Published Research

The following references cite studies that used SMMR, SSM/I, or SSMIS data from NSIDC. Please contact User Services if you have a reference you would like to share on this page.

2018

Kipp, Lauren E., et al. 2018. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Science Advances 4(1). Art. #eeao1302. doi: http://dx.doi.org/10.1126/sciadv.aao1302.

Kipp, Lauren E., et al. 2018. Increased fluxes of shelf-derived materials to the central Arctic Ocean. Science Advances 4(1). Art. #eeao1302. doi: http://dx.doi.org/10.1126/sciadv.aao1302.

Kondrashov, Dmitri, 2018. Data-Adaptive Harmonic Decomposition and Stochastic Modeling of Arctic Sea Ice. Advances in Nonlinear Geosciences. Cham: Springer International. Tsonis A. (eds) Advances in Nonlinear Geosciences, 179-205. doi: http://dx.doi.org/10.1007/978-3-319-58895-7_10.

Kondrashov, Dmitri, 2018. Data-Adaptive Harmonic Decomposition and Stochastic Modeling of Arctic Sea Ice. Advances in Nonlinear Geosciences. Cham: Springer International. Tsonis A. (eds) Advances in Nonlinear Geosciences, 179-205. doi: http://dx.doi.org/10.1007/978-3-319-58895-7_10.

Liu, Qingquan, et al. 2018. Inter-Calibration of Passive Microwave Satellite Brightness Temperatures Observed by F13 SSM/I and F17 SSMIS for the Retrieval of Snow Depth on Arctic First-Year Sea Ice. Remote Sensing 10(1). Art. #36. doi: http://dx.doi.org/10.3390/rs10010036.

Liu, Qingquan, et al. 2018. Inter-Calibration of Passive Microwave Satellite Brightness Temperatures Observed by F13 SSM/I and F17 SSMIS for the Retrieval of Snow Depth on Arctic First-Year Sea Ice. Remote Sensing 10(1). Art. #36. doi: http://dx.doi.org/10.3390/rs10010036.

Nash, Susan M. Bengston, et al. 2018. Signals from the south; humpback whales carry messages of Antarctic sea‐ice ecosystem variability . Global Change Biology 24(4): 1500-1510. doi: http://dx.doi.org/10.1111/gcb.14035.

Petrou, Zisis I., Yang Xi, and Ying Li Tian. 2018. Towards breaking the spatial resolution barriers: An optical flow and super-resolution approach for sea ice motion estimation. ISPRS J. of Photogrammetry and Remote Sensing 138: 164-175. doi: http://dx.doi.org/10.1016/j.isprsjprs.2018.01.020.

Petty, Alek A., et al. 2018. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows. The Cryosphere 12(2): 433–452. doi: http://dx.doi.org/10.5194/tc-12-433-2018.

Petty, Alek A., et al. 2018. The Arctic sea ice cover of 2016: a year of record-low highs and higher-than-expected lows. The Cryosphere 12(2): 433–452. doi: http://dx.doi.org/10.5194/tc-12-433-2018.

Schlosser, Elisabeth, F. Alexander Haumann, and Marilyn N. Raphael. 2018. Atmospheric influences on the anomalous 2016 Antarctic sea ice decay . The Cryosphere 12(3): 9-17. doi: http://dx.doi.org/10.3189/172756411795931859.

Stroeve, Julienne, et al. 2018. Investigating the local-scale influence of sea ice on Greenland surface melt . The Cryosphere 11(5): 2363-2381. doi: http://dx.doi.org/10.5194/tc-11-2363-2017.

Stroeve, Julienne, et al. 2018. Investigating the local-scale influence of sea ice on Greenland surface melt . The Cryosphere 11(5): 2363-2381. doi: http://dx.doi.org/10.5194/tc-11-2363-2017.

Tooth, Matthew, and Mark Tschudi. 2018. Investigating Arctic Sea Ice Survivability in the Beaufort Sea. Remote Sensing 10(2). Art. #267. doi: http://dx.doi.org/doi:10.3390/rs10020267.

Tooth, Matthew, and Mark Tschudi. 2018. Investigating Arctic Sea Ice Survivability in the Beaufort Sea. Remote Sensing 10(2). Art. #267. doi: http://dx.doi.org/doi:10.3390/rs10020267.

Tooth, Matthew, and Mark Tschudi. 2018. Investigating Arctic Sea Ice Survivability in the Beaufort Sea. Remote Sensing 10(2). Art. #267. doi: http://dx.doi.org/doi:10.3390/rs10020267.

