the actual improvement 
associated with data assimilation is likely to be larger than that suggested by the figure.   

 
In a study by Draper et al. [2012], ASCAT and AMSR-E surface soil moisture retrievals were 

assimilated separately or together in the same assimilation system, and the results were validated 
against SCAN observations and Murrumbidgee in situ measurements.  Figure 3 shows 
significant skill gains for surface and root zone soil moisture estimates through assimilation of 
either active (ASCAT) or passive (AMSR-E) data.  The successful use of the active microwave 
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retrievals by Draper et al. [2012] is especially reassuring because it suggests that active 
measurements contain information about soil moisture.  This information is captured in the 
L4_SM product through the use of downscaled brightness temperatures from the L2_SM_AP 
product. 

 

 
 
Figure 3. Mean skill for (a) surface and (b) root-zone soil moisture from the open loop model and the data 
assimilation (DA) of ASCAT, AMSR-E, and both, averaged across each land cover class, with 95% confidence 
intervals. The number of sites in each land cover class is given in the axis labels. Skill is based on all non-frozen 
days in the experiment period (Jan 2007 – May 2010). 
 

The skill improvements documented in Figures 2 and 3 suggest that the assimilation system is 
adequately calibrated, although not necessarily optimal.  Additional gains in skill may be 
possible through further tuning of the model and observation error parameters that are inputs to 
the assimilation system, for example through adaptive filtering (section 4.1.2f).  Furthermore, the 
potential gains from assimilation of SMAP observations (as opposed to AMSR-E or ASCAT 
retrievals) should be larger because the input SMAP data are expected to be superior in terms of 
sampled depth and coverage (see section 4.1.4 and Table 5).  Note, however, that the skill 
improvement associated with SMAP could also be smaller if future model estimates become 
even more skillful, for example through better precipitation estimates from improved 
atmospheric modeling and data assimilation systems.  
 

There is a relatively small number of research groups with significant experience in large-
scale soil moisture data assimilation, including (in alphabetical order) US-based teams at 
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Colorado State University [Jones et al., 2004], the Massachusetts Institute of Technology 
[Entekhabi et al., 2004; McLaughlin et al., 2006], NASA/GSFC [Reichle et al., 2009a; Kumar et 
al., 2008; Rodell et al., 2003], NOAA/NCEP [Mitchell et al., 2004], NOAA/NESDIS [Zhan et 
al., 2006], Princeton University [Wood et al., 2008], the University of California, Los Angeles 
[Margulis et al., 2003], and the USDA Hydrology and Remote Sensing Lab [Crow and Zhan, 
2007].  Foreign (non-US-based) research groups with substantial soil moisture assimilation 
experience include teams at weather centers (Deutscher Wetterdienst, Environment Canada, the 
European Centre for Medium-Range Weather Forecasting, Meteo France), the Centre d'Etudes 
Spatiales de la Biosphère (Toulouse, France), and Monash University, Melbourne, Australia.   
 

Among US-based groups, the GMAO and the Hydrological Sciences Branch at NASA/GSFC 
have probably the highest concentration of experts and the longest experience in soil moisture 
data assimilation.  Their Goddard Earth Observing System Model, Version 5 (GEOS-5) and 
Land Information System (LIS) software suites [Reichle et al., 2009a; Kumar et al., 2008a] are 
among the most mature land data assimilation systems available and are suitable candidates for 
the SMAP L4_SM algorithm.  The basic ensemble-based GEOS-5 data assimilation modules 
have recently been integrated into LIS [Kumar et al., 2008a].  NOAA (NCEP and NESDIS) and 
the Air Force Weather Agency are in the process of adopting LIS as their operational software 
framework for land data assimilation.   
 
 
2.3  Instrument/Product Characteristics 
 
2.3.1  Instrument/Calibration Aspects (affecting product) 
 

The baseline L4_SM product is derived from the downscaled (9 km) brightness temperatures 
provided with the Level 2 Radar and Radiometer Soil Moisture (L2_SM_AP) product, the 36 km 
brightness temperatures observations in the Level 1C Radiometer Brightness Temperature 
(L1C_TB) product, and the freeze/thaw observations in the Level 3 Freeze/Thaw State 
(L3_FT_A) product.  See corresponding ATBDs for instrument and calibration aspects of these 
inputs (section 8).  
 
2.3.2  Data Product Characteristics 
 
This section provides a summary of the SMAP L4_SM product.  See [Reichle et al., 2014b] for 
detailed data product specifications.  
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2.3.2a Geophysical parameters 
 
The SMAP L4_SM data product includes the following components: 
 

(i) Surface soil moisture (0-5 cm vertical average).       
(ii) Subsurface (or “root zone”) soil moisture (0-100 cm vertical average).  
(iii) Additional research products (not validated), including surface meteorological forcing 

variables, soil temperature, evaporative fraction, net radiation, etc. and error estimates 
for select output fields that are produced internally by the L4_SM algorithm (section 
2.3.2e). 

 
Soil moisture is output in volumetric units, in wetness (or relative saturation) units, and in 
percentile units (except surface soil moisture) [Reichle et al., 2014b], permitting a user familiar 
with the variations of soil moisture in a given applications context to transform the product into 
application-specific data [Entekhabi et al., 2010a].  For example, a root zone soil moisture 
percentile value of 95% for a given time and location corresponds to the 95th percentile of all 
root zone soil moisture values produced by the land model at that location for a given time-of-
year and across multiple years.  
 
2.3.2b Spatial resolution, posting, and coverage 
 

All L4_SM geophysical parameters will be derived at a resolution of 9 km and posted on the 
SMAP Earth-fixed global grid with 9 km spacing [Reichle et al., 2014b].  The 9 km grid will be 
consistent with that of the EASE (version 2) grid of the other SMAP products.  It is anticipated 
that spatial sub-setting tools for the L4_SM outputs will be made available by the National Snow 
and Ice Data Center (http://nsidc.org/; selected by NASA as the Distributed Active Archive 
Center charged with the archival and distribution of SMAP data except SMAP radar data 
products). 
 
2.3.2c Temporal resolution and sampling 
 
Three basic time steps are involved in the generation of the L4_SM product:   

 
1) the land model computational time step (7.5 min, section 4.1.2),  
2) the EnKF analysis update time step, and  
3) the reporting (or output) time step for the instantaneous and time average geophysical 

fields that are stored in the L4_SM data product. 
 
The available SMAP observations will be assimilated in an EnKF analysis update step at the 
nearest 3-hourly analysis time (0z, 3z, …, and 21z).  A broad variety of geophysical parameters 
will be provided as 3-hourly averages between these update times [Reichle et al., 2014b].  
Moreover, instantaneous (forecast and analysis) soil moisture and temperature estimates will be 
provided along with the assimilated observations.  These snapshots are nominally for 0z, 3z, …, 
or 21z.  It is anticipated that time averaging tools (to daily and monthly estimates) will be 
provided by the DAAC. 
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Upscope option:  The data assimilation system produces global soil moisture estimates at 
every land model time step (7.5 min).  Provided sufficient computational resources are available, 
hourly EnKF update steps could be performed.  Provided sufficient storage capacity is available 
in the processing system and the DAAC, the 3-hour average output of geophysical parameters 
could be replaced with hourly averages. 
 
2.3.2d Latency 
 

After the 3-month in-orbit checkout (IOC) period (see SMAP Level 1 Mission Requirements 
and Success Criteria, section 8), the L4_SM product must be produced within 7 days of satellite 
data acquisition (mean latency under normal operating conditions).  This target latency 
requirement is motivated by today's typical operational schedule for seasonal climate forecast 
production.  Seasonal climate forecasts are initialized with land surface conditions that rely on 
gauge-based, 1-5 day average precipitation observations and thus already have a latency of up to 
7 days.  Based on the availability of the input daily precipitation observations, we plan to deliver 
output in daily batches (once per day for one data day) with a mean latency of 2-3 days.  This 
schedule may be adjusted according to the release schedule of the input precipitation 
observations that will be available after launch (section 4.1.3).  Note that the latency of the 
L4_SM product is at least that of the lower-level SMAP input products plus processing time. 
 

Delivery of the validated L4_SM product will begin after the Calibration/Validation phase as 
specified in the SMAP Level 1 Mission Requirements and Success Criteria (section 8).  The 
Calibration/Validation phase for Level 4 products covers the first twelve months after IOC. 
 
2.3.2e Error estimates 
 

The data assimilation system weighs the relative errors of the assimilated lower-level product 
(i.e., radiance or retrieval) and the land model forecast.  Estimates of the error of the assimilation 
product are dynamically determined as a by-product of this calculation.  How useful these error 
estimates are depends on the accuracy of the input error parameters and needs to be determined 
through validation (section 4.2.4).  The target accuracy of the assimilated lower-level products is 
discussed in the corresponding ATBDs (section 8).  The error estimates of the land surface 
model are discussed in sections 4.13 and 4.1.4.  The required input error parameters are 
discussed in sections 4.1.2 and 4.1.3e.     
 

Again, each instantaneous land model field automatically comes with a corresponding 
instantaneous error field which will be provided for select variables.  The relevant outputs are 
listed in [Reichle et al., 2014b].  Specifically, the error estimates are derived from the ensemble 
standard deviation of the analyzed fields.  For soil moisture, the ensemble standard deviation is 
computed from the analysis ensemble in wetness units.  For temperatures, the ensemble standard 
deviation will be provided directly in units of Kelvin. These error estimates will vary in space 
and time.     
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3. Physics of the Problem 
 
3.1  System Model 
 

At the heart of a land surface data assimilation system is a land surface model that monitors 
the evolution of soil moisture, snow, and temperature states as they respond to meteorological 
drivers such as rainfall and incident radiation.  A land model’s key strength is its reliance on 
conservation principles known to operate in nature.  In essence, a land model is designed to 
conserve both water (converting precipitation inputs into evaporation, runoff, and storage 
change) and energy (converting incident radiation into outgoing radiation, latent heat flux, 
sensible heat flux, storage change, and other miscellaneous terms).  Given realistic forcing, these 
conservation principles ensure at least some first-order reliability in the simulation products – 
when it rains, for example, the modeled soil will typically get wetter. 
 

In the context of SMAP, the land model indeed provides an invaluable additional benefit: it 
provides a means for producing soil moisture estimates at levels below the 0-5 cm surface layer 
that is directly sampled by the SMAP instrument.  The land model includes physically-based 
parameterizations for transporting moisture between the near-surface soil and, say, the root zone, 
which can nominally be considered to extend to a meter below the surface.  A single “root zone” 
depth is chosen here to make the SMAP product more straightforward; in nature, the depths 
tapped by roots vary with vegetation type.  In the course of the data assimilation process, the 
subsurface transport formulations in the land model (along with the subsurface assimilation 
updates, section 4.1.2) effectively advects SMAP-based surface soil moisture information into 
deeper soil levels.  This deeper soil moisture product component is of critical importance to 
many scientific applications (agriculture, climate forecasting, etc.).  In fact, for most 
applications, deeper soil moisture is arguably more important than the 0-5 cm surface soil 
moisture. 
 

Along with this benefit comes a cost.  Using a land model in a global data assimilation 
context as part of SMAP requires a substantial amount of ancillary data.  In particular, the land 
model requires global fields of meteorological forcing data at suitable temporal and spatial 
resolutions, surface properties and parameters (hydraulic conductivity characteristics, vegetation 
conductance characteristics, etc.), some of which may vary seasonally, and initial model states.  
Further discussion of these ancillary data needs is provided in section 4.1.3. 
 
 
3.2  Radiative Transfer and Backscatter 
 

The L4_SM algorithm relates soil moisture from a land model to the microwave brightness 
temperature and backscatter observed by SMAP.  The physics of microwave radiative transfer 
and backscatter are described in the SMAP Level 1-3 ATBDs (section 8). 
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3.3  Parameter and Model Uncertainties 
 

Modeling uncertainties include errors in the meteorological datasets used to force the land 
model.  Moreover, any land model used will have a wealth of limitations in its physical 
formulations, initialization, and assigned parameter values.  As a result, simulated states 
invariably have errors.  Consider the example of a rain event.  While the soil does get wetter, the 
land model still has to decide, based on parameterized physics, precisely how much of the water 
infiltrates the soil as opposed to wetting the leaves of the vegetation or running off into rivers.  
Inaccuracies in the partitioning naturally lead to inaccuracies in the simulated soil moisture state.  
Such potential deficiencies, which must always be kept in mind when considering land model 
products, are ameliorated to an extent by the data assimilation process, in which the satellite data 
are used to steer the land model products toward independently observed values.  In an 
ensemble-based soil moisture data assimilation system, uncertainties in the land surface model 
are treated explicitly in the algorithm.  The success of the assimilation system thus hinges on 
proper specification of the input (model and observation) error parameters (see discussion in 
section 4.1).   
 

