Are we in a snow drought?

The central and southwestern portions of the United States have experienced drought for the past several years. This photograph was taken in mid-February, 2010. By that point in winter, these rows would normally have been fully covered in snow. Photograph credit: Kristy Johnson (

In spite of the massive blizzards that have slammed parts of the northeastern United States, much of the country is experiencing a pronounced lack of snow. And where there is snow, it is less than usual. It follows a very low snow year from the previous season, causing people to worry if low snowfall is the new normal.

A previous Icelights post, Arctic sea ice and U.S. weather, discussed possible causes behind the changes in winter weather, trying to see if there are correlations to larger climate changes. Researchers like Jennifer Francis of Rutgers University are exploring the possibility that declining sea ice in the Arctic is altering atmospheric temperatures and weakening the jet stream. This change may shift the Northern Hemisphere storm track, leaving some places unusually snowy, or leaving normally snowy locations dry. Can a few good blizzards help reverse the snow drought across parts of the United States? Or is this string of dry winters yet another symptom of climate change? Continue reading

How low is low?

extent graph

Sea ice extent reached a new record low on August 27, 2012 and continued to decline. The last six years have seen minimum sea ice extents below the two standard deviation range of the data. The graph above shows Arctic sea ice extent as of August 13, 2012, along with daily ice extent data for the previous five years. 2012 is shown in blue, 2011 in orange, 2010 in pink, 2009 in navy, 2008 in purple, and 2007 in green. The gray area around the average line shows the two standard deviation range of the data.


Satellite observations since 1979 show that sea ice melted to its lowest extent in the satellite record, during August 2012 . As of this post date, the ice continues to melt, with two to three weeks left before the days shorten enough for the ice extent to begin to expand through the winter. Readers often write to us asking what such records really mean. How far from normal is this year’s record low, and how do scientists decide what is normal? Continue reading

Is Arctic sea ice back to normal?

Arctic sea ice was at record highs in the Bering Sea this spring, and near the long-term average for the Arctic as a whole. But much of that ice was spread thinly across the ocean, and is now melting quickly. This image, from the NASA Moderate Resolution Imaging Spectroradiometer (MODIS), shows sea ice in Bristol Bay off of Alaska, on April 24, 2012. |Credit: {a href=}NASA Earth Observatory{/a} image by Jesse Allen|{a href=}High Resolution Image{/a}

In April, average ice extent in the Arctic Ocean was right near the long-term average for the month. Ice extent even reached a near-record high in the Bering Sea, and still remains above average for that region. Does this mean that the Arctic sea ice has stopped declining? Is it starting to recover?

Unfortunately, scientists say no—and they are not surprised to see such a short upward bump in ice extent. “This does not indicate that the Arctic sea ice is recovering,” said Marika Holland, a sea ice expert at the National Center for Atmospheric Research (NCAR). Instead, the higher ice extent this year compared to recent years likely just reflects different weather this winter compared to last winter.  “Sea ice exhibits large natural variability due to year-to-year variations in weather,” she said. Continue reading

What is causing Arctic sea ice decline?

The Arctic Ocean has lost more than 30 percent of its summer ice cover in the last thirty years. Scientists have long thought that climate change is to blame, but a new study provides more evidence for that idea. Credit: Patrick Kelley, U.S. Coast Guard. High Resolution Image

Readers sometimes ask us, “What are the reasons behind Arctic sea ice decline?” In summer months, ice extent has declined by more than 30 percent since the start of satellite observations in 1979. But is climate change really the culprit, or could other factors be contributing? Continue reading

Modeling the Arctic climate

In February, polar climate researchers gathered at the National Center for Atmospheric Research in Boulder, Colorado to discuss the newest updates to models of the Earth’s climate system. The researchers are working together to create better models of the Arctic and Antarctic climates, which will feed into larger models of the whole Earth that help scientists understand how climate will change in the future. What goes into a climate model, and what can scientists learn from models that they cannot learn from observations?

This image shows several aspects of climate, including sea ice, surface winds, and sea surface temperature. This image came from data simulated from NCAR’s Community Earth System Model. Credit: ©UCAR, image courtesy Gary Strand, NCAR

What’s in a model?
Computer climate models are based on scientists’ understanding of Earth’s climate. The models use mathematical relationships to try to quantify the relationships between parts of the climate system. If you tweak one factor in climate, how does the simulated climate system respond? Models that bring many factors together help scientists learn how the climate system works, and let them run simulations on Earth’s climate. They also allow scientists to assess how climate may be affected by present and future changes in greenhouse gases and solar forcing, and how much of a role natural variability plays. Continue reading