Tooth, Matthew, and Mark Tschudi. 2018. Investigating Arctic Sea Ice Survivability in the Beaufort Sea. Remote Sensing 10(2). Art. #267. doi: http://dx.doi.org/doi:10.3390/rs10020267.

Tooth, Matthew, and Mark Tschudi. 2018. Investigating Arctic Sea Ice Survivability in the Beaufort Sea. Remote Sensing 10(2). Art. #267. doi: http://dx.doi.org/doi:10.3390/rs10020267.

Tooth, Matthew, and Mark Tschudi. 2018. Investigating Arctic Sea Ice Survivability in the Beaufort Sea. Remote Sensing 10(2). Art. #267. doi: http://dx.doi.org/doi:10.3390/rs10020267.

Vihtakari, Mikko, et al. 2018. Black-legged kittiwakes as messengers of Atlantification in the Arctic. Scientific Reports 8. Art. #1178. doi: http://dx.doi.org/10.1038/s41598-017-19118-8.

Wang, Qingkai, et al. 2018. 2014 summer Arctic sea ice thickness and concentration from shipborne observations. International Journal of Digital Earth. doi: http://dx.doi.org/10.1080/17538947.2017.1421720.

Xiao, Xiongxin, et al. 2018. Support vector regression snow-depth retrieval algorithm using passive microwave remote sensing data. Remote Sensing of Environment 210: 48–64. doi: http://dx.doi.org/10.1016/j.rse.2018.03.008.

Zhang, Yinsheng, and Ning Ma. 2018. Spatiotemporal variability of snow cover and snow water equivalent in the last three decades over Eurasia. Journal of Hydrology 559: 238-251. doi: http://dx.doi.org/10.1016/j.jhydrol.2018.02.031.

Zhao, Jinping, et al. 2018. Record Low Sea-Ice Concentration in the Central Arctic during Summer 2010. Advances in Atmospheric Sciences 35(1): 106-115. doi: http://dx.doi.org/10.1007/s00376-017-7066-6.

2017

2017. Enhanced wintertime greenhouse effect reinforcing Arctic amplification and initial sea-ice melting. Cao, Yunfeng 7. Art. #7. doi: http://dx.doi.org/10.1038/s41598-017-08545-2.

2017. The Arctic Winter Sea Ice Quadrupole Revisited. Journal of Climate 30(9): 3157-3167. doi: http://dx.doi.org/10.1175/JCLI-D-16-0506.1.

Agarwal, Sahil and J. S. Wettlaufer. 2017. The Statistical Properties of Sea Ice Velocity Fields. Journal of Climate 30(13): 4873-4881. doi: http://dx.doi.org/10.1175/JCLI-D-16-0653.1.

Aguiar, Wilton, Mauricio M. Mata, and Rodrigo Kerr. 2017. On deep convection events and Antarctic Bottom Water formation in ocean reanalysis products. Ocean Science 13(6): 851-872. doi: http://dx.doi.org/10.5194/os-13-851-2017, 2017.

Anthony, Robert E., R. C. Aster, and D. McGrath. 2017. Links between atmosphere, ocean, and cryosphere from two decades of microseism observations on the Antarctic Peninsula. Journal of Geophysical Research - Earth Surface 122(1): 153–166. doi: http://dx.doi.org/10.1002/2016JF004098.

Aoki, S. 2017. Breakup of land-fast sea ice in Lützow-Holm Bay, East Antarctica, and its teleconnection to tropical Pacific sea surface temperatures. Geophysical Research Letters 44(7): 3219–3227. doi: http://dx.doi.org/10.1002/2017GL072835.

Barbaro, Elena, et al. 2017. Free amino acids in the Arctic snow and ice core samples: Potential markers for paleoclimatic studies. Science of the Total Environment 607-608: 454-462. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.07.041.

Bendixen, Mette, et al. 2017. Delta progradation in Greenland driven by increasing glacial mass loss. Nature 550: 101–104. doi: http://dx.doi.org/10.1038/nature23873.

Bigdeli, Arash, et al. 2017. Numerical investigation of the Arctic ice–ocean boundary layer and implications for air–sea gas fluxes. Ocean Science 13(1): 61-75. doi: http://dx.doi.org/10.5194/os-13-61-2017.

Bliss, Angela C., Jeffrey A. Miller, and Walter N. Meier. 2017. Comparison of Passive Microwave-Derived Early Melt Onset Records on Arctic Sea Ice. Remote Sensing 9(3). Art. #199. doi: http://dx.doi.org/10.3390/rs9030199.