A general discussion of the uncertainties in the radiative transfer and backscatter models and 
parameters can be found in the SMAP Level 1-3 ATBDs (section 8).  The following section 
provides a detailed discussion of the model and parameter uncertainties of the L4_SM algorithm. 
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4.  L4_SM Algorithm 
 
4.1  Theoretical Description 
 

The present version of the SMAP L4_SM ATBD includes feedback from a formal external 
review of the draft L4_SM algorithm and data product that was conducted in 2009 [Reichle et 
al., 2009b] and from the Science Algorithm Peer Review that was conducted in 2013. 
 
4.1.1  Baseline and Option Algorithms Overview 
 
The L4_SM algorithm consists of two key elements: 
 

(i) GEOS-5 Catchment land surface and microwave radiative transfer model 
(ii) GEOS-5 ensemble-based land data assimilation algorithm 

 
The GEOS-5 Catchment land surface model is a numerical description of the water and energy 
transport processes at the land-atmosphere interface, augmented with a model that describes the 
land surface microwave radiative transfer (section 4.1.2).  The GEOS-5 ensemble-based land 
data assimilation system (section 4.1.2) is the tool that will be used to merge SMAP observations 
with estimates from the land model as it is driven with observation-based surface meteorological 
forcing data.  
 

The baseline L4_SM algorithm, described in detail in sections 4.1.2a-e, includes a soil 
moisture analysis based on the ensemble Kalman filter and a rule-based freeze/thaw analysis.  
Downscaled (9 km) brightness temperatures (L2_SM_AP) will be assimilated when and where 
available, supplemented with 36 km brightness temperature observations (L1C_TB; ascending 
and descending passes) where downscaled data are unavailable.  Moreover, freeze/thaw 
observations (L3_FT_A) will also be assimilated.   

 
After initialization of the system with estimates derived from a model spin-up procedure 

(section 4.1.3), the baseline L4_SM algorithm steps recursively through time, alternating 
between model forecast (FCST) and analysis (ANA) steps.  Figure 4 provides an overview of 
one forecast and analysis cycle.  The algorithm begins with a Catchment model ensemble 
forecast, initialized with the analysis at time t-1 and valid at time t (labeled FCST(t) in Figure 4).  
For each 9 km model grid cell, the forecast freeze/thaw (F/T) state is first compared to the 
corresponding SMAP freeze/thaw observations (aggregated to the resolution of the model 
forecast).  If the Catchment model forecast and the SMAP observations disagree, the model 
states in the 9 km grid cell in question are corrected towards the observations in a freeze/thaw 
analysis (section 4.1.2).  If the forecast and observed freeze/thaw states agree and indicate non-
frozen conditions, the grid cell in question is included in a distributed soil moisture analysis 
(section 4.1.2).  If the model indicates non-frozen conditions and freeze/thaw observations are 
not available, the grid cell is also included in the soil moisture analysis.  Otherwise, the analysis 
step is skipped for the grid cell in question.  After the analysis has been completed for all grid 
cells, the algorithm continues with a model forecast to time t+1, and so on. 
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Figure 4. L4_SM algorithm overview.  See Figure 7 for a flowchart of the soil moisture analysis. 

 
 
Assimilation of brightness temperatures vs. radar backscatter vs. soil moisture retrievals 

 
The assimilation of brightness temperatures requires a forward passive microwave radiative 

transfer model that transforms soil moisture and temperature into brightness temperature (or 
radiance; section 4.1.2).  Such radiance assimilation is straightforward and has been described in 
the literature [Reichle et al., 2001; Crow and Wood, 2002; Seuffert et al., 2003].  The 
L2_SM_AP algorithm uses high-resolution radar backscatter measurements and 36 km 
brightness temperature observations to provide downscaled (9 km) brightness temperature 
estimates that can easily be ingested into the L4_SM algorithm.  Alternatively, the L4_SM 
algorithm could directly assimilate radar backscatter coefficients [Zhan et al., 2006; Hoeben and 
Troch, 2000], but this approach is considerably less mature and therefore not considered for the 
L4_SM algorithm. 

 
Another alternative would be the assimilation of soil moisture retrievals from the Level 2 

products (L2_SM_P, L2_SM_A, and/or L2_SM_AP).  However, assimilating brightness 
temperatures comes with several advantages: the L4_SM product will not depend entirely on any 
Level 2 product and could fall back on the assimilation of L1C_TB brightness temperatures, 
which allows for more robust processing.  Moreover, the land surface temperatures that are used 
in the L4_SM algorithm (for model predictions of brightness temperatures) are taken from within 
the data assimilation system.  The baseline algorithm thus avoids a potential inconsistency that 
would be present if Level 2 retrievals were assimilated, because the Level 2 retrievals utilize 
independent estimates of surface temperature that are not necessarily consistent with those of the 
Level 4 system.  Note that this inconsistency would still be present even though the Level 2 
algorithms use ancillary soil temperature data from the NASA GMAO atmospheric analysis 
system because of the differences between the GMAO atmospheric analysis system and the off-
line, SMAP-customized L4_SM system.  
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4.1.2  Mathematical Description of the Algorithm 
 

In this section, we provide the mathematical descriptions of the key elements of the baseline 
algorithm and optional extensions. 
 
4.1.2a The NASA Catchment land surface model 
 

Model soil moisture is obtained from integrations of the NASA Catchment Land Surface 
Model [hereinafter Catchment model; Koster et al., 2000; Ducharne et al., 2000], developed by 
the NASA GMAO.  Although in standard practice the basic computational unit of the Catchment 
model is the hydrological catchment (or watershed), for SMAP we will use the Earth-fixed 9 km 
EASEv2 grid (same as that of the L2_SM_AP product) to define the surface elements.  The 
conceptual physics underlying the model, which focus on topographical variations smaller than 
the 9 km scale, are still important and valid for such a surface element definition. 

 
Table 3 lists the Catchment model prognostic variables, and Figure 5 provides a simplified 

picture of the three prognostic variables related to soil moisture: catchment deficit (CATDEF), 
root zone excess (RZEXC), and surface excess (SRFEXC).  In effect, the vertical profile of soil 
moisture at each point in each computational unit (related to CATDEF; see Figure 5) is 
determined by the equilibrium soil moisture profile (defined by a balance of gravity and capillary 
forces) from the surface to the (spatially varying) water table and by two additional variables that 
describe deviations from the equilibrium profile: the average deviation in a 1 m root zone layer 
(RZEXC), and the average deviation in a 2 cm surface layer (in the GMAO operational 
configuration; SRFEXC).  For SMAP, the surface layer depth will be changed to 5 cm to 
correspond more closely to the instrument’s observing depth.   

 
 

Variable name Description Units 
TC1 Surface temperature (saturated area) K 
TC2 Surface temperature (unsaturated area) K 
TC4 Surface temperature (wilting area) K 
QA1 Canopy air specific humidity (saturated area) kg kg-1 
QA2 Canopy air specific humidity (unsaturated area) kg kg-1 
QA4 Canopy air specific humidity (wilting area) kg kg-1 
CAPAC Interception reservoir kg m-2  
CATDEF Catchment deficit kg m-2  
RZEXC Root zone excess kg m-2  
SRFEXC Surface excess kg m-2  
GHT1, GHT2, …, GHT6 Ground heat content (layers 1-6) J m-2 
WESN1, WESN2, WESN3 Snow water equivalent (layers 1-3) kg m-2  
SNDZ1, SNDZ2, SNDZ3 Snow depth (layers 1-3) m 
HTSN1, HTSN2, HTSN3 Snow heat content (layers 1-3) J m-2 
 

Table 3.   Prognostic variables of the Catchment model. 
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As indicated in Figure 5, the Catchment model differs from traditional, layer-based models by 
including an explicit treatment of the spatial variation of soil water and water table depth within 
each computational unit (that is, within each 9 km EASEv2 grid cell for L4_SM) based on the 
statistics of the catchment topography.  This spatial variation enters into the calculation of 
moisture diffusion between the root zone and lower soil moisture storage.  Extensive 
preprocessing produces a pre-computed functional relationship between RZEXC, CATDEF, and 
the amount of moisture transferred between the two in a given time step, a functional relationship 
that is based on a spatially distributed set of one dimensional Richard’s equation calculations, 
each representing moisture transport at some location in the catchment and each performed on a 
soil column fitted with high vertical resolution.  The transfer of moisture between the 0-5 cm 
surface layer and the root zone, of particular relevance to SMAP, is computed similarly, though 
without a spatially distributed component; a highly-resolved, one-dimensional representation of 
the root zone is used to pre-compute a functional relationship between the moisture variables and 
the amount of moisture transferred between SRFEXC and RZEXC within the time step. 

 

Figure 5.  Unique elements of the Catchment land surface model related to the diffusion of moisture between the    
0-5 cm surface zone and the remainder of the soil profile.  Shown are descriptions of the three moisture prognostic 
variables (CATDEF, RZEXC, and SRFEXC; Table 3) and an indication of how the transfer of moisture between the 
variables is computed. 
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The treatment of spatial heterogeneity also allows the diagnostic separation of the catchment 
into saturated, unsaturated, and wilting sub-grid areas.  The sizes of these sub-grid areas vary 
dynamically; wetter conditions, for example, expand the saturated sub-grid area and reduce the 
wilting sub-grid area.  The surface energy balance is computed separately for each sub-grid area 
using physics specific to the corresponding hydrological regime.  This entails the monitoring of 
independent prognostic temperature variables for each sub-grid area (TC1, TC2, and TC4).  
These three surface temperature prognostic variables interact with an underlying heat diffusion 
model for soil temperature (consisting of six layers with depths equal to about 0.1, 0.2, 0.4, 0.75, 
1.5, 10 m from top to bottom) that is common to all three sub-grid areas.  Surface runoff 
processes are computed separately for each sub-grid area, again using hydrological regime-
specific physics, whereas subsurface baseflow is computed directly from the diagnosed spatial 
distribution of water table depth.  A snow model component describes the state of snow pack in 
terms of snow water equivalent (WESN), snow depth (SNDZ), and snow heat content (HTSN; 
three layers for each variable).  The time step for the model integration is 7.5 minutes. 

 
The salient feature of the land model integration is that it uses meteorological forcing inputs 

that rely on observed data as much as possible.  Reichle et al. [2011], Yi et al. [2011], and 
Holmes et al. [2011] provide a comprehensive assessment of large-scale land surface estimates 
derived with the Catchment model as part of the MERRA reanalysis and demonstrate that the 
Catchment model is indeed a state-of-the-art global land surface model.   

 
4.1.2b The microwave radiative transfer model 

 
The Catchment model has been augmented with a microwave radiative transfer model that 

transforms the simulated surface soil moisture and temperature fields into model estimates of L-
band brightness temperature (at the 9 km scale; De Lannoy et al. [2013, 2014a]).  Like the 
L2_SM_P and L2_SM_AP algorithms, the L4_SM algorithm uses the “tau-omega” model, an 
approximation of the radiative transfer processes that is appropriate for low frequency 
microwave emission.  In this model, “tau” is the vegetation optical depth and “omega” is the 
single-scattering albedo.  A layer of vegetation over the soil attenuates the emission from the soil 
and adds to the total radiative flux with its own emission. Assuming that scattering within the 
vegetation is negligible at L-band frequencies, the vegetation may be treated mainly as an 
absorbing layer for the soil moisture signal (see L2_SM_P ATBD for details; section 8).   

 
The parameterizations of the microwave model represent a tradeoff between the need to 

adequately represent the key effects of surface characteristics on microwave signatures at the 
spatial scale of interest, and the need for a sufficiently simple representation for application to 
satellite retrieval algorithms.  The microwave model incorporates the effects of dynamic features 
(including surface soil moisture and soil temperature), and static or slowly-varying features such 
as soil texture, soil surface roughness, land-cover and vegetation type, and vegetation water 
content.  Effects of atmospheric variability are assumed negligible at L-band for non-raining 
conditions and have in any case been removed from the assimilated brightness temperature 
observations during SMAP Level 1 processing.   