Bliss, Angela C., Jeffrey A. Miller, and Walter N. Meier. 2017. Comparison of Passive Microwave-Derived Early Melt Onset Records on Arctic Sea Ice. Remote Sensing 9(3). Art. #199. doi: http://dx.doi.org/10.3390/rs9030199.

Bushuk, Mitchell, and Dimitrios Giannakis. 2017. The Seasonality and Interannual Variability of Arctic Sea Ice Reemergence. Journal of Climate 30(12): 4657-4676. doi: http://dx.doi.org/10.1175/JCLI-D-16-0549.1.

Cai, Yu, Chang-Qing Ke, and Zheng Duan. 2017. Monitoring ice variations in Qinghai Lake from 1979 to 2016 using passive microwave remote sensing data. Science of the Total Environment 607-608: 120-131. doi: http://dx.doi.org/10.1016/j.scitotenv.2017.07.027.

Carey, Michael P., et al. 2017. Migration Trends of Sockeye Salmon at the Northern Edge of Their Distribution. Transactions of the American Fisheries Society 146(4). doi: http://dx.doi.org/10.1080/00028487.2017.1302992.

Carr, J. Rachel, et al. 2017. Exceptional retreat of Novaya Zemlya’s marine-terminating outlet glaciers between 2000 and 2013. The Cryosphere 11(5): 2149–2174. 10.5194/tc-11-2149-201)

Chen, Zhiqiang, et al. 2017. Impacts of Assimilating Satellite Sea Ice Concentration and Thickness on Arctic Sea Ice Prediction in the NCEP Climate Forecast System. Journal of Climate 30(21): 8429-8446. doi: http://dx.doi.org/10.1175/JCLI-D-17-0093.1.

Chen, Zhiqiang, et al. 2017. Impacts of Assimilating Satellite Sea Ice Concentration and Thickness on Arctic Sea Ice Prediction in the NCEP Climate Forecast System. Journal of Climate 30(21): 8429-8446. doi: http://dx.doi.org/10.1175/JCLI-D-17-0093.1.

Cho, Eunsang, Samuel E. Tuttle, and Jennifer M. Jacobs. 2017. Evaluating Consistency of Snow Water Equivalent Retrievals from Passive Microwave Sensors over the North Central U. S.: SSM/I vs. SSMIS and AMSR-E vs. AMSR2. Remote Sensing 9(5). Art. #465. doi: http://dx.doi.org/10.3390/rs9050465.

Citta, John J., et al. 2017. Satellite telemetry reveals population specific winter ranges of beluga whales in the Bering Sea. Marine Mammal Science 33(1): 236–250. doi: http://dx.doi.org/10.1111/mms.12357.

Close, S., et al. 2017. Mechanisms of interannual- to decadal-scale winter Labrador Sea ice variability. Climate Dynamics. doi: http://dx.doi.org/10.1007/s00382-017-4024-z.

Comiso, Josefino C., et al. 2017. Positive Trend in the Antarctic Sea Ice Cover and Associated Changes in Surface Temperature . Journal of Climate 30(6): 2251–2267. doi: http://dx.doi.org/10.1175/JCLI-D-16-0408.1.

Comiso, Josefino C., Walter N. Meier, and Robert Gersten. 2017. Variability and trends in the Arctic Sea ice cover: Results from different techniques. Journal of Geophysical Research - Oceans 122(8): 6883–6900. doi: http://dx.doi.org/10.1002/2017JC012768.

Dale, Ethan R., et al. 2017. Atmospheric forcing of sea ice anomalies in the Ross Sea polynya region. The Cryosphere 11: 267-280. doi: http://dx.doi.org/10.5194/tc-11-267-2017.

Danielson, Seth L. , et al. 2017. A comparison between late summer 2012 and 2013 water masses, macronutrients, and phytoplankton standing crops in the northern Bering and Chukchi Seas. Deep-Sea Research Part II - Topical Studies in Oceanography 135: 7-26. doi: http://dx.doi.org/10.1016/j.dsr2.2016.05.024.

De Freitas, Marcos W. D., et al. 2017. A multiscale subpixel mixture analysis applied for melt detection using passive microwave and radar scatterometer image time series of the Antarctic Peninsula (1999–2009). Annals of Glaciology: 1-13. doi: http://dx.doi.org/10.1017/aog.2017.44.