 
In terms of the choices for roughness and vegetation parameterizations and the corresponding 

ancillary parameter datasets, the configuration of the L4_SM microwave model will correspond 
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as closely as possible to that of the L2_SM_P and L2_SM_AP algorithms.  However, there are 
important reasons why the configuration of the microwave model for L4_SM will likely differ 
from that used for the Level 2 algorithms (section 4.1.3).   
   
4.1.2c The ensemble Kalman filter  
 

The L4_SM algorithm is built on the ensemble Kalman filter (EnKF) – a Monte-Carlo variant 
of the Kalman filter [Evensen, 2003].  The idea behind the EnKF is that a small ensemble of 
model trajectories captures the relevant parts of the error structure.  Each member of the 
ensemble experiences perturbed instances of the observed forcing fields (representing errors in 
the forcing data) and/or randomly generated noise that is added to the model parameters and 
prognostic variables (representing errors in model physics and parameters).  The error covariance 
matrices that are required for the filter update can then be diagnosed from the spread of the 
ensemble at the update time. The EnKF is flexible in its treatment of errors in model dynamics 
and parameters.  It is also very suitable for modestly nonlinear problems and has become a 
popular choice for land data assimilation [Andreadis and Lettenmaier, 2005; De Lannoy et al. 
2014b; Durand and Margulis, 2007; Kumar et al., 2008a,b; Pan and Wood, 2006; Reichle et al., 
2002a,b; Zhou et al., 2006].   
 
 

 
 

Figure 6. The ensemble Kalman filter (EnKF). 
 

The EnKF works sequentially by performing in turn a model forecast and a filter update 
(Figure 6).  Formally, the forecast step for ensemble member i can be written as 

 
  xt,i

# = f(xt-1,i
+, qt,i)       (1) 

 
where xt,i

# and xt-1,i
+ are the forecast (denoted with – ) and analysis (denoted with +) state vectors 

at times t and t-1, respectively, of the i-th ensemble member.  The model error (or perturbation 
vector) is denoted with qt,i and its covariance with Qt.  Each ensemble member represents a 
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particular realization of the possible model trajectories with certain random errors in model 
parameters and/or a particular set of errors in forcing.   
 

With the observations available at time t, the state of each ensemble member is updated to a 
new value.  First, the filter update produces increments at time t that can be written as 

 
  "xt,i = Kt ( yt,i – Ht xt,i

# )      (2) 
 

where yt,i denotes the observation vector (suitably perturbed) and Ht is the observation operator 
(which is written as if it was linear for ease of notation, but in practice the update is solved 
without explicitly computing Ht, [Keppenne, 2000]).  Next, the analyzed state vector is obtained 
as xt,i

+ = xt,i
# + "xt,i.  The Kalman gain matrix Kt is given by  

 
   Kt = Pt Ht

T ( Ht Pt Ht
T + Rt)-1      (3) 

 
where Pt is the forecast error covariance (diagnosed from the ensemble xt,i

#), Rt is the observation 
error covariance, and superscript T denotes the matrix transpose.  Simply put, the Kalman gain 
Kt represents the relative weights given to the model forecast and the observations based on their 
respective uncertainties, along with the error correlations between different elements of the state 
vector.  If the system is linear, if its model and observation error characteristics satisfy certain 
assumptions (including Gaussian, white, and uncorrelated noise), and if the input error 
parameters are correctly specified, the Kalman gain of equation (3) is optimal in the sense of 
minimum estimation error variance.  In other words, the updated state is mathematically the best 
estimate of the state possible given the observations, the model prediction, and the estimated 
errors of both.  The reduction of the uncertainty resulting from the update is reflected in the 
reduction of the ensemble spread.  Note that the ensemble of model trajectories in the EnKF 
naturally yields error estimates for the assimilation products. 
 
4.1.2d Freeze/thaw analysis 
 

The assimilation of SMAP freeze/thaw state observations is conceptually similar to the 
assimilation of snow cover observations.  In both cases, the observed variable is, at least at the 
satellite footprint scale, essentially a binary measurement.  Generally, binary measurements 
cannot be assimilated with the EnKF, because the EnKF requires continuous variables (such as 
water or heat reservoirs).  This restriction can be circumvented, however, for snow cover 
observations because in land models, fractional snow cover for a given model grid cell can be 
related to a continuous prognostic variable (such as SWE) via a snow depletion curve.  By 
aggregating high-resolution measurements into fractional snow cover observations (at the scale 
of the land model) the EnKF could still be used [De Lannoy et al., 2010; De Lannoy et al., 2011].  
The same does not apply to freeze/thaw observations, because there is no equivalent to the snow 
depletion curve for the land model's freeze/thaw state.  Consequently, for the assimilation of 
freeze/thaw observations in the baseline L4_SM algorithm we will adapt the rule-based (non-
EnKF) approaches that have been developed to assimilate snow cover observations [Rodell and 
Houser, 2004; Zaitchik and Rodell, 2009].   
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Because the radar and radiometer measurements are not informative of soil moisture under 
frozen soil conditions, a given 9 km grid cell is never included simultaneously in the freeze/thaw 
analysis and the soil moisture analysis (Figure 4).  In particular, a given 9 km grid cell will be 
included in the soil moisture analysis (section 4.1.2e) only if both the observations and the model 
indicate thawed conditions.  If the observations and the model agree on frozen conditions, there 
will be no further analysis step for the 9 km grid cell in question.  If the model forecast and the 
corresponding SMAP observations disagree on the freeze/thaw state, that is, if the model 
indicates frozen conditions and the observation indicates thawed conditions (or vice versa), the 
Catchment model prognostic variables (Table 3) will be adjusted towards the observed 
freeze/thaw state in a freeze/thaw analysis.  Adjustments will primarily be made to the forecast 
surface temperatures (TC1, TC2, TC4; Table 3) and the ground heat content of the first 
subsurface soil layer (GHT1; Table 3) [Farhadi et al., 2014]. 
 

 
 

 
 

Figure 7. The L4_SM soil moisture analysis. 
 
 
 
4.1.2e Soil moisture analysis 
 

Figure 7 summarizes the soil moisture analysis of the L4_SM algorithm.  The state vector x 
for the soil moisture analysis of the baseline algorithm consists of seven Catchment model 
prognostic variables (catchment deficit, root zone excess, surface excess, three surface 
temperature prognostic variables, one each for the saturated, unsaturated, and wilting sub-grid 
areas, and the first subsurface layer ground heat content; Table 3 and section 4.1.2a) at each 
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computational element (9 km grid cell) that is included in the soil moisture analysis (see also 
Figure 4).  Formally, the forecast state vector for the soil moisture analysis is 
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N9 is the number of 9 km grid cells included in the soil moisture analysis, and j=1...N9.  For 
clarity we omit the subscripts for time and ensemble member1.  Since the ancillary data for the 
vegetation opacity ! are relatively uncertain, augmentation of the state vector with ! will be 
considered as an optional variant.  In this case, the dynamical model for ! will be a relaxation to 
the ancillary value, subject to intermittent forcing by the increments from the EnKF update.  
 

As mentioned in section 4.1.1, the L4_SM baseline algorithm assimilates downscaled (9 km) 
brightness temperatures in H- and V-polarization (TBH09_OBS and TBV09_OBS) when and 
where available from the L2_SM_AP product.  However, high-resolution backscatter data are 
not always available to generate the downscaled brightness temperatures.  For example, during 
afternoon overpasses high-resolution radar data are collected only north of 45° N because of 
resource limitations.  Even if high-resolution backscatter data are available, the L2_SM_AP 
algorithm may not always provide downscaled brightness temperatures.  If, for a given time and 
location, downscaled (9 km) brightness temperatures are not available, the 36 km brightness 
temperature values from the L1C_TB product in H- and V-polarization (TBH36_OBS and 
TBV36_OBS) will be assimilated.  Note that we will not assimilate the 36 km brightness 
temperatures for a given time and location if downscaled (9 km) values are available for that 
time and location.  

 
Recently, the L-band brightness temperatures generated by the Catchment model and its 

associated microwave radiative transfer model described above have been calibrated (separately 
for each location) to match the climatology of SMOS observations (section 4.1.3).  While the 
model calibration yields largely unbiased modeled brightness temperatures (with respect to the 
SMOS long-term mean and variability), residual model biases remain and are primarily related to 
seasonal variations in bias.  Moreover, it is not clear to what extent the SMOS observations are 
impacted by low-level RFI and may themselves be biased.  These unavoidable biases in the 
model and the observations must be addressed as part of the data assimilation system (section 
2.2).  Specifically, the brightness temperatures will be converted to anomalies (separately for H- 

                                                
1For reasons of numerical accuracy in the subsequent matrix calculations, the Catchment model prognostic variables 
for each element of the state vector are multiplied with appropriate constant scaling (or unit conversion) factors to 
ensure that all elements of the state vector are approximately of the same order of magnitude.  This scaling should 
not be confused with the a posteriori climatological scaling of surface soil moisture estimates from the climatology 
of the Catchment model into that of the L2_SM_AP product.  
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and V-polarization) before the innovations are computed (Figure 7).  Since brightness 
temperature is strongly impacted by surface temperature, it is important to resolve the seasonal 
and diurnal cycles of the climatology.  This climatological mean adjustment is based on first 
moments only (as opposed to matching cumulative distribution functions (cdfs)) [Reichle et al., 
2010; Yilmaz and Crow, 2013].   

 
Specifically, the observed brightness temperatures for a given time and location 

(corresponding subscripts omitted for clarity) are converted into anomalies through: 
 
 MEANTBprr_OBS_ - TBprr_OBS   ANOMTBprr_OBS_ =     (5a)   
   
where p=H or p=V indicates the polarization, rr=09 or rr=36 indicates the resolution (in km), and 
TBprr_OBS_MEAN is the multi-year mean value of the observed brightness temperature (for a 
given location, day-of-year, and overpass time-of-day).  SMOS brightness temperatures will 
provide a useful early estimate of the SMAP brightness temperature climatologies.  The 
brightness temperatures produced by the land model are calibrated to the SMOS climatology 
prior to the launch of SMAP (section 4.1.3).   The SMOS climatology will also be used initially 
in L4_SM production until sufficient SMAP observations have been accumulated.  Thereafter, a 
SMAP-only climatology will be used for recalibrating the land model and for generating and 
reprocessing the L4_SM product.   
 

The model predictions of brightness temperature are similarly converted into anomalies: 
 

  MEANTBprr_MOD_ - TBprr_FCST  _ANOMTBprr_FCST =   (5b)  
 
where for clarity we again omitted the subscripts for time, location, and ensemble member. 
 

Following equation (2), the innovations vector  (y – Hx#) will thus be computed by 
differencing the H- and V-polarization brightness temperature anomalies from the observations 
and the Catchment model forecast.  If downscaled (9 km) brightness temperature are available 
for a given 36 km grid cell, up to 2$(36/9)2=32 elements from that grid cell are included in the 
innovations vector.  Otherwise, the 36 km grid cell in question only contributes two elements to 
the innovations vector.  Formally, the observation vector is therefore 
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Here, N36 is the number of 36 km grid cells with brightness temperature observations in the soil 
moisture analysis, k=1...N36, and M(k) is the number of assimilated downscaled brightness 
temperature observations within the k-th 36 km grid cell (if available).  Again, we omitted the 
time subscript for clarity.  As mentioned above, the observations vector is suitably perturbed 
before assimilation (equation (2)).   
 

The corresponding vector of model predictions of the 9 km and 36 km brightness 
temperature anomalies are computed from the Catchment model forecast, that is, 
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Again, equations (6) and (7) define the innovations vector needed for the analysis update 

(equation (2)).  Note that the observation operator defined in equation (7) contains all the 
processing steps required to map the state vector x (equation (4)) into a model prediction of the 
observed values that can then be directly differenced with the observation vector y (equation 
(6)).  The observation operator thus includes (i) the transformation of surface soil moisture and 
surface soil temperature fields into brightness temperatures via the microwave radiative transfer 
model at 9 km resolution, (ii) the aggregation from 9 km to 36 km (only!) for locations where 36 
km brightness temperature observations from L1C_TB are assimilated, and (iii) the anomaly 
calculation of equation (5b).  