Dinnat, Emmanuel P., and Ludovic Brucker. 2017. Improved Sea Ice Fraction Characterization for L-Band Observations by the Aquarius Radiometers. IEEE Transactions on Geoscience and Remote Sensing 55(3): 1285-1304. doi: http://dx.doi.org/10.1109/TGRS.2016.2622011.

Dirmeyer, Paul A., and Subhadeep Halder. 2017. Application of the Land–Atmosphere Coupling Paradigm to the Operational Coupled Forecast System, Version 2 (CFSv2). Journal of Hydrometeorology 18(1): 85–108. doi: http://dx.doi.org/10.1175/JHM-D-16-0064.1.

Docquier, David, et al. 2017. Relationships between Arctic sea ice drift and strength modelled by NEMO-LIM3.6. The Cryosphere 11(6): 2829-2846. doi: http://dx.doi.org/10.5194/tc-11-2829-2017.

Fenty, Ian, Dimitris Menemenlis, and Hong Zhang. 2017. Global coupled sea ice-ocean state estimation. Climate Dynamics 49(3): 931–956. doi: http://dx.doi.org/10.1007/s00382-015-2796-6.

Forman, Barton A., and Yuan Xue. 2017. Machine learning predictions of passive microwave brightness temperature over snow-covered land using the special sensor microwave imager (SSM/I). Physical Geography 38(2): 176-196. doi: http://dx.doi.org/10.1080/02723646.2016.1236606.

Francis, Oceana P., et al. 2017. Anomalous circulation in the Pacific sector of the Arctic Ocean in July–December 2008. Ocean Modelling 117: 12-27. doi: http://dx.doi.org/10.1016/j.ocemod.2017.06.006.

Goursaud, Sentia, et al. 2017. A 60-year ice-core record of regional climate from Adélie Land, coastal Antarctica . The Cryosphere 11(1): 343-362. doi: http://dx.doi.org/10.5194/tc-11-343-2017.

Hegyi, Bradley M., and Yi Deng. 2017. Dynamical and Thermodynamical Impacts of High- and Low-Frequency Atmospheric Eddies on the Initial Melt of Arctic Sea Ice . Journal of Climate 30(3): 865-883. doi: http://dx.doi.org/10.1175/JCLI-D-15-0366.1.

Heintzenberg, Jost, et al. 2017. New particle formation in the Svalbard region 2006–2015. Atmospheric Chemistry and Physics 17(10): 6153-6175. doi: http://dx.doi.org/10.5194/acp-17-6153-2017.

Hermozo, L., L. Eymard, and F. Karbou. 2017. Modeling Sea Ice Surface Emissivity at Microwave Frequencies: Impact of the Surface Assumptions and Potential Use for Sea Ice Extent and Type Classificatio. IEEE Transactions on Geoscience and Remote Sensing 55(2): 943-961. doi: http://dx.doi.org/10.1109/TGRS.2016.2616920.

Hill, Jordan, and David G. Long. 2017. Extension of the QuikSCAT Sea Ice Extent Data Set With OSCAT Data. IEEE Geoscience and Remote Sensing Letters 14(1): 92-96. doi: http://dx.doi.org/10.1109/LGRS.2016.2630010.

Holland, Marika M, et al. 2017. Springtime winds drive Ross Sea ice variability and change in the following autumn. Nature Communications 8. Art. #731. doi: http://dx.doi.org/10.1038/s41467-017-00820-0.

Huang, Yiyi, et al. 2017. The footprints of 16 year trends of Arctic springtime cloud and radiation properties on September sea ice retreat. Journal of Geophysical Research - Atmospheres 122(4): 2179–2193. doi: http://dx.doi.org/10.1002/2016JD026020.

Hui, Fengming, et al, 2017. Satellite-Based Sea Ice Navigation for Prydz Bay, East Antarctica. Remote Sensing 9(6). Art. #518. doi: http://dx.doi.org/10.3390/rs9060518.

Hyun, Jung-Ho, and Hyun-cheol Kim. 2017. A Feasibility Study of Sea Ice Motion and Deformation Measurements Using Multi-Sensor High-Resolution Optical Satellite Images. Remote Sensing 9(9). Art. #930. doi: http://dx.doi.org/10.3390/rs9090930.

Inoue, Mana, et al. 2017. A glaciochemical study of the 120m ice core from Mill Island, East Antarctica. Climate of the Past 13(5): 437-453. doi: http://dx.doi.org/10.5194/cp-13-437-2017.