 
Finally, the increments are computed in units of Catchment model prognostic variables 

following [Keppenne, 2000] (see discussion of equations (2) and (3)).  In the baseline L4_SM 
system, the EnKF has been implemented with three-dimensional ("3d") updates [Reichle and 
Koster, 2003], that is, the increments for a given 9 km grid cell are affected by all observations 
within a certain radius of influence, and not just by the observations that cover the grid cell in 
question.  The radius of influence for the "3d" algorithm is determined by the spatial error 
correlation scales and is expected to be no more than a few hundred kilometers [Reichle and 
Koster, 2003].  It has been shown that the ensemble filter works adequately with 12 ensemble 
members [Reichle et al., 2007; Liu et al., 2011].  To reduce sampling errors, we consider using at 
least 24 ensemble members (resources permitting, section 4.2). 
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4.1.3  Ancillary Data Requirements  
 

Aside from SMAP observations, the data assimilation system requires initialization, 
parameter and forcing inputs for the Catchment land surface model, as well as input error 
parameters for the ensemble-based data assimilation system.  
 
4.1.3a Catchment land surface model parameters 

  
The Catchment model requires topography, soil, and vegetation data at all computational 

elements in the chosen spatial discretization.  A full set of these Catchment model parameters is 
available as part of the GEOS-5 modeling system [Rienecker et al., 2008].  To the extent 
possible, the Catchment model parameters have been updated for consistency with land surface 
parameters that are used by other SMAP products [De Lannoy et al., 2014c].  For example, soil 
parameters are based on texture composites from the Harmonized World Soil Database version 
1.21 (HWSD1.21) and the State Soil Geographic (STATSGO2) project.  The same soil texture 
source data sets are used in the Level 2 retrieval algorithms.  

 
The current version of the Catchment model parameters related to subsurface moisture 

dynamics has been derived from 1 km global topographic data (digital elevation model).  A 
project is underway to update these parameters using higher resolution (90 m) topographic 
information.  We expect that the updated model parameters will be available prior to the end of 
the SMAP mission and can thus be used at least for the final reprocessing of the L4_SM product.  
Select Catchment model ancillary parameter inputs are provided as part of the L4_SM data 
product [Reichle et al., 2014b]. 

 
4.1.3b Microwave radiative transfer model configuration and parameters 

 
A variety of parameterizations exists for soil dielectric mixing, soil roughness effects, and 

vegetation opacity.  Recent publications by de Rosnay et al. [2009], Drusch et al. [2009], and 
Sabater et al. [2011] assess the performance of these parameterizations in the context of global 
modeling.  The current configuration of the microwave radiative transfer model for the L4_SM 
algorithm includes the [Wang and Schmugge, 1980] soil dielectric mixing model, the [Wang and 
Choudhury, 1981] soil roughness model, the [Jackson and Schmugge, 1991] vegetation opacity 
model, and the [Pellarin et al., 2003] atmospheric correction (see [De Lannoy et al., 2013]).  
Note that some of the soil parameters of the Catchment model may differ from those of the 
microwave radiative transfer model because the two models describe soil profiles of different 
depths.  Similarly, the vegetation class inputs for the two models may differ because the two 
models may be associated with different vegetation classifications. 

 
Eventually, the configuration and parameters of the L4_SM microwave model will 

correspond as closely as possible to that of the L2_SM_P and L2_SM_AP algorithms.  However, 
there are important reasons why the model configuration and parameters may differ between the 
L4_SM and the Level 2 algorithms.  Most importantly, data assimilation requires unbiased 
estimates of modeled brightness temperatures with respect to the observations.  When compared 
with SMOS observations, shown in Figure 9a, L-band modeled brightness temperatures typically 
exhibit a cold bias of several tens of Kelvin, shown in Figure 9c, if the parameter values for 
roughness and vegetation listed in the L2_SM_P ATBD are used (section 8).  There are three 
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likely reasons that contribute to this bias: (i) the Catchment model soil moisture climatology may 
be biased wet, (ii) the roughness and vegetation parameters from the L2_SM_P lookup table may 
not be appropriate for the global scale, and (iii) undetected and unmitigated low-level radio-
frequency interference (RFI) may affect the SMOS brightness temperature observations.  The 
impact of potential low-level RFI in SMOS observations cannot be established at this time.  We 
will continue to monitor SMOS data product revisions and research results closely. 

 
In a recent study, De Lannoy et al. [2013, 2014a] calibrated select microwave radiative 

transfer parameters of the GEOS-5 modeling system such that the climatology of the modeled 
brightness temperatures matches that of the SMOS observations.  The calibration was performed 
separately for each location, at the 36 km resolution in the referenced studies, and has been 
refined to 9 km for the L4_SM algorithm.  For the calibration, we chose not to adjust the 
Catchment model soil moisture climatology.  As discussed in section 2.2, there is not yet a 
consensus in the modeling or remote sensing communities about a global surface soil moisture 
climatology.  Moreover, the Catchment model is an integral part of the NASA GMAO GEOS-5 
system and a change in the soil moisture climatology through a model (or model parameter) 
modification would imply an undesirable divergence of the L4_SM modeling system from the 
GEOS-5 (or successor) system.  The control vector for the calibration thus consists only of 
microwave radiative transfer model parameters related to microwave soil roughness, vegetation 
opacity, and vegetation scattering albedo; that is, the control vector does not include soil 
hydraulic or other land surface model parameters.  The objective function penalizes deviations of 
the model climatology from the SMOS observations in terms of the long-term mean and the 
long-term standard deviation of brightness temperature for ascending, descending, H- and V-
polarization, and multiple incidence angles.  The objective function also penalizes deviations of 
the calibrated parameters from prior estimates.  
 

After calibration, the climatological bias in brightness temperature is drastically reduced and 
less than 5 K for most of the globe (Figure 9e).  The original bias in the time series variability 
(Figure 9d) is also reduced after calibration (Figure 9f).  Unlike in the lookup table approach of 
the L2_SM_P algorithm, the calibrated microwave radiative transfer model parameters are not 
uniform within each vegetation class but still exhibit realistic spatial patterns (not shown).  The 
modeled vegetation opacity after calibration also corresponds well to SMOS retrievals (not 
shown).  

 
 

 
  



 

 35 

  

  

  

  

  
 
Figure 9.  Time series (a) mean and (b) standard deviation of SMOS H-polarized Tb at 42.5o incidence angle during 
the validation period (1 Jan 2011 –  1 Jan 2012).  (c) Mean difference between simulated Tb using microwave 
roughness and vegetation parameters from the L2_SM_P ATBD and SMOS observations. (d) Same as (c) but for 
difference of time series standard deviations.  (e, f) Same as (c, d), respectively, but after calibration of microwave 
parameters.  Titles indicate global averages (avg) and spatial standard deviations (std).  Adapted from [De Lannoy et 
al., 2013]. 

 
 
 
Again, the objective of the calibration is to minimize climatological bias.  After calibration, 

the RMSE between SMOS estimates and the model remains as high as 10 K globally (not 
shown).  Some of the remaining RMSE is related to random errors in the modeling system which 
will be addressed in the L4_SM algorithm through the assimilation of SMAP brightness 
temperature observations.  Another contribution to the RMSE after calibration, however, is from 
seasonally varying biases.  Figure 10 shows the temporal evolution in the differences between 
calibrated Tb simulations and SMOS observations as a function of latitude (averaged over 
longitude).  The no-data periods at northern latitudes correspond to frozen conditions.  There are 

e) f) 
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clear seasonal patterns in the bias, most visibly at tropical and subtropical latitudes.  Similar 
residual climatological differences are expected between modeled and SMAP-observed 
brightness temperatures and will be addressed prior to assimilation via the anomaly computation 
of equation (5).   
 
 

  

  

 
 
Figure 10.  Hovmöller plots of (calibrated) model minus SMOS Tb [K] for 1 Jan 2011 – 1 Jan 2012, averaged over 
6 incidence angles (32.5o, 37.5o, 42.5o, 47.5o, 52.5o, and 57.5o) for (a) ascending H-polarization, (b) ascending V-
polarization, (c) descending H-polarization, and (d) descending V-polarization.  Adapted from [De Lannoy et al., 
2013]. 
 
 
4.1.3c Surface meteorological data 

 
The Catchment model is forced with surface meteorological data (including precipitation, 

downward shortwave radiation, downward longwave radiation, wind speed, near surface air 
temperature, near surface specific humidity, and air pressure).  Select forcing inputs will be 
provided as part of the L4_SM research output [Reichle et al., 2014b] (after appropriate 
interpolation in time and space, see below).  The input forcing data stream will be provided by 
output from the global atmospheric analysis system at the NASA GMAO [Rienecker et al., 2008] 
and is based on the assimilation of a very large number (greater than 107 per day) of conventional 
and satellite-based observations of the atmosphere into a global atmospheric model.  At the time 
of this writing, the resolution of the GMAO system is 0.25º by 0.3125º in latitude and longitude, 
respectively.  By the time the SMAP mission ends, the spatial resolution of these outputs is 
expected to be around 0.125º or finer.  The GMAO forcing data stream will be disaggregated to 
the SMAP 9 km EASEv2 model grid with existing software.  Furthermore, the forcing data are 
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available as hourly averages or snapshots (depending on the variable) and will be interpolated to 
the land model time step with existing software.   

 
Additional important corrections will be applied using gauge- and satellite-based estimates of 

precipitation.  For the SMAP L4_SM algorithm, the observations-based precipitation estimates 
will be downscaled to the hourly, 9 km scale of the model forcing using the disaggregation 
method described in [Liu et al., 2011; Reichle et al., 2011].  See Figure 2 and [Liu et al., 2011; 
Reichle et al., 2011] for further details regarding the impact of observations-based precipitation 
corrections.   

 
The specific data source for the observations-based precipitation estimates will be determined 

closer to the launch of SMAP based on availability.  At the time of this writing, global daily 
gauge-based estimates are provided by the NOAA Climate Prediction Center at a horizontal 
resolution of 0.5° with a latency of about 2 days 
(ftp://ftp.cpc.ncep.noaa.gov/precip/CPC_UNI_PRCP/GAUGE_GLB/).  The Global Precipitation 
Measurement (GPM) mission is currently planning to produce only monthly average gauge-
based estimates that would not satisfy the L4_SM latency constraints.  In the extreme event that 
no global gauge-based precipitation product that satisfies L4_SM latency constraints should be 
available after the launch of SMAP, the L4_SM product could be generated using the 
precipitation forcing from the NASA GMAO data stream as is.  
 
4.1.3d Land model initialization 
 

The most appropriate way to initialize the Catchment model prognostic variables (Table 3) at 
the start of the assimilation period is to force the model (in ensemble mode) with meteorological 
data for a multi-year period prior to the assimilation, using forcing data extracted from the same 
sources used during the assimilation period [Rodell et al., 2005].  Memory of any poor 
initialization at the start of this “spin-up” period will be lost by the time the assimilation of 
SMAP observations starts. 
 
4.1.3e Data assimilation parameters 
 

The key feature of the EnKF is that error estimates of the model-generated results are 
dynamically derived from an ensemble of model integrations.  Each member of the ensemble 
experiences slightly perturbed instances of the observed forcing fields (representing errors in the 
forcing data) and is also subject to randomly generated noise that is directly added to the model 
prognostic variables (representing errors in model physics and parameters).  
 

Time series of cross-correlated perturbation fields are generated and applied to selected 
meteorological forcing inputs and Catchment model prognostic variables. Collectively, these 
perturbations allow us to maintain an ensemble of land surface conditions that represents the 
uncertainty in the soil moisture states.  An overview of the perturbation parameters is given in 
Table 4.  Depending on the variable, normally distributed additive perturbations or lognormally 
distributed multiplicative perturbations are applied.  The ensemble mean for all perturbations is 
constrained to zero for additive perturbations and to one for multiplicative perturbations. 
Moreover, time series correlations are imposed via a first-order auto-regressive model (AR(1)) 
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for all fields.  The perturbation fields are also spatially correlated (reflecting the 3d update step; 
section 4.1.2).   

 
Perturbation Additive (A) 

or 
Multiplicative 

(M) 

Standard 
deviation 

AR(1) 
time 

series 
corr. 
scale 

Spatial 
corr. 
scale 

Cross-correlation with 
perturbations in 

P SW LW TAIR 

Precipitation  
(P) 

M 0.5 24 h 50 km n/a -0.8 0.5 0 

Downward 
shortwave (SW) 

M 0.3 24 h 50 km -0.8 n/a -0.5 0.4 

Downward 
longwave (LW) 

A 20 W m-2 24 h 50 km 0.5 -0.5 n/a 0.4 

Air temperature 
(TAIR) 

A 1 K 24 h 50 km 0 0.4 0.4 n/a 

     catdef srfexc tsurf ght1 

Catchment 
deficit (catdef) 

A 0.07 kg m-2 3 h 25 km n/a 0.0 0.5 0.3 

Surface     
excess (srfexc) 

A 0.04 kg m-2 3 h 25 km 0.0 n/a -0.3 -0.2 

Surface 
temperature 
(tc1, tc2, tc4) 

A 0.2 K 3 h 25 km  0.5 -0.3 n/a 0.6 

Surface layer 
ground heat 
content (ght1) 

A 50,000 J m-2 3 h 25 km 0.3 -0.2 0.6 n/a 

 
Table 4.   Preliminary parameter values for perturbations to meteorological forcing inputs and Catchment model 
prognostic variables.  Perturbations are applied at hourly time steps.   Perturbation standard deviation for ght1 is 
equivalent to a perturbation standard deviation of about 0.2 K for the top-layer soil temperature. 
 

 
For soil moisture, soil temperature, and brightness temperature, the dominant forcing inputs 

are precipitation, radiation, and air temperature, and we limit perturbations to these forcing 
fields.  Imperfect model parameters and imperfect physical parameterizations contribute to 
model errors.  Such errors are represented through direct perturbations to model prognostic 
variables (that is, model parameter values such as porosity, soil hydraulic conductivity, 
vegetation opacity, single scattering albedo, etc. are not separately perturbed).  The key 
prognostic variables of the Catchment model related to soil moisture and surface soil temperature 
are the surface excess, the root zone excess, the catchment deficit, and the first subsurface layer 
ground heat content.  Due to nonlinearities in the Catchment model, perturbations in the root 
zone excess typically lead to biases between the ensemble mean and the unperturbed control 
integration.  We therefore limit the perturbations to the surface excess and the catchment deficit.  
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Cross-correlations are imposed on perturbations of the precipitation, radiation, and air 
temperature fields. At hourly and daily time scales, the meteorological forcing fields are 
ultimately based on output from atmospheric modeling and analysis systems and not on direct 
observations of surface precipitation and radiation.  The cross-correlations are therefore 
motivated by the assumption that the atmospheric forcing fields represent a realistic balance 
between radiation, clouds, and precipitation.  Under that assumption, a positive perturbation to 
the downward shortwave radiation tends to be associated with negative perturbations to the 
longwave radiation and the precipitation, and vice versa.  The numbers for the imposed cross-
correlation coefficients are motivated by an analysis of the cross-correlations between 
precipitation and radiation in the baseline forcing data sets from the Global Soil Wetness Project 
2 [International GEWEX Project Office, 2002], and by the assumption that errors behave like the 
fields themselves. 
 

Model and forcing errors are difficult to quantify at the global scale.  The parameter values 
listed in Table 4 are largely based on experience.  They are supported by earlier studies where 
model and forcing error parameters were calibrated in twin experiments [Reichle et al., 2002b; 
Reichle and Koster, 2003] and by successful assimilation of SMMR, AMSR-E, ASCAT and 
ISCCP satellite observations [Reichle et al., 2007; 2009a; Liu et al., 2011; Draper et al., 2012], 
suggesting that these values are acceptable.  Additional calibration of the filter parameters should 
further improve the assimilation results.  A recent study by Maggioni et al. [2011] assessed the 
impact of rainfall error structure on soil moisture simulations by contrasting a complex satellite 
rainfall error model (SREM2D) to the standard rainfall error model of the GEOS-5 land 
assimilation system.  Results show that perturbing satellite rainfall fields with the more complex 
SREM2D error model leads to improved spatial variability in the simulated soil moisture 
ensembles.  However, when SREM2D was used in soil moisture assimilation, the improvement 
with respect to the standard GEOS-5 system were small [Maggioni et al., 2012a, 2012b].  

 
Observation error parameters for the assimilated SMAP brightness temperature anomalies 

will be based on error estimates provided by the corresponding SMAP products.  We anticipate 
that the (“instrument”) measurement error standard deviation of SMAP brightness temperatures 
is ~1.3 K at 36 km (Table 1) and ~3.6 K at 9 km (L2_SM_AP ATBD, section 8).  Furthermore, 
the observation error standard deviation will include the contribution of “representativeness 
error” that is not yet included in the above-mentioned “instrument” error standard deviation.  
This representativeness error accounts, for example, for the uncertainty associated with 
brightness temperature corrections for water bodies.  The total observation error standard 
deviation (including the “instrument” error and the error of representativeness) will be 
determined during algorithm calibration (sections 4.1.4 and 4.2.4).  We assume that observation 
errors are uncorrelated in time and space.  The viability of this assumption will be checked 
against an analysis of the innovations and more complex error models will be developed if 
needed.  

 
Again, the success of the assimilation system depends on the accurate specification of the 

model and observation error parameters.  The improvements from data assimilation documented 
in Figures 2 and 3 suggest that the perturbation parameters listed in Table 4 are adequate, 
although not necessarily optimal.  Additional calibration may further enhance the assimilation 
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performance using spatially distributed fields of perturbation parameters that can be specified in 
the latest L4_SM system.  
 

 
4.1.4  Variance and Uncertainty Estimates 

 
This section provides an overview of the error budget of the SMAP L4_SM product.  Many 

sources of error contribute to the uncertainty in the L4_SM product.  The key input uncertainties 
to the L4_SM algorithm are: 
 

(i) Errors in the land model (a.k.a. “model error”), including errors in 
 a. surface meteorological forcing data 
 b. land model structure 
 c. parameter values used in the land model 
(ii) Errors in the assimilated SMAP Level 1-3 products (a.k.a. “observation error”) 
(iii) Errors in the specification of “model” and “observation” input error parameters 

 
For the purposes of this discussion, the “land model” includes the Catchment model and the 
microwave radiative transfer model.  As discussed above, uncertainty estimates are produced 
dynamically by the L4_SM algorithm along with the estimates of the geophysical parameters 
(section 2.3.2a).   

 
We expect that errors in the instantaneous surface soil moisture estimates from the L4_SM 

analysis product are roughly comparable to those of the L2_SM_AP product, and probably 
somewhat smaller, based on the additional information from the land surface model and its 
ancillary data (provided the data assimilation system uses properly calibrated input error 
parameters, sections 4.1.2 and 4.1.3).  Given our lack of knowledge of the quality of future input 
data going into the assimilation system, however, the error structure of all the individual 
components of the L4_SM product cannot be specified a priori – particularly for subsurface soil 
moisture.   

A “Level 4” Observing System Simulation Experiment (OSSE) framework has been 
developed to estimate the skill of outputs from the data assimilation system as a function of the 
errors in the satellite retrievals and in the land model [Reichle et al., 2008a].  Note that by 
including a data assimilation system, the “Level 4” OSSE setup differs fundamentally from the 
“retrieval” OSSE setup [Crow et al., 2001, 2005a] that is used for SMAP Level 2 soil moisture 
products.  The OSSE described here is based on the assimilation of soil moisture retrievals (as 
opposed to brightness temperatures), but we can still use it to get a rough estimate of the L4_SM 
error budget.  Figure 11 shows a typical OSSE setup.  The OSSE consists of a suite of synthetic 
data assimilation experiments that are based on integrations of two distinct land models, one 
representing “truth”, and the other representing our flawed ability to model the true processes.  
The skill of the retrievals, model estimates, and assimilation products is measured in terms of the 
correlation coefficient R between the time series of the various estimates (expressed as 
anomalies relative to their long-term seasonal climatologies) and the assumed truth.   
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Figure 11.  Flow diagram of a Level 4 Soil Moisture OSSE.  From [Reichle et al., 2008a]. 
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Each assimilation experiment involves a unique combination of a retrieval dataset (with a 
certain level of skill, measured in terms of R) and a model scenario (with its own level of skill). 
We can thus plot two-dimensional surfaces of skill in the data assimilation products as a function 
of retrieval and model skill.  For example, Figure 12a shows the two dimensional surface 
corresponding to the surface soil moisture product.  As expected, the skill of the assimilation 
product generally increases with the skill of the model and the skill of the retrievals, for both 
surface (Figure 12a) and root zone (Figure 12b) soil moisture estimates.  Except for very low 
model skill, the contour lines are more closely aligned with lines of constant model skill; that is, 
the skill of the assimilation product is more sensitive to model skill than to retrieval skill. 
 

Figure 12 also shows skill improvement through data assimilation, defined as the skill of the 
assimilation product minus the skill of the model estimates (without assimilation).  Specifically, 
Figures 12c and 12d allow one to determine, for a given level of accuracy in the stand-alone 
model product, how much information can be added to the soil moisture products through the 
assimilation of satellite retrievals of surface soil moisture with a given uncertainty.  Note that the 
skill of the surface and root zone soil moisture assimilation products always exceeds that of the 
model.  As expected, the improvements in R through assimilation increase with increasing 
retrieval skill and decrease with increasing model skill.  Perhaps most importantly, though, is 
that even retrievals of low quality contribute some information to the assimilation product, 
particularly if model skill is modest. 
 

We can compare previously published skill levels with the results of Figure 12.  For 23 
locations across the contiguous United States with in situ observations appropriate for validation, 
Reichle et al. [2007; their Table 2] report, for surface soil moisture, average R values of 0.38, 
0.43, and 0.50 for AMSR-E retrievals, Catchment model estimates, and their assimilation 
product, respectively.  From the contours of Figure 12a we expect that for retrievals with R=0.38 
and a model with R=0.43, the assimilation product would have skill of about R=0.50, which is 
indeed consistent with the AMSR-E result (indicated with a triangle in Figure 12a). For root zone 
soil moisture, Reichle et al. [2007] show that the assimilation of AMSR-E surface soil moisture 
retrievals also yields improvements, though these improvements fall somewhat short of those 
suggested by Figure 12b. Possible explanations include (i) the imperfect translation of 
information from the surface layer to the root zone in the data assimilation system and (ii) the 
fact that the in situ data used for validation of the AMSR-E result are themselves far from perfect 
(unlike the perfectly known truth of the synthetic experiment presented here).  Figure 12 also 
includes the Reichle et al. [2007] results for assimilating retrievals from the historic Scanning 
Multichannel Microwave Radiometer (SMMR), which are similarly consistent with the contours. 
Note that R values for SMMR results are based on monthly mean data, and that the validating in 
situ data for the AMSR-E and SMMR results are not within the geographical domain of our 
synthetic experiment. 
 



 

 43 

 
 
Figure 12.  (a,b) Skill (R) and (c,d) skill improvement ("R) of assimilation product for (a,c) surface and (b,d) root 
zone soil moisture as a function of the (ordinate) model and (abscissa) retrieval skill. Skill improvement is defined 
as skill of assimilation product minus skill of model estimates. Each plus sign indicates the result of one 19-year 
assimilation integration over the Red-Arkansas domain. Also shown are results from Reichle et al. [2007] for 
(triangle) AMSR-E and (square) SMMR.  From [Reichle et al., 2008a]. 

 
 
 
Figure 13 shows the skill improvement (relative to the raw model product) for monthly mean 

evapotranspiration (ET) estimates from the data assimilation system, using a synthetic “truth” ET 
dataset for validation.  As expected, the assimilation of surface soil moisture retrievals 
contributes the most when retrievals are skillful and the model skill is poor. 
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The results of Figure 12, which are 
based on synthetic observations, have 
recently been corroborated by [Draper et 
al., 2012] using ASCAT and AMSR-E 
observations.  Figure 14 shows the skill 
increase ("R) relative to the open loop 
model from the single-sensor assimilation 
of ASCAT or AMSR-E surface soil 
moisture retrievals, as a function of the R 
value of the open loop model and of the 
assimilated (ASCAT or AMSR-E) 
retrievals.  That is, Figure 14 is constructed 
by averaging the "R values of all grid cells 
that correspond to particular R values for 
the observation and open loop skill.  Since 
the R and "R values for the single-sensor 
assimilation of ASCAT or AMSR-E are 
generally similar, the results from the two 
experiments are combined.  For a given 
combination of open-loop and observation 
skill, the skill gained through assimilation 
is slightly higher for root zone soil moisture 

(Figure 14b) than for surface soil moisture (Figure 14a).  For both soil layers, assimilating 
observations with R no more than 0.2 below the open loop R (below the dashed lines in Figure 
14) generally increased the soil moisture skill (i.e., "R>0), with improvements up to "R%0.4 as 
the R value for the retrievals increases relative to that of the open loop. 