Itkin, Polona, and Thomas Krumpen. 2017. Winter sea ice export from the Laptev Sea preconditions the local summer sea ice cover and fast ice decay. Journal of Geophysical Research - Oceans 122(6): 4661–4674. doi: http://dx.doi.org/10.1002/2016JC012403.

Itkin, Polona, et al. 2017. Thin ice and storms: Sea ice deformation from buoy arrays deployed during N-ICE2015. Journal of Geophysical Research - Oceans 122(6): 4661–4674. doi: http://dx.doi.org/10.1002/2016JC012403.

Ji, Dabin, et al. 2017. A total precipitable water retrieval method over land using the combination of passive microwave and optical remote sensing. Remote Sensing of Environment 191: 313-327. doi: http://dx.doi.org/10.1016/j.rse.2017.01.028.

Kim, T. W., et al. 2017. Is Ekman pumping responsible for the seasonal variation of warm circumpolar deep water in the Amundsen Sea?. Continental Shelf Research 132: 38-48. doi: http://dx.doi.org/10.1016/j.csr.2016.09.005.

Kim, Yongwook, et al. 2017. An extended global Earth system data record on daily landscape freeze-thaw status determined from satellite passive microwave remote sensing. Earth System Science Data 9(1): 133-147. doi: http://dx.doi.org/10.5194/essd-9-133-2017.

Kohlbach, Doreen, et al. 2017. Ice Algae-Produced Carbon Is Critical for Overwintering of Antarctic Krill Euphausia superba. Frontiers in Marine Science 4. Art. #310. doi: http://dx.doi.org/10.3389/fmars.2017.00310.

Kwok, Ron, Shirley S. Pang, and Sahra Kacimi. 2017. Sea ice drift in the Southern Ocean: Regional patterns, variability, and trends. Elementa 5. Art. #32. doi: http://dx.doi.org/10.1525/elementa.226.

Landrum, Laura, et al. 2017. Stratospheric Ozone Depletion: An Unlikely Driver of the Regional Trends in Antarctic Sea Ice in Austral Fall in the Late Twentieth Century. Geophysical Research Letters 44(21): 11,062–11,070. doi: http://dx.doi.org/10.1002/2017GL075618.

Langlois, A., et al. 2017. Detection of rain-on-snow (ROS) events and ice layer formation using passive microwave radiometry: A context for Peary caribou habitat in the Canadian Arctic. Remote Sensing of Environment 189: 84-95. doi: http://dx.doi.org/10.1016/j.rse.2016.11.006.

Laruelle, Goulven G., et al. 2017. Global high-resolution monthly p CO 2 climatology for the coastal ocean derived from neural . Biogeosciences 14: 4545–4561. doi: http://dx.doi.org/10.5194/bg-14-4545-2017.

Lecomte, Olivier. 2017. Influence of snow processes on sea ice : a model study. Ph. D. Université Catholique de Louvain.

Lecomte, Olivier. 2017. Influence of snow processes on sea ice : a model study. Ph. D. Université Catholique de Louvain.

Lecomte, Olivier. 2017. Influence of snow processes on sea ice : a model study. Ph. D. Université Catholique de Louvain.

Lee, Jessica F., et al. 2017. Behavior of satellite-tracked Antarctic minke whales (Balaenoptera bonaerensis) in relation to environmental factors around the western Antarctic Peninsula. Animal Biotelmetry 5(1): Art. #23. doi: http://dx.doi.org/10.1186/s40317-017-0138-7.

Lenaerts, Jan T. M., et al. 2017. Climate and surface mass balance of coastal West Antarctica resolved by regional climate modelling. Annals of Glaciology: 1-13. doi: http://dx.doi.org/10.1017/aog.2017.42.

Li, J-L F., et al. 2017. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow. Environmental Research Letters 12(8). Art. #084010. doi: http://dx.doi.org/10.1088/1748-9326/aa7a17.

Li, J-L F., et al. 2017. Improved simulation of Antarctic sea ice due to the radiative effects of falling snow. Environmental Research Letters 12(8). Art. #084010. doi: http://dx.doi.org/10.1088/1748-9326/aa7a17.

Lim, Young-Kwon, et al. 2017. The 2015/16 El Niño Event in Context of the MERRA-2 Reanalysis: A Comparison of the Tropical Pacific with 1982/83 and 1997/98. Journal of Climate 30(13): 4819-4842. doi: http://dx.doi.org/10.1175/JCLI-D-16-0800.1.