 

 
 

Figure 14.  Skill improvement ("R) from assimilating either ASCAT or AMSR-E for (a) surface and (b) root zone 
soil moisture, as a function of the model open loop (no assimilation) and observation skill.  Skill improvement is 
defined as the skill of the assimilation product minus the open loop skill, with skill based only on days with data 
available from both satellites. From [Draper et al., 2012]. 

 
 
 Figure 13.  Skill improvement for monthly mean ET 
assimilation product. Abscissa, ordinate, and plus signs as 
in Figure 13.  From [Reichle et al., 2008a]. 
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Figure 15.  Skill improvement for (left) surface and (right) root zone soil moisture as a function of the (ordinate) 
model and (abscissa) retrieval skill based on data from [Reichle et al., 2008a].  Skill is measured in terms of the 
anomaly RMSE (m3 m-3), and skill improvement is defined as skill of assimilation product minus skill of model 
estimates.  Each plus sign indicates the result of one 19-year assimilation integration over the Red-Arkansas domain.  
Symbols indicate results for (triangle) AMSR-E, (x) SMAP L4_SM low skill scenario, and (o) SMAP L4_SM high 
skill scenario.  

 
Based on the OSSE results by Reichle et al. [2008a], it is now straightforward to assess the 

expected uncertainty in the L4_SM soil moisture estimates.  Figure 15 shows the improvement 
from the assimilation of surface soil moisture retrievals in terms of anomaly RMSE2.  Negative 
numbers imply that the assimilation product is superior to the estimates from the land model 
alone.  Triangles indicate the skill improvement from assimilating AMSR-E retrievals (based on 
results updated from [Reichle et al., 2007]).  For SMAP, we now assume two separate scenarios, 
a low skill scenario with higher retrieval and model error levels, and a high skill scenario with 
correspondingly lower error levels (Table 5).  Based on these assumed skill scenarios, we can 
use Figures 12 and 14 to read off the expected error levels and skill improvements of the L4_SM 
surface and root zone soil moisture estimates.  The resulting estimates are tabulated in the last 
two columns of Table 5.  Based on the OSSE, we roughly expect that the assimilation of SMAP 
observations improves the anomaly RMSE of L4_SM surface soil moisture estimates by ~0.01 
m3 m-3 over the corresponding Catchment model estimates.  For L4_SM root zone soil moisture 
estimates we expect anomaly RMSE improvements of ~0.005 m3 m-3.  It is important to note, 
however, one key limitation of this error analysis.  The model skill estimates were determined in 
a region, the contiguous United States, where in situ observations were available.   Along with in 
situ soil moisture observations, the US also offers good coverage of precipitation gauges (Figure 
16), which tends to ensure good model skill.  Improvements from soil moisture assimilation 

                                                
2Anomaly RMSE is the RMSE computed after removing the long-term seasonal climatology from the time series of 
the validation data and the model (or assimilation) estimates. 
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should be larger for regions with less reliable precipitation data, including most of South 
America, Africa, Asia, and Australia (Figure 16).  

 

  
Table 5.  Expected anomaly RMSE and R for L4_SM soil moisture estimates based on the OSSE data from [Reichle 
et al., 2008a].  Assumed retrieval skill levels are based on SMAP measurement requirements.  Model skill estimates 
are based on validation of Catchment model integrations against USDA/SCAN in situ observations. 
   

 

Figure 16.   Average monthly number of rain gauges per 2.5° grid cell (1979-1987; from [Reichle et al., 2004]).  

 
In summary, the general OSSE framework permits detailed and comprehensive error budget 

analyses for data assimilation products.  The framework can be used, for example, to study 
specific trade-offs in ancillary data requirements, assessing the impact of each on the quality of 
the end-product that will be used in science and applications.  Conceptually, extending the OSSE 
to global scales or higher-resolution is straightforward, but computational costs may prohibit an 
analysis that is comparable to that described in Figures 13-15.  Another straightforward 
extension of the OSSE framework is to assimilate microwave brightness temperatures directly 

Skill 
scenario Model1,2 L4_SM2 |!|

Expected anomaly RMSE [m3/m3]

Surface soil 
moisture

High 0.046 0.035 0.012

Low 0.051 0.038 0.012

Root zone soil 
moisture

High 0.036 0.031 0.005

Low 0.038 0.031 0.007

Expected anomaly R

Surface soil 
moisture

High 0.63 0.71 0.08

Low 0.41 0.54 0.13

Root zone soil 
moisture

High 0.55 0.63 0.08

Low 0.46 0.59 0.13
1Source: USDA/SCAN results.
2Source: OSSE results.
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(as opposed to surface soil moisture retrievals) and then examine how uncertainties in the 
retrieval process may be mitigated through use of a priori information from the land surface 
model, notably surface soil temperature.  Finally, note that the OSSE results, just like the 
accuracy of the L4_SM data product, depend on the realism of the underlying model and 
observation error structure and parameters (see section 4.1.3). 

 
 
 

4.2  Practical Considerations 
 
4.2.1  Numerical Computation Considerations 
 

Computing and storage requirements for the SMAP L4_SM product are very manageable 
when compared to those of global atmospheric data assimilation systems but do exceed the 
resources of typical desktop or small cluster environments that are maintained by individual 
research groups. 
 

The SMAP L4_SM product will be developed on the Linux-based Discover cluster at the 
NASA Center for Climate Simulation (http://www.nccs.nasa.gov) located at GSFC.  The CPU 
requirements will scale approximately linearly with the number of ensemble members used in 
the ensemble Kalman filter and will also depend on the degree of horizontal correlation assumed 
in the 3d assimilation process (section 4.1.2). Implementation of the L4_SM algorithm targets a 
processing speed of at least 10X (that is, processing 10 data days per day) to facilitate 
reprocessing.  Typical jobs will require 128-256 processors.   
 

Minimum on-line (hard-drive) storage requirements would be on the order of a few hundred 
GB per data month.  Total storage requirements for the archive are on the order several TB.  
Detailed information can be found in SMAP data product specification documents that are 
maintained by the SMAP Project.   
 

The L4_SM algorithm will require inputs of SMAP Level 1-3 products that will be generated 
at JPL.  After L4_SM product generation at GSFC, the L4_SM product will be transmitted for 
storage to the DAAC (National Snow and Ice Data Center, section 2.3.2).  Bandwidth for data 
transfer will thus be an important consideration.   
 
 
4.2.2  Programming/Procedural Considerations 
 

The L4_SM algorithm will be written in Fortran 90 for use on a multi-processor Linux cluster 
(section 4.2.1). 
 
 
4.2.3  Ancillary Data Availability/Continuity 
 

NASA HQ and the GMAO are committed to continued production of the GEOS-5 (or 
successor) data stream that provides surface meteorological input data for the L4_SM algorithm.   
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4.2.4  Calibration and Validation 
 

Validation of the L4_SM product is primarily against available in situ observations.  
Consistency of internal data assimilation diagnostics as well as consistency with related 
observations, such as precipitation measurements, provides supplemental validation.  Validation 
to mission requirements will be consistent with the requirements of the SMAP Science Data 
Calibration and Validation Plan (section 8) and focus on the land areas specified in the SMAP 
Level 1 Requirements and Mission Success Criteria document (excluding regions of snow and 
ice, mountainous topography, open water, urban areas, and vegetation with a total water content 
greater than 5 kg m-2).  Outside of these areas, validation will be attempted to the extent possible. 
 
 
4.2.4a Validation with in situ observations 
 
Validation issues specific to the L4_SM product 
 

The L4_SM product merges SMAP observations with ancillary data (including precipitation) 
through integration with a land surface model.  In this process, land models perform complex, 
nonlinear energy and water balance calculations across large spatial scales.  However, a global 
land model integration at grid scales consistent with the resolutions of the SMAP instruments 
cannot resolve the fine scale structure of spatial soil moisture variations (~tens of meters) that 
help determine spatially-averaged energy and water fluxes.  Moreover, we have imperfect 
knowledge of the global distributions of land surface characteristics (for example, soil texture, 
depth-to-bedrock, and emissivities, which also vary at sub-SMAP scales) that control simulated 
subsurface flow as well as microwave emission and backscatter.  Thus, by necessity, the soil 
moisture and brightness temperature estimates generated by land models reflect simplifying 
assumptions.  Consequently, the mean values and variances of soil moisture estimates differ 
between land models and in-situ (point-scale) observations (Section 2.2). 
 

These limitations, however, in no way negate the usefulness of combining SMAP 
observations with meteorological data through data assimilation.  While a land model product 
derived from observed meteorological forcing may not match the corresponding raw satellite 
product (that is, the SMAP brightness temperature or the Level 2 soil moisture retrievals) in 
absolute magnitude, the time variation of the land model and satellite products must be 
consistent.  Both the observed (or downscaled) and modeled brightness temperature, for 
example, should be anomalously high following an extended dry period.  The optimal merging of 
SMAP and land model data focuses on this shared and fundamental information content.  A 
similar argument applies to the soil moisture estimates from satellite retrievals, 
model/assimilation output, or in situ measurements.  By knowing the temporal moments (or 
climatology) of the datasets, one dataset can be "scaled" (for example, via cdf matching) to be 
fully consistent with the climatology of the other, at which point the two datasets can be merged 
together with confidence or compared directly for purposes of validation.  
 

For certain applications, such as the initialization of soil moisture reservoirs in atmospheric 
forecasting systems, the absolute error in the soil moisture is not necessarily relevant [Crow et 
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al., 2005b].  Since scaling of soil moisture data is almost always required prior to their use in 
model-based applications, time-invariant biases in the moments of the L4_SM product often 
become meaningless.  For model applications, the temporal correlation of soil moisture estimates 
with independent observations may therefore be a more relevant validation metric [Entekhabi et 
al., 2010a].  By focusing on time variations, evaluation problems stemming from the 
inconsistency between point and area-averaged quantities are, to some extent, ameliorated.   
 
Validation criteria 
 

The L4_SM soil moisture estimates will be validated against "verified" in situ soil moisture 
measurements from operational networks and dedicated SMAP field experiments (as 
summarized in the SMAP Science Data Calibration and Validation Plan, section 8).  
Specifically, the L4_SM surface and root zone soil moisture estimates will satisfy the following 
criterion: 
 

RMSE ! 0.04 m3 m-3 within the data masks specified in the SMAP Level 2 Science 
Requirements (section 8; excluding regions of snow and ice, frozen ground, mountainous 
topography, open water, urban areas, and vegetation with water content greater than 5 kg 
m-2),   

 
where RMSE is computed after removing long-term mean bias.  This criterion applies to the 
L4_SM instantaneous surface and root zone soil moisture estimates. 
 

L4_SM output fields other than soil moisture are provided as research products (including 
surface meteorological forcing variables, soil temperature, evaporative fraction, net radiation, 
etc.; section 2.3.2).  Specifically, L4_SM land surface temperature and flux estimates will be 
evaluated against in situ observations where possible (see below).   

 
As part of the validation process, additional metrics (including bias, RMSE, anomaly RMSE, 

and R values) will be computed for the L4_SM output fields to the fullest extent possible.  This 
includes computation of the metrics outside of the limited geographic area for which the 0.04 m3 

m-3 validation criterion is applied.  The additional metrics will be made available to the SMAP 
project for the SMAP Cal/Val report.  For the computation of the anomaly metrics, the seasonal 
cycle of the raw data (L4_SM product and validating in situ observations) will be estimated for 
each location by computing, for each day of the year (DOY), a climatological value of soil 
moisture.  It is important to obtain as many years of validating in situ measurements as possible 
prior to the launch of SMAP.  We estimate that 5 years of measurements would be sufficient for 
the anomaly metrics, although this requirement could perhaps be relaxed through the ergodic 
substitution of variability in space for variability in time to estimate the climatology.  Note that 
the Catchment model climatology can be computed prior to the launch of SMAP. 
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Available in situ observations 
 

In the following, we give only a brief overview of the most relevant in situ observations that 
can be used for validation.  The SMAP Science Data Calibration and Validation Plan (section 8) 
provides a detailed and comprehensive description of the available validation data sets, including 
a complete listing of "verified" in situ observations. 
 

High-quality in situ observations of surface soil moisture that approximate the scale of 
satellite and model estimates through distributed sensor networks are available for select 
watersheds [Jackson et al., 2010; Entekhabi et al., 2014].  Four USDA Agricultural Research 
Service (ARS) core validation sites with on-going data collection and records going back to 2002 
are shown in Figure 17.  Instrumentation of additional watersheds that cover a range of climate 
and vegetation conditions is planned for SMAP as discussed in the SMAP Science Data 
Calibration and Validation Plan (section 8). 
 