Lovell, A. M., C. R. Stokes, and S. S. R. Jamieson. 2017. Sub-decadal variations in outlet glacier terminus positions in Victoria Land, Oates Land and George V Land, East Antarctica (1972–2013). Antarctic Science 29(5): 468-483. doi: http://dx.doi.org/10.1017/S0954102017000074.

Ma, Barry, Michael Steele, and Craig M. Lee. 2017. Ekman circulation in the Arctic Ocean: Beyond the Beaufort Gyre. Journal of Geophysical Research - Oceans 122(4): 3358–3374. doi: http://dx.doi.org/10.1002/2016JC012624.

Ma, Barry, Michael Steele, and Craig M. Lee. 2017. Ekman circulation in the Arctic Ocean: Beyond the Beaufort Gyre. Journal of Geophysical Research - Oceans 122(4): 3358–3374. doi: http://dx.doi.org/10.1002/2016JC012624.

Marmen, Mariève Bouchard, et al. 2017. Influence of seabird colonies and other environmental variables on benthic community structure, Lancaster Sound Region, Canadian Arctic. Journal of Marine Systems 167: 105-117. doi: http://dx.doi.org/10.1016/j.jmarsys.2016.11.021.

Mathiot, Pierre, et al. 2017. Explicit representation and parametrised impacts of under ice shelf seas in the z∗ coordinate ocean model NEMO 3.6 . Geoscientific Model Development 10(7): 2849-2874. doi: http://dx.doi.org/10.5194/gmd-10-2849-2017.

McKinney, Melissa A., et al. 2017. Temporal complexity of southern Beaufort Sea polar bear diets during a period of increasing land use. Ecosphere 8(1). Art. #e01633. doi: http://dx.doi.org/10.1002/ecs2.1633.

Meier, Walter N. 2017. Losing Arctic sea ice: observations of the recent decline and the long-term context. Sea Ice, 3rd ed.: 290-303. Hoboken, NJ: Wiley-Blackwell. David N. Thomas, ed..

Meredith, Michael P., et al. 2017. Changing distributions of sea ice melt and meteoric water west of the Antarctic Peninsula . Deep Sea Research Part II: Topical Studies in Oceanography 139: 40-57. doi: http://dx.doi.org/10.1016/j.dsr2.2016.04.019.

Meyer, Bettina, et al. 2017. The winter pack-ice zone provides a sheltered but food-poor habitat for larval Antarctic krill. Nature Ecology and Evolution 1(12): 1853–1861. doi: http://dx.doi.org/10.1038/s41559-017-0368-3.

Miles, Bertie W. J. 2017. The patterns and drivers of recent outlet glacier change in East Antarctica. : 1-143. Ph. D. Durham University.

Miles, Bertie W. J., Chris R. Stokes, and Stewart S. R. Jamieson. 2017. Simultaneous disintegration of outlet glaciers in Porpoise Bay (Wilkes Land), East Antarctica, driven by sea ice break-up. The Cryosphere 11: 427-442. doi: http://dx.doi.org/10.5194/tc-11-427-2017.

Morrow, Rosemary, and Elodie Kestenare. 2017. 22-year surface salinity changes in the Seasonal Ice Zone near 140°E off Antarctica. Journal of Marine Systems 175: 46-62. doi: http://dx.doi.org/10.1016/j.jmarsys.2017.07.003.

Mu, Longjiang, Zhao Jinping, and Zhong Wenli. 2017. Regime shift of the dominant factor for halocline depth in the Canada Basin during 1990-2008. ACTA Oceanologica Sinica 36(1): 35-43. doi: http://dx.doi.org/10.1007/s13131-016-0883-0.

Newton, Robert, et al. 2017. Increasing transnational sea-ice exchange in a changing Arctic Ocean. Earth's Future 5(6): 633–647. doi: http://dx.doi.org/10.1002/2016EF000500.

Nicolas, Julien P., et al. 2017. January 2016 extensive summer melt in West Antarctica favoured by strong El Niño. Nature Communications 8. Art. #15799. doi: http://dx.doi.org/10.1038/ncomms15799.

Oziel, L., et al. 2017. Role for Atlantic inflows and sea ice loss on shifting phytoplankton blooms in the Barents Sea. Journal of Geophysical Research - Oceans 122(6): 5121-5139. doi: http://dx.doi.org/10.1002/2016JC012582.

Passaro, Marcello, Felix L. Müller, and Denise Dettmering. 2017. Lead detection using Cryosat-2 delay-doppler processing and Sentinel-1 SAR images. Advances in Space Research. doi: http://dx.doi.org/10.1016/j.asr.2017.07.011.

Pages