The USDA Soil Climate Analysis Network (SCAN; http://www.wcc.nrcs.usda.gov) provides 
hourly, ground-based observations of soil moisture and soil temperature (Figure 17).  
Measurements are taken at depths of 5 cm, 10 cm, 20 cm, 51 cm, and 102 cm (wherever 
possible).  Soil moisture is estimated with a device that measures the dielectric constant of the 
soil.  The SCAN archive requires extensive and strict quality control based on close inspection of 
all data points by the user [Reichle et al., 2007; Liu et al., 2011].  In many cases, there are spikes 
in the soil moisture time series resulting from individual soil moisture data values that are 
obviously too large (well above any realistic porosity) or too small (sometimes even negative).  
Soil moisture observations must be excluded whenever the corresponding soil temperature 
measurements indicate that the soil is frozen.  There are also obvious inconsistencies in the time 
series that might have been caused by changes in sensor calibration (recorded in the 
accompanying documentation) or by apparent detachment of the sensor from the soil matrix.  
Recent revisions of the archived data and of the processing algorithm have addressed some of 
these concerns.  Nevertheless, whenever there is any doubt about the validity of a data point or a 
part of the time series, it is recommended that the measurements in question be excluded and that 
no data be filled in or interpolated.  Considering such issues, Liu et al. [2011] were able to use 
about 50 SCAN stations for validation (Figure 17) and Draper et al. [2012] used a total of 66 
stations in the U.S. and Australia.  

 
In situ soil moisture profile observations are also available from the Oklahoma Mesonet 

(http://www.mesonet.org/).  By the time SMAP launches, additional soil moisture networks may 
provide validating observations.  The NOAA National Climatic Data Center is currently 
installing a network of soil moisture sensors similar to the SCAN network across the US with the 
purpose of establishing a long-term climate data record.  It has been demonstrated that signals 
from the Global Positioning System of satellites can be used to infer soil moisture [Larson et al., 
2008].  Finally, a network that measures soil moisture via cosmic-ray neutron scattering signals 
is currently being implemented [Zweck et al., 2008].  The above discussion only touches on a 
few key data sets.  Additional data sets are available from the International Network for in Situ 
Soil Moisture Data (http://www.ipf.tuwien.ac.at/insitu) [Dorigo et al., 2011].  Again, the SMAP 
Science Data Calibration and Validation Plan (section 8) provides a detailed and comprehensive 
description of the available soil moisture validation data sets. 
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Figure 17.  Location of (red crosses) SCAN sites and (blue plus signs) four USDA ARS core validation sites with 
observations going back to 2002.  SCAN sites not used for validation in [Liu et al., 2011] are marked with dots (see 
Figure 2 for results from [Liu et al., 2011]).  The background shows the MODIS land cover product based on UMD 
classification (from http://duckwater.bu.edu/lc/mod12q1.html ) at ~2 km resolution.  From [Liu et al., 2011].  

 
 
The availability of land surface flux data for validation is very limited.  A comparably large 

collection of such data is provided free of charge by the Coordinated Energy and Water Cycle 
Observations Project (CEOP; http://www.ceop.net) and will be used to validate the data 
assimilation products.  From 1 October 2002 through 31 December 2004, for example, 24 CEOP 
reference sites, located mostly in Kansas and Oklahoma, provide hourly surface flux data that are 
sufficient for validation [Reichle et al., 2010].  A more comprehensive set of surface flux data is 
available through Fluxdata.org (http://www.fluxdata.org). 
 
4.2.4b Validation with internal assimilation diagnostics 
 

Relative to the coverage of the satellite and model soil moisture estimates, few in situ soil 
moisture data are available.  The soil moisture data assimilation system produces internal 
diagnostics that will be used to indirectly validate its output.  Specifically, the statistics of 
appropriately normalized innovations will be examined [Reichle et al., 2007; see also discussion 
of adaptive filtering in section 4.1.2]. 
 
4.2.4c Validation with high-quality, independent precipitation observations 
 

Validation with in situ soil moisture observations is difficult because there are few long-term 
station observations and because there is a mismatch between the point-scale of the in situ 
measurements and the distributed (9 km) scale of the L4_SM product.  Compared to ground-
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based soil moisture probes, rain gauges are inexpensive, easy to maintain, and have already been 
widely installed over vast continental regions.  Moreover, variability in daily rainfall 
accumulations occurs at spatial scales that are typically coarser than the fine-scale (potentially < 
10 m) variability of soil moisture.  Because errors in soil moisture are primarily a result of errors 
in precipitation, and because precipitation observations are more abundant and reflective of more 
appropriate scales, gauge-based precipitation observations can be used for an indirect evaluation 
of soil moisture estimates.  
 

Crow and Zhan [2007] developed a data assimilation-based approach for evaluating surface 
soil moisture retrievals that effectively substitutes rain gauge measurements for ground-based 
soil moisture observations.  The approach is based on evaluating the correlation coefficient 
between antecedent rainfall error and analysis increments that are produced by the soil moisture 
assimilation system.  The use of rain gauge observations expands potential soil moisture 
validation locations from isolated sites (Figure 17) to continental-scale regions over which high-
quality rain gauge measurements are available.  A modified form of this approach was used to 
evaluate the added value of AMSR-E based soil moisture retrievals for root zone soil moisture 
monitoring within the continental United States [Bolten et al., 2009] and extended to a quasi-
global evaluation system by Crow et al. [2010].  The approach will be applied to evaluate the 
increments that are produced by the L4_SM algorithm. 
 
 
4.2.5  Quality Control and Diagnostics 
 

Quality control is an integral part of the soil moisture assimilation system.  At least two kinds 
of quality control (QC) measures are needed.   The first set of QC steps is based on the flags that 
are provided with the SMAP observations.  We will assimilate only SMAP brightness 
temperature data that have favorable flags for soil moisture estimation (for example, acceptable 
vegetation density, no rain, no snow cover, no frozen ground, no RFI, sufficient distance from 
open water).   
 

The second set of QC steps are additional “online” rules that exclude SMAP observations 
from assimilation in the EnKF (soil moisture) update whenever the land surface model indicates 
that (i) rain is falling, (ii) the soil is frozen, or (iii) the ground is fully or partly covered with 
snow.  Note also that the assimilation system will typically provide some weight to the model 
background and thus buffers the impact of anomalous observations that may slip through the 
flagging process. 
 
 
4.2.6  Exception Handling 
 
See section 4.2.5.  
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4.2.7  Interface Assumptions 
 
Inputs 
 

The ancillary input data described in section 4.1.3 are unique to the L4_SM product and will 
be obtained from the GMAO, except for the precipitation observations that are used to correct 
the GMAO precipitation estimates.  These observations will likely be obtained from the NOAA 
Climate Prediction Center (section 4.1.3).  In addition to the ancillary data, the SMAP L1C_TB, 
L2_SM_AP, and L3_FT_A products are required for the baseline algorithm.  The SMAP L4_SM 
algorithm requires that the input SMAP Level 1-3 products contain, at a minimum, swath or 
gridded observations with corresponding latitude, longitude, and time information.  The SMAP 
Level 1-3 products will be provided on the SMAP Earth-fixed nested global grids and also 
contain the quality control flags discussed in section 4.2.5. 
 

The L4_SM algorithm also requires estimates of the measurement errors in the L1C_TB and 
L2_SM_AP brightness temperatures.  If such error estimates are provided with the Level 1 and 
Level 2 products, they will be used dynamically in the L4_SM algorithm.  If not provided by the 
input products, default error estimates will be developed as part of the L4_SM calibration (see 
also section 4.1.3). 
 

The input SMAP Level 1-3 products listed above must be available with latencies of at least 
two days less than the corresponding latency of the L4_SM product (specified in section 2.3.2) to 
allow sufficient time for L4_SM processing. 
 
Outputs 
 

The baseline SMAP Level 4 Carbon Net Ecosystem Exchange (L4_C) product relies on the 
soil moisture and soil temperature estimates from the L4_SM product.  Once generated, the 
L4_SM product is transferred to the DAAC for permanent archival. 
 
 
4.2.8  Test Procedures  
 

Before the SMAP launch, the L4_SM algorithm will be tested globally, to the fullest extent 
possible, with satellite observations from the precursor missions discussed in section 2.2.  
SMOS, a passive microwave sensor operating at L-band and launched successfully on 2 Nov 
2009, plays a key role.  In each case, the outcome of the tests will be assessed by validating the 
assimilation estimates against in situ observations from existing networks and by ensuring the 
consistency of internal diagnostics (section 4.2.4).  Additional development and testing will be 
conducted in the context of OSSEs (section 4.1.4).   
 
 
4.2.9  Algorithm Baseline Selection 
 

This subsection does not apply because optional (alternative) algorithms are no longer 
considered. 
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8. SMAP Reference Documents 
 

Requirements: 

• SMAP Level 1 Mission Requirements and Success Criteria. (Appendix O to the Earth Systematic Missions 
Program Plan:  Program-Level Requirements on the Soil Moisture Active Passive Project.). NASA 
Headquarters/Earth Science Division, Washington, DC. 

• SMAP Level 2 Science Requirements. SMAP Project, JPL D-45955, Jet Propulsion Laboratory, Pasadena, CA. 

• SMAP Level 3 Science Algorithms and Validation Requirements. SMAP Project, JPL D-45993, Jet Propulsion 
Laboratory, Pasadena, CA. 

 

Plans: 

• SMAP Science Data Management and Archive Plan. SMAP Project, JPL D-45973, Jet Propulsion Laboratory, 
Pasadena, CA. 

• SMAP Science Data Calibration and Validation Plan. SMAP Project, JPL D-52544, Jet Propulsion Laboratory, 
Pasadena, CA. 

• SMAP Applications Plan. SMAP Project, JPL D-53082, Jet Propulsion Laboratory, Pasadena, CA. 

 

ATBDs: 

• SMAP Algorithm Theoretical Basis Document: L1B and L1C Radar Products. SMAP Project, JPL D-53052, Jet 
Propulsion Laboratory, Pasadena, CA. 

• SMAP Algorithm Theoretical Basis Document: L1B Radiometer Product. SMAP Project, GSFC-SMAP-006, 
NASA Goddard Space Flight Center, Greenbelt, MD. 

• SMAP Algorithm Theoretical Basis Document: L1C Radiometer Product. SMAP Project, JPL D-53053, Jet 
Propulsion Laboratory, Pasadena, CA. 

• SMAP Algorithm Theoretical Basis Document: L2 & L3 Radar Soil Moisture (Active) Products. SMAP Project, 
JPL D-66479, Jet Propulsion Laboratory, Pasadena, CA. 

• SMAP Algorithm Theoretical Basis Document: L2 & L3 Radiometer Soil Moisture (Passive) Products. SMAP 
Project, JPL D-66480, Jet Propulsion Laboratory, Pasadena, CA. 

• SMAP Algorithm Theoretical Basis Document: L2 & L3 Radar/Radiometer Soil Moisture (Active/Passive) 
Products. SMAP Project, JPL D-66481, Jet Propulsion Laboratory, Pasadena, CA.  

• SMAP Algorithm Theoretical Basis Document: L3 Radar Freeze/Thaw (Active) Product. SMAP Project, JPL 
D-66482, Jet Propulsion Laboratory, Pasadena, CA. 

• SMAP Algorithm Theoretical Basis Document: L4 Surface and Root Zone Soil Moisture Product. SMAP 
Project, JPL D-66483, Jet Propulsion Laboratory, Pasadena, CA. 

• SMAP Algorithm Theoretical Basis Document: L4 Carbon Product. SMAP Project, JPL D-66484, Jet 
Propulsion Laboratory, Pasadena, CA. 

 

 



 

 61 

 

Ancillary Data Reports: 

 

• Ancillary Data Report: Crop Type. SMAP Project, JPL D-53054, Jet Propulsion Laboratory, Pasadena, CA. 

• Ancillary Data Report: Digital Elevation Model. SMAP Project, JPL D-53056, Jet Propulsion Laboratory, 
Pasadena, CA. 

• Ancillary Data Report: Land Cover Classification. SMAP Project, JPL D-53057, Jet Propulsion Laboratory, 
Pasadena, CA. 

• Ancillary Data Report: Soil Attributes. SMAP Project, JPL D-53058, Jet Propulsion Laboratory, Pasadena, CA. 

• Ancillary Data Report: Static Water Fraction. SMAP Project, JPL D-53059, Jet Propulsion Laboratory, 
Pasadena, CA. 

• Ancillary Data Report: Urban Area. SMAP Project, JPL D-53060, Jet Propulsion Laboratory, Pasadena, CA. 

• Ancillary Data Report: Vegetation Water Content. SMAP Project, JPL D-53061, Jet Propulsion Laboratory, 
Pasadena, CA. 

• Ancillary Data Report: Permanent Ice. SMAP Project, JPL D-53062, Jet Propulsion Laboratory, Pasadena, CA. 

• Ancillary Data Report: Precipitation. SMAP Project, JPL D-53063, Jet Propulsion Laboratory, Pasadena, CA. 

• Ancillary Data Report: Snow. SMAP Project, GSFC-SMAP-007, NASA Goddard Space Flight Center, 
Greenbelt, MD. 

• Ancillary Data Report: Surface Temperature. SMAP Project, JPL D-53064, Jet Propulsion Laboratory, 
Pasadena, CA. 

• Ancillary Data Report: Vegetation and Roughness Parameters. SMAP Project, JPL D-53065, Jet Propulsion 
Laboratory, Pasadena, CA. 

 

Product Specification Documents: 

• Reichle, R. H., R. A. Lucchesi, J. V. Ardizzone, G.-K. Kim, and B. H. Weiss, 2014: Soil Moisture Active 
Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification 
Document. GMAO Office Note No. 6 (Initial Version 1.3), 93 pp. 

 

Other Documents: 

 

• Entekhabi, D., and Coauthors (2014), SMAP Handbook, JPL Publication, JPL 400-1567, NASA Jet Propulsion 
Laboratory, Pasadena, California, USA, 192 pp. 

• Reichle, R. H., W. Crow, R. D. Koster, and J. Kimball (2009b), External Review of the SMAP L4_SM 
Algorithm and Product, SMAP Science Document no: 031, version 1.0, 50 pages. 
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9. List of Acronyms and Abbreviations 
 
AMSR-E Advanced Microwave Scanning Radiometer for EOS 
ARS Agricultural Research Service 
ASCAT Advanced Scatterometer 
ATBD Algorithm Theoretical Basis Document 
Cal/Val Calibration and validation 
cdf Cumulative distribution function 
CEOP Coordinated Energy and Water Cycle Observations Project 
CLSM Catchment Land Surface Model 
CMAP CPC Merged Analysis of Precipitation 
CPC Climate Prediction Center 
CPU  Central Processing Unit 
DAAC Distributed Active Archive Center 
EASE Equal-Area Scalable Earth (grid) 
ECMWF European Centre for Medium-Range Weather Forecasting 
EnKF Ensemble Kalman filter 
EOS Earth Observing System 
ERS European Remote Sensing (satellite) 
GEOS-5 Goddard Earth Observing System Model, Version 5 
GEWEX Global Energy and Water Cycle Experiment 
GLDAS Global Land Data Assimilation System 
GMAO Global Modeling and Assimilation Office 
GPCP Global Precipitation Climatology Project 
GPM Global Precipitation Measurement (mission) 
GSFC Goddard Space Flight Center 
HQ Headquarters 
IOC In-orbit checkout (period) 
ISCCP International Satellite Cloud Climatology Project 
L1C_TB SMAP Level 1 Radiomter Brightness Temperature (Half-Orbit) (product/algorithm) 
L2_SM_AP SMAP Level 2 Radar and Radiometer Soil Moisture (product/algorithm) 
L2_SM_P SMAP Level 2 Radiometer Soil Moisture (product/algorithm) 
L3_FT_A SMAP Level 3 Radar Freeze/thaw (product/algorithm) 
L4_C SMAP Level 4 Carbon Net Ecosystem Exchange (product/algorithm) 
L4_SM SMAP Level 4 Surface and Root Zone Soil Moisture (product/algorithm) 
MERRA Modern-Era Retrospective analysis for Research and Applications 
MWRTM Microwave Radiative Transfer Model 
NASA National Aeronautics and Space Administration 
NCCS NASA Center for Climate Simulation 
NESDIS National Environmental Satellite, Data, and Information Service 
NOAA National Oceanic and Atmospheric Administration 
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NRC National Research Council 
OSSE Observing System Simulation Experiment 
QC Quality control 
RFI Radio-frequency interference 
RMSE Root-Mean-Square Error 
SCAN Soil Climate Analysis Network 
SMAP Soil Moisture Active Passive (mission) 
SMMR Scanning Multichannel Microwave Radiometer 
SMOS Soil Moisture Ocean Salinity (mission) 
SWE Snow water equivalent 
TMI TRMM Microwave Imager 
TRMM Tropical Rainfall Measurement Mission 
USDA United States Department of Agriculture 
USGS United States Geological Survey 
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10. Glossary 
 
Adapted from: Earth Observing System Data and Information System (EOSDIS) Glossary  
http://www-v0ims.gsfc.nasa.gov/v0ims/DOCUMENTATION/GLOS-ACR/glossary.of.terms.html. 
 
ALGORITHM.  (1) Software delivered by a science investigator to be used as the primary tool in the generation of 

science products.  The term includes executable code, source code, job control scripts, as well as documentation.  
(2) A prescription for the calculation of a quantity; used to derive geophysical properties from observations and 
to facilitate calculation of state variables in models. 

ANCILLARY DATA.  Data other than instrument data required to perform an instrument's data processing.  They 
include orbit data, attitude data, time information, spacecraft engineering data, calibration data, data quality 
information, data from other instruments (spaceborne, airborne, ground-based) and models. 

BROWSE.  A representation of a data set or data granule used to pre-screen data as an aid to selection prior to 
ordering.  A data set, typically of limited size and resolution, created to rapidly provide an understanding of the 
type and quality of available full resolution data sets.  It may also enable the selection of intervals for further 
processing or analysis of physical events.  For example, a browse image might be a reduced resolution version of 
a single channel from a multi-channel instrument.  Note: Full resolution data sets may be browsed.  

BROWSE DATA PRODUCT.  Subsets of a larger data set, generated for the purpose of allowing rapid 
interrogation (i.e., browse ) of the larger data set by a potential user.  For example, the browse product for an 
image data set with multiple spectral bands and moderate spatial resolution might be an image in two spectral 
channels, at a degraded spatial resolution.  The form of browse data is generally unique for each type of data set 
and depends on the nature of the data and the criteria used for data selection within the relevant scientific 
disciplines.  

Dynamic Browse.  Refers to the generation of a browse product, including subsetting and/or resampling of data, by 
command of the user engaged in the browse activity.  The browse data set is built in real-time, or near-real-time, 
as part of the browse activity. 

Static Browse.  Refers to interrogation of browse products which have been generated (through subsetting and/or 
resampling) before any user browses that particular data set. 

CALIBRATION.  (1) The activities involved in adjusting an instrument to be intrinsically accurate, either before or 
after launch (i.e., “instrument calibration”).  (2) The process of collecting instrument characterization 
information (scale, offset, nonlinearity, operational, and environmental effects), using either laboratory 
standards, field standards, or modeling, which is used to interpret instrument measurements (i.e., “data 
calibration”). 

CALIBRATION DATA.  The collection of data required to perform calibration of the instrument science and 
engineering data, and the spacecraft or platform engineering data.  It includes pre-flight calibrator measurements, 
calibration equation coefficients derived from calibration software routines, and ground truth data that are to be 
used in the data calibration processing routine. 

CORRELATIVE DATA.  Scientific data from other sources used in the interpretation or validation of instrument 
data products, e.g. ground truth data and/or data products of other instruments.  These data are not utilized for 
processing instrument data. 

DATA PRODUCT.  A collection (1 or more) of parameters packaged with associated ancillary and labeling data.  
Uniformly processed and formatted.  Typically uniform temporal and spatial resolution. (Often the collection of 
data distributed by a data center or subsetted by a data center for distribution.)  There are two types of data 
products: 

Standard - A data product produced by a community concensus algorithm.  Typically produced for a wide 
community.  May be produced routinely or on-demand.  If produced routinely, typically produced over most or 
all of the available independent variable space.  If produced on-demand, produced only on request from users for 
particular research needs typically over a limited range of independent variable space. 

Special - A data product produced by a research status algorithm.  May migrate to a community consesus algorithm 
at a later time.  If adequate community interest, may be archived and distibuted by a DAAC. 

DATA PRODUCT LEVEL.  Data levels 1 through 4 as designated in the EOSDIS Product Type and Processing 
Level Definitions document.  

Raw Data - Data in their original packets, as received from the observer, unprocessed. 
Level 0 - Raw instrument data at original resolution, time ordered, with duplicate packets removed. 
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Level 1A - Reconstructed unprocessed instrument data at full resolution, time referenced, and annotated with 
ancillary information, including radiometric and geometric calibration coefficients and georeferencing 
parameters (i.e., platform ephemeris) computed and appended, but not applied to Level 0 data. 

Level 1B - Radiometrically corrected and geolocated Level 1A data that have been processed to sensor units. 
Level 1C - Level 1B data that have been spatially resampled. 
Level 2 - Derived geophysical parameters at the same resolution and location as the Level 1 (1B or 1C) data. 
Level 3 - Geophysical or sensor parameters that have been spatially and/or temporally re-sampled (i.e., derived from 

Level 2 or Level 1 data). 
Level 4 - Model output and/or results of lower level data that are not directly derived by the instruments. 
DISTRIBUTED ACTIVE ARCHIVE CENTER (DAAC).  An EOSDIS facility that archives, and distributes data 

products, and related information.  An EOSDIS DAAC is managed by an institution such as a NASA field center 
or a university, under terms of an agreement with NASA.  Each DAAC contains functional elements for 
archiving and disseminating data, and for user services and information management.  Other (non-NASA) 
agencies may share management and funding responsibilities for the active archives under terms of agreements 
negotiated with NASA. 

GRANULE.  The smallest aggregation of data which is independently managed (i,e., described, inventoried, 
retrievable).  Granules may be managed as logical granules and/or physical granules. 

GUIDE.  A detailed description of a number of data sets and related entities, containing information suitable for 
making a determination of the nature of each data set and its potential usefulness for a specific application. 

INSTRUMENT DATA.  Data specifically associated with the instrument, either because they were generated by 
the instrument or included in data packets identifed with that instrument.  These data consist of instrument 
science and engineering data, and possible ancillary data. 

Instrument Engineering Data.  Data produced by the engineering sensor(s) of an instrument that is used to 
determine the physical state of an instrument in order to operate it, monitor its health, or aid in processing its 
science data. 

Instrument Science Data.  Data produced by the science sensor(s) containing the primary observables of an 
instrument, usually constituting the mission of that instrument. 

METADATA.  (1) Information about a data set which is provided by the data supplier or the generating algorithm 
and which provides a description of the content, format, and utility of the data set.  Metadata provide criteria 
which may be used to select data for a particular scientific investigation.  (2) Information describing a data set, 
including data user guide, descriptions of the data set in directories, and inventories, and any additional 
information required to define the relationships among these. 

NEAR REAL-TIME DATA.  Data from the source that are available for use within a time that is short in 
comparison to important time scales in the phenomena being studied. 

ORBIT DATA.  Data that represent spacecraft locations.  Orbit (or ephemeris) data include: Geodetic latitude, 
longitude and height above an adopted reference ellipsoid (or distance from the center of mass of the Earth); a 
corresponding statement about the accuracy of the position and the corresponding time of the position (including 
the time system); some accuracy requirements may be hundreds of meters while other may be a few centimeters. 

PARAMETER.  A measurable or derived variable represented by the data (e.g. air temperature, snow depth, 
relative humidity. 

QUICK-LOOK DATA.  Data available for examination within a short time of receipt, where completeness of 
processing is sacrificed to achieve rapid availability. 

RAW DATA.  Numerical values representing the direct observations output by a measuring instrument transmitted 
as a bit stream in the order they were obtained.  (Also see DATA PRODUCT LEVEL.) 

REAL-TIME DATA.  Data that are acquired and transmitted immediately to the ground (as opposed to playback 
data).  Delay is limited to the actual time (propagation delays) required to transmit the data. 

SPACECRAFT ENGINEERING DATA.  Data produced by the engineering sensor(s) of a spacecraft that are 
used to determine the physical state of the spacecraft, in order to operate it or monitor its health.  


